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ABSTRACT 

 

The photosynthetic cytochrome c550 from the marine diatom Phaeodactylum tricornutum has 

been purified and characterized. Cytochrome c550 is mostly obtained from the soluble cell 

extract in relatively large amounts. In addition, the protein appeared to be truncated in the 

last hydrophobic residues of the C-terminus, both in the soluble cytochrome c550 and in the 

protein extracted from the membrane fraction, as deduced by mass spectrometry analysis 

and the comparison with the gene sequence. Interestingly, it has been described that the C-

terminus of cytochrome c550 forms a hydrophobic finger involved in the interaction with 

photosystem II in cyanobacteria. Cytochrome c550 was almost absent in solubilized 

photosystem II complex samples, in contrast with the PsbO and Psb31 extrinsic subunits, 

thus suggesting a lower affinity of cytochrome c550 for the photosystem II complex. Under 

iron-limiting conditions the amount of cytochrome c550 decreases up to about 45% as 

compared to iron-replete cells, pointing to an iron-regulated synthesis. Oxidized cytochrome 

c550 has been characterized using continuous wave EPR and pulse techniques, including 

HYSCORE, and the obtained results have been interpreted in terms of the electrostatic 

charge distribution in the surroundings of the heme centre.  
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INTRODUCTION 

 

Photosynthetic cytochrome c550 (Cc550) is a c-type heme protein with a very unusual bis-

histidinyl axial coordination (Frazão et al. 2001). It is currently accepted that Cc550 is an 

extrinsic protein subunit of photosystem II (PSII), since it appears stoichiometrically bound 

to the luminal PSII surface in the vicinity of the D1 and CP43 proteins, and close to the 

oxygen evolving complex (Zouni et al. 2001; Ferreira et al. 2004; Umena et al. 2011; Shen 

2015; Ago et al. 2016). Cc550 is present in cyanobacteria and in eukaryotic algae from the red 

photosynthetic lineage, which includes diatoms, but is absent in the green lineage, which 

comprises green algae and plants, which seem to have replaced Cc550 for the non-iron 

containing PsbP subunit (revised in: Enami et al. 2008; Roncel et al. 2012; Ifuku and 

Noguchi 2016).  

 The role of Cc550 in PSII appears to be stabilizing the Mn4CaO5 cluster and the 

binding of Cl– and Ca2+ ions (Shen and Inoue 1993; Enami et al. 1998, 2008; Kerfeld and 

Krogmann 1998; Shen et al. 1998; Nagao et al. 2010a,b; Bricker et al. 2012). Crystal 

structures and theoretical calculations suggest that Cc550 could also contribute to entry/exit 

channels for water or protons from the Mn4CaO5 cluster (Umena et al. 2011; Vogt et al. 

2015), although the role of Cc550 has been recently put in discussion (Takaoka et al. 2016). 

Beyond a structural function, a redox role of the cytochrome heme cofactor in PSII has not 

been established. In addition, in many organisms Cc550 can be mostly purified as a soluble 

protein (Evans and Krogmann 1983; Navarro et al. 1995; Kerfeld and Krogmann, 1998). 
Thus, it would be possible that two different populations of Cc550 are present: one bound to 

the PSII and the second one soluble in the lumen (Kirilovsky et al. 2004). Several roles for 

this soluble Cc550 have been proposed in cyanobacteria, mostly in anaerobic carbon and 

hydrogen metabolism (Krogmann 1991; Morand et al. 1994; Kang et al. 1994), cyclic 

photophosphorylation (Kienzel and Peschek 1983) and in the reduction of nitrate to 

ammonia (Alam et al. 1984). 

 Cyanobacterial Cc550 shows intriguing structural and biophysical properties. In 

addition to the unusual bis-histidinyl axial heme coordination, the protein has a very low 

midpoint redox potential (Em) when purified as the soluble form (from –250 to –314 mV) 

(Alam et al. 1984; Navarro et al. 1995; Roncel et al. 2003), but much more positive potential 

values were obtained for the Cc550 bound to PSII (from –80 to +200 mV) (Roncel et al. 

2003; Guerrero et al. 2011). On the other hand, the EPR spectra of the different 

cyanobacterial Cc550 studied in the oxidized form are typical of a low-spin heme with bis-
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histidine coordination (Roncel et al. 2003; Kerfeld et al. 2003). Finally, minor, but 

significant differences in the EPR spectra from the free and PSII-bound Cc550 were observed 

(Roncel et al. 2003; Kirilovsky et al. 2004). 

 Diatoms belong to the red lineage of algae that diverged along evolution from the 

green lineage that evolved to higher plants (Bowler et al. 2008; Grouneva et al. 2013) and 

nowadays constitute the most abundant and diversified group of oceanic eukaryotic 

phytoplankton (Kooistra et al. 2007; Bowler et al. 2010). The photosynthetic chain in 

diatoms possesses some peculiarities, arising from their double endosymbiotic origin. Thus, 

the assembly of extrinsic proteins at the lumenal side of PSII includes the three 

cyanobacterial-like subunits PsbO, PsbU and PsbV (or Cc550), as well as the PsbQ’ subunit 

also present in red algae (Enami et al. 1998; Nagao et al. 2007, 2010a,b). However, besides 

these subunits, diatoms have an extra extrinsic protein, named as Psb31 (Okumura et al. 

2008). Reconstitution experiments of isolated PSII samples depleted of the extrinsic subunits 

indicate that both in red and diatoms algae the binding of PsbV/Cc550 requires prior binding 

of PsbO and PsbQ' and, in the case of diatoms, of Psb31 (Enami et al. 1998, 2003; Nagao et 

al. 2010b). This contrasts with the results obtained in cyanobacteria, where Cc550 is able to 

bind directly to the PSII core complex in a manner essentially independent of other extrinsic 

subunits (Enami et al. 2003), although PsbO is also required for a functional binding of 

Cc550, as revealed both by reconstitution and Fourier transform infrared spectroscopy 

experiments (Shen and Inoue 1993; Nagao et al. 2015). It is interesting, however, to note 

that the very recent crystal structure of the PSII from the red alga Cyanidium caldarium has 

shown an overall structure similar to the cyanobacterial complex, including the position of 

Cc550 in PSII (Ago et al. 2016). 

 In this work, we have purified and characterized the Cc550 from the diatom 

Phaeodactylum tricornutum. The protein is obtained in a C-terminal truncated form with a 

low affinity for the PSII complex. In addition, the characterization of Phaeodactylum Cc550 

by continuous wave and pulse EPR indicates a relationship between the electrostatic 

environment of the heme centre within the protein heme-pocket and the electronic structure 

of the paramagnetic entity. 
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EXPERIMENTAL PROCEDURES 

 

Cell cultures 

Cells from the coastal diatom Phaeodactylum tricornutum CCAP 1055/1 (hereafter 

Phaeodactylum) were used as biological material. Phaeodactylum cells from 

photobioreactors outdoor cultures were obtained as a frozen paste from Easy Algae (Cádiz, 

Spain). Alternatively, Phaeodactylum was grown in Artificial Seawater (ASW) medium 

(McLachlan 1964; Goldman and McCarthy 1978) in a rotatory shaker (50 rpm) at 20 ºC. The 

cultures were illuminated by fluorescent white lamps giving an intensity of 20 µE m-2 s-1 

under a light/dark cycle of 16/8 h. For the experiments of the effects of iron deficiency, cells 

from cultures of 15 days were pelleted at 5,000xg for 5 min and grown in standard ASW 

medium (iron-replete culture; 12 µM Fe) and ASW medium with only 0.12 µM Fe (iron-

deplete culture), with regular transfer of the cells into fresh media. In the experiments of 

Cc550 and cytochrome c6 (Cc6) quantification after changing iron availability, cultures grown 

under iron-replete or iron-deficiency were divided in two equal volumes, centrifuged 

(5,000xg for 5 min) and resuspended in the same volume of iron-replete or iron-deficient 

media. Four sets of samples were thus obtained: (1) cells growing in iron-replete medium 

and (2) cells growing in iron-deficient medium, resuspended in their same fresh medium; (3) 

cells growing in iron-deficient medium resuspended in fresh iron-replete medium; and (4) 

cells growing in iron-replete medium resuspended in fresh iron-deficient medium. 

 

Proteins purification 

Purification of Cc550 from Phaeodactylum cells was carried out as a modification of the 

procedure recently described for the purification of Cc6 from the same organism (Navarro et 

al. 2011; Bernal-Bayard et al. 2013). The method consisted of cell resuspension in 10 mM 

MES, pH 6.5, 2 mM KCl and 5 mM EDTA buffer, supplemented with DNase and the 

protease inhibitors PMSF, benzamidine, aminocaproic acid and a tablet of the cOmplete 

Protease Inhibitor Cocktail (Roche), followed by French press disruption (20,000 psi), 

treatment with streptomycin sulfate, sequential precipitation with 30 and 60 % ammonium 

sulfate and extensive dialysis, to obtain the clarified crude extract. From this point Cc550 was 

purified by FPLC, first by using a DEAE Sepharose column (Cc550 elution by applying a 

0.01–0.2 M NaCl linear gradient in Tris-HCl 10 mM, pH 7.5 buffer) and further by gel 

filtration using a Sephacryl S-200 HR column (GE Healthcare Life Sciences). Protein 

fractions with an A550/A275 ratio close to 1.0 were pooled, suspended in Tris-HCl 10 mM, pH 
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7.5 buffer, concentrated in an Amicon pressure filtration cell, and finally frozen at –80 ºC 

until use. The concentration of Cc550 was calculated using an extinction coefficient of 26 

mM-1 cm-1 at 550 nm for the reduced form (Shimazaki et al. 1978; Navarro et al. 1995).  

 PSII-enriched samples from Phaeodactylum cells were obtained by ß-dodecyl-

maltoside (ß-DM) solubilization and sucrose gradient separation. Fresh Phaeodactylum cells 

were resuspended in 50 mM MES, pH 6.5, 5 mM MgCl2 and 5 mM EDTA buffer (buffer 

A), supplemented with proteases inhibitors and 1 M betaine or sorbitol (buffer B), and 

disrupted in a French pressure cell at 7,000 psi. Some control experiments were carried out 

with cells resupended in buffer A (non-osmotically stabilized buffer) and disrupted by 6 

cycles of freezing in liquid nitrogen and thawing at 25 °C in a thermoblock. In any case, 

unbroken cells were separated by centrifugation at 5,000xg for 5 min and the supernatant 

(crude extract) was centrifuged at 170,000xg for 30 min. The resultant supernatant was 

considered as the soluble fraction, whereas the pellets were resuspended in buffer B and 

centrifuged as before to obtain a washed fraction (the supernatant) and a thylakoids extract 

(the pellets). Pellets were resuspended in buffer A supplemented with 0.2 M sucrose at 1 mg 

Chl mL-1 and later diluted to 0.5 mg Chl mL-1 with the same volume of ß-DM 3% (w/v), 

prepared in buffer A, to yield a final detergent:chlorophyll ratio of 30:1 (w/w), and the 

solution was incubated 30 min in the dark at 4 ºC under gentle stirring. Control experiments 

were carried out using a mixture of 0.5 mg Chl mL-1 and ß-DM 0.5% (final 

detergent:chlorophyll ratio of 10:1), followed by incubation at 4 oC for 5 min. Finally, 

solubilized solutions were centrifuged at 170,000xg for 30 min and the resulting supernatant 

(detergent-solubilized fraction) was loaded onto a continuous sucrose density gradient from 

0.17 to 0.47 M sucrose, prepared in buffer A + 0.03% ß-DM, and centrifuged at 135,000xg 

for 16 h. The medium mostly-green band was collected and considered as a PSII-enriched 

sample. The PSII content was calculated from the differential (ascorbate minus ferricyanide) 

absorbance change of the PSII-intrinsic cytochrome b559 protein (Roncel et al. 2003). The 

content of Cc550 was estimated from the absorbance difference at 550 nm between the 

reduced (sodium dithionite, 1 mM) and oxidized state (in the presence of sodium ascorbate 1 

mM), using a differential extinction coefficient (reduced minus oxidized) of 15 mM-1 cm-1 at 

550 nm (Navarro et al. 1995).  

 

Analytical methods 

The N-terminus of purified Cc550 was sequenced in a Procise TM 494 Protein Sequencer 

(Applied Biosystems) at the Protein Chemistry Service (CIB-CSIC, Spain). Redox titrations 
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were performed as described previously (Molina-Heredia et al. 1998; Guerrero et al. 2014) 

in potassium phosphate 50 mM (pH 7) or acetic-acid/MES (25:25 mM, pH 5-6) buffers, in 

the presence of 10 µM of anthraquinone-2-sulfonate, 2-hydroxy-1,4-naphthoquinone and 

duroquinone as redox mediators. The accuracy of the potential-measuring system was first 

tested by redox titration of a flavin-mononucleotide solution as a standard (Em,7 = –220 mV). 

Chlorophyll concentrations were determined as previously reported (Arnon 1949; Jeffrey 

and Humphrey 1975). 

 The total Cc550 content in Phaeodactylum cells was determined by differential 

absorbance measurements. 40-100 mL cultures were precipitated by centrifugation at 

16,000xg for 5 min and wet pellets were weighed. Cells were then resuspended to 1 mL in 

culture media and frozen until use. Unfrozen samples were disrupted by 6-7 cycles of 

freezing in liquid nitrogen and thawing at 30 °C in a thermoblock. Soluble fractions were 

obtained by centrifugation at 16,000xg for 15 min, and the content of Cc550 was estimated as 

before. This method extracted up to 85-90% of Cc550, as determined by further protein 

extraction by sonication of the membrane fractions. Control measurements of the Cc6 

content were made from the absorbance difference at 552 nm between the fully reduced 

(sodium ascorbate, 1 mM) and fully oxidized (potassium ferricyanide, 0.5 mM) states 

(Roncel et al. 2016). The amount of Cc550 or Cc6 was related to grams of the initial wet 

weight. Some additional experiments were designed to estimate the amount of soluble (or 

easily removed from membranes) and membrane-associated Cc550 (and Cc6). Briefly, 

Phaeodactylum cells were resuspended in 50 mM MES, pH 6.5, buffer supplemented with 

10 mM MgCl2, 1 M betaine, proteases inhibitors and DNase, and disrupted by a French press 

cycle at 7,000 psi. Unbroken cells were separated by centrifugation at 5,000xg for 5 min and 

the supernatant was centrifuged at 170,000xg for 25 min. The resultant supernatant was 

considered as the soluble fraction, whereas the pellet was resuspended in the same buffer and 

centrifuged as before to obtain a washed fraction (the supernatant) and a membrane extract 

(the pellet). Cc550 was extracted from this membrane fraction by resuspension in 50 mM 

MES buffer, pH 6.5, supplemented with 500 mM NaCl and 4 % Triton X-100 detergent, 

followed by 30 min incubation in the dark. Solubilized proteins were separated by 

centrifugation (170,000xg for 25 min) and partially purified by sequential precipitation with 

50 and 85 % ammonium sulfate. The final pellet (membrane associated fraction) was 

resuspended in few mL of potassium phosphate 50 mM, pH 7, buffer, and the amounts of 

Cc550 (and Cc6) were estimated as before. Alternatively, the final pellet was resuspended in 
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pure water, washed by two dilution/concentration cycles in an Amicon pressure filtration 

cell, and used for molecular weight MALDI-TOF analysis. 
 For the immunodetection of Cc550, polyclonal antibodies raised against this 

cytochrome were generated using standard procedures at the Animal Experimentation 

Facility (University of Seville, Spain) by subcutaneous injection of 1 mg of purified protein 

into a white New Zealand rabbit (Bernal-Bayard et al. 2013). Antibodies against D1, PsbO 

(Agrisera, Sweden) and Psb31 from the diatom Chaetoceros gracilis (a generous gift of Prof. 

T. Tomo, Tokyo University of Science, Japan) were also used. Protein samples or cell 

extracts were resolved on 15% (w/v) polyacrylamide gel electrophoresis and transferred to a 

nitrocellulose membrane (Amersham Protran Premium 0.45 µm NC, GE Healthcare Life 

Sciences). The membrane was incubated overnight with the primary antibodies (dilution 

1:1,000) followed by 1 h incubation with Goat Anti-Rabbit IgG (H+L)-HRP Conjugate 

(Biorad) (dilution 1:10,000), and visualized with the Immobilon Western Chemiluminescent 

HRP Substrate (Millipore). Western blot bands were quantified using the Quantity One® 1-D 

analysis software (Bio-Rad). 

 

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-

TOF MS)  

MALDI-TOF MS analyses were performed at the Proteomic Service (IBVF, Sevilla, Spain), 

in an Autoflex model analyzer (Bruker Daltonics, Germany) operated in lineal (protein 

molecular weight) or reflector (peptide mass fingerprint) positive modes. Mass spectra were 

previously calibrated with appropriate standards to the range of mass under study. The 

molecular weight (MW) of Cc550 was determined with sinapinic acid as matrix, whereas 

HCCA (α-cyano-4-hydroxy-cinnamic acid) was used as the matrix for peptide mass 

fingerprint. Tryptic digestion and BrCN cleavage were carried out as described elsewhere 

(Sechi and Chait 1998; Crimmins et al. 2005; Martínez-Fábregas et al. 2014) and the peptide 

fingerprint was obtained by MALDI-TOF MS. Protein identification was carried out by 

comparing the obtained peptide fingerprint with the NCBI database using the MASCOT 

software programs. 

 
Electron paramagnetic resonance (EPR) spectra  

Protein samples for EPR were prepared in Tris-HCl 10 mM, pH 7.5 buffer, supplemented 

with glycerol in a 2:1 ratio, to obtain a glass upon freezing. Subsequently, samples were 
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transferred to 4 mm quartz EPR tubes, frozen in liquid nitrogen and stored until use. The 

resulting protein concentration was 0.6 mM. 

 Both, continuous wave (CW) and pulse EPR measurements were performed on a 

Bruker Elexsys spectrometer (Bruker Biospin, Germany) operating at X-Band (about 9.6 

GHz), either equipped with a rectangular cavity operating in the TE102 mode or a DM5 

dielectric ring resonator, for CW and pulse measurements respectively. The experiments 

were performed at very low temperatures by means of a helium gas-flow cryostat and a 

temperature controller, both from Oxford Instruments (UK). 

 The CW-EPR spectra were taken at 25 K adjusting the microwave power to ensure 

that there was no saturation. Modulation frequency and amplitude of the magnetic field were 

100 Hz and 1 mT respectively. All pulse EPR experiments were recorded between 6 and 8.5 

K and a shot repetition time of 2 ms. Electron Spin Echo detected field-sweep spectra were 

recorded with the Hahn-echo sequence π/2 - τ - π. 2D Hyperfine Sublevel Correlation 

experiments (HYSCORE) were performed using the standard sequence π/2 - τ -π/2 - T1 - π - 

T2 -π/2 with an eight-step phase cycle (Schweiger and Jeschke 2001). 

 Processing of the 2D HYSCORE spectra included a polynomial baseline correction, 

hamming windowing in both dimensions before performing a 2D Fast Fourier Transform. 

The absolute value of this transform was displayed in the 2D frequency domain.  

 

Structural model 

The structure of Cc550 from Phaeodactylum was modeled using the program Phyre2 

(http://www.sbg.bio.ic.ac.uk/phyre2/html/) (Kelly and Sternberg 2009), employing as main 

templates the crystal structures of Cc550 from Thermosynechococcus elongatus (pdb 1MZ4 

and 1W5C) and Synechocystis sp. PCC 6803 (pdb 1E29). Surface electrostatic potentials were 

calculated and represented using the Swiss-Pdb Viewer Program (Guex and Peitsch 1997).  
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RESULTS  

 

Protein purification and analytical characterization 

Figure 1 shows the different purification and protein extraction procedures carried out 

during the characterization of Cc550 from the marine diatom P. tricornutum. First, by 

following a modification of previously described purification methods (see the Experimental 

Procedures section), a yield of ca. 15 mg of purified Cc550 was obtained from 100 g wet 

weight of Phaeodactylum cells, from about 30 mg present in the initial supernatant after the 

streptomycin sulfate treatment, as determined by the differential absorbance changes (not 

shown). The Cc550 obtained in the soluble fraction was about 85% of the total (i.e., 35 mg), 

as also estimated from differential absorbance changes. Thus, Phaeodactylum cells 

disruption at high pressure in a non-osmotically stabilized medium allowed to extract 

moderately large amounts of solubilized Cc550. Visible absorption spectra of purified Cc550, 

both in the native oxidized and dithionite-reduced forms, show absorption bands (549.5, 521 

and 417 nm, reduced; 405.5 and 528.5 nm, oxidized) similar to those previously described 

(Shimazaki et al. 1978; Navarro et al. 1995) (Figure S1, supplementary material). The 

absorbance ratio A275 (oxidized)/A550 (reduced) for the final purest protein samples was 

1.07. Redox titration of Phaeodactylum Cc550 established a midpoint redox potential (Em,7) 

value of –190±12 mV (Figure S1, supplementary section) which did not significantly change 

in the pH range 5-7 (data not shown). This potential value, although maintaining the typical 

negative redox potential, is significantly more positive than those described in cyanobacteria 

for Cc550 in solution (–250 to –300 mV) (Navarro et al. 1995; Roncel et al. 2003; Guerrero et 

al. 2011). 

 Interestingly, when checking the MW of purified Cc550 by MALDI-TOF analysis, a 

value of ca. 15,110 Da was obtained (Figure 2A). After subtracting the heme group (616 

Da), a MW of ca. 14,495 for the peptide chain is consequently deduced. This value is lower 

than the theoretical value inferred from the psbV gene sequence (ca. 14,822 for the peptide 

chain and 15,438 for the heme-containing holoprotein; see Figure 2) but agrees with a 

truncated protein in the two last tyrosine residues of the C-terminus (14,495.5 for the peptide 

chain and ca. 15,111 for the holoprotein; Figure 2). Actually, no signal corresponding to the 

theoretical sequence has been detected in any case (see below), although an even smaller 

band of much lower intensity was also identified, whose MW (14,997.6 Da) could fit with 

an additional small fraction of a truncated protein in the last three residues of the C-terminus 

(14,998.4 for the peptide chain; Figure 2A). 
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 Different experiments were carried out to confirm the occurrence of a C-terminal 

truncated protein. First, the N-terminal part of purified Cc550 was sequenced (data not 

shown), showing the correct sequence according to the psbV gene (IDLDEATRTV; Figure 

2, lower). Second, Cc550 samples were subjected to trypsin or BrCN cleavage and peptide 

analysis (Figure S2, supplementary material). Trypsin digestion unequivocally identified the 

sample as the Cc550 protein, without the observation of additional peptides arising from 

alternative proteins (data not shown). However, lysines 129 and 134 in Cc550 (targets for 

trypsin) prevented the possible identification of the last protein C-terminus part when using 

this protease, and thus BrCN was alternatively used. As shown in Figure S2 (supplementary 

material), BrCN cleavage allowed the identification of peptides covering residues 1-115, but 

the expected peptide corresponding to the 116-137 residues in the C-terminus (MW=2,471.9 

Da) was absent. Conversely, new peptides compatible with the lack of the 2-3 C-terminus 

groups appear (Figure S2), thus confirming the occurrence of truncated species. It is also 

important to note that the truncated Cc550 not only appears in the final purified protein, but 

also in the initial clarified crude extract from the purification process (MW ≈ 15,107; Figure 

2B), although in this case the data are less accurate due to the lower protein concentration 

and to interferences arising from other cellular components. 

 In order to better establish the Cc550 distribution and nature (truncated or not) 

between soluble (or easily membrane-released) and membrane-associated fractions, 

Phaeodactylum cells were disrupted in osmotically stabilized media (in the presence of 

betaine or sorbitol) under a lower pressure (7,000 psi) and Cc550 was quantified by the 

differential absorbance changes, both in the soluble fraction and in the fraction extracted 

from membrane samples treated with 500 mM NaCl and 4% Triton X-100 (Figure 1). As an 

additional control, the soluble luminal Cc6 protein was also quantified in the different 

samples. From the differential absorbance spectra (reduced minus oxidized) corresponding 

to Cc550 and Cc6 in samples obtained after treating the membrane fractions with NaCl and 

detergent (Figure S3, supplementary material), it was possible to estimate that the 

membrane-associated proteins stand for ≈ 40% and 10% of total Cc550 and Cc6, respectively 

(60% and 90% in the soluble protein fraction), no differences being observed when using 

betaine or sorbitol as osmotic stabilizing agents (data not shown). The presence of a small 

amount of Cc6 in the membrane-extracted fraction, as well as the fact that washing the 

membranes with the disruption buffer, instead the salt/detergent mixture, did not result in a 

significant extraction of either Cc550 or Cc6 (not shown), indicate that at least a part of the 

membrane-extracted Cc550 would arise from disruption of closed thylakoids during the 
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detergent washing procedure. To test if the soluble and the membrane-associated Cc550 

correspond to different forms (i.e., a soluble but truncated protein, and a membrane-bound 

and complete protein) a MW MALDI-TOF analysis of Cc550 partially purified from the 

membrane-extracted fraction was carried out. The results indicated again a truncated protein, 

similar (MW ≈ 15,106) to that obtained in the soluble fraction, without any detection of the 

theoretical complete protein (Figure 2C). 

 The affinity and association of Cc550 to PSII has been investigated by Western blot 

analysis of the different fractions acquired along the obtainment of PSII-enriched samples 

from Phaeodactylum by ß-DM solubilization (Figure 1), a standard method used for PSII 

purification (Enami et al. 1995; Bumba et al. 2004; Kirilovsky et al. 2004; Nagao et al. 

2007). Cc550 and both the D1 core and the extrinsic PsbO and Psb31 subunits of PSII were 

monitored. Psb31 is exclusive of diatoms, and its presence along PSII purification is 

particularly relevant as it has been described to be required for the binding of Cc550 to the 

photosystem complex (Okumura et al. 2008; Nagao et al. 2010a). Additionally, direct 

spectroscopic monitoring of the PSII core (the cytochrome b559) and Cc550 in the different 

fractions from the sucrose gradient was also carried out. From the immunological analysis 

shown in Figure 3 it is first confirmed that although Cc550 appears in the soluble fraction, a 

significant amount of the protein can be also observed both in the initial and washed 

membrane fractions, as well as in the ß-DM solubilized sample, together with the D1, PsbO 

and Psb31 subunits (Figure 3, upper). However, after sucrose gradient partitioning, Cc550 is 

located mostly in the top low-density fraction, corresponding to free (not-associated to PSII) 

Cc550 (Figure 3, upper), whereas D1 and Psb31 only appear in the high-density lower green 

band containing PSII, and PsbO is significantly located in both fractions. The quantification 

of the Western blot bands resulted in an amount of Cc550 and PsbO in the PSII fraction of ca. 

10% and 34%, respectively (90% and 66% in the top soluble fraction). The low content of 

Cc550 in the PSII-enriched samples was also confirmed by spectroscopic measurements of 

the differential absorbance changes associated both to this protein and cytochrome b559. 

Thus, whereas cytochrome b559 was clearly monitored, only minor changes at 562 nm 

(probably associated with the cytochrome b6f complex) were observed under dithionite 

reduction, and no significant changes associated to Cc550 were detected (Figure 3, lower). 

However, Cc550 was clearly identified in the upper gradient fraction (Figure 3, lower). 

Similar results were obtained using a lower detergent:chlorophyll solubilization ratio and 

time (1:10 and 5 min; see the Experimental Procedures section), although in this case a 

lower PSII purification yield was observed (not shown). 
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 It is well known that iron availability limits growth of photosynthetic algae and of 

diatoms in particular (Allen et al. 2008; Morrissey and Bowler 2012; Nunn et al. 2013). A 

down-regulation under iron limitation of several iron-containing proteins has been 

previously reported in Phaeodactylum, although the global PSII concentration and D1 

transcription is maintained, and other PSII subunits, including Cc550, were described to 

remain almost constant (Allen et al. 2008). Recently we have reported a decrease to a level 

of ca. 30% of the Cc6 protein content in iron-deplete cells as compared with iron-replete 

conditions (Roncel et al. 2016). Considering that at the protein level the amount of both Cc6 

and Cc550 is similar in Phaeodactylum cells (this work, and see Bernal-Bayard et al. 2013; 

Roncel et al. 2016), we have here investigated the evolution of the Cc550 content when 

changing iron availability. It is interesting first to note that cultures grown under low iron 

availability showed levels of Cc6 and Cc550 of 25-30% and 45-50%, respectively, compared 

with iron-replete conditions, as estimated by its specific redox differential absorbance 

changes (Figure 4A,C). Thus, from these values it seems that down-regulation under low 

iron of the electron donor to PSI (the Cc6) is higher than the PSII-associated Cc550 protein. In 

addition, cultures grown under iron-replete or iron-limiting conditions were collected and 

resuspended in the same volume of iron-deplete or iron-replete media, respectively, and the 

content in Cc550 and Cc6 was followed during several days of culture. As shown in Figure 

4B, when shifting from replete to deplete (+/–) or from deplete to replete (–/+) conditions, a 

decrease or a parallel increase in the content of Cc550, respectively, were observed, these 

changes occurring during the first 6 days of culture. Similar qualitative results were obtained 

when analyzing the Cc6 content (Figure 4D).  

 

EPR measurements 

The CW-EPR spectrum of the soluble form of Phaeodactylum Cc550 is presented in Figure 

5A, where it shows the three characteristic features of a low-spin heme (S = ½), with g factor 

absolute values of |gz| = 3.00, |gy| = 2.24 and a broad signal at high field centered at |gx| = 

1.44 (Table 1). The electron spin echo (ESE) detected EPR spectrum, normally much more 

sensitive to broad signals since it is displayed in the absorption mode, confirms the g values 

(Figure 5B). EPR spectra of low-spin heme centers are usually analyzed with the hole-model 

(Griffith 1957; Taylor 1977). Using this model it is possible to obtain the relative energy 

levels of the t2g orbitals of the iron atom, where the unpaired electron is distributed (Alonso 

et al. 2007; Alonso and Martínez 2015). The level distribution can be parametrized by the 
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crystal field parameters Δ and V (Figure 5C), which can be calculated in units of the spin-

orbit coupling constant, λ, from the g-values. In our case, the estimated values (Table 1) 

were: Δ/λ = 3.17, V/λ = 1.71, and subsequently V/Δ = 0.54. These parameters are typical for 

a bis-histidine coordination (Peisach et al. 1973, and see Table 1). HYSCORE experiments 

were undertaken in this variant to study the hyperfine interaction of the electron spin in the 

iron with the nuclear spin (I =1) of the coordinating nitrogens (Figure 5D). The experiments 

were performed at the magnetic field corresponding to gz (B = 230 mT), where the magnetic 

field is perpendicular to the heme plane. In the negative quadrant of the experiment, it can be 

observed the so-called double-quantum (dq) correlation peaks (Figure 5D), which are the 

ones normally more intense in HYSCORE spectra of low-spin hemeproteins (García-Rubio 

et al. 2003; Ioanitescu et al. 2007). In this case, and unlike other proteins and low-spin heme 

model complexes where one peak for heme and one peak for histidine are observed at this 

position, up to four such peaks are solved. The assignment of these peaks to particular 

nitrogens is difficult, due to the low sensitivity in the single-quantum region at lower 

frequencies. Irrespectively of the particular assignment of peaks in the spectrum to 

coordinated nitrogen atoms, there is certainly a lack of equivalency in the hyperfine coupling 

of the heme nitrogens, since at least two of the peaks have to be assigned to heme nuclei 

(there are four peaks and four heme nitrogens and two histidine nitrogen nuclei). Similar 

inequivalencies of heme nitrogens in HYSCORE spectra have already been reported in other 

hemeproteins (Van Doorslaer et al. 2012).  
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DISCUSSION 

 

 Cc550 is an extrinsic component in the luminal side of PSII in cyanobacteria, but also 

in eukaryotic algae from the red photosynthetic branch, which comprises diatoms (Enami et 

al. 2008; Roncel et al. 2012). We have here characterized the Cc550 from the model diatom 

Phaeodactylum tricornutum, in order to shed light on the different evolutionary pathways of 

PSII in the different branches of photosynthetic organisms. Is is interesting to note that 

although a Cc550-like protein (encoded by the psbV2 gene) has been identified in several 

cyanobacteria (Kerfeld et al. 2003; Suga et al. 2013), Phaeodactylum only possesses the 

canonical Cc550 protein, encoded by the chloroplast psbV gene. 

 Cc550 can be obtained from the soluble cell extract in relatively large amounts. An 

Em,7 value of ca. –190 mV was estimated for the purified protein. This value is at least 60 

mV more positive than values described in cyanobacteria at pH 7 for the protein in solution 

(Navarro et al. 1995; Roncel et al. 2003; Guerrero et al. 2011). Although in T. elongatus the 

redox potential is pH-dependent and varies from –150 to –350 mV as the pH increases from 

5 to 10 (Roncel et al. 2003), in Phaeodactylum the redox potential remains basically 

constant in the pH range from 5 to 7. Remarkably, more positive but pH-independent redox 

potential values (varying from –80 to +200 mV) have been obtained for the Cc550 bound to 

PSII (Roncel et al. 2003; Guerrero et al. 2011). However, because the very weak binding 

(see below), it was not possible to measure the redox potential of the PSII-bound Cc550 in 

Phaeodactylum. 

 It is interesting to compare the Cc550 content in Phaeodactylum cells (ca. 35 mg from 

100 g of wet weight) with the lumenal (and soluble) Cc6 (ca. 25 mg in the same cell 

amount), which corresponds to a molar ratio Cc6/Cc550 ratio of ≈1.15. It has been previously 

reported that the Cc6 concentration in the thylakoid lumen would be as high as ca. 200 µM 

(Haehnel et al. 1989; Durán et al. 2005), which is in agreement with our protein content 

measurements in Phaeodactylum cells. Thus, according to this comparison, a tentative 

concentration of Cc550 in the lumen of ca. 175 µM could be estimated. 

 Phaeodactylum Cc550 is purified in a truncated form, lacking the last two C-terminal 

tyrosines, as clearly demonstrated by MS analysis (Figure 2), although a much smaller 

population of a truncated form lacking the last three C-terminal residues cannot be 

discarded. Thus the question arises about the physiological relevance of this fact, i.e., if the 

truncated Cc550 is the result of a specific processing or to the unspecific exposition of the 

protein to cell proteases during the purification course. Although the occurrence of an 
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artifactual protein truncation cannot be totally rejected, several facts speak in favor of a 

physiological process. First, the purification procedure has been carried out in the presence 

of a wide battery of proteases inhibitors. Second, in spite of the relatively high amount of 

Cc550 present in the initial crude extracts (see above), no traces of the theoretical complete 

protein have been detected in any case during the different steps of purification. Finally, the 

analysis of Cc550 extracted from membrane fractions also points to a physiological truncated 

protein form. The procedure followed in these latter experiments (lower pressure disruption, 

membranes washing and detergent extraction) yielded a substantial membrane-bound Cc550 

population, even partially arising from a small but significant thylakoid fraction enclosing 

the protein, as deduced by the presence of detectable amounts of the luminal soluble Cc6. A 

membrane-extracted Cc550 should not have been in contact with other proteases than those 

from the chloroplast, since the Cc550 bound to PSII would have its C-terminus not accessible 

to proteases, as deduced by the known PSII crystal structures of cyanobacteria and red algae 

(Shen 2015; Ago et al. 2016, and see below). It is interesting to note that in the diatom 

Thalassiosira oceanica, in addition to the canonical Cc550 gene with a KIYF C-terminus 

sequence, an additional Cc550-like gene (ca. 97 % identity) corresponding to a protein with a 

truncated C-terminus sequence, lacking the three last hydrophobic residues, has been 

reported (THAOC_28383 gene). 

 If the processing of Cc550 is a specific physiologically relevant event, it could occur 

either at the RNA or the protein level, in this latter case probably associated to a 

carboxypeptidase activity. Several serine and zinc carboxypeptidases are annotated in the 

Phaeodactylum genome, although a chloroplast location is not established (Bowler et al. 

2008). Thylakoid proteolytic activities are mainly associated to PSII turnover, related to 

photochemical oxidative effects and to dynamic adaptations under different environmental 

conditions (Aro et al. 1993; Kato and Sakamoto 2010). An enhanced PSII turnover has been 

suggested in diatoms (Key et al. 2010; Wu et al. 2011; Nagao et al. 2013, 2016; Lavaud et 

al. 2016), and in C. gracilis, in particular, the PSII complex was described to be remarkably 

unstable and rapid protein degradation was observed (Nagao et al. 2007, 2012). In addition, 

at least four new proteases were detected in the thylakoid membranes of this diatom (Nagao 

et al. 2012). It is interesting to note that from the first crystal structure of soluble Cc550 from 

the cyanobacterium Synechocystis sp. PCC 6803, it was initially suggested that residues of 

the C-terminal form a hydrophobic finger maybe involved in the interaction with PSII 

(Figure 6) (Frazao et al. 2001). This proposal has been later confirmed in the structure of 

PSII from the cyanobacterium T. elongatus (Shen 2015) and, very recently, in the PSII 



 18 

structure from the red alga C. caldarium (Ago et al. 2016). Furthermore, in T. elongatus the 

last residues in the C-terminus of the Cc550 are not resolved in the soluble structure but are 

visible in the crystal structure, when Cc550 is bound to PSII (Kerfeld et al. 2003). This 

indicates that this region is much more flexible when the cytochrome is in its soluble form, 

pointing to a direct role in binding to PSII, where this region of the protein is structured. 

Thus it is possible to speculate that a truncated protein in its C-terminus could have a 

diminished affinity for the PSII complex and thus a facilitated release during PSII turnover. 

The modelled structure of Phaeodactylum Cc550 displays a general folding very similar to 

that described in other cyanobacterial and red algae Cc550 (Figure 6), and thus the complete 

diatom protein shows the hydrophobic protuberance pointing up –according the orientation 

presented in Figure 6–, although this protuberance is sensibly diminished in the truncated 

Cc550 form. Interestingly, the electrostatic surface of the diatom cytochrome also shows a 

distinctive character, as the protein exhibits a diminished negatively charged surface (Figure 

6). This fact would be also relevant in setting the affinity binding to PSII. 

 From the g-values obtained from the EPR spectra, it is possible to calculate the 

crystal field parameters Δ/λ and V/λ and reconstruct the energy levels of the t2g orbitals 

(Alonso et al. 2007). There have been quite a lot of very informative studies on bis-

imidazole model complexes to determine how the geometry of the axial ligands can affect 

this energy diagram, interpreting it in terms of π donation, steric hindrance or other kinds of 

interactions (Walker et al. 1986; Quinn et al. 1987). In such studies, the crystal field 

parameters, and especially V, are linked with the dihedral angle between histidines (Walker 

et al. 1986) and the angle between the imidazole planes and the axis Np – Fe – Np (Quinn et 

al. 1987). Based on these studies on heme model complexes, the parameter V/Δ for the 

cyanobacterial T. elongatus, Synechocystis 6803 and Arthrospira maxima Cc550 hemes was 

related to a figure accounting for the “global distortion” of the axial ligands, quantified as 

the sum of a total of eight angles obtained from the three crystalline structures known at the 

time of this study (Kerfeld et al. 2003). According to this analysis, an important further 

distortion of the axial ligands upon binding of Cc550 to PSII should be expected. However, 

the structures of PSII from the cyanobacterium T. elongatus and the red alga C. caldarium 

(Loll et al. 2005; Ago et al. 2016) show only a very minor rotation of the heme upon 

binding, as compared with soluble Cc550. Moreover, changes in the geometry of the axial 

ligands among the different soluble variants are also very moderate, and they do not 

correspond with the results of Quinn et al. (1987), where a decrease in V/Δ from 0.62 to 0.54 
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corresponds to a rotation of both imidazole planes of around 20 degrees. Therefore, the 

observed differences in g-values among the different soluble Cc550 variants cannot, or at 

least not entirely, be due to the very minor observed differences in the axial ligand geometry 

(Frazao et al. 2001; Kerfeld et al. 2003). 

 The g-values are also known to be very sensitive to changes in the electrostatic 

environment of the paramagnetic center and, related to it, to hydrophobicity changes (Yruela 

et al. 2003). Although the backbone structure is highly conserved among different Cc550 

proteins, important differences in polarity and surface charge distribution exist (Figure 7). 

Note that non-conserved residues close to both His67 and His118 axial ligands (i.e. A65Q, 

G69Q, I114Y and A115S in the alignment shown in Figure S4, supplementary data) change 

the polarity in the heme pocket of Synechocystis Cc550 respect to T. elongatus, which is 

much closer to Phaeodactylum (Figure 7). The variations observed in the g-values and 

related crystal-field parameters (Table 1) could be associated to these polarity changes. 

Considering that binding to PSII will probably involve electrostatic and hydrophobic 

interactions not far away from the heme (Guerrero et al. 2011; Shen 2015; Ago et al. 2016), 

it could be responsible for the changes observed in g-values between soluble and PSII-bound 

Cc550 variants. In turn, changes in solvent accessibility produced upon binding most likely 

account for the change in the redox potential (Guerrero et al. 2011). 

 The effect of the environment on the heme center is also observed from the 

HYSCORE measurements. In heme model compounds, the symmetry of the paramagnetic 

entity is preserved in such a way that molecular, electronic and magnetic axes keep a well-

defined relationship. Particularly, a Z-axis perpendicular to the heme plane is common to 

these three frames (García-Rubio et al. 2003; Alonso et al. 2007). As a consequence, 

HYSCORE spectra of these model systems in the gz position show only two dq peaks, 

provided that the two hyperfine splittings of the axial nitrogen nuclei are equivalent, as well 

as those of the four porphyrin nitrogen nuclei. On the other hand, when the symmetry of the 

paramagnetic entity environment is broken, as in the heme center within some proteins, the 

relationship between molecular and magnetic axes disappears (Alonso et al. 2007). Then 

inequivalence between nitrogen hyperfine splittings can be detected in HYSCORE spectra, 

as it is here shown in Figure 5D. 

 PSII is a labile complex, and the lack of luminal extrinsic subunits, including Cc550, 

is not unusual during purification experiments (Martinson et al. 1998; Nagao et al. 2007; 

Grouneva et al. 2011). This could be particularly true in Phaeodactylum, as this diatom is 

not disrupted by freeze/thawing cycles in an osmotically stabilized buffer, and pressure 
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disruption is thus required. This contrasts with PSII purification in the diatom C. gracilis, for 

which freeze/thawing disruption allowed to obtain PSII particles containing most of the 

extrinsic luminal subunits by column chromatography (Nagao et al. 2007). These studies 

determined that diatoms have an extra extrinsic protein, Psb31, in addition to the other four 

subunits also present in red algae: PsbO, PsbU, PsbQ' and PsbV (Enami et al. 1998; 

Okumura et al. 2008; Nagao et al. 2010a). Reconstitution experiments of PSII samples have 

suggested that both in red algae and diatoms the binding of PsbV (and PsbU) requires 

previous PsbO and PsbQ' binding and, in the case of diatoms, also the binding of Psb31, the 

last three proteins being able to bind directly to PSII intrinsic proteins (Enami et al. 1998, 

2003; Nagao et al. 2010a). In particular, in C. gracilis the presence of Psb31 alone is 

described to be able to rebind more than 50% of Cc550 as compared with the whole 

collection of extrinsic proteins (Nagao et al. 2010a). Interestingly, in cyanobacteria Cc550 is 

reported to bind directly to the PSII core, in a manner essentially independent of the other 

extrinsic proteins, although the binding of Cc550 only is not functional (Shen and Inoue 1993; 

Enami et al. 2003; Nagao et al. 2015). Interestingly, the recent crystal structure of the C. 

caldarium (red alga) PSII has revealed an overall structure similar to the cyanobacterial 

PSII, which includes the position of Cc550 in the complex (Ago et al. 2016). 

 Previous isolation of Phaeodactylum thylakoid-enriched membrane fractions lead to 

the lack of the five extrinsic subunits of PSII (PsbO, PsbU, PsbQ', Psb31 and PsbV 

(Grouneva et al. 2011). Here, thylakoid membrane samples containing 35–40 % of the total 

Cc550 could be obtained by lowering the disruption pressure. This amount of membrane-

bound cytochrome is in rough agreement with previous studies based in the EPR spectra of 

Cc550 recorded in T. elongatus cells, which suggested the presence of a significant 

concentration of soluble Cc550 that could represent between 40–60% of the bound population 

(Kirilovsky et al. 2004). To further study the Cc550 affinity for the PSII core we used a PSII 

purification method based in sucrose gradient fractioning, in order to preserve as much as 

possible the PSII integrity, although this method allowed to obtain just PSII-enriched 

samples, and not purified PSII particles. Consequently, whereas the content in Cc550 could 

be accurately quantified according its spectroscopic properties, the presence of the other 

subunits can only be followed by Western blot. Therefore, as a control of other PSII 

extrinsic subunits, PsbO and Psb31 were also monitored and detected in the membrane 

samples. The low affinity of Phaeodactylum Cc550 for PSII is demonstrated by the fact that ≈ 

90% of Cc550 is released through detergent solubilization of the isolated membrane fraction, 

and thus the protein mostly appears in the upper (not-associated to PSII) gradient fraction 
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(Figure 3). By contrast, Psb31 remains bound to PSII together with more than 30% of PsbO. 

It is important to note that similar results were obtained by decreasing the 

detergent:chlorophyll solubilization ratio and time, although lower PSII extraction and 

purification yields were then obtained. Thus, our results clearly indicate a low affinity of 

Cc550 for the PSII core, and also that this affinity is lower as compared with some other 

extrinsic subunits.  

 It is well known that iron availability limits growth of photosynthetic algae (Moore et 

al. 2002; Morrissey and Bowler 2012). A down-regulation under iron limitation of several 

iron-containing proteins has been previously reported in coastal diatoms (Allen et al. 2008; 

Nunn et al 2013). This down-regulation includes ferredoxin (replaced by flavodoxin), PSI 

and some subunits of the b6f complex (Allen et al. 2008; Morrissey and Bowler 2012; Nunn 

et al. 2013). In Phaeodactylum, in particular, PSI and Cc6 contents are significantly reduced 

to 30-40% from the values determined under iron-replete conditions (Allen et al. 2008; 

Roncel et al. 2016). Interestingly, this is also the case of Cc550, for which a decrease of 45-

50% in the protein content was determined under iron limitation (Figure 4A). In addition, 

changing iron availability in cultures acclimated to iron-replete or iron-deplete conditions 

promoted opposite effects in the Cc550 content, i.e.: an increase when increasing the iron 

concentration in the media and a decrease when decreasing iron availability, the adaptation 

to the new conditions occurring in a time period of 6-8 days (Figure 4B). Actually, our 

results suggest a similar iron-regulation process for the two main luminal heme proteins, Cc6 

and Cc550, and it is interesting to note that because the different decrease in the protein 

content for the two cytochromes, under iron limiting conditions the Cc6/Cc550 ratio is 

reversed. 
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TABLE 1. Comparison of EPR parameters of Cc550 from P. tricornutum and other species 

 
 gz gy gx ∆/λ V/λ V/∆ pdb code 

Soluble Cc550        

P. tricornutum 3.00 2.24 1.44 3.17 1.71 0.54 - 

A. nidulansa 2.98  2.24 1.46 3.22 1.75 0.54 - 

T. elongatusa 2.97 2.24 1.49 3.35 1.80 0.54 1MZ4 

A. maximab 2.90 2.27 1.54 3.29 1.97 0.60 1F1C 

Synechocystis 6803a,c  2.87 2.28 1.57 3.32 2.06 0.62 1E29 

        

PSII-bound Cc550        

T. elongatusa 3.02 2.20 1.45 3.46 1.68 0.48 4V62, 2AXT 

Synechocystis 6803c  2.88 2.23 1.50 3.28 1.91 0.58 - 

 
aValues reported by Kerfeld et al. (2003); bValues  reported by Sawaya et al. (2001); cValues 

reported by Vrettos et al. (2001). 
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FIGURE LEGENDS 

 

Figure 1. Different purification and protein extraction procedures carried out during the 

characterization of Cc550 from the diatom Phaeodactylum tricornutum. Asterisks indicate 

samples analyzed by MALDI-TOF in Figure 2. See text for further details.	 

 

Figure 2. (Upper) Molecular weight MS-analysis of different samples obtained during the 

purification of Cc550 from Phaeodactylum tricornutum. (A) Cc550 purified from the soluble 

cell extract; the peak on the left corresponds to the Cc550 main peak at z = 2. (B) Clarified 

crude extract obtained after treatment with streptomycin sulfate and sequential precipitation 

with ammonium sulfate. (C) Cc550 sample obtained from the salt-detergent washing of the 

membrane fraction. (Lower) Protein sequence of Phaeodactylum Cc550 as translated from the 

psbV gene, and theoretical MW of the complete protein or different truncated forms. See the 

Experimental Procedures section for further information. 

 

Figure 3. (Upper) Western blot analysis of the different fractions acquired along the 

obtention of PSII-enriched samples from Phaeodactylum tricornutum as indicated in Figure 

1 (M, molecular weight standard). Cc550 and both the D1 core and the PsbO and Psb31 

extrinsic subunits of PSII were observed. For a comparative monitoring of each protein in 

the different fractions, in lines 1-4 equivalent sample volumes were loaded related to the 

initial volume of crude extract, whereas in lines 5-6 equivalent volumes related to the 

volume of the fractions directly extracted from the sucrose gradient bands were loaded. 

(Lower) Spectroscopic monitoring of cytochrome b559 (Cb559) of PSII (ascorbate minus 

ferricyanide, continuous line) and Cc550 (dithionite minus ascorbate, dashed line) in: (5) the 

top of the gradient, and (6) the lower green band in the sucrose gradient. PSII was monitored 

by the absorbance changes corresponding to cytochrome b559. 

 

Figure 4. (A,C) Content of (A) Cc550 and (C) Cc6 in Phaeodactylum tricornutum cultures 

grown under iron-replete or iron-deplete conditions, as indicated, estimated by the specific 

redox differential absorbance changes (dithionite minus ascorbate or ascorbate minus 

ferricyanide, respectively). (A, inset) Expanded spectra in the region of the Cc550 α-band. 

(B,D) Variations in (B) Cc550 and (D) Cc6 content of cultures after changing iron availability. 

Cells growing in iron-replete (¡) or iron-deficient (☐) media, were resuspended in the same 
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fresh medium; (n) cells growing in iron-deficient medium were resuspended in fresh iron-

replete medium; (l) cells growing in iron-replete medium were resuspended in fresh iron-

deficient medium. See the Experimental Procedures section for further information. 

 

Figure 5. EPR spectra of Cc550 from Phaeodactylum tricornutum. (A) CW-EPR spectrum 

taken at T = 25 K. (B) Echo-detected EPR, T = 6 K, π = 96 ns. (C) Hole model. Energy 

levels of the t2g orbitals in C2v symmetry and definition of the parameters Δ and V. (D) 

HYSCORE performed at the magnetic field corresponding to gz (B = 230 mT). τ = 96 ns, T 

= 8.5 K. Double-quantum correlation peaks are indicated with arrows. 

 

Figure 6. (A) Backbone model of Cc550 from Phaeodactylum tricornutum obtained using the 

program Phyre2, with the crystal structures of Cc550 from the cyanobacteria 

Thermosynechococcus elongatus (pdb 1MZ4) and Synechocystis sp. PCC 6803 (pdb 1E29) 

as main templates. (B-E) Surface electrostatic potential distribution of the structural model 

of Cc550 from Phaeodactylum either in (B) the complete and (C) truncated forms, (D) 

Synechocystis 6803 and (E) the red alga Cyanidium caldarium (pdb 4YUU). The view 

displays the heme groups in the same orientation, showing in front the cofactor exposed area 

and in the top the protein C-terminal part. Simulations of surface electrostatic potential 

distribution were performed using the Swiss-Pdb Viewer Program assuming an ionic 

strength of 500 mM at pH 7.0. Positively and negatively charged regions are depicted in blue 

and red, respectively. 

 

Figure 7. Detail of surface electrostatic potential distribution around the heme group of 

Cc550 from: (A) Phaeodactylum tricornutum (model shown in Figure 6C), (B) 

Termosynechoccocus elongatus (pdb 1MZ4), (C) Arthrospira maxima (pdb 1F1C) and (D) 

Synechocystis sp. PCC 6803 (pdb 1E29). The view shows in front the heme group exposed 

area. Positively and negatively charged regions are depicted in blue and red, respectively. 

The same view of the entrance to the heme pocket is displayed for T. elongatus, 

Synechocystis 6803 and A. maxima structures and for the Phaeodactylum model. See Figure 

6 for further details. 
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Supplementary Material. 

 

Figure S1. Absorption spectra of Cc550 (10 µM) from Phaeodactylum tricornutum is its native 

oxidized form (continuous line) and after reduction with dithionite (dashed line). (Inset) 

Reductive potentiometric redox titration of purified Cc550 (10 µM) in potassium phosphate 50 

mM, pH 7, buffer. Continuous line corresponds to the theoretical fit according the Nernst 

equation and n = 1. See the Experimental Procedures section for further information. 
 

Figure S2. BrCN cleavage and peptide analysis of Cc550 from Phaeodactylum tricornutum. 

(Upper) Theoretical protein sequence as deduced from the translation of the psbV gene. 

Methionine targets for BrCN are underlined. (Middle) Molecular weight MS-analysis of the 

different peptides obtained during the BrCN digestion of Cc550. Arrows indicate the peptides 

fitting the expected results from the digestion of the truncated Cc550. (Lower) Expected main 

peptides from the Cc550 cleavage by BrCN in methionine positions, either in the theoretical 

protein (1-3) or the truncated form (1,2,4,5). Peptide 3 was not detected. 
 

Figure S3. (Left) Cc550 and (right) Cc6 content in the soluble fraction (continuous line) of 

Phaeodactylum tricornutum disrupted cells, and in samples obtained after treating the 

membrane fractions with NaCl and detergent (dashed line), as estimated from the differential 

absorbance spectra (reduced minus oxidized). See the Experimental Procedures section for 

further information. 

 
Figure S4. Sequence alignment of Cc550 from Phaeodactylum tricornutum, 

Termosynechoccocus elongatus, Arthrospira maxima and Synechocystis sp. PCC 6803. 

Arrows point to the axial heme histidine ligands.  
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