Analysis of P systems simulation on CUDA

Ginés D. Guerrero, Jose M. Cecilia, José M. Garcia
Miguel A. Martinez—del-Amor, Ignacio Pérez—Hurtado, Mario J. Pérez—Jiménez

Abstract—

GPUs (Graphics Processing Unit) have been con-
solidated as a massively data-parallel coprocessor to
develop many general purpose computations, and en-
able developers to utilize several levels of parallelism
to obtain better performance of their applications.
The massively parallel nature of certain computa-
tions leads to use GPUs as an underlying architec-
ture, becoming a good alternative to other paral-
lel approaches. P systems or membrane systems
are theoretical devices inspired in the way that liv-
ing cells work, providing computational models and
a high level computational modeling framework for
biological systems. They are massively parallel dis-
tributed, and non-deterministic systems. In this pa-
per, we evaluate the GPU as the underlying archi-
tecture to simulate the class of recognizer P systems
with active membranes. We analyze the performance
of three simulators implemented on CPU, CPU-GPU
and GPU respectively. We compare them using a pre-
sented P system as a benchmark, showing that the
GPU is better suited than the CPU to simulate those
P systems due to its massively parallel nature.

Key words— CUDA, P System, Membrane Comput-
ing.

I. INTRODUCTION

H e dominant trend in the design of micropro-

cessor in recent years has been the increase of
chip-level parallelism. This trend is noticed in the de-
sign of multicore CPUs (having 2-4 scalar cores), and
everything points out to continue this trend increas-
ing parallelism on towards “manycore” chips that
provide higher level of parallelism. GPUs (Graphics
Processing Units) have been at the leading edge of
increasing chip-level parallelism for some time and
they have become fundamentally manycore proces-
sors. Modern GPUs, such as NVIDIA Tesla C1060,
contain up to 240 scalar processing units provid-
ing huge level of parallelism and being directly pro-
grammed using C language and CUDA extensions
[14], [6].

Huge parallelism available on GPUs is used by the
developers to enhance performance of their applica-
tions. Although many general purpose applications
are difficult to be parallelized by developers due to its
data-dependent and synchronizations features, other
applications are massively parallel by its definition
and they are well-suited to extract all the parallelism
on GPUs.

Membrane computing (or cellular computing) is
an emerging branch within Natural Computing. The
main idea is to consider biochemical processes tak-

1Grupo de Arquitectura y Computacién Paralela. Dpto. In-
genieria y Tecnologia de Computadores. Universidad de Mur-
cia. E-mail: {gines.guerrero, chema, jmgarcia}@ditec.um.es

2Research Group on Natural Computing. Department of
Computer Science and Artificial Intelligence. University of
Sevilla. E-mail: {mdelamor, perezh, marper}@us.es

1
2

ing place inside living cells from a computational
point of view, in a way that gives us a new non-
deterministic model of computation by using cellular
machines. The devices of this model are called P sys-
tems [15], and they consist of a cell-like membrane
structure, where the compartments contain multisets
of objects which evolve according to given rules in
a synchronous non-deterministic maximally parallel
manner.

There are different models of computation that
have been investigated in this area. They are the-
oretically designed to solve diverse problems [2] [3].
In this work we deal with P systems capable of con-
structing an exponential workspace (expressed by the
number of membranes and objects) in polynomial
time. They are based on the model of P systems with
active membranes and membrane division, that ab-
stracts the way of obtaining new membranes through
the process of mitosis. This model has been suc-
cessfully used to design (uniform) solutions to well-
known NP-complete problems, such as SAT [11] and
Subset Sum [9] problems.

In this paper, we analyze GPUs as underlying ar-
chitecture for a massively parallel simulation for the
class of recognizer P systems with active membranes
using CUDA. The simulation is divided in two main
stages: Selection stage and Ezecution stage. We ana-
lyze three simulators which are executed on different
platforms. The first simulator is fully executed on
CPU, the second simulator is partly executed on the
GPU (the selection stage is executed on the GPU and
the execution stage is executed on the CPU), and fi-
nally the third simulator is totally implemented on
the GPU. We test the simulator with a presented P
system which exploits the intrinsic parallelism that
P systems naturally have, and we demonstrate that
GPU is better suited than CPU to simulate those P
system as long as its intrinsic parallelism increase.

The rest of the paper is structured as follows.
In Section 2 we describe the underlying architec-
ture used for our experiments. Section 3, introduces
the model of recognizer P systems with active mem-
branes. In Section 4 we introduce the characteristics
of the simulators. In Section 5 we describe the P
system for testing our simulator. Finally, Section
6 shows the performance analysis of the simulators.
The paper ends with some conclusions and ideas for
future work in Section 7.

II. UNDERLYING ARCHITECTURE

In this section we briefly introduce the NVIDIA
Tesla C1060 used in our experiments and the CUDA
parallel programing model.

A. Hardware Background

The Tesla C1060 [5] is based on scalable processor
array which has 240 streaming-processor (SP) cores
organised as 30 streaming multiprocessor (SMs) and
4GB of off-chip GDDR3 memory called device mem-
ory or global memory. The applications start at
host side (CPU side) which communicates with de-
vice side (GPU side) through PCI-Express x16 bus
(PCI-Express delivers up to 4 GB/sec of peak band-
width per direction, and up to 8 GB/s concurrent
bandwidth). The SM is the processing unit and it is
unified graphics and computing multiprocessor. Ev-
ery SM contains, among others, eight SPs arithmetic
cores, a set of 16384 32-bit registers, a 16-Kbyte
read /write on-chip shared memory that has very low
access latency, and access to the global memory. The
arithmetic units are capable to execute three instruc-
tions per clock cycle, and they are fully pipelined,
running at 1,296 GHz, yielding 933 GFLOPS (240
SP * 3 instructions *1,296GHZ) of peak theoretical
for the GPU.

A SM is a hardware device specifically designed
with multithreaded capabilities. It manages and
executes up to 1024 threads in hardware with
zero scheduling overhead. Each thread has its
own thread execution state and can execute an
independent code path. The SMs execute threads in
Single-Instruction Multiple-Thread (SIMT) fashion
[5]. The SMs create, manage, schedule and execute
threads in groups of 32 threads, that are called
Warp. Each SM can handle up to 32 Warps (1024
threads in total). Individual threads of the same
Warp must be of the same type and start together
at the same program address, but they are free to
branch and execute independently.

The execution flow begins with a set of Warps
ready to be selected. The instruction unit selects
one of them, which is ready for issue and executing
instructions. The SM maps all the threads in an ac-
tive Warp to the SP cores, and each thread executes
independently with its own instructions and register
state. Some threads of the active Warp can be in-
actived due to branching or predication, and it is a
critical point in the optimisation process. The maxi-
mum performance is achieved when all the threads in
an active Warp takes the same path. If the threads
of a Warp diverge, the Warp serially executes each
branch path taken, disabling threads that are not on
that path, and when all the paths complete, threads
reconverge to the original execution path [5].

B. Software Background

Parallel computing programs on GPUs are pro-
gramed using the C and C++ programing language
along with CUDA extensions (Compute Unified De-
vice Architecture)[14]. In the CUDA parallel pro-
graming [13][6], an application consits of a sequential
code (host code) that may execute parallel programs
known as kernels on a parallel device. The host pro-
gram executes on the CPU and the kernels execute

on the GPU.

A kernel is a SPMD (Single Program, Multiple
Data) computation executed by large number of
threads running in parallel. The programmer orga-
nizes these threads into a grid of thread blocks. A
thread block in CUDA is a set of threads that ex-
ecute the same program (kernel) and cooperate to
obtain a result through barrier synchronization and
a per-block shared memory space, private to that
block.

The programmer declares the number of threads
block per grid and also the number of threads per
thread block. The blocks in a grid are declared in one
or two dimensions, and all of them have their own
and unique identifier. Similarly, threads in a block
can be declared in one, two or three dimensions, hav-
ing their own and unique identifier too. Besides, the
maximum number of threads in a block is 512. Using
a combination of thread id and block id, threads can
access to different data addresses and also to select
the program code that they run.

Thread blocks in CUDA programing model are
seen as virtual multiprocessors, since they have a
fixed allocation of per-block shared memory and each
thread in a block has a fixed register footprint [12].
The communication between thread blocks is per-
formed through global memory and the synchroniza-
tion among them is only obtained whenever the ker-
nel ends.

III. RECOGNIZER P SYSTEMS BACKGROUND
A. Membrane Computing

Membrane Computing is a vivid research area ini-
tiated in 1998 by Gh. P&un [7]. The main idea was
to abstract the structure and functioning of a cell in
order to extract computing models [8]. Many of them
have been proved to be computational completeness
(they are equivalent in power to Turing machines),
and others are being used in the field of computa-
tional Systems Biology as modeling tools for biolog-
ical systems.

The devices of the models considered in this frame-
work are called P systems, and they are based
on the fundamental concept of biological mem-
branes: distributed (compartmentalized) parallel
non-deterministic computing devices that process
multisets of abstract objects by means of various
types of rules.

The P system consists of a set of syntactic com-
ponents: a membrane structure (it is formed by a
rooted tree of membranes arranged hierarchically
inside a root membrane called skin, delimiting re-
gions), multiset of objects (corresponding to chem-
ical substances present in the compartments (mem-
branes) of a cell), and rules (corresponding to chem-
ical reactions that can take place inside the cell).

A computation of a P system is a (finite or infi-
nite) sequence of instantaneous steps called config-
urations, assuming a global clock that synchronize
the execution. The computation starts always with
a initial configuration of the system, where the input

data is encoded. The transition from one configura-
tion to the next one is performed by applying rules
to the objects placed inside the regions. Whenever
it is not possible to apply more rules to the exist-
ing objects and membranes of a given configuration,
the computation halts (it reaches a halting configu-
ration). The result of a computation of the system
is encoded by the multiset associated with a specific
output membrane (or the environment) in a halting
configuration. Non-determinism is presented in a P
system when there are more than one possible tran-
sition from one configuration, resulting in a tree of
computations with several of possible paths.

Finally, recognizer P systems were introduced in
[10], and constitute the natural framework to study
the efficient solvability of decision problems, which
require either an affirmative (yes) or negative (no)
answer. In this sense, we consider recognizer P sys-
tems as P systems with external output such that
the yes or no answer is sent to the environment in
every halting configuration.

B. P systems with active membranes, membrane di-
vision and polarization

Polynomial time solutions to NP-complete prob-
lems in membrane computing are achieved by trading
time for space. It is inspired by the ability of cells to
produce an exponential number of new membranes
in polynomial time. There are many ways a living
cell can produce new membranes: mitosis (cell divi-
sion), autopoiesis (membrane creation), gemmation,
etc. Following these inspirations a number of differ-
ent models of P systems has arisen [8].

In this paper we focus on the model of P systems
with active membranes, objectary membrane divi-
sion and polarization. It is one of the most studied
models in Membrane Computing, and one of the first
models presented by Gh. Piun [8]. P systems with
active membranes are formed by a membrane struc-
ture, where a label and a polarization is associated to
each membrane. The membrane structure is a rooted
tree, and the root is called skin. In this model, every
objectary membrane (the leaves of the tree) is able
to divide itself by reproducing its content into a new
membrane.

Here we provide a short recall of its features (see
[8] for details). The model of P system with ac-
tive membranes is a construct of the form II =
(O,H,p,w1,...,wn, R), where m > 1 is the initial
degree of the system; O is the alphabet of objects,
H is a finite set of labels for membranes; p is a
membrane structure, consisting of m membranes in-
jectively labelled with objects of H, wy,...,ws, are
strings over O, describing the multisets of objects
placed in the m regions of y; and R is a finite set
of rules, where each rule is of one of the following
forms:

(a) [a — v] where h € H, o € {+,—,0} (elec-
trical charges), a € O and v is a string over O
describing a multiset of objects associated with
membranes and depending on the label and the

charge of the membranes (evolution rules).

(b) a3 — [b]) where h € H, o, € {+,—,0},
a,b € O (send-in communication rules). An
object is introduced in the membrane, possibly
modified, and the initial charge « is changed to

s.

(c) la]y — []ib where h € H, o, 3 € {+,—,0},
a,b € O (send-out communication rules). An
object is sent out of the membrane, possibly
modified, and the initial charge « is changed to
s.

(d) [a] — bwhereh € H, o € {+,—,0},a,b€ O
(dissolution rules). A membrane with a specific
charge is dissolved in reaction with a (possibly
modified) object.

(e) [y — [b]Y[d} where h € H,a,B,7 €
{+,—,0}, a,b,c € O (division rules). A mem-
brane is divided into two membranes. The ob-
jects inside the membrane are replicated, except
for a, that may be modified in each membrane.

Rules are applied according to the following princi-
ples:

o All the objects which are not involved in any of
the operations to be applied remain unchanged.

o Rules associated with label h are used for all
membranes with this label, no matter whether
the membrane is an initial one or whether it was
generated by division during the computation.

o Rules from (a) to (e) are used as usual in the
framework of membrane computing, i.e. in a
maximal parallel way. In one step, each object
in a membrane can only be used by at most
one rule (non-deterministically chosen), but any
object which can evolve by a rule must do it
(with the restrictions indicated below).

e Rules (b) to (e) cannot be applied simultane-
ously in a membrane in one computation step.

o An object a in a membrane labelled with A and
with charge o can trigger a division, yielding
two membranes with label h, one of them hav-
ing charge # and the other one having charge
v. Note that all the contents present before the
division, except for object a, can be the sub-
ject of rules in parallel with the division. In
this case we consider that in a single step two
processes take place: “first” the contents are af-
fected by the rules applied to them, and “after
that” the results are replicated into the two new
membranes.

o If a membrane is dissolved, its content (multi-
set and interior membranes) becomes part of the
immediately external one. The skin is never dis-
solved neither divided.

Note that P systems with active membranes can be
seen as devices with two levels of parallelism: among
membranes where every membrane works indepen-
dently (except for when there are communication
across them), and among objects inside a membrane
where the rules are applied to the existing multiset
of objects in a maximal parallel way.

IV. SIMULATING P SYSTEMS WITH ACTIVE
MEMBRANES

In our designs, we have based on the simulator for
P systems with active membranes presented in PLin-
guaCore by I. Pérez—Hurtado et al [4], considering
the requirements explained in section III-B. In this
design, the simulation is divided into two stages: se-
lection stage and execution stage. The selection stage
consists of the search for the rules to be executed in
each membrane, and the execution stage consists of
the execution of these rules.

The input data for the selection stage consists of
the description of the membranes with their mul-
tisets (strings over the working alphabet O, labels
associated with the membrane in H, etc...) and the
set of rules R to be selected. The output data of this
stage is the set of selected rules per membrane which
will be executed on the execution stage.

The execution stage applies the rules previously se-
lected on the selection stage, and the membranes can
vary including new objects, dissolving membranes,
dividing membranes, etc obtaining a new configura-
tion of the simulated P system. This new configura-
tion would be the input data for the next step of the
selection stage. Therefore, it is an iterative process
until a halting configuration is reached.

Depending on the underlying architecture where
each stage is developed (CPU, CPU and GPU or
only GPU), we have developed three simulators.

A. Sequential simulator

This simulator is developed in C++ language, and
it is based on the JAVA simulator presented in PLin-
guaCore [4]. It is adapted to have the same con-
straints and data structures than the CUDA simu-
lators explained in the next subsections to make a
fair comparison among them. This sequential ver-
sion of the simulator obtains up to 120x of speed up
compared with the simulator presented in [4].

B. Massively parallel simulator with selection stage

on the GPU

This simulator develops the selection stage on the
GPU [1] and the execution stage on the CPU. The
selection stage is implemented as a CUDA kernel,
identifying each membrane as a thread block where
each thread represents an object of the alphabet O.
Each thread block runs in parallel looking for the
set of rules that has to execute, and each individual
thread is responsible for identifying if there are some
rules associated with the object that it represents.

The execution stage (developed on the CPU) re-
ceives the selected rules from device memory (GPU
memory) through PCI-Express bus to execute them,
obtaining a new P system configuration. If the ob-
tained configuration is not a halting configuration,
the selection stage is called again receiving the new
P system configuration from main memory to device
memory through PCI-Express bus.

This data movement through PCI-Express is too
expensive in terms of performance and it affects to

the overall performance of the simulator, as we ex-
pose in section VI.

C. Massively parallel simulator with both stages on
the GPU

In this simulator we develop both stages of the sim-
ulation on the GPU to avoid data transfers through
PCI-Express bus, and also to increase the perfor-
mance of the execution stage. We use different
CUDA kernels to implement this simulator.

The selection kernel is the same kernel than pre-
viously presented, but it also includes the execution
of the evolution rules. It is due to two main rea-
sons: the evolution rules do not implies communica-
tion among membranes, and they are executed in a
maximal manner.

However, the rest of the rules only can be executed
one per membrane, and they entail communication
among them. Therefore, we design the execution of
those rules as different CUDA kernels, one kernel per
each kind of rule (send-in communication, send-out
communication, dissolution and division), giving a
result of the execution stage. We use different kernels
for the execution stage because, otherwise, we should
implement a bigger kernel with branches to identify
each kind of rule to be applied, and this model de-
creases the performance of our application.

This simulator reduces data transfers through
PCI-Express bus since both stages are developed on
the GPU.

V. TEST P SYSTEMS FOR PERFORMANCE
ANALYSIS

In this section, we design a test P system that
extracts parallelism among objects and membranes
to study the performance of the simulators. This P
system is based on evolution rules for extracting par-
allelism from the objects of a membrane, and a divi-
sion rule to create new membranes in every step, with
no communication (without send-out/send-in rules)
and no dissolution. The rooted membrane tree has
two levels: the skin (with label 1) and the objectary
membranes (with label 2).

We define the following rules:

(a) Evolution rules: [o{i} — 0{i}],0<=i<n
(b) Division rule: [d]$ — [d]3 [d]9

This P system allow us to take control of the num-
ber of objects in the system by modifying the n pa-
rameter. Furthermore, the number of rules changes
along with the number of objects, and the number
of membranes in every step is defined by 2%, where s
is the step number. Lastly, the number of evolution
rules selected and executed per membrane in every
step is invariable, since one object evolves always to
the same.

VI. EXPERIMENTS

This section presents the experiments of the simu-
lations, making a comparison between the three sim-
ulators previously presented. For our tests, we use a

10000
& Sequential
==Parallel (Selection

on GPU)
1000V Parallel (Selection
+Execution on

GPU)

Execution time (milisec)

8 32 128 512 2048 8192
4 16 64 256 1024 4096

Objects per Membrane

32768
16384

(a) Selection time for the three simulators

Fig. 1.

benchmark based on the P system explained in the
section V. It is covering both ways of parallelism that
P systems naturally have by its definition. Firstly, it
tests the parallelism between membranes, increasing
the number of membranes until reaching a configu-
ration with 16384 membranes, and it also tests the
parallelism between objects increasing the number
of objects within each membrane exponentially until
32768 objects per membrane.

We use CUDA version 2.1 and Tesla C1060 GPU in
our experiments. GPU experiments we performed on
a computer with an Intel core2 Quad Q9550 system
running at 2.83GHz with 4GB of main memory. The
performance of the CPU simulator used as compari-
son was measured with single-thread code executing
on the same CPU of the CUDA simulator. The CPU
simulator was compiled with the -03 option.

Figure 1 shows the performance of the selection
stage and execution stage for all simulators presented
in this work in a log scale.

On one hand, figure 1(a) shows the performance
for the selection stage. As previously explained, the
simulator fully executed on the GPU (V2 simulator)
executes the evolution rules in the selection stage.
Therefore, its performance decreases compared with
the simulator with only selection on the GPU (V1
simulator). Nevertheless, V1 simulator and V2 simu-
lator improve the performance of the sequential sim-
ulator in the selection stage, obtaining up to 7x of
speed up.

On the other hand, figure 1(b) shows the perfor-
mance for the execution stage. In this case, the V2
simulator obtains better performance than the oth-
ers two simulators (developed both of them on the
CPU) when they are dealing with more than 32 ob-
jects per membrane. 32 objects per membrane im-
plies 32 threads per block which is the Warp size
on Tesla C1060. As long as the GPU resources are
better used, the V2 simulator performance increases
obtaining up to 24x of speed up compared to the

10000

& Sequential

==Parallel (Selection
on GPU)
1000 V-Parallel (Selection

P system simulation performance for the three simulators

° +Execution on vV

b GPU) v

E

> 1w v

£ v

=

9

510 \

(3]

0 Y vv-vVv

i &

1
8 2 128 512 2048 8192 32768
4 16 64 256 1024 40% 16384
Object per Membrane
(b) Execution time for the three simulators
Number Selection | Selection + | speed-up
of Objects | on GPU Execution factor
on GPU
4 3.33 0,41 8.12
16 5.49 0.41 13.39
64 13.61 0.41 33.19
256 42.39 0.45 94.2
1024 151.1 0.58 260.51
4096 569,87 1.09 522.81
16384 2235,26 2.96 755.15
32768 4453,17 5.37 829.26
TABLE 1

TRANSFER TIME THROUGH PCI-EXPRESS BUS IN
MILLISECONDS ON THE TESLA C1060 FOR OUR SIMULATORS.
‘WE SHOW THE SPEED-UP FACTOR FOR TRANSFER TIME
DEPENDING ON THE NUMBER OF OBJECTS PER MEMBRANE.
THE NUMBER OF MEMBRANES IS 16384 IN ALL CASES.

other two simulators.

However, both simulators implemented on the
GPU have an extra overhead which is the data trans-
fers through PCI-Express bus. Table I shows the
consumed time by the PCI-Express communications
in both simulators. The V2 simulator greatly reduce
the time consumed on those transactions by the V1
simulator, obtaining an overall best performance of
the simulation as it is showed in figure 2.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have analyzed three simulators for
the class of recognizer P systems with active mem-
branes. The first simulator is fully implemented on
the CPU, the second simulator is implemented us-
ing CPU and GPU, and finally the third simulator is
fully implemented on the GPU. Our experimental re-
sults demonstrate that a fully implementation on the
GPU obtains a peak performance when simulating
membrane systems due to the double parallel nature

100000
& Sequential
= Parallel (Selection

V Parallel (Selection
+ Execution on

1000 &V

>
g

Execution time (milisec)
S
o

8 32
4 16

128
64

Objects per Membrane

512 2048
256 1024 4096

8192 32768
16384

Fig. 2. Total simulation time of the three simulators, includ-
ing the cost of transferring data through PCI-Express bus

that these systems present by their definition. The
first level of parallelism is presented by the objects
inside the membranes which fits with the parallelism
among threads exposed on GPUs, and the second
one is presented between membranes which we rep-
resent with the thread blocks on CUDA programing
model.

P systems are very interesting tools to deal with
NP-complete problems, by taking as inspiration the
operation of living cells and cell reproduction (cre-
ating an exponential number of new membranes in
polynomial time). Furthermore, P systems are be-
ing also used recently in the field of computational
systems biology as a complement to other classical
approaches, i.e. to model the behaviour of some
ecosystems [2] or certain processes inside cells like
apoptosis [3]. Hence, we consider that obtaining ef-
ficient simulations of P systems is really interesting
for scientific research.

It is also important to remark that this simulator is
limited by the available resources on the GPU as well
as the CPU (RAM, Device Memory, CPU, GPU). In
the following versions, we will reduce the memory
requirements to better utilize the resources of the
GPU. For this task we can use spare matrix in our
simulator’s design.

Although the massively parallel environment that
provides the GPUs is good enough for the simulator,
we need to go beyond. The newest cluster of GPUs
provides a higher massively parallel environment, so
we will attempt to scale to those systems to obtain
better performance in our simulated codes and also
more memory space for our simulations.

In forthcoming versions, we will study the possi-
bility to simulate other kind of P systems, such as
probabilistic or stochastic P system models, which
are useful to attack other kind of problems within
the framework of computational systems biology.

ACKNOWLEDGEMENTS

The first three authors acknowledge the support
of the project from the Fundacién Séneca (Agencia
Regional de Ciencia y Tecnologia, Regién de Murcia)
under grant 00001/CS/2007, and also by the Span-
ish MEC and European Commission FEDER under
grants “Consolider Ingenio-2010 CSD2006-00046”
and “TIN2006-15516-C04-03. The last three authors
acknowledge the support of the project TIN2006—
13425 of the Ministerio de Educacién y Ciencia of
Spain, cofinanced by FEDER funds, and the support
of the “Proyecto de Excelencia con Investigador de

Reconocida Valia” of the Junta de Andalucia under

grant PO8-TIC04200.

REFERENCES

[1] M.A. Martinez—del-Amor, I. Pérez—Hurtado, M.J. Pérez—
Jiménez, Jose M. Cecilia, Ginés D. Guerrero, José M.
Garcia. Simulation of Recognizer P Systems by using
Manycore GPUs. Proceedings of 7th Brainstorming Week
on Membrane Computing, Vol II, Fenix Editora, 2009. In
press.

M. Cardona, M. Angels Colomer, M.J. Pérez-Jiménez, D.

Sanuy, A. Margalida. Modeling Ecosystems Using P Sys-

tems: The Bearded Vulture,a Case Study. In Proceedings

of Workshop on Membrane Computing, Edinburgh, UK

(2008), pp. 137-156.

S. Cheruku, A. Paun, F.J. Romero—Campero, M.J. Pérez—

Jiménez, O.H. Ibarra. Simulating FAS-induced apoptosis

by using P systems. Progress in Natural Science, 17, 4

(2007), 424-431

M. Garcia—Quismondo, R. Gutiérrez—Escudero, I. Pérez—

Hurtado, M.J. Pérez—Jiménez. P-Lingua 2.0: added fea-

tures and first applications. Proceedings of the 7th Brain-

storming Week on Membrane Computing, Vol I, Fenix Ed-
itora, 2009. In press.

E. Lindholm, J. Nickolls, S. Oberman, J. Montrym.

NVIDIA Tesla: A unified graphics and computing archi-

tecture. IEEE Micro, 28, 2 (2008), 39-55.

J. Nickolls, I. Buck, M. Garland, K. Skadron. Scalable

parallel programming with CUDA. Queue, 6, 2 (2008),

40-53.

G. Paun. Computing with membranes. Journal of Com-

puter and System Sciences, 61, 1 (2000), pp. 108-143, and

Turku Center for Computer Science-TUCS Report No 208.

G. Paun: Membrane Computing, An introduction.

Springer-Verlag, Berlin (2002).

M.J. Pérez—Jiménez, A. Riscos—Nunez. Solving the

Subset—Sum problem by active membranes. New Gener-

ation Computing, 23 (2005), 367-384.

[10] M.J. Pérez—Jiménez, F.J. Romero—Campero. An efficient
family of P systems for packing items into bins. Journal
of Universal Computer Science, 10, 5 (2004), 650-670.

[11] M.J. Pérez—Jiménez, A. Romero—Jiménez, F. Sancho—
Caparrinini. A polynomial complexity class in P sys-
tems using membrane division. Journal of Automata, Lan-
guages and Combinatorics, 11, 4 (2006), 423-434.

[12] N. Satish, M. Harris, M. Garland. Designing Efficient
Sorting Algorithms for Manycore GPUs. To Appear in
Proceedings of the 23rd IEEE 4, May 2009.

[13] NVIDIA CUDA Programming Guide 2.0, (2008):
http://developer.download.nvidia.com/compute/cuda/
2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf

[14] NVIDIA CUDA. World Wide Web electronic publication:
www.nvidia.com/cuda

[15] The P Systems Webpage. http://ppage.psystems.eu

2]

[7]

(8]

[9]

