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Abstract. Tissue-like P systems with cell division are computing models in

the framework of membrane computing. They are inspired by the intercellular

communication and neuronal synaptics, their structures being formalized by

underlying graphs. As usual in membrane computing, division rules allow the

construction of an exponential workspace (described by the number of cells) in a

linear time. In this paper this ability is used for presenting a uniform linear–time

solution for the (NP–complete) Vertex Cover problem via a uniform family of

such systems. This solution is compared to other ones obtained in the framework

of cell-like membrane systems.

1. Introduction

This paper lies in the framework of membrane computing, a theoretical model of
computation inspired by the structure and functioning of cells as living organisms able
to process information. The key elements of this model are the membranes, which
in the living cells delimit the regions where chemical reactions take place, and also
act as selective channels of communication between different compartments, as well
as between the cell and its environment [1].

Membrane computing is an emergent cross-disciplinary branch of natural com-
puting introduced by Gh. Păun in [13]. It has received important attention from
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the scientific community since then, with contributions by computer scientists, biolo-
gists, formal linguists and complexity theoreticians, enriching each other with results,
open problems and promising new research lines. In fact, already in 2003 membrane
computing was selected by the Institute for Scientific Information, USA, as a Fast
Emerging Research Front in Computer Science.

The computational devices in membrane computing are called P systems. Roughly
speaking, a P system consists of a membrane structure, in the compartments of which
one places multisets of objects which evolve according to given rules in a synchronous
non-deterministic maximally parallel manner.

In the last years, many different variants of this model have appeared. One of
the most important is known as tissue P systems, first considered in [16] and then in
[11]. In these systems the structure is defined by a general graph, while in the original
model of P systems membranes are arranged in a tree-like structure.

There exist several tissue-like models of P systems (see, for example, [2, 4, 8, 9,
10, 19]). One of the most interesting variants of tissue P systems was presented in
[15] (and was studied in depth in [5]). In that paper, tissue P systems are endowed
with the ability of getting new cells based on the mitosis or cellular division, yielding
tissue-like P systems with cell division.

Some NP–complete problems have been efficiently solved with tissue-like P sys-
tems: SAT [15], 3-coloring [6], Subset Sum [7]. In this paper, a uniform linear–time
solution to the Vertex Cover problem is presented.

In the literature we can find uniform solutions to this problem in the cell-like
model of P systems with active membranes, but this is the first solution to Vertex
Cover in the framework of tissue-like P systems.

The paper is organized as follows: in Sections 2 and 3 we recall some preliminaries
and the definition of tissue-like P systems with cell division, respectively. Next,
recognizer tissue P systems are briefly described. A linear–time solution to the Vertex
Cover problem with the necessary resources and the main results are presented in the
following section. In the next section is included a short overview of the computations.
In Section 7 we show a comparative study between the solution to the Vertex Cover
problem presented in this paper and a solution using P systems with active membranes
[3]. Finally, some conclusions and new open research lines are presented.

2. Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ, is a non empty set, whose elements are called symbols. An ordered

sequence of symbols is a string. The number of symbols in a string u is the length of
the string, and it is denoted by |u|. As usual, the empty string (with length 0) will
be denoted by λ. The set of strings of length n built with symbols from the alphabet
Σ is denoted by Σn and Σ∗ =

⋃
n≥0 Σn. A language over Σ is a subset from Σ∗.

A multiset over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A : f(x) > 0}
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and its size is defined as
∑

x∈A f(x). A multiset is empty (resp. finite) if its support
is the empty set (resp. finite).

If m = (A, f) is a finite multiset over A, then it will be denoted as m = a
f(a1)
1 a

f(a2)
2

· · · af(ak)
k , where supp(m) = {a1, . . . , ak}, and for each element ai, f(ai) is called the

multiplicity of ai.
Given m1 = (A, f1) and m2 = (A, f2) two multisets over A, the union of m1 and

m2 is defined as m1m2 = (A, f1 + f2).
An undirected graph G is a pair G = (V, E) where V is the set of vertices and

E is the set of edges, each one of which is a (unordered) pair of (different) vertices.
If {u, v} ∈ E, we say that u is adjacent to v (and also v is adjacent to u).

In what follows we assume the reader is already familiar with the basic notions
and the terminology underlying P systems (see [14] for details).

3. Tissue-like P Systems with Cell Division

In the first definition of the model of tissue P systems [11] the membrane structure
did not change along the computation. Gh. Păun et al. presented in [15] a new model
of tissue P systems with cell division inspired by the cell-like model of P systems
with active membranes. The biological inspiration is clear: live tissues are not static
network of cells, since cells are duplicated via mitosis in a natural way.

The main features of this model, from the computational point of view, are: (a)
the initial objects in the environment are present in an arbitrary number of copies;
(b) cells have no polarizations; (c) the division rules do not change the labels and they
inhibit the application of other rules to a dividing cell. In some sense, this means that
while a cell is dividing it closes the communication channels with other cells and with
the environment.

Formally, a tissue-like P system with cell division of degree q ≥ 1 is a tuple of the
form Π = (Γ, E , w1, . . . , wq,R, i0), where:

1. Γ is a finite alphabet, whose symbols will be called objects.

2. w1, . . . , wq are strings over Γ representing the multisets of objects associated
with the cells in the initial configuration.

3. E ⊆ Γ are the initial objects of the environment.

4. R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j and u, v ∈
Γ∗.

(b) Division rules: [a]i → [b]i[c]i, for i ∈ {1, 2, . . . , q} and a ∈ Γ, b, c ∈ Γ ∪ {λ}.
5. i0 ∈ {0, 1, 2, . . . , q}.
A tissue-like P system with cell division of degree q ≥ 1 can be seen as a set of

q cells (each one consisting of an elementary membrane) labeled by 1, 2, . . . , q. We
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shall use 0 to refer to the label of the environment, and i0 denotes the output region
(which can be the region inside a cell or the environment).

The communication rules determine a virtual graph, where the nodes are the
cells and the edges denote the pairs of cells able to communicate directly. This is a
dynamical graph, because new nodes can appear by the application of division rules.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of the
system. We interpret that E ⊆ Γ is the set of objects placed in the environment, each
one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied to two cells i and j such that u
is contained in cell i and v is contained in cell j. The application of this rule means
that the objects of the multisets represented by u and v are interchanged between the
two cells.

The division rule [a]i → [b]i[c]i is applied to a cell i containing object a. The
application of this rule divides this cell into two new cells with the same label. All
the objects in the original cell are replicated and copied in each of the new cells, with
the exception of the object a, which is replaced by the object b in the first one and
by the object c in the other one.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object in
a membrane can only be used for one rule (non-deterministically chosen when there
are several possibilities), and in each step we apply a maximal set of rules. This way
of applying rules has only one restriction: when a cell is divided, the division rule is
the only one which is applied for that cell in that step; the objects inside that cell do
not move in that step.

4. Recognizer Tissue-like P Systems with Cell Division

NP–completeness has been usually studied in the framework of decision problems.
Let us recall that a decision problem is a pair (IX , θX) where IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total Boolean
function over IX .

In order to study the computational efficiency of solving computationally hard
decision problems, a special class of tissue P systems with cell division is introduced
in [15]: recognizer tissue P systems. The key idea of such recognizer systems is the
same one as from recognizer P systems with cell-like structure.

Recognizer cell-like P systems were introduced in [17] and they are the natural
framework to study and solve decision problems within membrane computing, since
deciding whether an instance of a given problem has an affirmative or negative answer
is equivalent to deciding if a string belongs or not to the language associated with the
problem.

In the literature, recognizer cell-like P systems are associated with P systems with
input in a natural way. The data encoding an instance of the decision problem has
to be provided to the P system in order to compute the appropriate answer. This
is done by codifying each instance as a multiset placed in an input membrane. The
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output of the computation (yes or no) is sent to the environment in the last step of
the computation. In this way, cell-like P systems with input and external output are
devices which can be seen as black boxes, in the sense that the user provides the data
before the computation starts, and then waits outside the P system until it sends to
the environment the output in the last step of the computation.

A recognizer tissue-like P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, Σ, E , w1, . . . , wq,R, iin) where

• (Γ, E , w1, . . . , wq,R, 0) is a tissue-like P system with cell division of degree q ≥ 1
(as defined in the previous section), and w1, . . . , wq are strings over Γ \ Σ.

• The working alphabet Γ has two distinguished objects yes and no, present in
at least one copy in some initial multisets w1, . . . , wq, but not present in E .

• Σ is an (input) alphabet strictly contained in Γ.

• iin ∈ {1, . . . , q} is the input cell.

• All computations halt.

• If C is a computation of Π, then either the object yes or the object no (but not
both) must have been released into the environment, and only in the last step
of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a configuration
of the form (w1, w2, . . . , wiinw, . . . , wq; E), that is, after adding the multiset w to
the contents of the input cell iin. We say that the multiset w is recognized by Π
if and only if the object yes is sent to the environment, in the last step of the
corresponding computation. We say that C is an accepting computation (respectively,
rejecting computation) if the object yes (respectively, no) appears in the environment
associated with the corresponding halting configuration of C.

Definition 1. We say that a decision problem X = (IX , θX) is solvable in poly-
nomial time by a family Π = {Π(n) : n ∈ N} of recognizer tissue-like P systems with
cell division if the following hold:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX

(called a polynomial encoding of IX in Π) such that:

– For each instance u ∈ IX , s(u) is a natural number and cod(u) is an input
multiset of the system Π(s(u)).

– The family Π is polynomially bounded with regard to (X, cod, s); that is,
there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it
performs at most p(|u|) steps.
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– The family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX ,
if there exists an accepting computation of Π(s(u)) with input cod(u), then
θX(u) = 1.

– The family Π is complete with regard to (X, cod, s); that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) with input cod(u) is an
accepting one.

From the soundness and completeness conditions above we deduce that every P
system Π(n) is confluent, in the following sense: every computation of a system with
the same input multiset must always give the same answer.

We denote by PMCTD the set of all decision problems which can be solved by
means of recognizer tissue-like P systems with cell division in polynomial time. This
class is closed under polynomial–time reduction and under complement (see [18] for
a similar result for cell-like P systems).

5. A Solution for the Vertex Cover Problem

Let us recall that a vertex cover of a non-directed graph is a subset of its vertices
such that for each edge of the graph at least one of its endpoints belongs to that
subset. The number of vertices in the subset is called the size of the vertex cover.
The Vertex Cover (VC) problem can be formulated as follows: given a non-directed
graph, G = (V, E), and a natural number k ≤ |V |, decide whether or not G has a
vertex cover of size at most k.

Next, we shall prove that VC can be solved in linear time (in the number of nodes
and edges of the graph) by a family of recognizer tissue-like P systems with cell
division. To this aim, we are going to construct a family Π = {Π(〈n,m, k〉) : n,m, k ∈
N} where each system of the family will process every instance u of the problem given
by a graph with n vertices and m edges, and by a size k of the vertex cover (that is,
s(u) = 〈n,m, k〉, where 〈a, b〉 = (a+b)(a+b+1)

2 + a and 〈a, b, c〉 = 〈〈a, b〉, c〉). To provide
a suitable encoding of these instances into the systems, we will use the objects Aij ,
with 1 ≤ i < j ≤ n, to represent the edges of the graph, and we will provide
cod(u) = {Aij : 1 ≤ i < j ≤ n ∧ (vi, vj) ∈ E} as the initial multiset for the system.
From the definitions of the functions and the definition of the systems of the family
that will be given next, it can be easily seen that (cod, s) is a polynomial encoding of
IV C in Π.

Then, given an instance u of the VC problem, the system Π(s(u)) with input
cod(u) decides that instance by a brute force algorithm, implemented in the following
four stages: generation stage: all the possible subsets of vertices are generated by the
application of division rules; pre–checking stage: only the subsets of size k are selected;
checking stage: for each of these subsets it is checked if there exists an edge of the
graph for which none of its endpoints is in the subset; answer stage: an affirmative
or negative answer to the problem is given, according to the results of the previous
stage.

The family Π = {Π(〈n,m, k〉) : n, m, k ∈ N} of recognizer tissue-like P sys-
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tems with cell division is defined as follows: for each n,m, k ∈ N,Π(〈n,m, k〉) =
(Γ, Σ, E , w1, w2,R, iin, i0), where

• Γ ={Ai, Bi, Bi, B
′
i, Ci, C

′
i : 1 ≤ i ≤ n} ∪ {ei : 1 ≤ i ≤ 2n + 1}∪

{ai : 1 ≤ i ≤ 3n + m + dlg ne+ 14} ∪ {ci, di : 1 ≤ i ≤ n + 1}∪
{gi : 1 ≤ i ≤ dlg ne+ 1} ∪ {hi : 1 ≤ i ≤ dlg me+ 1}∪
{li : 1 ≤ i ≤ m + dlg ne+ 7} ∪ {pi : 1 ≤ i ≤ m + dlg ne+ 6}∪
{Bij , Cij : 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1} ∪ {Dij : 1 ≤ i, j ≤ n}∪
{Aij , Pij : 1 ≤ i < j ≤ n} ∪ {b,D, F0, F1, F2, T, S, N, yes, no}

• Σ = {Aij : 1 ≤ i < j ≤ n}
• E = Γ \ {a1, b, c1, yes, no, D,A1, . . . , An}
• w1 = a1 b c1 yes no and w2 = D A1 · · · An. Also, we consider that in the en-

vironment there are always infinitely many copies of each object from E , and,
initially, no copies of any element in Γ \ E

• R is the following set of rules:

Division rules:

r1,i ≡ [Ai]2 → [Bi]2[λ]2, for i = 1, . . . , n

Communication rules:

r2,i ≡ (1, ai/ai+1, 0), for i = 1, . . . , 3n + m + dlg ne+ 13

r3,i ≡ (1, ci/c2
i+1, 0), for i = 1, . . . , n

r4 ≡ (1, cn+1/D, 2)
r5 ≡ (2, cn+1/d1e1, 0)

r6,i ≡ (2, ei/ei+1, 0), for i = 1, . . . , 2n

r7,i,j ≡ (2, djBi/Dij , 0), for 1 ≤ i, j ≤ n

r8,i,j ≡ (2, Dij/Bidj+1, 0), for 1 ≤ i, j ≤ n

r9 ≡ (2, e2n+1dk+1/F0, 0)
r10 ≡ (2, F0/l1F1, 0)

r11,i ≡ (2, li/li+1, 0), for i = 1, . . . , m + dlg ne+ 6
r12 ≡ (2, F1/p1F2, 0)
r13 ≡ (2, F2/g1h1, 0)

r14,i ≡ (2, pi/pi+1, 0), for i = 1, . . . , m + dlg ne+ 5

r15,i ≡ (2, gi/g2
i+1, 0), for i = 1, . . . , dlg ne

r16,i ≡ (2, hi/h2
i+1, 0), for i = 1, . . . , dlg me

r17,i,j ≡ (2, Aijhdlg me+1/Pij , 0), for 1 ≤ i < j ≤ n
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r18,i ≡ (2, gdlg ne+1Bi/Ci, 0), for i = 1, . . . , n

r19,i ≡ (2, Ci/Ci1Bi1, 0), for i = 1, . . . , n

r20,i,j ≡ (2, Bij/Bi,j+1B
′
i, 0), for i = 1, . . . , n and j = 1, . . . , m

r21,i,j ≡ (2, Cij/Ci,j+1C
′
i, 0), for i = 1, . . . , n and j = 1, . . . , m

r22,i,j ≡ (2, B′
iPij/λ, 0), for 1 ≤ i < j ≤ n

r23,i,j ≡ (2, C ′jPij/λ, 0), for 1 ≤ i < j ≤ n

r24,i,j ≡ (2, pm+dlg ne+6Pij/λ, 0), for 1 ≤ i < j ≤ n

r25 ≡ (2, lm+dlg ne+7pm+dlg ne+6/T, 0)
r26 ≡ (2, T/λ, 1)
r27 ≡ (1, bT/S, 0)
r28 ≡ (1, Syes/λ, 0)
r29 ≡ (1, a3n+m+dlg ne+14b/N, 0)
r30 ≡ (1, noN/λ, 0)

• iin = 2 is the input cell

In order to show that the family Π is polynomially uniform by deterministic Turing
machines we first note that the sets of rules associated with the system Π(〈n,m, k〉)
are recursive. Hence, it is enough to note that the amount of necessary resources
for defining each system is quadratic in max{n,m}, since those resources are the
following:

1. Size of the alphabet: nm+2n2+13n+3m+4dlg ne+dlg me+42 ∈ Θ(nm+n2) ⊆
O(n3).

2. Initial number of cells: 2 ∈ Θ(1).

3. Initial number of objects: n + 6 ∈ Θ(n).

4. Number of rules: 2nm+4n2 +7n+3m+4dlg ne+ dlg me+36 ∈ Θ(nm+n2) ⊆
O(n3).

5. Upper bound for the length of the rules: 3 ∈ Θ(1).

As we will see in the following section, the family Π is also polynomially (linearly)
bounded, sound and complete with regard to (VC, cod, s). So, we get the main result
of the paper.

Theorem 1. VC ∈ PMCTD

Taking into account that VC is an NP–complete problem, the following is deduced.

Corollary 1. NP ∪ co-NP ⊆ PMCTD
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6. An Overview of the Computations

To support our claim that the family Π is also linearly bounded, sound and com-
plete with regard to (VC, cod, s), we next describe with detail the steps followed by the
system Π(s(u)) when it is given the input multiset cod(u), for an arbitrary instance
u of VC. Observe that the system starts with only two cells, one labeled by 1 and the
other labeled by 2, and that the division rules associated with the system are applied
only to cells with this latter label. This means that along the computations there will
always be a unique cell labeled 1 (which we will call the 1-cell), but that new cells
labeled by 2 (which we will call the 2-cells) will appear.

In order for the system Π(s(u)) to decide the instance of the VC problem encoded
by cod(u), it starts with the generation stage, where all the possible subsets of the
vertices of the graph are generated. This is performed by the successive application
of the division rules. These rules take the objects Ai in the 2-cells, which encode
the vertices of the graph, and produce two new 2-cells, one of them substituting that
object by the object Bi, meaning that we include the vertex in the subset, and the
other eliminating it, meaning that we do not include the vertex in the subset. Of
course, all the remaining objects contained in the original 2-cells are replicated into
the new ones. This way, at the end of this stage, which lasts n steps, the system will
have 2n 2-cells, each of them encoding a different subset of vertices of the graph, by
means of the objects Bi.

To control when this stage ends, objects ci in the 1-cell of the system are used
as counters. This 1-cell starts containing an object c1, that is interchanged, using
rule r3,1 by two objects c2 from the environment; each of these objects are again
interchanged, using rule r3,2, by two objects c3; and so on. Thus, at the end of the
generation stage the 1-cell will contain 2n objects cn+1.

On the other hand, objects ai in the 1-cell of the system are used, by means of
rules r2,i, as global counters of the computation, and, unlike the objects ci, they are
not duplicated.

Note that this generation stage is non–deterministic, but it is easy to check that,
independently of the way the division rules are applied, at the end of the stage the
same configuration is always reached. Thus, the system is confluent in this stage and
performs n steps.

Now that all the subsets of vertices of the graph are generated, the pre–checking
stage selects only those of size k. This stage is activated by rules r4 and r5, which
interchange the object D of each 2-cell (recall that there are 2n of them) by an object
cn+1 of the 1-cell (recall that there are 2n of them), and then each of the latter in each
2-cell with an object d1 and an object e1 from the environment (recall that there are
infinitely many of them). After the (n + 2)-th step, the 1-cell of the system contains
an+3D

2n

b yes no and each 2-cell encodes a subset of vertices of the graph by means
of the objects Bi within it, and it also contains d1e1cod(u).

From now on, the only role played by the 1-cell is waiting for the last stage, using
the objects ai, by means of rules r2,i, to count the number of steps performed by the
computation.

The objects d1 and e1 start two processes of counting in each 2-cell. The first
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one counts the number of steps of the stage that have been performed, and is con-
trolled by the objects ei, which are repeatedly interchanged by objects ei+1 from the
environment using rules r6,i.

The second process counts the number of vertices in the subset. It is performed
using rules r7,i,j and r8,i,j , which interchange the objects Bi in the 2-cells by objects
Bi (indicating this way that the corresponding vertex has been counted) and increase
the counter dj (the only purpose of the objects Dij is to reduce the length of the
rules). Note that this is a non-deterministic process, since the vertex “counted” in
each step is chosen in a non-deterministic way. However, as the size of the subsets of
vertices is upper bounded by n, after 2n steps of this process, the same configuration
is always reached, so the system is also confluent in this stage.

Note that for the counter dj of a 2-cell to increase, it is necessary and sufficient
that in that cell there exist objects Bi left. This means that at the end of the process
explained in the previous paragraph, the only 2-cells that contain objects encoding
subsets of vertices of size k are those containing the object dk+1. At this moment,
those cells also contain the counter e2n+1, which then in two steps cause (using rules
r9 and r10, and the intermediate object F0 for rules size reduction) the object dk+1

to be interchanged by objects l1 and F1 from the environment.
The total number of steps of the pre-checking stage is 2 + 2n.
The checking stage starts now, but before we can check if any of the subsets of

vertices of size k selected in the previous stage is a vertex cover of the graph, we
need some preparation steps. First of all, the objects li will be used as a counter,
controlled by rules r11,i, of the number of steps performed. On the other hand, rule
r12 introduces another counter pi, controlled by rules r14,i, which runs in parallel,
but with a delay of one step. Also, in each 2-cell encoding a subset of vertices of size
k objects g1 and h1 are introduced by rules r12 and r13, and are then multiplied by
rules r15,i and r16,i until obtaining n copies of the former and m copies of the latter.

The objects hdlg me+1 are used by rule r17,i,j to change into objects Pij the objects
Aij encoding the edges of the graph, which have been replicated to every 2-cell from
the input cell of the system. On the other hand, rules r18,i, r19,i, r20,i,j and r21,i,j pro-
duce, from objects gdlg ne+1 and Bi and by successive interchanges of objects between
the 2-cells and the environment, m copies of objects B′

i and C ′i for each and all of the
vertices in the subset encoded into the 2-cell.

As the copies of objects B′
i and C ′i are being produced, rules r22,i,j and r23,i,j

eliminate from the 2-cell, in a non-deterministic way, edges of the graph (encoded by
objects Pij) such that at least one of its endpoints is contained in the subset encoded
in the corresponding 2-cell. Once this stage has performed m + dlg ne + 6 steps, we
are sure that if there is any object Pij left in the 2-cell, then the subset of vertices
encoded in that cell is not a vertex cover of the graph, and rule r24,i,j eliminates the
counter p in an additional step.

The answer stage starts at step 3n + m + dlg ne+ 9, when the object lm+dlg ne+7

appears in every 2-cell encoding a subset of vertices of size k. If the counter p has
survived in any of these 2-cells, it means that it encoded a vertex cover of the graph,
and rule r25 interchanges the two counters with an object T from the environment,
which is then sent to the 1-cell of the system by rule r26. Then, rules r27, r28, r29 and
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r30 control if this cell has received at least one object T from any of the 2-cells of the
system. If this is the case, it is detected at step 3n + m + dlg ne+ 14, when an object
yes is sent to the environment and the system halts. Otherwise, it is detected at step
3n + m + dlg ne + 15, when an object no is sent to the environment and the system
halts.

7. Comparing Solutions in Tissue-like Model and Active
Membranes Model

The first solutions to NP–complete problems in membrane computing were de-
signed in the cell-like model called P systems with active membranes. Many kinds
of problems have been addressed, as for instance the Satisfiability problem, sev-
eral numerical problems (Subset Sum, Knapsack, Partition, etc.), and also graph
problems (3-Coloring, Clique, Vertex Cover, etc.).

We shall focus here on the uniform solution for the Vertex Cover problem pre-
sented by A. Alhazov et al. in [3], designed within the (cell-like) P systems with
active membranes model allowing three electrical charges for the membranes, and
using evolution rules, communication rules (send-in and send-out), and 2-division of
elementary membranes.

Before going on, it is important to note that we do not intend to compare the
computational power of the two models by studying two particular solutions for the
same problem. Nevertheless, we believe that this comparison can bring some light on
the different strategies used for solving problems in each model.

In both cases a brute force approach has been considered. That is, all possible
subsets of the set of vertices are constructed, then subsets of size k are filtered, and
after that a checking stage is carried out to test if any of these subsets is actually
a vertex cover of the graph. The appropriate answer (yes or no) is sent to the
environment at the end of the computations.

Concerning the number of steps, in both cases there is a linear bound with respect
to n (the number of nodes) and m (the number of edges). More precisely, 5n+2m+3
steps in the active membranes case and 3n + m + dlg ne+ 15 in the tissue-like case.

Let us summarize next the necessary resources required to build the families of P
systems solving the Vertex Cover problem in both models.

Tissue-like Cell-like
Size of the alphabet O(n3) O(n4)
Initial number of cells Θ(1) Θ(1)
Initial number of objects Θ(n) Θ(1)
Number of rules O(n3) O(n4)
Maximum length of the rules Θ(1) Θ(1)
Number of steps O(n2) O(n2)
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8. Conclusions and Future Work

An efficient solution to the 3–coloring problem is presented in [6] by D. Dı́az-Pernil
et al. Following the ideas used there, a schema for solving NP–complete problems
of graph theory can be inferred. This schema is used in this paper for presenting
a uniform linear–time solution to the Vertex Cover problem and could be used for
solving other NP–complete problems: Clique, Independent Set, etc.

The efficiency of cell-like P systems has been widely studied in the last years. On
the other hand, there are very few works studying the case of tissue-like P systems.

An interesting question is the search for frontiers between tractability and in-
tractability with tissue-like P systems. Is it absolutely necessary to use division rules
for efficiently solving NP–complete problems? Is it possible to reduce the size of the
rules to 2?

One could also consider a tissue P system where the environment always has a
finite amount of objects. An interesting question is to know if we could obtain efficient
solutions of NP–complete problems with this new variant.

Finally, we would like to mention the possibility to consider cell-creation rules in
the tissue-like model, which makes a significant difference, because this kind of rules
does not perform replication of objects, as is the case with cell-division rules.
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