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Abstract

In this paper various molecular chemical interactions are modelled
under different computational paradigms. P systems and w-calculus are
used to describe intra-cellular reactions like protein-protein interactions
and gene regulation control.

1 Introduction

The more we learn about cell systems, the less, paradoxically, we seem to un-
derstand. Most systems in the living cell involve the interaction of multiple
components and subsystems. This complexity makes increasingly difficult to
visualise any system as a whole and requires models that can be used as tools
to disentangle these apparent messy interactions.

Models, abstractions of the reality onto a mathematical/computational for-
malism, should not be seen or presented as representations of the truth, but
instead as a statement of our current knowledge of the phenomenon under re-
search. A model is often more useful when proved to be wrong, since it shows
that our current understanding of the phenomenon studied does not match the
reality. Thus, it helps experimentalists as a way to decide which experiments
are necessary to advance understanding [5].



A good model should at least have four properties: relevance, computability,
understandability and extensibility [19]. A model must be relevant capturing the
essential properties of the phenomenon investigated; and computable so it can
allow the simulation of its dynamic behaviour, and the qualitative and quanti-
tative reasoning about its properties. An understandable model will correspond
well to the informal concepts and ideas of molecular biology. Finally, a good
model should be extensible to higher levels of organisations, like tissues, organs,
organisms, etc. in which molecular systems play a key role. There are primarily
three uses of models in science: understanding, integration of partial knowledge
and discovery of new features; prediction, capability to estimate the dynamics
of a system; and control, to constrain or manipulate a system to produce a
desirable output or behaviour. These objectives can be more easily obtained
if there is a close structural connection between biological data and the model
itself. By structural we mean that the model itself reflects the structure of the
system being studied [5].

The classical approach to modelling is based on mathematical theory of dif-
ferential equations. Differential equations have been used successfully to model
kinetics of conventional macroscopic chemical reactions. Nevertheless there is
an implicit assumption of continuously varying chemical concentration and de-
terministic dynamics. Two critical characteristics of this approach are that the
number of molecules of each type in the reaction mix is large and that for each
type of reaction in the system, the number of reactions is large within each
observation interval, that is reactions are fast.

When the number of particles of the reacting species are low and reactions
are slow, which is frequently the case in gene expression control in bacteria and
viruses, both of the previous presumptions are invalid and the deterministic
continuous approach to chemical kinetics is questionable. Instead one has to
recognise that the individual chemical reaction steps occur discretely and are
separated by time intervals of random length.

Previous attempts to model cellular systems from a computational point of
view include Petri nets, agent-based approach, L-systems, state charts, process
algebra, etc. While each of these approaches captures some of the informa-
tion regarding pathways and their molecular components, none fully integrates
quantitative dynamics, interactions among molecular entities and structural or-
ganisation of cells.

Membrane computing is an emergent branch of natural computing intro-
duced by G. Paun in [13]. This new model of computation starts from the
assumption that the processes taking place in the compartmental structure of
a living cell can be interpreted as computations. The devices of this model are
called P systems. Roughly speaking, a P system consists of a cell-like membrane
structure, in the compartments of which one places multisets of objects which
evolve according to given rules.

Although most research in membrane computing concentrates on the compu-
tational power and efficiency of the devices involved, lately they have been used
to model biological phenomena within the framework of computational systems
biology being complementary and an alternative to more classical approaches



like ordinary differential equations (ODEs) and to some recent computational
approaches like Petri nets and m-calculus. In this case P systems are not used as
a computing paradigm, but rather as a formalism for describing the behaviour
of the system to be modelled. In this respect several P system models have
been proposed to describe oscillatory systems [8], signal transduction [15], gene
regulation control [16], quorum sensing [21] and metapopulations [14]. These
models differ in the syntax (type of the rewriting rules, membrane structure)
and the semantic (strategy applied to run the rules in the compartments defined
by membranes). Some of these models using metabolic algorithm [2], dynamical
probabilistic P systems [14] and (multicompartmental) Gillespie Algorithm [15]
have been applied in certain case studies [23].

The w-calculus was introduced by Milner, Parrow, and Walker as a formal
language to describe mobile concurrent processes [12]. It is now a widely ac-
cepted model for interacting systems with dynamically evolving communication
topology. The 7w-calculus allows channels to be passed as data along other chan-
nels, and this fact provides a channel mobility. This mobility is an important
feature and increases the expressive power. The w-calculus has a simple seman-
tics and a tractable algebraic theory. Starting with atomic actions and simpler
processes, complex processes can be constructed in many ways. The process
expressions are defined by guarded processes, parallel composition P|Q, non-
deterministic choice P + @, replication !P, and a restriction operator (va)P
creating a local fresh channel x for a process P. A structural congruence re-
lation providing a static semantics is defined over the set of processes. The
evolution of a process is described in 7w-calculus by a reduction relation over
processes. This relation contains those transitions which can be inferred from a
set of rules. Different variants have been used to model molecular interactions
[18], gene networks, and to integrate molecular and gene networks [4].

In the last years there have been attempts to relate m-calculus to membrane
systems. In [7], the transfer mechanisms involving Na-K pump are described
step by step and formal verification tools are used to check the validity of the
modelling approach. In [1], the functioning of the same pump is described and
analysed in the formal framework of P systems. New features such as vari-
able membrane labelling, activation conditions for rules, membrane bilayer and
specific communication rules are defined and utilised to model specific transfer
approaches.

In this paper we will present models developed within the framework of mem-
brane computing and process algebra and addressing molecular interactions.
The aim of the approach is to show differences between the above mentioned
modelling strategies and their suitability to express local molecular interactions.
The P system approach relies on Gillespie’s Algorithm [9] and uses the tool de-
veloped in this respect [22].

An extended version of this paper presents also inter-cellular interactions and
a suitable graphical representation for the processes involved that is supported
by a standard notation [22].



2 Modelling Single Compartment Systems

Most models of cellular processes so far consists of systems of molecules which
interact through a set of chemical reactions taking place inside a single fixed
volume or compartment which is assumed to be a well-stirred solution.

There are primarily two different kinds of interactions inside a single com-
partment: those known as protein-protein interactions which comprise basi-
cally transformation, degradation, complex formation and dissociation (dimeri-
sation); and gene regulation interactions comprising fundamentally constitutive
expression, positive and negative regulation.

In what follows we will present how these different types of reactions are
modelled in P systems and w-calculus. Results will be contrasted with those
obtained using ODE. A general reference for biological concepts used in this
paper is [11].

Protein-protein interactions:

e Transformation and degradation:

A molecule a can react to produce another molecule b or it can be degraded
by the cell machinery. The dynamics of these reactions can be modelled using
the exponential decay law. This law states that the rate of the reaction or its
propensity is proportional to the number of molecules of the reactant a.

Classically, these reactions have been modelled using ODEs where the decay
of concentration of the substance a, represented by a variable A, is described
by the differential equation in (1).

dA
i kA (1)

In P systems, transformation and degradation are represented using rewrit-
ing rules where the object a is replaced with the object b or is simply removed
in the case of degradation. The compartment where the molecules are located
is also specified using square brackets with a label [ which identifies the cor-
responding compartment. A constant k is associated with the rule so that its
propensity can be computed:

: LN
ry: [[a ]]l . [[b]]l prop(r) =k-|a|* i=1,2 (2)
To @ a | — l

A process is used to specify each molecule of type a and b in 7-calculus. First
order reactions are specified using stochastic delays whereas higher order reac-
tions are specified using communication channels through which the processes
representing the reactant molecules interact. In transformation and degrada-
tion, a stochastic delay 7 is associated with the process a. After this delay the

!|a| stands for the number of objects a in the case of P systems or the number of processes
a in the case of process algebra.
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Figure 1: Transformation dynamics for £ = 107357 1.

process a behaves either as the process b, in the case of transformation; or as
the empty process in the case of degradation.

a = Tg.b

©T T prop() = k- lal (3)

Figure 1 shows the time courses obtain using the differential equation in (1),
left, and the P systems rules in (2), right. Observe the characteristic exponential
decay and increase of the reactant a and the product b.

e Complex formation and dissociation:

Two molecules, a and b, can collide and stick together through noncovalent
interactions to produce a complex c. This complex in turn can dissociate back
into a and b. In biochemistry, these reactions are referred as complex formation,
more specifically heterodimer formation when a # b and homodimer formation
when a = b; and complex dissociation.

Many important cellular processes depend on complex formation and disso-
ciation, since the binding of a molecule to another one can alter (regulate) the
activity of the complex which can be completely different from the activity of
the single molecules.

The dynamics of these reactions follow the mass action law, which states that
the rate or propensity of the reaction is directly proportional to the product
of the number of the reactant molecules. Thus, two constants k; and ks are
associated with the complex formation and dissociation reactions respectively
so their rates or propensities can be computed.

This two chemical reactions lead to the three differential equations in (4),
one for the concentration of each chemical species a, b and c. Following the
mass action law the concentration of the reactants a and b, represented by the
variables A and B, decrease according to the term k1 AB (complex formation);
whereas they increase according to the term kyC' (complex dissociation), where
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Figure 2: Time course of dimerisation.

C represents the concentration of ¢. On the contrary, the concentration of the
complex c is increased by k1 AB and decreased by koC.

dA

E — _klAB + kQC

dB

— = —kAB+kC (4)
dt

dcC

— = kiAB—k

dt ! 20

The graph in Figure 2 represents the time course of dimerisation obtained
after solving the systems of ODEs in (4) for ky = 0.3uM ~1s™! ky = 05571
and initial conditions [A] = [B] = 1uM and [C] = 0uM.

In P systems, the complex formation and dissociation reactions are specified
using the rewriting rules in (5) which take the same name as the reactions
they represent. In the complex formation rule the objects a and b, representing
the corresponding molecules, are replaced with the object ¢, representing the
complex. In the same way, in the complex dissociation rule, the object ¢ is
replaced with the objects a and b. The compartment in which the reactions
take place is specified using square brackets and a label [.

The mesoscopic constants kf = 0.048molec ts~! and ko = 0.557%, com-
puted from the macroscopic ones, ki and ks, according to [9], are associated
with the corresponding rules in order to compute their propensities.



" Ef - |al|b] ifa#bd
: bl - = 1
ris [a+bli—T[cl  prop(r) 1'% ita=b  (5)
T [c]lg[a—kb]l prop(ra) = ke - ||

The processes a, b and ¢ specify the behaviour of the corresponding mole-
cules in the 7m-calculus formalism in (6). The communication channel bindy;
represents the complex formation reaction; whereas the stochastic delay 7y,
represents the complex dissociation reaction.

The processes a and b have complementary communication channels, bindy; ?
and bindy,!, through which they interact with the rate characterised by the
constant kf; after the communication the process a behaves as the process c,
which represents the complex, and the process b is replaced with the empty
process. The complex dissociation reaction is specified in the process c¢ using
the stochastic delay 7,. Once this delay is completed the process c is replaced
with the processes a and b representing the unbound molecules.

a = bindy ?.c
b = bindy, 1.0
¢ := Tk,.(a|b) prop(T,) = ko - ||

prop(bindy; ) = ki - |a|[b]

(6)

The case of homodimer formation (complex formation with two molecules
of the same chemical specie) is treated in m-calculus in a different way. The
processes a, representing molecules of type a, have both complementary channels
bind; 7 and bind,; !. Observe that, in this case the constant is halved since the

2 2
natural encoding of heterodimer formation in w-calculus produces an artificial
doubling of interactions |a|(Ja] — 1) instead of w, hence by halving the

constant we compensate this replication in order to get the expected propensity,
K, - \a\(lglfl).
a = bind,; ?.c + bind; 1.0
5 2 (7)
¢ = T,.(ala)

In Figure 3 we study the effect on the dynamics of dimerisation of the vol-
ume of the compartment where the reactions take place. The volumes con-
sidered are that of a golgi body ~ 10716/ and yeast cell ~ 10~'*]. The con-
stant associated to the complex formation rule for the different volumes are

1 = 4.8 x 107 3molec™1s™! and k] = 4.8 x 10~°molec™'s~!; the constant as-
sociated to the complex dissociation does not depends on the volume of the
compartment and so it does no change according to [9].

Note that the smaller the volume is the higher the level of noise. Observe
the noisy behaviour in the golgi body (Figure 3 left) and how the dynamics
gets smoother in a yeast cell as the volume increases and so the number of
molecules (Figure 3 right). In the case of infinitive volume (considered by ODE
models), and large number of molecules, the time series given by the ODEs in
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Figure 3: Evolution of the number of molecules over time for complex formation
and dissociation dynamics in a golgi body (left) and yeast cell (right).

(4) and plotted in Figure 2 will describe faithfully the dynamics in dimerisation.
Nevertheless, for small volumes, as it is the case in the organella of eukaryotic
cells, the approach based on ODEs is questionable.

Although the level of noise differs considerably in different volumes, the
equilibrium is reached approximately at the same point in time.

Finally, highlight that these results support the use of different Gillespie’s
algorithms (multicompartmental Gillespie’s algorithm [15]) in the compartments
of a cell system, since the difference in volume highly influences the level of noise
of the system.

Gene regulation control:

We now discuss how gene regulation control in prokraryotes can be specified
in different formalisms. We deal only with prokraryotes since we are focussing on
single compartment systems. In contrast to prokaryotic cells, in eukaryotes there
are two compartments involved in gene regulation, namely, the nucleus, where
transcription and more complex processes like RNA splicing take place, and
the cytoplasm where, for example, post transcriptional control and translation
occur.

In this paper for simplicity transcription and translation are represented
as individual reactions. Nevertheless, in living cells transcription and transla-
tion involve many interactions between RNA polymerase, DNA, mRNA and
ribosomes that take place in a concurrent manner; for example, before a gene
has been completely transcribed, ribosomes can start transcribing the growing
mRNA. In the framework of P systems and 7w-calculus, transcription and trans-
lation are explicitly represented as taking place in parallel (see [16] and [10]
respectively).

The central dogma of molecular biology states that genetic information is
stored in the DNA, transcribed into messenger RNA (mRNA), and then trans-



lated into proteins. This picture is much more complicated since certain pro-
teins, called transcription factors, acts as regulators in the transcriptions of
genes, either positively or negatively; that is, an increase in the amount of tran-
scription factor leads to either more or less gene expression. This provides a
feedback pathway by which genes can regulate the expression of other genes and
so of the production of the proteins encoded by them.

e Constitutive expression:

We start by modelling genes whose level of expression does not depend on
transcription factors. These genes are called, constitutive genes or housekeeping
genes. This kind of genes are transcribed continually at a relatively constant
level compared to facultative genes, which are only transcribed when needed.

In this case from the gene encoded in the DNA the mRNA is transcribed.
This mRNA is then translated into the protein product associated to the gene
and the mRNA is also degraded by the cell machinery.

This system is represented by the two differential equations in (8), where
the variable RN A represents the concentration of mRNA and P represents the
concentration of the protein product encoded by the gene. Transcription is as-
sumed to take place at a constant rate k;. Degradation of the mRNA follows,
as before, the exponential decay law characterised by the term ko RN A. Trans-
lation is assumed to be proportional to the concentration of mRNA, ks RN A.
Finally, protein degradation is modelled in the term k4P [3].

NA
il =k;1 — kaRNA
dt
P (8)
— =k3RNA - k4P
7 3R 4

Figure 4 (left) shows the solution of the differential equations in (8). Note
that the protein concentration reaches equilibrium and the cell keeps it constant
to that value. Also observe that the protein concentration is considerably higher
than the mRNA concentration.

The processes of transcription, translation and degradation are represented
in P systems by rewriting rules with the same names as the processes they rep-
resent, see (9). Note that, since all these reactions are assumed to be first other
reactions, we can use the same constants as in differential equations according
to [9].

ri: [gene] k—> [ gene + rna prop(ry) =

ro: [rnal, =5 prop(re) = |rna| ()
rs: [rna ] % [rna+p) prop(rs) = ks|rnal

rat [pli— [ prop(ra) = kalp|

The time courses obtained when simulating the P system rules in (9) are rep-
resented in Figure 4 (right). Note that these results are in accordance with the
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Figure 4: Time course of constitutive gene expression (left) dynamics of consti-
tutive gene expression by using P systems (right).

previous results from differential equations plotted in Figure 4 (left). Nonethe-
less ODEs do not capture the noise, we can see in Figure 4 (right), due to the
low number of molecules. This type of noise is also referred in physics as shot
noise; this noise occurs when the finite number of particles that carry energy is
small enough to give rise to detectable statistical fluctuations in a measurement
[20].

In the m-calculus specification in (10), the process gene represents transcrip-
tion by producing the processes gene and rna after a stochastic delay 7,. In
the process rna the stochastic delay 7%, and 7, represent translation and degra-
dation respectively. Finally, the process p represents the protein product of the
gene and specifies degradation using the stochastic delay 7,.

prop(i,) = ki
prop(Te,) = ka|rnal
prop(Ty,) = ks|rnal
prop(Ti,) = ka|p|

Constitutive gene expression is modelled in a similar way using w-calculus
in [4]; although, in contrast to (10), transcription and translation are not mod-
elled explicitly, instead the protein product is produced from the gene after a
stochastic delay.

gene := 1, .(gene|rna)
rna = Tk,.0 + Tk, .(rnalp)
pi=T,.0

(10)

e Positive regulation:

Unlike constitutive genes, facultative genes are only expressed when needed
according to some signals received by the cell from its surroundings. Activators
are transcription factors which bind to the promoter of genes and activate their
expression by recruiting polymerase.

Michaelis-Menten kinetics are often used in ODEs to model positive regu-
lation [3], of a gene by an activator whose concentration is represented by a
variable A. The three processes, binding, debindind and transcription, pre-

10



sented in (11), are simplified such that the rate of transcription is assumed to
depend on the concentration of the activator A. This is represented on the so
called Michaelis constant K,,, which reflects the affinity between the activator
and promoter, and on the maximum turn-over rate, V;,, which in this case cor-
responds to the maximum transcription rate. Thus the rate of transcription is

given by the term Vmﬁ, where K, = kk—tkt
k‘f ke
A+ gene = A.gene — A.gene + rna (11)

o

The two equations in (12) model gene positive regulation. For the mRNA we
have the corresponding Michaelis-Menten dynamics, V,, ﬁ, minus the expo-
nential decay, k1 RN A, specifying the mRNA degradation. The rate of transla-
tion is assumed to be proportional to the concentration of mRNA, ks RN A and
protein degradation follow the exponential decay law, k3P

dRN A A
— —k RNA
dt K, + A kiR
(12)
dP
& _kRNA — kP
prelit 3

Note that this approach does not model explicitly the binding and debinding
of the activator to the promoter of the gene and so it does not capture the
boolean nature of the activation of genes. These reactions are specified explicitly
in P systems using the two first rules in (13) which follow the same dynamics
as complex formation and dissociation. The other rules represent transcription,
RNA degradation, translation and protein degradation in the same way as in
the constitutive expression of genes.

’

r: [a+gene] f, [a.gene ], prop(r1) = k}|al

ro: [a.gene] LN [a+ gene |, prop(ra) = ki

r3: [a.gene ]l Ko, [ a.gene + rna |, prop(rs) = ky (13)
rg: [rnal; = | prop(ry) = ki|rnal

rs: [rna ] % [rna+p); prop(rs) = ka|rnal

re: [pli =51 prop(re) = ks|p

The time courses of positive gene regulation obtained using our simulator,
available from [22], and the rules in (13) are depicted in Figure 5 (right). As the
case of constitutive expression, our results are in agreement with those of ODEs
presented in Figure 5 (left). Nevertheless, ODEs do not represent the level of
noise; which is more noticeable here than in the previous case. This is due to
the boolean nature of the activation of a gene by an activator which produces
the so called burst in transcription. This noise is referred to as telegraph noise
in physics, in analogy to the telegraph which is either silent or in a sending state
as the operator taps.

11
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Figure 5: Time course of positive gene expression (left). Dynamics of positive
gene regulation using P systems (right).

The m-calculus specification also represents binding and debinding in the
same way as complex formation and dissociation using the processes a and
gene. Transcription, translation and degradation are modelled using similar
processes and stochastic delays as in the case of constitutive expression.

a := bind, ?.0 prop(bindy, ) = kt|al
gene = bindy, !.a.gene pTOPETkT;
prop(T
a.gene := 1, (a|gene) + 1_(a.gene|rna (14)
7"1::](1 =Ty (])cr-l(- 7|';(Z (T2La|p)kp( genelrna) prop(tk,) = k1|rna|
pi=m,0 prop(tk,) = ka|rnal
o prop(Ti,) = ks|p|

In [4] positive gene expression is modelled using m-calculus; although, unlike
(10), binding and debinding of the activator to the gene promoter, transcription
and translation are not modelled explicitly, instead a communication channel,
through which the processes representing the activator and the gene communi-
cate, is used to produce the protein product directly from the gene.

e Negative regulation:

As opposed to positive regulation in some conditions cells do not need the
protein product encoded by a gene; in this case this gene is turned off or re-
pressed by transcription factors called repressors. Repressors bind to the pro-
moter site of genes blocking it so that polymerase cannot bind to it and thus
preventing genes from being transcribed.

In this case Michaelis-Menten dynamics are also used usually to model gene
repression or negative regulation [3]. For the mRNA, a basal transcription
rate, leakiness, is assumed to take place at a rate k; similar to constitutive
expression. Here the term representing Michaelis-Menten dynamics has negative
sign to capture the negative regulation an increase of repressors produces on the

12



transcription of the gene. Finally, mRNA degradation follows the exponential
decay law characterised by the constant k.

The dynamics of the protein product of the gene are similar to the case of
constitutive expression and positive regulation.

dRN A R
R e ks RN A
(15)
dP
& — k3RNA — kyP
=kl kg

Similar to positive regulation the P system and w-calculus specifications rep-
resent explicitly the binding and debinding of the repressor to the gene. Tran-
scription in the absence of repressor, translation and degradation are modelled
as in the previous cases.

ri: [gene]; — [gene+rna]; prop(ry) = ki
k/

ro: [74 gene) =% [r.gene],  prop(ry) = K |r|
rs: [r.gene]l, —> [r+gene], prop(rs) =k, (16)
ra: [rnali —=1[ L prop(ry) = ka|rnal
rs: [rnal; — [rna+p]; prop(rs) = ks|rnal

ka
re: [pli— 11 prop(re) = ka|p|

prop(bindk}) = k}|r|
prop(ty,) = ki
prop(T,) = ke|rnal
prop(Ti,) = ks|rnal
prop(Tk,) = ka|p|

r= bindk/j_?.()

gene := bindy, l.r.gene + 7, .(genelrna)
na = Tg,.0 + Tg,.(rnalp)

pi=Tg,.0

(17)

3 Conclusions

In this paper some fundamental chemical interactions occurring at the cellular
level are described by using two modelling approaches, P systems and m-calculus.
The interactions analysed in the paper cover intra-cellular level. The capabil-
ities of the two modelling approaches are contrasted with respect to classical
continuous models based on ordinary differential equations.
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