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Mario J. Pérez-Jiménez Æ Claudio Zandron

Abstract We investigate polarizationless P systems with active membranes working in 
maximally parallel manner, which do not make use of evolution or communication rules, in 
order to find which features are sufficient to efficiently solve computationally hard prob-

lems. We show that such systems are able to solve the PSPACE-complete problem 
QUANTIFIED 3-SAT, provided that non-elementary membrane division is controlled by the 
presence of a (possibly non-elementary) membrane.
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1 Introduction

Membrane systems (also known as P systems) have been introduced in Păun (2000a) as a 
parallel, nondeterministic, synchronous and distributed model of computation inspired by 
the structure and functioning of living cells. The basic model consists of a hierarchical
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structure composed by several membranes, embedded into a main membrane called the

skin. Membranes divide the Euclidean space into regions, that contain some objects
(represented by symbols of an alphabet) and evolution rules. Using these rules, the objects

may evolve and/or move from a region to a neighboring one. Usually, the rules are applied

in a nondeterministic and maximally parallel way: all the objects that may evolve are

forced to evolve. A computation starts from an initial configuration of the system and

terminates when no evolution rule can be applied. The result of a computation is the

multiset of objects contained into an output membrane, or emitted from the skin of the

system. An interesting subclass of membrane systems is constituted by recognizer P

systems, in which: (1) all computations halt, (2) only two possible outputs exist (usually

named yes and no), and (3) the result produced by the system depends only upon its input,

and is not influenced by the particular sequence of computation steps taken to produce it.

For a systematic introduction to P systems we refer the reader to Păun (2002), whereas the

latest information can be found in http://ppage.psystems.eu/.

Since the introduction of membrane systems, many investigations have been per-

formed on their computational and complexity aspects. It is known that every

deterministic Turing machine working in polynomial time can be simulated in polyno-

mial time by a family of recognizer P systems using only basic rules, that is, evolution,

communication, and rules involving dissolution (Pérez-Jiménez et al. 2004). On the other

hand, if a decision problem is solvable in a polynomial time by a family of recognizer P

systems (using only basic rules), then there exists a deterministic Turing machine solving

it in a polynomial time (Zandron et al. 2000). As a consequence of these results, the

class of all decision problems that can be solved in a polynomial time by this kind of P

systems is equal to the standard complexity class P (Gutiérrez-Naranjo et al. 2006b). For

that reason, recognizer P systems that build an exponential workspace (expressed in the

number of objects) in a polynomial time cannot solve NP-complete problems in a

polynomial time unless P = NP. Hence, under the assumption that P = NP, in order to

efficiently solve computationally hard problems by means of P systems it seems nec-

essary to be able to construct in a polynomial time an exponential workspace, expressed

by the number of membranes. The computation models thus obtained, usually called P
systems with active membranes, abstract the way of producing new biological mem-

branes through the processes of mitosis (membrane division) and autopoiesis (membrane

creation).

Membrane division has been successfully used many times in the literature to efficiently

solve NP-complete problems. The first solutions were given constructing a P system

associated with each instance of the problem, i.e., working in the so called semi-uniform
setting. Actually, we say that this kind of solutions are semi-uniform if the following two

conditions hold:

– There exists a deterministic Turing machine that, given any instance I of the problem

Q under consideration, builds in a polynomial time (with respect to the size of I ) the P

system PQ; I that processes the instance I : We also say that the family fPQ; Ig of P

systems associated with all the instances of Q is polynomially uniform by Turing
machines.

– The instance I of the problem has an affirmative answer if and only if every

computation of the P system PQ; I associated with it is an accepting computation (we

also say that the system PQ; I is confluent).

The first semi-uniform polynomial–time solutions of computationally hard decision 
problems were given by Păun (2000b, 2001), Zandron et al. (2000), Krishna et al. (1999),
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and Obtulowicz (2001). In 2003, Sosik (2003) gave a semi-uniform polynomial-time

solution to QSAT, a well known PSPACE-complete problem.

Another way to solve decision problems by means of P systems considers the possibility

to have an input membrane in the systems, in which we can introduce objects before the

system starts to work. In this case, all the instances of a decision problem having the same

size (according to a prefixed polynomial time criterion) are processed by the same system;

we call this an uniform solution. P systems with active membranes have also been suc-

cessfully used to design uniform polynomial–time solutions to some well known NP-

complete problems, such as SAT (Pérez-Jiménez et al. 2003), SUBSET SUM (Pérez-Jiménez

and Riscos-Núñez 2005), KNAPSACK (Pérez-Jiménez and Riscos-Núñez 2004), PARTITION

(Gutiérrez-Naranjo et al. 2005), and the COMMON ALGORITHMIC PROBLEM (Pérez-Jiménez

and Romero-Campero 2005).

All the papers mentioned above deal with P systems whose membranes have three

polarizations, use only division of elementary membranes (in Sosik (2003) also division

rules for non-elementary membranes are permitted) and work in maximally parallel way,

meaning that in each computation step the application of rules is maximal, i.e., no further

rule can be applied in any region. The number of polarizations can be decreased to two
without loss of efficiency and computational power, as shown in (Alhazov and Freund

2005).

By looking at the solutions described in the above papers, it seems clear that the usual

framework of P systems with active membranes is too powerful from the traditional

complexity point of view. Hence, it would be interesting to analyse which features allow P

systems with active membranes, but without polarizations, to still get polynomial–time

solutions to computationally hard problems, and what features, once removed, only allow

us to obtain polynomial–time solutions to tractable problems, in the classical sense. In this

direction, in Păun (2005) a conjecture was formulated by Păun about the computational

power of polarizationless P systems with active membranes and working in the maximally

parallel mode, stating that such systems can only solve decision problems that are in P (by

using only elementary division). In Mauri et al. (2007), some partial answers were given.

In particular, it was shown that it is possible to solve the NP-complete problem SAT by

polarizationless P systems with active membranes which use evolution, communication,

dissolution and membrane division rules. When dissolution of membranes is not allowed,

then only problems in the complexity class P can be solved. In the same paper it was

shown that the same results hold even if the rules are applied in the minimally parallel way

(Ciobanu et al. 2007): in each region where at least one rule can be applied, at least one

rule must be applied (if there is no conflict with the objects). In Zandron et al. (to appear) it

was shown that polarizationless P systems with active membranes that use only division of

non-elementary membranes and dissolution rules, working in the maximally parallel way,

are able to solve in polynomial time the NP-complete problem 3-SAT. This result provides

further partial answers to Păun’s conjecture, establishing that neither evolution nor com-

munication rules, and no electrical charges are needed to solve NP-complete problems,

provided that we can use strong division rules for non-elementary membranes (as well as

dissolution rules, otherwise we would fall in the case considered in Gutiérrez-Naranjo

et al. (2006a)).

Continuing in this direction, in the present paper we show that the PSPACE-complete

problem QUANTIFIED 3-SAT can be solved by recognizer P systems with active membranes,

without making use of evolution rules, communication rules and polarizations, provided

that the activation of strong division rules for non-elementary membranes is controlled by

the presence of a membrane (an additional feature, not required in Zandron et al.



(to appear) to solve 3-SAT). This result is complementary to the one given in Alhazov and

Pérez-Jiménez (2006), where an efficient uniform solution to QSAT is given by using also

evolution rules.

The paper is organized as follows. In Sect. 2 and 3 we recall the definition of polar-

izationless recognizer P systems with active membranes, thus establishing our model of

computation, and we recall the definition of the PSPACE-complete decision problem

QUANTIFIED 3-SAT. In Sect. 4 we show how this problem can be solved by means of

recognizer P systems with active membranes, without evolution and communication rules

and without polarizations. In Sect. 5 we draw some conclusions and we give directions for

further investigations.

2 Polarizationless recognizer P systems with active membranes

Usually, P systems with active membranes are defined in the literature with three electrical

charges (also called polarizations) associated with the membranes (even thought two

charges suffice, as proved in Alhazov and Freund (2005)) to control the application of the

rules, which can be of the following types: evolution rules, by which single objects evolve

to a multiset of objects, communication rules, by which an object is introduced in or

expelled from a membrane, and possibly changed to another object while performing this

operation, dissolution rules, by which a membrane is dissolved under the influence of an

object, that can also be modified during this operation, and membrane division rules (both

for elementary and non-elementary membranes, or only for elementary membranes).

However, in this paper we will consider polarizationless P systems with active membranes,

that is, P systems in which no electrical charge is associated with any membrane.

Formally, a P system with polarizationless active membranes of the initial degree n C 1

is a tuple of the form P = (C, H, l, w1, ..., wn, R, h0), where:

1. C is the alphabet of objects;

2. H is a finite set of labels for membranes;

3. l is a membrane structure, consisting of n membranes injectively labelled with

elements of H;

4. w1, ..., wn are strings over C, describing the multisets of objects placed in the n initial

regions of l;

5. R is a finite set of developmental rules, of the following forms:

(a) [a ?v]h, for h [ H, a [ C, v [ C* (object evolution rules);

(b) a½ �h ! ½b�h , for h [ H, a, b [ C (in communication rules);

(c) ½a�h!b½ �h , for h [ H, a, b [ C (out communication rules);

(d) [a]h?b, for h [ H, a, b [ C (dissolution rules);

(e) [a]h?[b]h[c]h, for h [ H, a, b, c [ C (weak division rules for elementary or non-

elementary membranes);

(f) h0 [ H or h0 = env indicates the output region (in the latter case, usually h0 does

not appear in the description of the system).

We can also consider rules of the form ½½ �h1
½ �h2 
�h3 
! ½½  �h1 

�h3 
½½ �h2 

�h3 
; where h1, h2, h3 

are labels from H: if the membrane with label h3 contains other membranes than those 
with labels h1, h2, these membranes and their contents are duplicated and placed in both 
new copies of the membrane h3; all membranes and objects placed inside membranes h1, 
h2, as well as the objects from membrane h3 placed outside membranes h1 and h2, are



reproduced in the new copies of membrane h3. These rules are called strong division
rules for non-elementary membranes. A further variant of these rules, that will be used in

this paper, is obtained by requiring that the application of a strong division rule is subject

to the presence of a specified membrane in h3, which in turn may be elementary or non-

elementary. We will call these last rules controlled strong division rules for non-ele-

mentary membranes.

As usual, a computation starts in the initial configuration, which is given by the

membrane structure l (where all the membranes have neutral polarizations) and the strings

(multisets) w1, ..., wn of objects initially present in the n regions of l. Using the maximally
parallel manner, at each computation step (a global clock is assumed) in each region of the

system we apply the rules in such a way that no further rule can be applied to the remaining

objects or membranes. In each step, every object and every membrane can be involved in

only one rule. The application of a maximal set of rules during a computation step pro-

duces a new configuration of the system. A computation is a sequence C0, C1, ... of

configurations such that l = C0 is an initial configuration, and for all i C1 the configu-

ration Ci is obtained from Ci-1 by applying a maximal set of rules as described above. A

computation halts if the system reaches an halting configuration, that is, a configuration in

which no rule can be applied anywhere in the system. A halting computation provides a

result given by the number of objects present in region h0 at the end of the computation;

this is a region of the system if h0 [ H (and in this case, for a computation to be successful,

exactly one membrane with label h0 should be present in the halting configuration), or it is

the environment if h0 = env. An infinite computation produces no result.

A recognizer P system with active membranes is obtained from the definition given

above by assuming that the system halts on every computation and produces one of two

possible outputs, that are usually denoted by yes and no: A further requirement is that the

system is confluent, that is, for any given input configuration, all the computations that can

start with such a configuration end by producing the same output. In this way, we can say

that a recognizer P system with active membranes recognizes the language which is

composed by the strings that encode the initial configurations that produce yes (or any

another symbol specified by the system to represent it) as a result. By considering the

trivial bijection existing between these languages and decision problems, we can also say

that a recognizer P system solves the decision problem whose positive instances are

associated with the initial configurations of the system that produce as output the symbol

chosen to represent yes:
We denote by AM0 the class of polarizationless recognizer P systems with active

membranes, and we denote by AM0ða; b; c; dÞ; where a [ {-d, ?d}, b [ {-ne,

?new, ?nes, ?necs}, c [ {-ev, ?ev}, and d [ {-comm, ?comm} the class of all rec-

ognizer P systems with polarizationless active membranes such that: (a) if a = ?d (resp.,

a = -d) then dissolution rules are permitted (resp., forbidden); (b) if b [ {?new, ?nes}

(resp., b = -ne) then division rules for elementary and non-elementary membranes, weak

or strong (resp., only division rules for elementary membranes) are permitted; if

b = ?necs then controlled strong division rules for non-elementary membranes are per-

mitted; (c) if c = ?ev (resp., c = -ev) then evolution rules are permitted (resp.,

forbidden); (d) if d = ?comm (resp., d = -comm) then communication rules are per-

mitted (resp., forbidden).

The class of all decision problems which can be solved in uniform (resp., semi-

uniform) way, and in polynomial time by a family R of recognizer membrane systems is

denoted by PMCR (resp., PMC�R). The following inclusions directly follow from these

definitions.



Proposition 1 For all a [ {-d, ?d}, b [ {-n e , ?new, ?nes, ?necs}, c [ {-ev,

?ev}, d [ {-comm, ?comm} and e [ {*, k}:

1. PMCAM0ða; b; c; dÞ � PMC�AM0ða; b; c; dÞ
2. PMCe

AM0ð�d; b; c; dÞ � PMCe
AM0ðþd; b; c; dÞ

3. PMCe
AM0ða;�ne; c; dÞ � PMCe

AM0ða;þnew; c; dÞ �
PMCe

AM0ða;þnes; c; dÞ � PMCe
AM0ða;þnecs; c; dÞ

4. PMCe
AM0ða; b;�ev; dÞ � PMCe

AM0ða; b;þev; dÞ
5. PMCe

AM0ð;alpha;;beta;;gamma;�commÞ � PMCe
AM0ða; b; c;þcommÞ

where e = * (resp., e = k, the empty string) means that the complexity classes are

associated with semi-uniform (resp., uniform) solutions.

Using this notation, Păun’s conjecture (problem F in Păun 2005) can be restated as

follows:

P ¼ PMCAM0ðþd;�ne;þev;þcommÞ ¼ PMC�AM0ðþd;�ne;þev;þcommÞ

As stated in the Introduction, the results of Gutiérrez-Naranjo et al. (2006a and Mauri

et al. (2007) proved the following theorem, considering a reachability problem (is the state

in which the symbol yes is expelled to the environment reachable?) defined on the so

called dependency graph. We refer the reader to Gutiérrez-Naranjo et al. (2006a) and

Mauri et al. (2007) for the details.

Theorem 1 For all b [ {-ne, ?new, ?nes}

P ¼ PMCAM0ð�d; b;þev;þcommÞ ¼ PMC�AM0ð�d; b; þev; þcommÞ

This result holds for systems working in the maximally parallel manner; in Mauri et al.

(2007) also systems working with minimal parallelism were considered, but in this paper 
we will not address them.

3 The 3-SAT and QUANTIFIED 3-SAT decision problems

In the next section we present a semi-uniform family of recognizer P systems with active 
membranes that solves any instance of QUANTIFIED 3–SAT, without using polarizations or 
evolution and communication rules.

Let us start by recalling the NP-complete decision problem 3-SAT (Garey and Johnson 
1998, p. 46,4). The instances of 3-SAT depend upon two parameters: the number n of 
variables, and the number m of 3-clauses. We recall that a clause is a disjunction of literals, 
occurrences of xi or :xi; built on a given set X = {x1, x2, ..., xn} of Boolean variables. A 3-
clause is a clause that contains exactly three literals. In what follows we will require that no 
repetitions of the same literal may occur in any clause. Without loss of generality we can 
also avoid the clauses in which both the literals xi and :xi; for any 1 B i B n, occur. An 
assignment of the variables x1, x2, ..., xn is a mapping a: X ?{0,1} that associates to each 
variable a truth value. The number of all possible assignments to the variables of X is 2n. 
We say that an assignment satisfies the clause C if, assigned the truth values to all the 
variables which occur in C, the evaluation of C (considered as a Boolean formula) gives 1 
(true) as a result.

We can now formally state the 3-SAT problem as follows.

Problem 1 NAME: 3-SAT.



– INSTANCE: a set C = {C1, C2, ..., Cm} of 3-clauses, built on a finite set {x1, x2, ..., xn} of

Boolean variables.

– QUESTION: is there an assignment of the variables x1 ,x2, ..., xn that satisfies all the

clauses in C?

In what follows we will sometimes equivalently say that an instance of 3-SAT is a

propositional formula cn;m ¼ C1 ^ C2 ^ � � � ^ Cm; expressed in the conjunctive normal

form as a conjunction of m clauses, where each clause is a disjunction of three literals built

using the Boolean variables x1, x2, ..., xn. With a little abuse of notation, from now on we

will denote by 3-SAT(n,m) the set of instances of 3-SAT which have n variables and m
clauses.

The reason for which we are here interested into 3-SAT (rather than with the more

generic problem SAT, see Garey and Johnson (1998, p. 39,4), where we put no upper bound

on the number of literals that may appear in each clause) is that the number of possible

3-clauses which can be built using n Boolean variables is 2n � ð2n� 2Þ � ð2n� 4Þ ¼ Hðn3Þ;
a polynomial quantity with respect to n. This quantity is obtained by looking at a 3-clause

as a triple, and observing that each component of the triple may contain one of the 2n
possible literals, with the constraints that we do not allow the repetition of literals in the

clauses, or the use of the same variable two or three times in a clause. On the other hand, an

instance of SAT may have a number of clauses which is exponential in n, since for every

i [ {1, 2, ..., n} either variable xi or its negation (or none of them) can appear in a clause,

yielding to 3n possible combinations.

Let us now turn our attention to QUANTIFIED 3-SAT, a special case of the QUANTIFIED

BOOLEAN FORMULAS decision problem, which can be stated as follows.

Problem 2 NAME: QUANTIFIED BOOLEAN FORMULAS.

– INSTANCE: a well-formed Boolean formula F = (Q1x1)(Q2x2) ... (Qnxn)E, where E is a

Boolean expression built on a finite set {x1, x2, ..., xn} of Boolean variables and each

Qi is either V or 9 .

– QUESTION: is F true?

Precisely, QUANTIFIED 3-SAT is obtained when the Boolean formula E that appears in this

definition is a conjunction of 3-clauses, that is, an instance of 3-SAT. Both QUANTIFIED

BOOLEAN FORMULAS and QUANTIFIED 3-SAT are PSPACE-complete (Garey and Johnson

1998, pp. 261–262). For conciseness, in what follows we will denote by Q3SAT(n, m) the

set of instances of QUANTIFIED 3-SAT in which E [ 3-SAT (n, m).

4 Solving QUANTIFIED 3-SAT with dissolution and controlled strong division

In this section we propose a semi-uniform family fPQ3SATðcn;mÞgcn;m
[ Q3SAT(n, m) of

polarizationless recognizer P systems with active membranes that solves the SPACE-

complete decision problem QUANTIFIED 3-SAT by using only membrane dissolution rules and

a form of controlled strong division rules for non-elementary membranes. Precisely, for

every instance cn, m of Q3SAT(n, m) we show how to build the system PQ3SAT(cn, m) that

solves such an instance. In every such system, the symbol s will be chosen to represent the

output yes:
Let cn;m ¼ C1 ^ C2 ^ � � � ^ Cm be an instance of 3-SAT(n, m), built using the Boolean

variables x1, x2, ..., xn, and let F = (Q1x1)(Q2x2) ... (Qnxn)cn, m be the instance of

Q3SAT(n, m) obtained by applying in a prearranged way the universal and existential



quantifiers V and A to x1, x2, ..., xn. The initial configuration of the recognizer P system

PQ3SAT(cn, m) associated to such an instance (in the semi-uniform framework) is illustrated

in Fig. 1. In this figure we have adopted the following abbreviation: by labelling a

membrane with a sequence of comma-separated labels lab1, lab2, ..., labk, we denote k
membranes nested one into the other—like the layers of an onion—where lab1 is the inner

membrane and labk the outer membrane. Hence the system depicted in Fig. 1 is composed

by a skin that encloses a number of nested membranes (denoted by Qxn, ..., Qx1 in the

figure) that depends on the given sequence Q1, Q2, ..., Qn of quantifiers. Precisely, if

Qi ¼ 9 then we will have a single membrane associated with the quantified variable 9xi (as

illustrated on the right side of Fig. 6), whereas if Qi = V we will have two membranes

associated with Vxi, labelled with xi and xi
0, one contained into the other (left side of

Fig. 6). The total number of membranes represented by the sequence Qxn, ..., Qx1 in Fig. 1

will thus be comprised between n and 2n, where the lower bound corresponds to Q1 ¼
Q2 ¼ � � � ¼ Qn ¼ 9 and the upper bound corresponds to Q1 ¼ Q2 ¼ � � � ¼ Qn ¼ 8: Mov-

ing towards the interior of the system, we have the m nested membranes C1, ..., Cm which

are associated with the clauses of cn, m. Membrane C1 contains a membrane labelled with

A, that will be used to generate all the possible assignments to x1, x2, ..., xn. Membrane A
contains the object x1 (that represents the namesake variable) as well as n hierarchies of

nested membranes. As depicted in Fig. 2, the notation that we have adopted in

Fig. 1 indicates that symbol xi is surrounded by k membranes, nested one into the other, all

labelled by di. In this way, we can operate on membrane A through a rule which is

activated by x1 and, in the meanwhile, dissolve one membrane in each of the subsystems

contained in A. After m ? 1 steps x2 emerges and activates another rule of A, and so on,

until symbol s emerges and starts another phase of computation.

The computation of the system is composed by two phases: the generation stage and the

verification stage. During the generation stage, 2n copies of the subsystem enclosed by

membrane Cm of the initial configuration depicted in Fig. 1 are produced, where in each

copy membrane A contains an encoding of one of the possible assignments to x1, x2, ..., xn.

Each copy of the subsystem thus produced—that will be used to check whether the

assignment it contains satisfies the Boolean expression cn, m—is enclosed into a hierarchy

Fig. 1 Initial configuration of the system PQ3SAT(cn, m) that solves the instance (Q1x1)(Q2x2) ... (Qnxn)cn, m 
of Q3SAT(n, m). Only the objects and the membranes that occur in the region enclosed by membrane A are 
here detailed

Fig. 2 The hierarchies of nested
membranes used in the system
depicted in Figure 1 to
perform the correct sequence
of membrane divisions



constituted by the membranes which are associated to the quantified variables, as depicted

in Figs. 4 and 5. The generation phase is performed by the following rules:

1. ½xi�A ! ½ti�A½fi�A for all i ¼ 1; 2; . . .; n ðdup AÞ
2. ½½ �A½ �A�C1

! ½½ �A�C1
½½ �A�C1

ðdiv C1Þ
3. ½½ �Cj�1

½ �Cj�1
� Cj
! ½½ �Cj�1

�Cj
½½ �Cj�1

�Cj
for all j ¼ 2; 3; . . .;m ðdiv CjÞ

4. ½xi�di
! xi for all i ¼ 1; 2; . . .; n

5. ½s�ds
! s

6. ½s�A ! s

Rule 1 is used to generate the assignments: when the symbol xi, for i [ {1, 2, ..., n}, occurs

in membrane A then A divides; in one of the resulting copies the symbol xi is rewritten to ti,
indicating the fact that we are assigning the value TRUE to the Boolean variable xi. Simi-

larly, in the other copy of A the symbol xi is rewritten to fi, indicating that the Boolean

value FALSE is assigned to xi. Rules 2 and 3 are strong division rules for non-elementary

membranes: whenever a membrane Cj contains two membranes at their immediately inner

level, it divides and each of the resulting copies contains one of the previous inner

membranes. In order to control the order of application of division rules during the gen-

eration phase, only one symbol xi occurs in membrane A every m ? 1 computation steps.

In this way we first divide membrane A, assigning the two Boolean values TRUE and FALSE

to xi as described above; then, rule 2 can be applied, thus duplicating membrane C1. In the

subsequent m - 1 computation steps, membranes C2, C3, ..., Cm are duplicated exactly in

this order thanks to rules 3. Figure 4 depicts the first steps of this process for a formula

9x18x2c2;2ðx1; x2Þ containing n = 2 variables and m = 2 clauses (note that this example is

conceived only for illustrative purposes, since at least three Boolean variables are needed

to build valid 3-clauses and hence valid instances of QUANTIFIED 3-SAT).

The rules are applied in the maximal parallel manner. In particular, at every compu-

tation step one membrane labelled with di, for each i [ {1, 2, ..., n} such that membrane di

still occurs in the system, is dissolved. In this way, a symbol xi emerges in membrane A just

after the assignment to xi-1 and all the subsequent duplications of membranes

C1, C2, ..., Cm have been performed. By using the same mechanism, symbol s emerges in

membrane A after n(m ? 1) steps, that is, after all the assignments to x1, x2, ..., xn and all

the duplications of membranes C1, C2, ..., Cm have been performed. In practice, the con-

struct composed by n(m ? 1) nested membranes, all labelled with ds, together with the

symbol s into the innermost membrane and the dissolution rule ½s�ds
! s: implement a

counter whose initial value is n(m ? 1) and which is decremented each time the disso-

lution rule is applied.

The same synchronization mechanism is also used to produce the nested hierarchy

composed by the membranes associated with the quantified Boolean variables. Such a

hierarchy is built using the following controlled strong division rules for non-elementary

membranes:

7. ½½ �Cm
½ �Cm

½ �ds
�xn
! ½½ �Cm

½ �ds
�xn
½½ �Cm

½ �ds
�xn
ðdiv xnÞ

8. ½½ �xi
½ �xi
½ �ds
�xi�1
! ½½ �xi

½ �ds
�xi�1
½½ �xi
½ �ds
�xi�1

for all i ¼ 2; 3; . . .; n ðdiv xi�1Þ
9. ½½ �xi

½ �xi
½ �ds
�xi0
! ½½ �xi

½ �ds
�xi0
½½ �xi
½ �ds
�xi0

for all i ¼ 2; 3; . . .; n ðdiv x0iÞ
As stated in Sect. 2, these controlled rules constitute an even stronger form (with respect

to rules 2 and 3) of division rules for non-elementary membranes. In fact, division occurs

only if the membrane xi (or xi
0) to be splitted contains a predefined (in general, non-

elementary) membrane ds, besides the two non-elementary membranes to be distributed

among the membranes produced by the division process. Also in this case we can use



membranes ds as counters: we start with a structure having the desired initial

number of nested layers, then at each computation step one layer is removed by means

of rule 5, and when the symbol s emerges the division process terminates. By carefully

calibrating the initial values of the counters contained into the membranes associated

with the quantified variables we are able to build a hierarchy of membranes that compose

a full binary tree: two copies of membranes x2 (or x2
0 , if variable x2 is quantified by V)

are contained into membrane x1, two copies of x3 (or x3
0, if Vx3 occurs in the instance of

QUANTIFIED 3-SAT we are solving) are contained into membrane x2, and so on. This tree

structure is used to simulate an exponential size Boolean circuit (see Figs. 3 and 5)

whose inputs are bijectively associated with all the 2n possible assignments. If we assign

1 to all the inputs that correspond to an assignment that satisfies cn, m, 0 to all the other

inputs, and we evaluate the circuit, then the output is 1 if and only if the instance of

QUANTIFIED 3-SAT we are considering is positive (that is, the corresponding formula is

TRUE).

As an example, let us consider the quantified formula 9x18x2ð:x1 _ x2Þ (note that, as

stated above, this is not a valid instance of QUANTIFIED 3-SAT). This formula is true, as we

can see by looking at the truth table reported in Fig. 3. On the right side of the same

figure, the Boolean circuit that allows to determine the truth value of the formula is

illustrated. The first layer of Boolean gates in the circuit checks the quantifier associated

with xn, the next layer performs the check on xn-1 and so on, until we reach the output

gate associated to x1. Thus we have 2i gates associated to the Boolean variable xi, and

this situation is reflected in the system produced by the generation stage, where we have

2i subsystems associated to xi. In Fig. 4 we can see the system PQ3SAT which is built to

solve our example formula 9x18x2ð:x1 _ x2Þ; whereas in Fig. 5 we have the structure of

the systems which can be used to solve any formula of the form 9x18x29x3cðx1; x2; x3Þ;
where the Boolean expression c is composed of m = 2 clauses, built using n = 3

Boolean variables. The trick which is used to build the tree structure is to stop divisions

in each of the membranes associated with the quantified variables at appropriate times.

Precisely, the correct sequence of operations needed to build the system depicted in

Fig. 5 is:

dup A; div C1; div C2; div x3; div x2; div x02
dup A; div C1; div C2; div x3

dup A; div C1; div C2

This sequence is obtained by making membrane A divide during the first step of

computation, then after 6 steps, and then after further 4 steps. This is accomplished by

Fig. 3 Example of a quantified Boolean formula formed by one clause, built using two Boolean variables. 
On the left, its truth table is reported with an indication of the truth assignments that make the formula true. 
On the right, the tree which is used to check the satisfaction of the quantifiers V and A is depicted



initializing the system with seven layers of membranes d2 and 11 layers of membranes d3.

In order to perform the two required divisions of membrane x3 we will put in it (in the

initial configuration of the system) a counter with 10 layers, and to make the division

of membranes x2 and x2
0 stop after its first execution we will put in these membranes a

counter having six layers.

When solving the generic instance F ¼ ðQ1x1ÞðQ2x2Þ � � � ðQnxnÞcn;m of QUANTIFIED

3-SAT, the correct sequence of divisions is the following:

dup A; div C1; div C2; . . .; div Cm; div Xn; . . .; div X3; div X2

dup A; div C1; div C2; . . .; div Cm; div Xn; . . .; div X3

..

.

dup A; div C1; div C2; . . .; div Cm

Fig. 4 Steps of the generation stage of a system designed to solve a formula composed of two clauses, built
using two Boolean variables. For space reasons, we have used the abbreviations illustrated in Figs. 1 and 2
and we have omitted membranes ds



Fig. 5 First and last configuration of the generation stage of a system designed to work on a formula 
9x18x29x3cðx1; x2; x3Þ; where the Boolean expression c has two clauses, built using three Boolean variables. 
In the lower part of the figure, the evaluation tree that corresponds to the derived membrane structure is 
illustrated

where ‘‘div Xi’’ denotes either the sequence div xi, div xi
0 (if Qi = V in F) or the operation

div xi (if Qi = A). All the counters contained in the membranes associated with the 
quantified variables, as well as the number of layers of the hierarchies d2, ..., dn and the 
counter contained in membrane A, have to be initialized accordingly. The precise values to
be assigned depend of course upon the quantifiers that occur in F.

The next phase of computation is the verification stage, which starts when the symbol s
appears in A. All the copies of membrane A are dissolved by executing rule 6, so that all the



objects ti and fi that represent the truth values of x1, x2, ..., xn can reach the corresponding

membrane C1 and activate its rules. These rules depend upon the Boolean expression cn, m

contained into the instance F of QUANTIFIED 3-SAT we are solving. For example, assume that

the first clause of cn;m is C1 ¼ x1 _ :x3 _ x4: Then, membranes C1 will contain the fol-

lowing dissolution rules:

½t1�C1
! t1

½f3�C1
! f3

½t4�C1
! t4

In this way, a membrane labelled with C1 is dissolved if and only if at least one of the

objects ti and fi that encode the assignment satisfy the clause. If no object satisfies the

clause then the computation in that subsystem halts; on the contrary, if the assignment

under consideration satisfies C1 then by dissolving membrane C1 the objects ti and fi that

encode the assignments are released to membrane C2. Then, the rules that correspond to

clause C2 are executed; if the assignment satisfies also C2 then the corresponding mem-

brane is dissolved and the computation continues in membrane C3, otherwise membrane C2

is not dissolved and the computation halts in that subsystem. If an assignment satisfies all

the clauses of cn,m then it will dissolve all the membranes C1, C2, ..., Cm, and the objects

that represent the assignment will reach the membrane labelled with xn, where the check on

the quantifier associated with the Boolean variable xn can start. This check is performed as

described in Fig. 6. If Qi = A, then to satisfy the constraint Axi it suffices that either the

object ti or the object fi occurs into the membrane. If this is the case, then we dissolve the

membrane and all the objects contained in it are released to the surrounding membrane,

where the check on the quantifier associated with xi-1 can start. On the other hand, if

Qi = V then we have two membranes: an inner membrane xi and an outer membrane xi
0.

The inner membrane is dissolved if and only if the object ti occurs in it, whereas the outer

membrane is dissolved if it contains the object fi. Note that we are assuming that, when

dissolving a membrane, also the rules contained in it are dissolved, whereas the objects are

released to the surrounding membrane. Notice also that once a quantified variable has been

checked, then it is never examined again. The check proceeds from the quantified variable

xn down to x1, mimicking the evaluation of the full binary tree associated with the

quantifiers contained in F. This process halts in those subsystems that do not contain the

required objects, and halts in any case after checking the quantified variable x1.

In conclusion, the instance F of QUANTIFIED 3-SAT solved by the system is positive (that

is, TRUE) if and only if in the halting configuration (in which no rule can be applied) at least

one copy of symbol s occurs in the region enclosed by the skin membrane.

As stated above, we have focused our attention on QUANTIFIED 3-SAT because in such a

problem the number m of clauses is polynomial (at most cubic) in the number n of

variables. Hence the size of the initial configuration of the system PQ3SAT is polynomial,

Fig. 6 A schema of the rules and membrane structures used to check the satisfaction of quantified variables.
On the left, membranes labelled with xi and xi

0 are dissolved only if they contain both the objects ti and fi; on
the right, one of these objects suffices to dissolve membrane xi



and it is apparent that also the number of computation steps performed during both the

generation and the verification stage is polynomial in n.

5 Conclusions and directions for further research

We have continued our investigations concerning the computational power of polariza-

tionless recognizer P systems with active membranes, started in Mauri et al. (2007) and

Zandron et al. (to appear). In particular, we have shown that the PSPACE-complete

problem QUANTIFIED 3-SAT can be solved in a semi-uniform way by using recognizer P

systems with active membranes, without making use of evolution rules, communication

rules and polarizations (that is, electrical charges associated to the membranes), provided

that the activation of strong division rules for non-elementary membranes is controlled by

the presence of a specified membrane. It is an open problem whether the same result can be

obtained by avoiding the control mechanism, like in the solution of 3-SAT given in Zandron

et al. (to appear).

It is clear from the construction of the system that a similar controlled behavior may be

obtained by using the presence of objects instead of membranes. For example, rule 7 given

above could be replaced with the following:

7’. ½½ �Cm
½ �Cm

s�xn
! ½½ �Cm

s�xn
½½ �Cm

s�xn

where the presence of object s activates the rule. However, we think that the mechanism

adopted in this paper (making use of membrane ds to control the division process) could be

less powerful, since at a certain point during the computation the membranes used to

control the divisions disappear from the system. In a sense, it is like using a polarized

system, forcing it to use its electrical charges only for a limited number of times. Hence,

we believe that a deeper comparison between the computational power of polarized sys-

tems with the polarizationless recognizer P systems here described is a research direction

of a clear interest.

Finally, in this paper we illustrated a semi-uniform solution to QUANTIFIED 3-SAT. It is an

open question whether a uniform solution is possible, by encoding the instances of

QUANTIFIED 3-SAT in an appropriate way.
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Pérez-Jiménez MJ, Riscos-Núñez A (2004) A linear-time solution to the KNAPSACK problem using P systems
with active membranes. In: Martı́n-Vide C, Păun Gh, Rozenberg G, Salomaa A (eds) Membrane
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Pérez-Jiménez MJ, Romero-Jiménez A, Sancho-Caparrini F (2003) A polynomial complexity class in P
systems using membrane division. In: Csuhaj-Varjú E, Kintala C, Wotschke D, Vaszil G (eds)
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