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Abstract—Tissue-like P systems with cell division is a com-
puting model in the framework of membrane computing based
on the intercellular communication and cooperation between
neurons. In such a model, the structure of the devices is a network
of elementary cells. Tissue-like P systems with cell division
have the ability of increasing the number of cells during the
computation. In this paper we exploit this ability and present a
polynomial-time solution to the (NP-complete) Partition problem
via a uniform family of such P systems.

I. INTRODUCTION

Tissue-like P systems with cell division [9] is a computing
model in the framework of membrane computing inspired on
the way living cells communicate and cooperate in tissues. In
the computational devices of such a model we have certain
processor units (called cells) that process in parallel some
pieces of information and send signals to other processor units
along links that connect some of them. Such links can follow
any scheme, and this is one of the features which distinguishes
these models from the initial model in membrane computing,
the cell-like model, where membranes are hierarchically ar-
ranged in a tree-like structure (see [7]).

In tissue-like P systems with cell division the membrane
structure is tissue-like and the links between cells form a
general undirected graph. The edges of such graph are not
given explicitly, but they are deduced from the set of rules, as
it will be explained later. The communication among cells is
based on symport/antiport rules in P systems. Symport rules
move objects across a membrane together in one direction,
whereas antiport rules move objects across a membrane in
opposite directions.

Tissue-like P systems were first considered in [10], and then
in [6]; after that, several research lines have been developed
and other variants have arisen (see, for example, [1], [2],
[3], [12]). One of the most interesting variants of tissue P
systems was presented in [9]. In that paper, tissue P systems
are endowed with the ability of getting new cells based on the
mitosis or cellular division, yielding tissue-like P systems with
cell division. The ability of cell division allows us to obtain
an exponential amount of cells in linear time and to design
cellular solutions to NP-complete problems in polynomial
time.

In this pap
via a family
division. In
this problem
membranes,
framework of

The paper
preliminaries
division are
solution to th
including a
necessary res
research lines

An alphab
called symbo
The number
string, and it
(with length
length n buil
by Σn and Σ
of Σ∗. A mu
A → N is a
support is de
its size is defi
finite) if its
(A, f) is a fi
m = a

f(a1)
1 a

and for each
An undirecte
set of vertice
is a (unordere
say that u is
degree of v ∈

In what fo
with the bas
systems. For
Problem by Using
tems

ez-Jiménez #3, Agustı́n Riscos-Núñez #4
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II. PRELIMINARIES

et, Σ, is a non-empty set, whose elements are
ls. An ordered sequence of symbols is a string.
of symbols in a string u is the length of the
is denoted by |u|. As usual, the empty string

0) will be denoted by λ. The set of strings of
t with symbols from the alphabet Σ is denoted
∗ = ∪n≥0Σn. A language over Σ is a subset
ltiset over a set A is a pair (A, f) where f :
mapping. If m = (A, f) is a multiset then its
fined as supp(m) = {x ∈ A | f(x) > 0} and
ned as

∑
x∈A f(x). A multiset is empty (resp.

support is the empty set (resp. finite). If m =
nite multiset over A, then it will be denoted by
f(a2)
2 · · · af(ak)

k , where supp(m) = {a1, . . . , ak},
element ai, f(ai) is called the multiplicity of ai.
d graph G is a pair G = (V,E) where V is the
s and E is the set of edges, each one of which
d) pair of (different) vertices. If {u, v} ∈ E, we
adjacent to v (and also v is adjacent to u). The
V is the number of adjacent vertices to v.

llows we assume the reader is already familiar
ic notions and the terminology underlying P
details, see [8].



III. TISSUE-LIKE P SYSTEMS WITH CELL DIVISION

Formally, a tissue-like P system with cell division of degree
q ≥ 1 is a tuple of the form Π = (Γ, E ,m1, . . . ,mq,R, i0)
where Γ is a finite alphabet, whose symbols will be called
objects; E ⊆ Γ; m1, . . . ,mq are the multisets of objects
associated with the cells in the initial configuration; i0 ∈
{0, 1, 2, . . . , q}; and R is a finite set of rules of the following
forms:

(a) Communication rules: (i, u/v, j), for i, j ∈
{0, . . . , q}, i 6= j, u, v ∈ Γ∗.

(b) Division rules: [a]i → [b]i[c]i, where i ∈
{1, 2, . . . , q}, a ∈ Γ and b, c ∈ Γ ∪ {λ}.

A tissue-like P system with cell division of degree q ≥ 1
can be seen as a set of q cells (each one consisting of an
elementary membrane) labelled by 1, 2, . . . , q. We shall use 0
to refer to the label of the environment, and i0 denotes the
output region (which can be the region inside a cell or the
environment). We interpret that E ⊆ Γ is the set of objects
placed in the environment, each one of them in an arbitrary
large amount of copies.

The communication rules determine a virtual graph, where
the nodes are the cells and the edges indicated if it is
possible for pairs of cells to communicate directly. This is
a dynamical graph, because new nodes can appear produced
by the application of division rules. The communication rule
(i, u/v, j) can be applied to two cells i and j such that u is
contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented
by u and v are interchanged between the two cells. The
division rule [a]i → [b]i[c]i is applied to a cell i containing
object a. The application of this rule divides this cell into two
new cells with the same label. All the objects in the original
cell are replicated and copied in each of the new cells, with
the exception of the object a, which is replaced by the object
b in the first one and by c in the other one. The rules to be
used for the new membranes are precisely identified by the
label of the membranes.

Rules are used as usual in the framework of membrane
computing, that is, in a maximally parallel way (a universal
clock is considered). In one step, each object in a membrane
can only be used for one rule (non-deterministically chosen
when there are several possibilities), but any object which can
participate in a rule of any form must do it, i.e, in each step
we apply a maximal set of rules. This way of applying rules
has only one restriction: when a cell is divided, the division
rule is the only one which is applied for that cell in that step;
the objects other than the one involved in the division rule
inside that cell do not evolve in that step.

A. Recognizer Systems

NP-completeness has been usually studied in the framework
of decision problems. Let us recall that a decision problem
is a pair (IX , θX) where IX is a language over a finite
alphabet (whose elements are called instances) and θX is a
total Boolean function over IX .
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working in polynomial time which constructs the system
Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time com-
putable functions over IX (called a polynomial encoding
of IX in Π) such that:
− for each instance u ∈ IX , s(u) is a natural num-

ber and cod(u) is an input multiset of the system
Π(s(u));

− the family Π is polynomially bounded with regard to
(X, cod, s), that is, there exists a polynomial function
p, such that for each u ∈ IX every computation of
Π(s(u)) with input cod(u) halts and, moreover, it
performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s),
that is, for each u ∈ IX , if there exists an accepting
computation of Π(s(u)) with input cod(u), then
θX(u) = 1;

− the family Π is complete with regard to (X, cod, s),
that is, for each u ∈ IX , if θX(u) = 1, then every
computation of Π(s(u)) with input cod(u) is an
accepting one.

In the above definition we have imposed to every P system
Π(n) to be confluent, in the following sense: every compu-
tation of a system with the same input multiset must always
give the same answer.

We denote by PMCTD the set of all decision problems
which can be solved by means of recognizer tissue-like P
systems with cell division in polynomial time. This class is
closed under polynomial reduction and under complement.

IV. A SOLUTION TO THE PARTITION PROBLEM

Let us recall that a partition of a set V is a family of non-
empty pairwise disjoint subsets of V such that the union of
the subsets of the family is equal to V . The Partition Problem
(PART) can be stated as follows: Let V be a finite set and
let w be a weight function on V , w : V → N (that is,
an additive function). Decide whether or not there exists a
partition {V1, V2} of V such that w(V1) = w(V2).

Next, we shall prove that the Partition problem can be solved
in a linear time (in {n, lg k} where k = w1 + · · · + wn) by
a family of recognizer tissue-like P systems with cell division
(in the sense of Definition 3.1). Given an instance u = (V,w)
of the Partition Problem, we will denote V = {v1, v2, . . . , vn}.
Such instance will be represented by u = (n, (w1, . . . , wn)),
where wi = w(vi), for each i (1 ≤ i ≤ n).

Next, we present a family of recognizer tissue-like P sys-
tems with cell division where at the initial configuration each
system of the family has two cells (labelled by 1 and 2). We
shall address the resolution via a brute force algorithm, which
consists of the following stages: (1) Generation Stage: All the
possible subsets of V are generated by the application of cell
division rules; (2) Pre–checking Stage: In this stage, the weight
of each of the subsets of V is calculated; (3) Checking Stage:
We compare for each subset if its weight and the weight of its
complementary set are equal; and (4) Answer Stage: According
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following set of rules:
ision rules:

i ≡ [Ai]2 → [Bi]2[λ]2, for i = 1, . . . , n
mmunication rules:
i ≡ (1, ai/ai+1, 0), for i = 1, . . . , n + dlg ne +
ke+ 11

i ≡ (1, ci/c2
i+1, 0), for i = 1 . . . , n

≡ (1, cn+1/D, 2)
≡ (2, cn+1/D1g1, 0)
i ≡ (2, gi/g2

i+1, 0), for i = 1, . . . , dlg ne
≡ (2, D1/d1e2, 0)
i ≡ (2, di/d2

i+1, 0), for i = 1, . . . , dlg ne
≡ (2, ddlg ne/ddlg ne+1, 0)
,i ≡ (2, ei/ei+1, 0), for i = 1, . . . , dlg ne +
ke+ 4

,i ≡ (2, gdlg ne+1Bi/B′
i, 0), for i = 1, . . . , n

,i ≡ (2, B′
iAi/Bi1, 0), for i = 1, . . . , n

,i ≡ (2, ddlg ne+2Ai/Ai1, 0), for i = 1, . . . , n

,ij ≡ (2, Bij/B2
ij+1, 0), for i = 1, . . . , n and

1, . . . , dlg ke
,ij ≡ (2, Aij/A

2
ij+1, 0), for i = 1, . . . , n and

1, . . . , dlg ke
,i ≡ (2, Bi,dlg ke+1vi/p, 0), for i = 1, . . . , n
,i ≡ (2, Ai,dlg ke+1vi/q, 0), for i = 1, . . . , n
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≡ (2, edlg ne+dlg ke+5/E1F1, 0)
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≡ (1, noN/λ, 0)
is the label of the input cell.
of recognizer tissue-like P systems with cell di-



vision and symport/antiport rules consists of non–deterministic
systems, since several division rules can be applied in the cells
labelled by 2. Nonetheless, if a division rule has not been
applied yet to a cell labelled by 2, then it will be applied in
the next steps since in the initial configuration, the unique cell
labelled by 2 contains the objects A1, A2, . . . , An, i.e., with
respect to the division rules, the systems are confluent.

In order to justify that the family Π = (Π(t))t∈N defined
above provides a linear solution to the Partition problem we
need a polynomial encoding (cod, s) of the set of instances of
such a problem in the family Π.

We will consider a polynomial enconding (cod, s) defined
as follows: for each instance u = (n, (w1, . . . , wn)) we define
s(u) =< n,w1 + · · ·+ wn > and cod(u) = vw1

1 . . . vwn
n .

In this way, the instance u = (n, (w1, . . . , wn)) ∈ IPART
will be processed by the tissue-like P system Π(s(u)) with
the multiset cod(u) provided in the corresponding input cell.

Next, we will provide an informal description of the compu-
tations of the system Π(s(u)) with input cod(u) for a general
instance u of the Partition problem, and we justify that the
family defined above is polynomially uniform by deterministic
Turing machines.

A. An Overview of the Computation

We informally describe here how the recognizer tissue-like
P system with cell division Π(s(u)) with input cod(u) works.

Let us start with the generation stage. In this stage we have
two parallel processes. On the one hand, in the cell labelled by
1 we have two counters: ai, which will be used in the output
stage, and ci, which will be multiplied until step n, where 2n

copies of cn+1 are obtained. On the other hand, in the cell
labelled by 2, the division rules are applied. For each object
Ai we produce two cells labelled by 2, one of them containing
a new object Bi and the other one not. After the appropriate
divisions, in the step n we obtain exactly 2n cells with label
2, each of them encoding a different subset of V .

The pre–checking stage starts at the step (n+1), where each
cell labelled by 2 trades the object D for the counter cn+1

from the cell 1 (by applying in parallel the rule r4). From
that moment on, only the evolution of the counter ai will be
performed in cell 1, till the step n+ dlg ne+ dlg ke+13, via
the rules r1,i (n + 2 ≤ i ≤ n + dlg ne+ dlg ke+ 12).

Note that in the next step, the objects cn+1 in the cells
labelled by 2 will trigger the rules r5 and r7 in the next two
steps, thus bringing in the counter gi in the step n + 2, and
the counters di and ei in the step n + 3.

From the step n+3 to the step n+dlg ne+3 the counter gi

duplicates itself (with the rules r6,i) until producing at least n
copies of the object gdlg ne+1, and in a further step, it yields
the trading of the objects Bi in each cell with label 2 for the
objects B′

i from the environment (by the application of the
rules r11,i).

In the step n + dlg ne+ 5, each pair of objects B′
i and Ai

that appear in a cell labelled by 2 are traded for an object Bi1

by applying the rules r12,i.
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belled by 2 together with a copy of p or q (by
the rules r20 or r21). In the meantime, the object



F1 evolves to F2 (by the rule r22). In this way, after the step
n+dlg ne+dlg ke+13 the object b remains in the cell 1. This
object together with the object an+dlg ne+dlg ke+14 produces
an object N , which is sent to the environment together with
an object no in the step n + dlg ne+ dlg ke+ 15. This step
ends the computation with a negative answer.

1) Polynomial Uniformity of the Family: In order to
stablish that the family Π = (Π(t))t∈N is polynomially
uniform by deterministic Turing machines firstly we note
that the set of rules associated with the system Π(< n, k >)
is described in a recursive way. Hence, we only need to
justify that the amount of necessary resources for defining
the system is polynomial in max{n, dlg ke}. The necessary
resources for building Π(< n, k >) are the following:
Size of the alphabet: 2n·dlg ke+7n+2dlg ke+3dlg ne+36 ∈
θ(n · dlg ke),
Initial number of cells: 2 ∈ θ(1),
Initial number of objects: 2n + 6 ∈ θ(n),
Number of rules: 2n · dlg ke+6n+2dlg ke+5dlg ne+33 ∈
θ(n · dlg ke),
Upper bound for the length of the rules: 3 ∈ θ(1).

Then, we have the following result:
Theorem 4.1: PART∈ PMCTD.

Taking into account that PART is an NP-complete problem,
we can deduce the following result.

Corollary 4.1: NP ⊆ PMCTD.

V. CONCLUSIONS AND FUTURE WORK

In a similar way as in other P system models, the ability
of obtaining an exponential amount of new cells during the
computation can be used for trading space for time and
obtaining polynomial-time solutions to NP-hard problems.
Moreover, the solution to the Partition problem presented here
runs in a number of cellular steps which is in O(n, lg k),
improving (as far as the number of cellular steps used in the
model is concerned) the previous result obtained in the cell-
like model in [4], where the number of steps was in O(n, k).

Comparing cell-like model with tissue-like model is not a
straightforward task. Both approaches have several important
differences, apart from the way of arranging the membrane
structure. For example, in the (cell-like) P systems with
active membranes model, membranes have electrical charges
associated with them, and the communication rules are applied
in a sequential way (rewriting rules are also allowed, and are
applied in a maximally parallel way). In the tissue-like case,
cells do not have polarizations, and only communication rules
are allowed (and they are applied in a maximally parallel way).

There are still open problems related to the complexity
classes in tissue-like P systems. For example, it has been
proved that in the cell-like model, allowing rules for membrane
creation yields a computing power of at least PSPACE [5].
However, it remains to be investigated whether the complexity
class associated with tissue-like P systems with membrane
creation contains NP or PSPACE.

Another in
having an un
This could be
a cell divides

The author
TIN2006-134
Spain, cofina
project of ex

[1] A. Alhazov
Rules and
Computer

[2] F. Bernard
Systems an
vol. 9 (9),

[3] R. Freund,
Channel St
2005.

[4] M.A. Gutie
Fast P Syst
9 (9), pp. 6

[5] M.A. Gut
Campero, “
Notes in C

[6] C. Martı́n
Class of S
Notes in C

[7] Gh. Păun,
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restricted f

[11] M.J. Pérez
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