
P systems with minimal parallelism

Gabriel Ciobanua,b,∗, Linqiang Panc, Gheorghe Păund,e, Mario J. Pérez-Jiméneze

a Faculty of Computer Science, “A.I.Cuza” University, Blvd. Carol I no. 11, 700506 Iaşi, Romania
b Institute of Computer Science of the Romanian Academy, Iaşi, Romania

c Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
d Institute of Mathematics of the Romanian Academy, PO Box 1-764, 014700 Bucureşti, Romania

e Department of Computer Science and Artificial Intelligence, University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

Abstract

A current research topic in membrane computing is to find more realistic P systems from a biological point of view, and one
target in this respect is to relax the condition of using the rules in a maximally parallel way. We contribute in this paper to this
issue by considering the minimal parallelism of using the rules: if at least a rule from a set of rules associated with a membrane or
a region can be used, then at least one rule from that membrane or region must be used, without any other restriction (e.g., more
rules can be used, but we do not care how many). Weak as it might look, this minimal parallelism still leads to universality. We first
prove this for the case of symport/antiport rules. The result is obtained both for generating and accepting P systems, in the latter
case also for systems working deterministically. Then, we consider P systems with active membranes, and again the usual results
are obtained: universality and the possibility to solve NP-complete problems in polynomial time (by trading space for time).

Keywords: Membrane computing; P System; Universality; SAT Problem

1. Introduction

A much debated topic in membrane computing (see monograph [14] for a comprehensive introduction, volume [4]
for various applications, and the web site http://psystems.disco.unimib.it for recent developments) is how “realistic”
various classes of P systems, hence various ingredients used in them, are from a biological point of view. Starting from
the observation that there is an obvious parallelism in the cell biochemistry [1], and relying on the assumption that “if
we wait enough, then all reactions which may take place will take place”, a basic feature of the P systems as introduced
in [12] is the maximally parallel way of using the rules (in each step, in each region of a system, we have to use a
maximal multiset of rules). This condition provides a useful tool in proving various properties, because it decreases
the non-determinism of the system’s evolution, and it supports techniques for simulating the powerful features of

∗ Corresponding address: Institute of Computer Science, Formal Systems Laboratory, Blvd. Carol I, nr. 8, 700505 Iaşi, Romania. Tel.: +40 232
412820.

E-mail addresses: gabriel@info.uaic.ro, gabriel@iit.tuiasi.ro (G. Ciobanu), lqpan@mail.hust.edu.cn (L. Pan), george.paun@imar.ro,
gpaun@us.es (G. Păun), marper@us.es (M.J. Pérez-Jiménez).

http://www.elsevier.com/locate/tcs
http://psystems.disco.unimib.it
http://psystems.disco.unimib.it
http://psystems.disco.unimib.it
http://psystems.disco.unimib.it
http://psystems.disco.unimib.it
mailto:gabriel@info.uaic.ro
mailto:gabriel@iit.tuiasi.ro
mailto:lqpan@mail.hust.edu.cn
mailto:george.paun@imar.ro
mailto:gpaun@us.es
mailto:marper@us.es
http://dx.doi.org/10.1016/j.tcs.2007.03.044

appearance checking and zero testing, standard methods used to get computational completeness/universality of
regulated rewriting in formal language theory [7] and of register machines [10], respectively.

For various reasons ranging from looking for more realistic models to just the mathematical challenge, the maximal
parallelism was questioned, either simply criticized, or replaced with presumably less restrictive assumptions. For
instance, sequential systems were considered in a series of papers, where only one rule is used in each step of a
computation. An intermediate case is that of non-synchronized P systems, where any number of rules is used in each
step. More details and references can be found in [8]. Various classes of systems with computations similar to the
cooperation modes of grammar systems [5] are presented in [6]: in each step, in each region, for a given k, we can use
exactly k, at least k, or at most k rules. In general, sequential systems and non-synchronized systems are weaker than
systems based on maximal parallelism, but the universality is obtained again as soon as further control mechanisms
are considered, such as priorities, bi-stable catalysts, etc.

In this paper we propose a rather natural condition which, as far as we know, was not yet considered: from each
set of rules where at least a rule can be used, then at least one is actually used (maybe more, without any restriction).
We say that this is a minimal parallelism, because this mode of using the rules ensures that all compartments of the
system evolve in parallel, by using at least one rule whenever such a rule is applicable. We have two main cases given
by the fact that the rules can be associated with a region of a P system (as in P systems with symbol-objects processed
by rewriting-like rules), or they can be associated with membranes (as in symport/antiport P systems and in P systems
with active membranes). The minimal parallelism refers to the fact that each such set is considered separately, and, if
at least one rule of a set can be applied, then at least one rule must be applied. For systems with only one membrane
the minimal parallelism is nothing else than non-synchronization, hence the non-trivial case is that of multi-membrane
systems.

In what follows, we consider only two cases, that of P systems with symport/antiport rules, and of P systems
with active membranes. Somewhat surprisingly, the universality is obtained again, in both cases. For instance, for
symport/antiport systems, we again need a small number of membranes (three in the generative case, and two in the
accepting case), while the symport and antiport rules are rather simple (of weight two). The universality is obtained
both for systems working in the generative mode in which one collects the results of all halting computations, defined
as the multiplicity of objects from an output membrane in the halting configuration, as well as in the accepting
mode where a number is introduced in the system, in the form of the multiplicity of a specified object in a specified
membrane, and the number is accepted if the computation halts. Moreover, the system can be deterministic in the
accepting case.

Similarly, P systems with active membranes are universal even when using rules of only the types (a), (b), (c)
(local evolution of objects, send-in, and send-out rules, respectively). These systems can also solve NP-complete
problems in polynomial time — we exemplify this possibility by using the Boolean satisfiability problem (SAT). The
results are as usual in the case of maximal parallelism, with the mention that we pay here a price for them: we use
three polarizations in the universality proof, and division of non-elementary membranes in the efficiency proof; the
construction for solving SAT is semi-uniform, and it works in a confluent way. The minimal parallelism for other
classes of P systems, especially for catalytic systems, remains to be investigated.

In the next section we introduce the necessary language and automata theory prerequisites, Section 3 introduces the
minimal parallelism for symport/antiport P systems, also giving their universality, both in the generative and accepting
cases, Section 4 considers the minimal parallelism for P systems with active membranes, which are proved to be both
universal and computationally efficient; we end the paper with some comments, in Section 5.

2. Prerequisites

We suppose that the reader is familiar with the basic elements of Turing computability [9], and of membrane
computing [14]. We introduce here, in a rather informal way, only the necessary notions and notation.

An alphabet is a finite and non-empty set of abstract symbols. For an alphabet A, we denote by A∗ the set of
all strings of symbols from A including the empty string λ. A multiset over an alphabet A is a mapping from A to
N, the set of natural numbers; we represent a multiset by a string from A∗, where the number of occurrences of a
symbol a ∈ A in a string w gives the multiplicity of a in the multiset associated with w (hence all strings obtained
by permuting symbols in the string w represent the same multiset). The family of Turing computable sets of natural
numbers is denoted by NRE (with RE coming from “recursively enumerable”).

In our universality proofs we use the characterization of NRE by means of register machines. Such a device consists
of a given number of registers, each of which can hold an arbitrarily large natural number, and a set of labelled
instructions which specify how the numbers stored in registers can change, and which instruction should follow after
any used instruction. There are three types of instructions:

• li : (ADD(r), l j , lk) add 1 to register r , and then go to one of the instructions labelled by l j and lk , non-
deterministically chosen,

• li : (SUB(r), l j , lk) if register r is non-empty (non-zero), then subtract 1 from it and go to the instruction labelled
by l j , otherwise go to the instruction labelled by lk ,

• lh : HALT the halt instruction.

A register machine is a construct M = (n, B, l0, lh, R), where n is the number of registers, B is the set of instruction
labels, l0 is the start label, lh is the halt label (assigned to HALT only), and R is the set of instructions. Each label of
B labels only one instruction from R, thus precisely identifying it. A register machine M generates a set N (M) of
numbers in the following way: having initially all registers empty (hence storing the number zero), start with the
instruction labelled by l0, and proceed to apply instructions as indicated by the labels and by the contents of registers.
If we reach the halt instruction, then the number stored at that time in register 1 is said to be computed by M , and
hence it is introduced in N (M). Since we have a non-deterministic choice in the continuation of the computation in
the case of ADD instructions, N (M) can be an infinite set. It is known (see [10]) that in this way we can compute all
the sets of numbers which are Turing computable, even using register machines with only three registers.

Without loss of generality, we may assume that we have l j 6= li , lk 6= li whenever we use an instruction
li : (ADD(r), l j , lk), and the unique instruction labelled by l0 is an ADD instruction. Moreover, we may assume
that the registers of the machine except register 1 are empty in the halting configuration.

A register machine can also work in an accepting mode. The number to be accepted is introduced in register 1,
with all other registers empty. We start computing with the instruction labelled by l0; if the computation halts, then
the number is accepted (the contents of the registers in the halting configuration do not matter). We still denote by
N (M) the set of numbers accepted by a register machine M . In the accepting case, we can also consider deterministic
register machines, where all the instructions li : (ADD, l j , lk) have l j = lk . It is known that deterministic accepting
register machines characterize NRE.

3. Minimal parallelism for symport/antiport P systems

We first briefly recall the notion of P system with symport/antiport rules; for details, the reader is refereed to [14].
A P system with symport/antiport rules (of degree n ≥ 1) is a construct of the form

Π = (O, µ,w1, . . . , wn, E, R1, . . . , Rn, io), where:

(1) O is the alphabet of objects,
(2) µ is the membrane structure (of degree n ≥ 1, with the membranes labelled in a one-to-one manner with

1, 2, . . . , n),
(3) w1, . . . , wn are strings over O representing the multisets of objects present in the n compartments of µ in the

initial configuration of the system,
(4) E ⊆ O is the set of objects supposed to appear in the environment in arbitrarily many copies,
(5) R1, . . . , Rn are the (finite) sets of rules associated with the n membranes of µ,
(6) io ∈ H is the label of a membrane of µ which indicates the output region of the system.

The rules of any set Ri can be of two types: symport rules of the forms (x, in), (x, out), and antiport rules of the
form (u, out; v, in), where x, u, v are strings over O . The length of x , respectively the maximum length of u, v, is
called the weight of the corresponding (symport or antiport) rule.

In what follows, the rules are applied in a non-deterministic minimally parallel manner: in each step, from each
set Ri (1 ≤ i ≤ n) we use at least one rule (without specifying how many) provided that this is possible for a chosen
selection of rules. The rules to be used, as well as the objects to which they are applied, are non-deterministically
chosen. More specifically, we assign non-deterministically objects to rules, starting with one rule from each set Ri .
If we cannot enable any rule for a certain set Ri , then this set remains idle. After having one rule enabled in each set

Ri for which this is possible, if we still have objects which can evolve, then we evolve them by any number of rules
(possibly none).

We emphasize an important aspect: the competition for objects. It is possible that rules from two sets Ri , R j
associated with adjacent membranes i, j (that is, membranes which have access to a common region, either
horizontally or vertically in the membrane structure) use the same objects, so that only rules from one of these sets
can be used. Such conflicts are resolved in the following way: if possible, objects are assigned non-deterministically
to a rule from one set, say Ri ; then, if possible, other objects are assigned non-deterministically to a rule from R j ,
and thus fulfilling the condition of minimal parallelism. After that, further rules from Ri or R j can be used for the
remaining objects, non-deterministically assigning objects to rules. If no rule from the other set (R j , respectively Ri)
can be used after assigning objects to a rule from Ri or R j , then this is a correct choice of rules. It depends on the first
assignment of objects to rules in order to make applicable rules from each set.

An example can illuminate this aspect: let us consider the configuration

[k [i] i aab [j] j]k,

with Ri = {(b, in)}, and R j = {(a, in), (b, in)}. The objects aab are available to rules from both sets. All the
following five assignments are correct: b goes to membrane i by means of the rule (b, in) ∈ Ri , and one or two copies
of a is/are moved to membrane j by means of the rule (a, in) ∈ R j ; b goes to membrane j by means of the rule
(b, in) ∈ R j , no rule from Ri can be used, and zero, one, or two copies of a are also moved to membrane j by means
of the rule (a, in) ∈ R j . Moving only b to membrane i and not using at least once the rule (a, in) ∈ R j is not correct.

As usual in membrane computing, we consider successful only computations which halt, and with a halting
computation we associate a result given by the number of objects present in the halting configuration in region io
(note that this region is not necessarily an elementary one). External output or a squeezing through a terminal set of
objects are also possible, but we do not consider these cases here. The set of numbers generated by a system Π in the
way described above is denoted by Ngen(Π). The family of all sets Ngen(Π) generated by systems with at most n ≥ 1
membranes, using symport rules of weight at most p ≥ 0, and antiport rules of weight at most q ≥ 0 is denoted by
N gen

min O Pn(symp, antiq), with the subscript “min” indicating the “minimal parallelism” used in computations.
We can also use a P system as above in the accepting mode: For a specified object a, we add am to the multiset of

region io, and then we start working; if the computation stops, then the number m is accepted. We denote by Nacc(Π)

the set of numbers accepted by a system Π , and by N acc
min O Pn(symp, antiq) the family of all sets of numbers Nacc(Π)

accepted by systems with at most n membranes, using symport rules of weight at most p, and antiport rules of weight
at most q .

In the accepting case we can consider deterministic systems, where at most one continuation is possible in each
step. In our context, this means that zero or exactly one rule can be used from each set Ri , 1 ≤ i ≤ n. We add the
letter D in front of N acc

min O Pn(symp, antiq) for denoting the corresponding families, DN acc
min O Pn(symp, antiq).

Our expectation of introducing the minimal parallelism was to obtain a non-universal class of P systems, possibly
with decidable properties. This turns out not to be true: the minimal parallelism still contains the possibility to enforce
the checking for zero from SUB instructions of the register machines (this is the same with appearance checking from
regulated rewriting), both for symport/antiport systems and for systems with active membranes.

Theorem 1. N gen
min O Pn(symp, antiq) = NRE for all n ≥ 3, p ≥ 2, q ≥ 2.

Proof. It is sufficient to prove the inclusion NRE ⊆ N gen
min O P3(sym2, anti2); the inclusions N gen

min O Pn(symp, antiq) ⊆

N gen
min O Pn′(sym p′ , antiq ′) ⊆ NRE, for all 1 ≤ n ≤ n′, 0 ≤ p ≤ p′, and 0 ≤ q ≤ q ′, are obvious.
Let us consider a register machine M = (3, B, l0, lh, R); the fact that three registers suffice is not relevant in

this proof. We consider an object g(l) for each label l ∈ B, and denote by g(B) the set of these objects. We define
B ′

= {l ′ | l ∈ B}, B ′′
= {l ′′ | l ∈ B}, and B ′′′

= {l ′′′ | l ∈ B}, where l ′, l ′′, and l ′′′ are new symbols associated with
l ∈ B. For an arbitrary set of objects Q, let us denote by w(Q) a string which contains exactly once each object from
Q; thus w(Q) represents the multiset which consists of exactly one occurrence of each object of Q. In general, for
any alphabet Q we use the derived sets Q′

= {b′
| b ∈ Q}, Q′′

= {b′′
| b ∈ Q}, and Q′′′

= {b′′′
| b ∈ Q}, where

b′, b′′, b′′′ are new symbols associated with b ∈ Q.
We construct a P system (of degree 3)

Π = (O, µ,w1, w2, w3, E, R1, R2, R3, 3),

with

O = {l, l ′, l ′′, l ′′′, g(l) | l ∈ B} ∪ {ar | 1 ≤ r ≤ 3} ∪ {c, d, t},

µ = [1 [2 [3]3]2]1,

w1 = w(B − {l0})w(B ′)w(B ′′)ct,

w2 = w(g(B)),

w3 = λ,

E = {ar | 1 ≤ r ≤ 3} ∪ B ′′′
∪ g(B) ∪ {c, d, l0},

and with the following sets of rules1:

(1) Starting the computation:

R1 R2 R3
(c, out; car , in), 1 ≤ r ≤ 3 – –
(c, out; dl0, in) – –
– (dl0, in) –

As long as c is present in region 1, we can bring copies of objects ar (1 ≤ r ≤ 3) in the system by using rule
(c, out; car , in) ∈ R1. The number of copies of ar from region 2 represents the number stored in register r of
the register machine. At any moment we can use a rule (c, out; dl0, in) which brings the initial label of M inside
(note that l0 does not appear in w1), together with the additional object d . From now on, no further object ar can
be brought in the system. In the next step, the objects dl0 can enter region 2 by means of rule (dl0, in) ∈ R2, and
this initiates the simulation of a computation in our register machine M .

(2) We also have the following additional rules which are used in interaction with rules from the other groups,
including the previous group:

R1 R2 R3
(l0, out) (g(l), out; dt, in), l ∈ B –
– (t, out), (t, in)

The role of these rules is to prevent “wrong” steps in Π . For instance, as soon as the instruction with label l0 is
simulated (see details below), label l0 should be sent out of the system in order to avoid another computation in M ,
and this is done by means of rule (l0, out) ∈ R1. This rule should be used as soon as l0 is available in region 1, and
no other rule from R1 may be applied — we will see immediately that this is ensured by the rules simulating the
instructions of M . However, l0 should not be eliminated prematurely, i.e., before simulating the instruction with
label l0. In such a case, a rule (g(l), out; dt, in) for some l ∈ B should be used once and only once, because we
have only one available copy of d . In this way, the object t enters membrane 2, and the computation can never stop
because of the rules (t, out), (t, in) ∈ R3. These trap-rules are used also in order to control the correct simulation
of instructions of M .

(3) Simulating an instruction li : (ADD(r), l j , lk):

Step R1 R2 R3
1 – (li , out; lpar , in), p = j, k, or (li , out; t, in) –

When li is in region 2, the number of copies of ar is incremented by bringing ar from the skin region, together
with any of labels l j and lk . Since we have provided in w2 one copy of any label different from l0, labels l j and lk
are present in region 1. We have assumed that each ADD instruction of M has l j 6= li and lk 6= li , hence we do not
need two copies of any l ∈ B in Π . If we have not enough copies of ar because the initial phase was concluded
prematurely (we have brought some copies of ar in the system, but all of them were already moved in membrane
2), then we cannot use a rule (li , out; lpar , in), p = j, k. Because of the minimal parallelism, we should use the
rule (li , out; t, in) (no other rule of R2 is applicable). Therefore, the computation will never end, because of the

1 We present the rules in groups associated with various tasks during the computation, also indicating the steps when they are used.

trap-rules (t, out), (t, in) ∈ R3. Note that no rule from R1 can be used, excepting (l0, out), whenever l0 is present
in the skin region (which means that the initial instruction was already simulated).

(4) Simulating an instruction li : (SUB(r), l j , lk):

Step R1 R2 R3
1 – (g(li)li , out; l ′i , in) –
2 (g(li), out; g(li)l ′′′i , in) (l ′i ar , out; l ′′i , in) –
3 – (g(li)l ′′′i , in) –
4 – (l ′′′i l ′i , out; lk, in), (l ′′′i l ′′i , out; l j , in) –
1 (l ′′′i , out) · · · · · · –
– – (d, out; l ′′′i t, in) –

With li present in region 2, we use a rule (g(li)li , out; l ′i , in) ∈ R2 by which the witness object g(li) goes to
the skin region, and the object l ′i is brought into region 2. During the next step, this latter object checks whether
there is a copy of ar present in region 2. In a positive case, rule (l ′i ar , out; l ′′i , in) ∈ R2 is used in parallel with
(g(li), out; g(li)l ′′′i , in) ∈ R1. This last rule brings into the system a “checking” symbol l ′′′i .

In the next step we have two possibilities.
If we use a rule (g(li)l ′′′i , in) ∈ R2, then both g(li) and l ′′′i are introduced in region 2. Depending on what l ′′′i

finds here, one can use either (l ′′′i l ′i , out; lk, in) if the subtraction was not possible (because no ar was present),
or (l ′′′i l ′′i , out; l j , in) if the subtraction was possible. Thus, the correct label selected between l j and lk is brought
into region 2.

If in step 3, instead of a rule (g(li)l ′′′i , in) ∈ R2, we use again (g(li), out; g(li)l ′′′i , in) ∈ R1, then the existing
object l ′′′i either exits the system by means of the rule (l ′′′i , out) ∈ R1 and so we repeat the configuration, or we
use the rule (d, out; tl ′′′i , in) ∈ R2 and the computation never stops (no other rule of R2 can be used). Similarly,
if in step 3 we use the rule (l ′′′i , out) ∈ R1, then at the same time the object g(li) from region 1 either remains
unchanged, or uses the rule (g(li), out; g(li)l ′′′i , in) ∈ R1. In the former case, in the next step we have to use the
rule (g(li), out; g(li)l ′′′i , in) ∈ R1 (no other rule of R1 can be applied). In both cases, the configuration is repeated.
Of course, if we directly use the rule (d, out; tl ′′′i , in) ∈ R2, then the computation never stops.

Thus, in all these cases, either the simulation of the SUB instruction is correct or the system never stops. In the
next step, namely step 1 of the simulation of any type of instruction, the object l ′′′i exits the system by means of the
rule (l ′′′i , out) ∈ R1. Note that no other rule of R1 is used in this step, neither for ADD, nor for SUB instructions.

Consequently, both ADD and SUB instructions of M are correctly simulated. The configuration of the system
is restored after each simulation, namely all the objects of g(B) are in region 1, and no object of B ′′′ is present in
the system. The simulation of the instructions of M can be iterated, and thus we can simulate in Π a computation
of M . If the computation of M does not stop, then the corresponding simulation in Π does not stop as well. When
the computation in M stops, then the label lh is introduced in region 2, and registers 2 and 3 are empty. Then we
use the following group of rules.

(5) Final rules:

R1 R2 R3
– – (lha1, in)

– – (lh, out)

The halting label lh carries all the copies of a1 from region 2 to 3, and only when this process is completed the
computation can stop.

Consequently, the system Π correctly simulates (all and nothing else than) the computations of M . This means
that Ngen(Π) = N (M). �

Note that in this proof the output region is an elementary one, and that the minimal parallelism is essentially used in
ensuring the correct simulation of the computations in the register machine M (for instance, the minimal parallelism
prevents halting the computation in Π without completing the simulation of a halting computation in M).

The previous proof can be easily adapted for the accepting case: we consider l0 already in region 1, and introduce
additionally am

1 , for m being the number we want to accept. Omitting the technical details, we mention the following
result:

Corollary 2. N acc
min O Pn(symp, antiq) = NRE for all n ≥ 3, p ≥ 2, q ≥ 2.

Moreover, this last result can be strengthened by considering deterministic P systems, and also by decreasing by
one the number of membranes.

Theorem 3. DN acc
min O Pn(symp, antiq) = NRE for all n ≥ 2, p ≥ 2, q ≥ 2.

Proof. Let us consider a deterministic register machine M = (3, B, l0, lh, R) accepting an arbitrary set N (M) ∈ NRE.
We again use the notation w(Q) as specified in the proof of Theorem 1, and Qu for the sets {bu

| b ∈ Q}, where u
denotes various markings (priming). We construct a P system (of degree 2)

Π = (O, [1 [2]2]1, w1, w2, E, R1, R2, 1),

with

O = {l, l ′, l ′′, l ′′′, l iv, lv | l ∈ B} ∪ {ar | 1 ≤ r ≤ 3} ∪ {c},

w1 = l0,

w2 = w(Biv),

E = O,

and with the following sets of rules:

(1) Simulating an instruction li : (ADD(r), l j , l j):

Step R1 R2
1 (li , out; l j ar , in) –

Since the environment contains the necessary objects, the ADD instruction is simulated whenever we have the
object li in region 1.

(2) Simulating an instruction li : (SUB(r), l j , lk):

Step R1 R2
1 (li , out; l ′i l

′′

i , in) –
2 (l ′i ar , out; l ′′′i , in) (l iv

i , out; l ′′i , in)

3 (l iv
i l ′i , out; l iv

i lvk , in) or (l iv
i l ′′i , out; l iv

i lvj , in) –
4 (lvk , out; clk, in), resp. (lvj , out; cl j , in) –
1 · · · · · · (cl iv

i , in)

With li present in region 1, we bring into the system the objects l ′i , l ′′i from the inexhaustible environment. The
object l ′i is used to subtract 1 from register r by leaving together with a copy of ar . This operation brings into
the system an object l ′′′i ; simultaneously, l ′′i enters region 2, releasing the “checking” symbol l iv

i . In the next step,
depending on what l iv

i finds in membrane 1, either (l iv
i l ′i , out; l iv

i lvk , in) is used whenever the subtraction was not
possible, or (l iv

i l ′′i , out; l iv
i lvj , in) is used if the subtraction was possible. The corresponding lvj or lvk is brought into

the system. In the fourth step, these last objects exit the system and bring inside their corresponding non-marked
objects l j and lk , together with an auxiliary object c. In the next step, object c helps object l iv

i (which waits one
step in the skin region) to return to region 2, and so making sure that the multiset of region 2 contains again all
objects of Biv . This step is the first one in simulating another ADD or SUB instruction, and it is important to note
that in this step no other rule from R2 can be used.

The computation starts by introducing in region 1 a multiset am
1 encoding the number m. Note that the initial

label of M is already present here. By iterating the simulations of ADD and SUB instructions, we can simulate any
computation of M . Obviously, since any computation of M is deterministic, the computation in Π is also deterministic
(from each set Ri , in each step, at most one rule is applicable). When the halt instruction is reached, hence lh appears
in the system, the computation stops (with a further last step when the rule (cl iv

i , in) ∈ R2 is used).
We conclude that Nacc(Π) = N (M). �

Note that the deterministic construction is simpler than that from the proof of Theorem 1, because we should not
initially bring “resources” into the system, and we have nothing to do in the final stage (in particular, we should not
“clean” the output region of any other objects than those we need to count).

4. Minimal parallelism for P systems with active membranes

Let us consider now another important class of P systems, that with active membranes. We start by briefly recalling
the basic definition, then we define the minimal parallelism for this type of P systems.

A P system with active membranes of the initial degree n ≥ 1 is a construct of the form

Π = (O, H, µ,w1, . . . , wn, R, ho),

where:

(1) O is the alphabet of objects;
(2) H is a finite set of labels for membranes;
(3) µ is a membrane structure, consisting of n membranes having initially neutral polarizations, labelled (not

necessarily in a one-to-one manner) with elements of H ;
(4) w1, . . . , wn are strings over O , describing the multisets of objects placed in the n initial regions of µ;
(5) R is a finite set of developmental rules, of the following forms:

(a) [ha → v]
e
h ,

for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on the label and the charge of the
membranes, but not directly involving the membranes, in the sense that the membranes are neither taking
part in the application of these rules nor are they modified by them);

(b) a[h]
e1
h → [hb]

e2
h ,

for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(in communication rules; a possibly modified object is introduced in a membrane; the polarization of the
membrane can also be modified, but not its label);

(c) [ha]
e1
h → [h]

e2
h b,

for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(out communication rules; a possibly modified object is sent out of the membrane; the polarization of the
membrane can also be modified, but not its label);

(d) [ha]
e
h → b,

for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O
(dissolving rules; in reaction with an object, a membrane can be dissolved, while the object specified in the
rule can be modified);

(e) [ha]
e1
h → [hb]

e2
h [hc]

e3
h ,

for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O
(division rules for elementary or non-elementary membranes; in reaction with an object, the membrane with
label h is divided into two membranes with the same label, possibly of different polarizations; the object
specified in the rule is replaced in the two new membranes by possibly new objects; the remaining objects
may evolve in the same step by rules of type (a) and the result of this evolution is duplicated in the two new
membranes; if membrane h contains other membranes, then they may evolve at the same time by rules of any
type and the result of their evolution is duplicated in the two new membranes);

(6) ho ∈ H is the label of the output membrane.

Note that, different from [13,14], etc., the rules of type (e) can be applied also to non-elementary membranes. The
rules for dividing non-elementary membranes are of a different form in the literature (in several papers the division
takes place only when internal membranes of opposite polarizations are present); in this paper we consider the above
uniform form of rules for dividing membranes irrespective of whether they are elementary or not.

We use here the rules in a minimally parallel manner, in the following sense. All the rules of any type involving a
membrane h form the set Rh (this means all the rules of type (a) of the form [ha → v]

e
h , all the rules of type (b) of the

form a[h]
e1
h → [hb]

e2
h , and all the rules of types (c)–(e) of the form [ha]

e
h → z, with the same h, constitute the set

Rh). Moreover, if a membrane h appears several times in a given configuration of the system, then for each occurrence
of the membrane we consider a different set Rh ; this means that we identify the i th copy of membrane h with the pair
(h, i), and we consider the set of rules Rh,i = Rh . Then, in each step, from each set Rh,i , h ∈ H (possibly, without
specifying i = 1 in the case where membrane h appears only once) from which at least a rule can be used, at least
one rule must be used.

In what follows, in order to make visible the sets of rules, we write explicitly the sets Rh, h ∈ H , instead of the
global set R.

Of course, as usual for P systems with active membranes, each membrane and each object can be involved in only
one rule, and the choice of rules to use and of objects and membranes to evolve is done in a non-deterministic way.
We should note that for rules of type (a) the membrane is not considered to be involved: when applying [ha → v]h ,
the object a cannot be used by other rules, but the membrane h can be used by any number of rules of type (a) as well
as by one rule of types (b)–(e). In each step, the use of rules is done in the bottom-up manner (first the inner objects
and membranes evolve, and the result is duplicated if any surrounding membrane is divided).

A halting computation provides a result given by the number of objects present in membrane ho at the end of the
computation; for a computation to be successful, exactly one membrane with label ho should be present in the halting
configuration. The set of numbers generated in this way by a system Π is denoted by N (Π), and the family of these
sets, generated by systems having initially at most n1 membranes and using configurations with at most n2 membranes
during the computation is denoted by Nmin O Pn1,n2((a)–(e)); when a type of rules is not used, it is not mentioned in
the notation.

We prove now the universality of P systems with active membranes working in the minimally parallel mode; as it
is the case also for the maximally parallel mode, only rules of the first three types are used — however, in contrast
to [3], we use three polarizations. Actually, in the maximally parallel case the universality of P systems with active
membranes can be obtained even without using polarizations (see [2]) at the price of using rules of all the five types.

Theorem 4. Nmin O Pn1,n2((a)–(c)) = NRE for all n1 ≥ 4, n2 ≥ 4.

Proof. Let us consider a register machine M = (3, B, l0, lh, R) generating an arbitrary set N (M) ∈ NRE. We
construct a P system (of the initial degree 4)

Π = (O, H, µ, l0, λ, λ, λ, R0, R1, R2, R3, 1),

with

O = {a} ∪ {l, l ′, l ′′, l ′′′, l iv, lv, lvi , lvi i , lvi i i , l i x
| l ∈ B},

H = {0, 1, 2, 3},

µ = [0[1]1 [2]2 [3]3]0,

and with the following rules2:

(1) Simulating an instruction li : (ADD(r), l j , lk), for r = 1, 2, or 3:

Step R0 Rr

1 – li [r]
0
r → [r li]0

r
2 – [r li → l ′pa]

0
r , p = j, k

3 – [r l ′p]
0
r → [r]

0
r l ′p, p = j, k

4 [0l ′p → lp]
0
0, p = j, k –

The label-object li enters into the correct membrane r , produces one further copy of a, and the primed labels l j , lk
inside membrane r ; the labels l j , lk exit to the skin region and lose their primes, and the process can be iterated.
Note that in each step, at most one rule from each set R0, R1, R2, R3 can be used.

2 A membrane with label r is defined for each register r ; the number stored in a register r is represented by the number of objects a present in
membrane r .

(2) Simulating an instruction li : (SUB(r), l j , lk), for r = 1, 2, 3 (we mention the rules to be applied in each step, if
their application is possible):

Step R0 Rr

1 [0li → l ′i l
′′

i]
0
0 –

2 [0l ′′i → l ′′′i]
0
0 l ′i [r]

0
r → [r l ′i]

+
r

3 [0l ′′′i → l iv
i]

0
0 [r a]

+
r → [r]

−
r a

4 [0l iv
i → lvi]

0
0 [r l ′i → lvi i i

j]
−
r

5 [0lvi → lvi
i]

0
0 [r lvi i i

j]
−
r → [r]

0
r lvi i i

j
6 [0lvi i i

j → l i x
j]

0
0 lvi

i [r]
0
r → [r lvi

i]
0
r , lvi

i [r]
+
r → [r lvi

i]
+
r

7 [0l i x
j → l j]

0
1 [r lvi

i → λ]
0
r , [r lvi

i → lvi i
i]

+
r

8 – [r lvi i
i]

+
r → [r]

0
r lvi i

i
9 [0lvi i

i → lk]0
0 [r l ′i → λ]

0
r

We start by introducing l ′i , l ′′i in the skin region; the former object enters membrane r associated with the rule
to simulate, changing its polarization to +, the latter object evolves in the skin region to l ′′′i . In the third step, while
l ′′′i changes to l iv

i in the skin region, a copy of object a can exit membrane r , providing that such an object exists;
this changes the polarization of this membrane to negative.

Let us consider separately the two possible cases.
If we have inside membrane r the object l ′i , and the membrane is positively charged (which means that the

contents of register r was empty), then in steps 4 and 5 we can apply rules only in the skin region, adding primes
to the primed li present here until reaching lvi

i . In step 6, this object enters membrane r , evolves (by step 7) to
lvi i

j which exits membrane 2 in step 8, returning its polarization to neutral. In these circumstances, in step 9 lvi i
i

introduces lk in the skin region (this is the correct label-object for this case), and simultaneously l ′i (waiting in
membrane r from the beginning of the simulation) is removed by using the rule [r l ′i → λ]

0
r from Rr (l ′i cannot be

removed earlier, because the polarization of membrane r was positive).
If in step 3 the inner membrane gets a negative charge (which means that the subtraction from register r was

possible), then we can continue with the rules mentioned in the table above for step 4: l ′i introduces lvi i i
j , which

later will introduce l j . In parallel, in the skin region we use the rule [0l iv
i → lvi]

0
0.

The next step is similar: we add one more prime to the object from the skin region, and the rule [r lvi i i
j]

−
r →

[r]
0
r lvi i i

j of Rr is used, thus restoring the polarization of membrane r to neutral. In step 6, the object lvi i i
j , just

expelled from membrane r , introduces l i x
j in the skin region, while the “witness” lvi

i enters into membrane r (now,
neutral again). In step 7, l i x

j introduces the correct label-object l j in the skin region, and simultaneously lvi
i is

removed from membrane r . The simulation of the SUB instruction is completed.
In both cases, the simulation of the SUB instruction is correct, and the process can be iterated. Again, in each

step, from each set R0, R1, R2, R3 at most one rule can be used (hence the minimal parallelism is, in this case,
similar to the maximal parallelism).

We start with label l0 in the skin region. If the computation in M halts, hence lh is reached, this means that the
object lh is introduced in the skin region, and also the computation in Π halts. Consequently, N (M) = N (Π), and
this concludes the proof. �

It remains as an open problem whether Theorem 4 can be improved by removing the polarizations of membranes
and/or by decreasing the number of membranes.

The previous system simulates the starting register machine in a deterministic manner, hence the result of the
theorem remains true also for deterministic accepting P systems. We leave the obvious details as a task for the reader,
and we pass to the important issue of using the membrane division as a tool of generating an exponential workspace in
a linear time, and then using this space for addressing computationally hard problems. This possibility is successfully
used for many problems in the maximal parallelism (we refer to [15] for details and references), and this remains
pleasantly true for the minimal parallelism, at least for the SAT problem.

The framework in which we prove this assertion is the following: we start from a given instance of SAT (using n
variables and having m clauses), and we construct, in polynomial time, a P system Π with active membranes of a size

polynomially bounded with respect to n and m, whose all computations halts in a polynomial time with respect to n
and m; moreover, all the computations send to the environment either a special object yes or a special object no, and
this happens in the last step. The propositional formula is satisfiable if and only if the object yes is released.

Therefore, in the rigorous terminology of [15], we construct the system in a semi-uniform manner (starting from a
given instance of the problem), and the system works in a weakly confluent way (we allow the system to evolve
non-deterministically, but we impose that all the computations halt, and all of them provide the same answer).
Improvements from these points of view (looking for uniform constructions, of deterministic systems) are left as open
problems. In comparison with the existing similar solutions to NP-complete problems from the membrane computing
literature based on the maximal parallelism, we pay here a price for using the minimal parallelism: namely, we use
the membrane division for non-elementary membranes. The issue whether or not the membrane division for only
elementary membranes suffices remains also as an open problem.

Theorem 5. The satisfiability of any propositional formula in the conjunctive normal form, using n variables and m
clauses, can be decided in a linear time with respect to n by a P system with active membranes using rules of types
(a)–(e), and working in the minimally parallel mode. Moreover, the system is constructed in a linear time with respect
to n and m.

Proof. Let us consider a propositional formula σ = C1 ∧ · · · ∧ Cm , such that each clause Ci , 1 ≤ i ≤ m, is of the
form Ci = yi,1 ∨ · · · ∨ yi,ki , ki ≥ 1, for yi, j ∈ {xk, ¬xk | 1 ≤ k ≤ n}. For each k = 1, 2, . . . , n, let us denote

t (xk) = {ci | there is 1 ≤ j ≤ ki such that yi, j = xk},

f (xk) = {ci | there is 1 ≤ j ≤ ki such that yi, j = ¬xk}.

These are the sets of clauses which assume the value true when xi is true, respectively, false, respectively.
We construct a P system Π with the following components (the output membrane is not necessary, because the

result is obtained in the environment):

O = {ai , ti , fi | 1 ≤ i ≤ n}

∪ {ci | 1 ≤ i ≤ m}

∪ {gi | 1 ≤ i ≤ 2n + 6}

∪ {ei | 1 ≤ i ≤ 2n + 1}

∪ {b, c, yes, no},

H = {s, e, g, 0, 1, 2, . . . , m},

µ = [s[g] g[0[e]e[1]1[2]2 · · · [m]m]0] s,

wg = g1, we = e1, w0 = a1,

ws = wi = λ, for all i = 1, 2, . . . , m,

and with the following rules (we present them in groups with specific tasks, also commenting their use).
For the sake of readability, the initial configuration is given in Fig. 1; initially, all the membranes have neutral

polarizations.
The membranes with labels g and e, with the corresponding objects gi and ei , respectively, are used as counters

which evolve simultaneously with the “main membrane” 0 where the truth assignments of the n variables x1, . . . , xn
are generated; the use of separate membranes for counters makes possible the correct synchronization even for the
case of the minimal parallelism. The evolution of counters is done by the following rules:

[ggi → gi+1]
0
g, for all 1 ≤ i ≤ 2n + 5,

[eei → ei+1]
0
e, for all 1 ≤ i ≤ 2n.

In parallel, membrane 0 evolves by means of the following rules:

[0ai]
0
0 → [0ti]0

0[0 fi]
0
0, for all 1 ≤ i ≤ n,

[0ti → t (xi)ai+1]
0
0, and

[0 fi → f (xi)ai+1]
0
0, for all 1 ≤ i ≤ n − 1,

'

&

$

%

�
�

�
�

'

&

$

%

�
�

�
��

�
�
�

�
�

�
�

�
�

�
�

s

g

g1

0
e

e1 a1

1 2 m
. . .

Fig. 1. The initial configuration of the system from the proof of Theorem 5.

[0tn → t (xn)]0
0,

[0 fn → f (xn)]0
0.

In odd steps, we divide the (non-elementary) membrane 0 (with ti , fi corresponding to the truth values true and false
for variable xi); in even steps we introduce the clauses satisfied by xi and ¬xi , respectively. When we divide membrane
0, all its inner objects and membranes are replicated; in particular, all the membranes with labels 1, 2, . . . , m, as well
as membrane e are replicated, hence they are present in all the membranes with label 0.
This process lasts 2n steps. At the end of this phase, all 2n truth assignments for the n variables are generated.

In parallel with the division steps, if a clause C j is satisfied by the previously expanded variable, then the
corresponding object c j enters membrane j by means of the rule

c j [j]
0
j → [j c j]

+

j , 1 ≤ j ≤ m,

thus changing the polarization of this membrane to positive.
This is done also in step 2n + 1, in parallel with the following rule for evolving membrane e:

[ee2n+1]
0
e → [e]

0
ee2n+1.

Thus, after 2n + 1 steps, the configuration of the system consists of 2n copies of membrane 0, each of them
containing the membrane e empty, the object e2n+1, possible objects c j , 1 ≤ j ≤ m, as well as copies of all the
membranes with labels 1, 2, . . . , m; these membranes are either neutrally charged (if the corresponding clause was
not satisfied by the truth assignments generated in that copy of membrane 0), or positively charged (in the case where
the respective clause was satisfied — and hence one copy of c j is inside membrane j). Therefore, formula σ is satisfied
if and only if there is a membrane 0 where all membranes 1, 2, . . . , m are positively charged. In order to check this
last condition, we proceed as follows.

In step 2n + 2 we use the rule

[0e2n+1 → bc]0
0,

which introduces the objects b and c in each membrane 0. The latter object exits the membrane in step 2n +3 by using
the rule

[0c]0
0 → [0]

+

0 c,

thus changing the polarization of the membrane to positive. Simultaneously, b enters any of the membranes
1, 2, . . . , m with neutral polarization, if such a membrane exists, by means of the rule

b[j]
0
j → [j b]

0
j , 1 ≤ j ≤ m.

Therefore, if b can “get hidden” in a membrane j , this means that the truth assignment from the respective membrane 0
has not satisfied all clauses. In the opposite case, where all clauses were satisfied (hence all the membranes 1, 2, . . . , m
have positive polarizations), the object b waits one step in membrane 0.

If object b is not blocked in an inner membrane, then in the next step (2n + 4) it exits membrane 0, by means of
the rule

[0b]
+

0 → [0]
+

0 b.

This was not possible in the previous step, because the membrane had the neutral polarization.
In the next two steps we use the rules

[sb → yes]0
s ,

[syes]
0
s → [s]

+
s yes,

hence the object yes is sent to the environment in step 2n + 6, signalling the fact that the formula is satisfiable.
If object b is blocked in an inner membrane in all the copies of membrane 0 (hence the propositional formula is

not satisfiable), then no b is evolving in steps 2n + 4 and 2n + 5; in these steps, the counter g increases its subscript,
hence in step 2n + 6 we can use the rule

[gg2n+6]
0
g → [g]

0
gg2n+6.

This rule is also used when the formula is satisfied; however in that situation the skin membrane is changed to a
positive polarization in step 2n + 6, and so the following rule cannot be used in step 2n + 7. If the formula is not
satisfied, hence the skin membrane keeps its initial neutral polarization, then in step 2n + 7 we can use the rule

[s g2n+6 → no]0
s ,

and the object no is sent to the environment by means of the rule

[sno]
0
s → [s]

+
s no.

Therefore, if the formula is satisfiable, then the object yes exits the system in step 2n + 6, and if the formula is not
satisfiable, then the object no exits the system in step 2n + 8. In both cases, the computation halts.

The system Π uses 7n + m + 11 objects, m + 4 initial membranes (containing 3 objects at the beginning of the
computation), and 7n + 2m + 14 rules, all of these rules being of a length which is linearly bounded with respect to m
(hence, the system can be constructed effectively in a time linearly bounded with respect to n and m). Clearly, all the
computations stop after at most 2n + 8 steps, hence in a time linear with respect to n, and all give the same answer,
yes or no, to the question whether formula σ is satisfiable, hence the system is weakly confluent. These observations
conclude the proof. �

Note also that the previous construction does not use rules of type (d), for membrane dissolution, and that the time
for deciding whether a formula is satisfiable does not depend on the number of clauses, but only on the number of
variables.

5. Final remarks

The minimal parallelism remains to be considered for other classes of P systems, especially for systems with
catalytic rules. From a mathematical point of view, it is also of interest to look for improvements of the results
presented in Theorems 1, 3 and 4 in what concerns the number of membranes in the first and third theorems, and the
weights of symport and antiport rules in the first two theorems — as it is done in a series of papers for the case of
maximal parallelism. It also remains to be determined which of the results known for the maximal parallelism are also
valid for the minimal parallelism, and which results can be re-proven in the new framework.

Returning to the initial motivation of this research, a very interesting problem is to find mechanisms of “keeping
under control” the power of P systems in order to obtain non-universal classes of systems. Minimal parallelism fails,
the sequential use of rules is similarly restrictive as the maximal parallelism, non-synchronization is too loose and
weak in order to be used in “programming” the P systems. What else to consider is a topic worth investigating, and it
might be useful to go back to biology and get inspiration from the living cell.

For further reading

[11]

Acknowledgements

This work has been partially supported by the research grants CEEX 47/2005 BioMAT 2-CEx06-11-97/19.09.06
(Romania), the National Natural Science Foundation of China (Grant Nos. 60373089 and 60674106), as well as by the
Program for the New Century Talents in Universities, and the Ph.D. Program Foundation of the Ministry of Education
of China. Useful suggestions by two anonymous referees are gratefully acknowledged.

References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed., Garland Science, New York, 2002.
[2] A. Alhazov, P systems without multiplicities of symbol-objects, Information Processing Letters 100 (2006) 124–129.
[3] A. Alhazov, R. Freund, Gh. Păun, P systems with active membranes and two polarizations, in: Proceedings of the Second Brainstorming Week

on Membrane Computing, Sevilla, 2004, pp. 20–36.
[4] G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.), Applications of Membrane Computing, Springer-Verlag, Berlin, 2006.
[5] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, Gh. Păun, Grammar Systems. A Grammatical Approach to Distribution and Cooperation, Gordon

and Breach, London, 1994.
[6] Z. Dang, O.H. Ibarra, On P systems operating in sequential mode, in: L. Ilie, D. Wotschke (Eds.) Pre-proc. of DCFS Workshop, London,

Ontario, 2004, pp. 164–177.
[7] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-Verlag, Berlin, 1989.
[8] R. Freund, Asynchronous P systems and P systems working in the sequential mode, in: G. Mauri, Gh. Păun, M.J. Pérez-Jiménez,

G. Rozenberg, A. Salomaa (Eds.), Membrane Computing, International Workshop, WMC5, Milano, Italy, in: LNCS, 3365, Springer-Verlag,
Berlin, 2005, pp. 36–62. Selected and invited papers.

[9] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 1979.
[10] M. Minsky, Computation. Finite and Infinite Machines, Prentice Hall, Englewood Cliffs, NJ, 1967.
[11] A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport, New Generation Computing 20 (2002) 295–306.
[12] Gh. Păun, Computing with membranes, Journal of Computer and System Sciences 61 (2000) 108–143.
[13] Gh. Păun, P systems with active membranes: Attacking NP-complete problems, Journal of Automata, Languages and Combinatorics 6 (2001)

75–90.
[14] Gh. Păun, Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002.
[15] M.J. Pérez-Jiménez, A. Romero–Jiménez, F. Sancho-Caparrini, Computationally hard problems addressed through P systems, in: [4], pp.

313–346.

	P systems with minimal parallelism
	Introduction
	Prerequisites
	Minimal parallelism for symport/antiport P systems
	Minimal parallelism for P systems with active membranes
	Final remarks
	For further reading
	Acknowledgements
	References

