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Summary. Membrane computing is a computing paradigm providing a class of dis-
tributed parallel computing devices of a biochemical type whose process units represent
biological membranes. In the cell-like basic model, a hierarchical membrane structure
formally described by a rooted tree is considered. It is well known that families of such
systems where the number of membranes can only decrease during a computation (for
instance by dissolving membranes), can only solve in polynomial time problems in class
P. P systems with active membranes is a variant where membranes play a central role in
their dynamics. In the seminal version, membranes have an electrical polarization (posi-
tive, negative, or neutral) associated in any instant, and besides being dissolved, they can
also replicate by using division rules. These systems are computationally universal, that
is, equivalent in power to deterministic Turing machines, and computationally efficient,
that is, able to solve computationally hard problems in polynomial time. If polarizations
in membranes are removed and dissolution rules are forbidden, then only problems in
class P can be solved in polynomial time by these systems (even in the case when divi-
sion rules for non-elementary membranes are permitted). In that framework it has been
shown that by considering minimal cooperation (left-hand side of such rules consists of
at most two symbols) and minimal production (only one object is produced by the appli-
cation of such rules) in object evolution rules, such systems provide efficient solutions to
NP-complete problems. In this paper, minimal cooperation and minimal production in
communication rules instead of object evolution rules is studied, and the computational
efficiency of these systems is obtained in the case where division rules for non-elementary
membranes are permitted.

Key words: Membrane Computing, polarizationless P systems with active mem-
branes, cooperative rules, the P versus NP problem, SAT problem.
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1 Introduction

Membrane Computing is an emergent branch of Natural Computing providing
distributed parallel and non-deterministic computing models whose computational
devices are called membrane systems having units processor called compartments.
This computing paradigm is inspired by some basic biological features, by the
structure and functioning of the living cells, as well as from the cooperation of cells
in tissues, organs, and organisms. Celllike membrane systems use the biological
membranes arranged hierarchically, inspired from the structure of the cell.

In Membrane Computing, some variants capture the fact that membranes are
not at all passive from a biochemistry view, for instance, the passing of a chem-
ical compound through a membrane is often done by a direct interaction with
the membrane itself. Some variants of P systems where the central role in their
dynamics is played by the membranes have been considered. In these models, the
membranes not only directly mediate the evolution and the communication of ob-
jects, but they can replicate themselves by means of a division process. Inspired
by these features, P systems with active membranes [6] were introduced, based
on processing multisets by means of non-cooperative rewriting rules, that is, rules
where its left-hand side has at most only one object. Specifically, objects evolve
inside membranes which can communicate between each other, can dissolve, and
moreover (inspired by cellular mitosis process) can replicate by means of division
rules. It is assumed that each membrane has associated an electrical polarization
in any instant, one of the three possible: positive, negative, or neutral.

P systems with active membranes are computationally complete, that is, any
recursively enumerable set of vectors of natural numbers (in particular, each re-
cursively enumerable set of natural numbers) can be generated by such a system
[6]. Hence, they are equivalent in power to deterministic Turing machines.

What about the computational efficiency of P systems with active membranes?
The key is certainly in the use of division rules, as we can deduce from the so-
called Milano theorem [13]: A deterministic P system with active membranes but
without membrane division can be simulated by a deterministic Turing machine
with a polynomial slowdown.

However, P systems with active membranes which make use of division rules
have the ability to provide efficient solutions to computationally hard problems, by
making use of an exponential workspace created in a polynomial time. Specifically,
NP-complete problems can be solved in polynomial time by families of P systems
with active membranes, without dissolution rules and which use division rules only
for elementary membranes [6]. Moreover, the class of decision problems which can
be solved by families of P systems with active membranes with dissolution rules
and which use division for elementary and non-elementary membranes is equal
to PSPACE [8]. Consequently, the usual framework of P systems with active
membranes and electrical polarizations for solving decision problems seems to be
too powerful from the computational complexity point of view.

With respect to the computational efficiency, in the classical framework of P
system with active membranes, dissolution rules play an “innocent” role as well as
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division for non-elementary membranes. However, if electrical charges are removed
then these kind of rules come to play a relevant role. Specifically, P systems with
active membranes and without electrical charges were initially studied in [1, 2] by
replacing electrical charges by the ability to change the label of the membranes.
In this paper, polarizationless P systems with active membranes where labels of
membranes keep unchanged by the application of rules, are considered. In this
new framework, if dissolution rules are forbidden then only problems in class P
can be solved in an efficient way, even in the case that division for non-elementary
membranes are permitted [5]. Is the class of polarizationless P systems with active
membranes, with dissolution but using only division rules for elementary mem-
branes computationally efficient? If P = NP, which is at all expected, then it is
an open question, so-called Pdaun’s conjecture.

In the seminal paper where P systems with active membranes were intro-
duced, Gh. Paun says that “working with non-cooperative rules is natural from
a mathematical point of view but from a biochemical point of view this is not only
non-necessary, but also non-realistic: most of the chemical reactions involve two
or more than two chemical compounds (and also produce two or more than two
compounds)”. In this context, a restricted cooperation has been considered in the
classical framework of polarizationless P systems with active membranes. Specifi-
cally, minimal cooperation (the left-hand side and the right-hand side of any rules
have, at most, two objects) in object evolution rules, has been previously stud-
ied from a computational complexity point of view. A polynomial-time solution
to the SAT problem by means of families of polarizationless P systems with active
membranes, with minimal cooperation in object evolution rules, has been provided
[9]. Recently, this result has been improved by considering minimal cooperation in
object evolution rules with and additional restriction: the right-hand side of any
rules has only one object (called minimal cooperation and minimal production)
[11]. A relevant fact in these results is the following: dissolution rules and division
rules for non-elementary membranes are not necessary to reach the computational
efficiency.

In this paper the role of minimal cooperation and minimal production in com-
munication rules instead of object evolution rules, is studied from a complexity
point of view. Specifically, by using families of membrane systems which use these
syntactical ingredients, a polynomial-time solution to the SAT problem is provided
but allowing division rules for non-elementary membranes.

The paper is structured as follows. First, some basic notions are recalled and
the terminology and notation to be used in the paper is presented. Then, Section 3
introduces the model that will be investigated in this paper: polarizationless P sys-
tems with active membranes, with minimal cooperation and minimal production
in their communication rules. Section 4 contains the main result of this paper,
showing that these systems are capable of solving an NP-complete problem in an
efficient way. Finally, the paper concludes with some final remarks and ideas for
future work.
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2 Preliminaries

An alphabet I' is a non-empty set and their elements are called symbols. A string u
over I is an ordered finite sequence of symbols, that is, a mapping from a natural
number n € N onto I'. The number n is called the length of the string u and it is
denoted by |u|. The empty string (with length 0) is denoted by A. The set of all
strings over an alphabet I is denoted by I'*. A language over I is a subset of I'*.

A multiset over an alphabet I is an ordered pair (I, f) where f is a mapping
from I" onto the set of natural numbers N. The support of a multiset m = (I, f) is
defined as supp(m) = {x € I' | f(x) > 0}. A multiset is finite (respectively, empty)
if its support is a finite (respectively, empty) set. We denote by () the empty
multiset. Let mq = (I} f1), ma = (I, f2) be multisets over I", then the union of m,
and mg, denoted by my + ma, is the multiset (I, g), where g(z) = fi(x) + fa(z)
for each x € I'. We denote by M(I") the set of all multisets over I

2.1 Graphs and trees

Let us recall some notions related with graph theory (see [3] for details). An
undirected graph is an ordered pair (V,E) where V is a set whose elements are
called nodes or vertices and E = {{z,y} | x € V,y € V,z # y} whose elements
are called edges. A path of length £ > 1 from a node u to a node v in a graph
(V,E) is a finite sequence (xg,x1,...,2) of nodes such that o = u, 5, = v and
{zi,xi41} € E. If k > 2 and z¢p = z, then we say that the path is a cycle of
the graph. A graph with no cycle is said to be acyclic. An undirected graph is
connected if there exist paths between every pair of nodes.

A rooted tree is a a connected, acyclic, undirected graph in which one of the
vertices (called the root of the tree) is distinguished from the others. Given a node
x (different from the root), if the last edge on the (unique) path from the root of
the tree to the node z is {x,y} (in this case, x # y), then y is the parent of node
x and x is a child of node y. The root is the only node in the tree with no parent.
A node with no children is called a leaf.

2.2 The Cantor pairing function

The Cantor pairing function encodes pairs of natural numbers by single natural
numbers, and it is defined as follows: for each n,p € N

(n+p)(n+p+1)
2

(n,p) =

The Cantor pairing function is a primitive recursive function and bijective from
N x N onto N. Then, for each ¢ € N there exist unique natural numbers n,p € N
such that ¢t = (n, p).
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2.3 Decision problems and languages

A decision problem X is an ordered pair (Ix,fx), where Ix is a language
over a finite alphabet Xy and 0x is a total Boolean function over Ix.
The elements of Iy are called instances of the problem X. Each decision
problem X has associated a language Lx over the alphabet Xx as follows:
Lx ={u € Yx* | 0x(u) = 1}. Conversely, every language L over an alphabet
X has associated a decision problem X = (Ix,,0x,) as follows: Ix, = X* and
Ox, (u) =1 if and only if u € L. Therefore, given a decision problem X we have
X1, = X, and given a language L over an alphabet X' we have Ly, = L. Then,
solving a decision problem can be expressed equivalently as the task of recognizing
the language associated with it.

2.4 Recognizer membrane systems

Recognizer membrane systems were introduced in [7] and they provide a natural
framework to solve decision problems. This kind of systems are characterized by
the following features: (a) the working alphabet I" has two distinguished objects
yes and no; (b) there exists an input membrane and an input alphabet X' strictly
contained in I'; (c) the initial contents of the membranes are multisets over I"\ X;
(d) all computations halt; and (e) for each computation, either object yes or object
no (but not both) must have been released into the environment, and only at the
last step of the computation.

Given a recognizer membrane system, I, for each multiset m over the input
alphabet X' we denote by IT +m the membrane system II with input multiset m,
that is in the initial configuration of that system, the multiset m is added to the
initial content of the input membrane. Thus, in a recognizer membrane system,
IT, there exists an initial configuration associated with each multiset m € M;(X).

3 Minimal cooperation and minimal production in
communication rules

Definition 1. A polarizationless P system with active membranes, with simple
object evolution rules, without dissolution, with division rules for elementary and
non-elementary membranes, and which makes use of minimal cooperation and
minimal production in send-in_communication rules, is a tuple

I = (F727H7M7M17"'7Mq7R7iinaiout)

where:

e [ is a finite alphabet whose elements are called objects and contains two dis-
tinguished objects yes and no.
o X C I is the input alphabet.
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H is a finite alphabet such that H NI = () whose elements are called labels.
q > 1 is the degree of the system.
w is a labelled rooted tree (called membrane structure) consisting of q nodes
injectively labelled by elements of H (the root of p is labelled by r,).
M, ..., My are multisets over I' \ X.
R is a finite set of rules, of the following forms:
(ao) [a — bln, where h € H, a,b € I', uw € M;(I") (simple object evolution
rules).
(bo) ab| ]n — [c]n, where h € H\ {r,}, a,b,c € I' (send-in communication
rules with minimal cooperation and minimal production).

(co) [a]n = b[ |n, where h € H, a,b € I' (send—out communication rules).
(do) [a]n — b, where h € H \ {iout,7u}, a,b € I' (dissolution rules).

(eo) [a]n = [D]n [¢]n, where h € H \ {iout,Tp}, a,b,c € I' and h is the label of
an elementary membrane p (division rules for elementary membranes).

(fO) [th[ ]hz ]ho — [[ ]hl ]hn H]hQ ]hm where h07h17h2 € H and hg 7& Tu (diVi'

sion rules for non-elementary membranes).
o iin € H, gy € HU{env} (if iour € H then iou: is the label of a leaf of u).

In a similar way is defined the concept of “polarizationless P system with active
membranes, with simple object evolution rules, without dissolution, with division
rules for elementary and non-elementary membranes, and which makes use of
minimal cooperation and minimal production in send-out communication rules ”.
The only difference concerns rules of type (by) and (o). In this case are, respec-
tively:

(by) al |n = [b]n for he H\ {r,}, a,b e I' (send—in communication rules).
(cp) [ablp = c[ ]pfor h € H, a,b,c € I' (send-out communication rules with
minimal cooperation and minimal production).

The semantics of this kind of P systems follows the usual principles of P systems
with active membranes [6].

We denote by DAMO (+e,, mempiy,, —d, +n) (respectively,
DAMC (+e,, mempous, —d, +n)) the class of all recognizer polarizationless P
system with active membranes, with simple object evolution rules, without
dissolution, with division rules for elementary and non-elementary membranes,
which make use of minimal cooperation and minimal production in send-in
(respectively, send-out) communication rules.

4 Solving SAT in DAM° (+e,, memp;,, —d, +n)

In this section, a polynomial-time solution to SAT problem, is explicitly given in
the framework of recognizer polarizationless P systems with active membranes
with simple object evolution rules, without dissolution and with division rules for
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elementary and non-elementary membranes which make use of minimal coopera-
tion and minimal production in send-in communication rules. For that, a family
I1 = {II(t) | t € N} of recognizer P systems from DAMO(+e,, mempiy,, —d, +n)
will be presented.

4.1 Description of a solution to SAT problem in
DAMO(+63, TMCMPin, _d? +n)

For each n,p € N, we consider the recognizer P system
H(<n5p>) = (F7 ZaHauaMlivM%R; iin;iout)
from DAMC (+e,, mempiy, —d, +n), defined as follows:

(1) Working alphabet:
I'=XYU{yes,no,#} U{air |1 <i<nAl<k<2i—1}U
{ap |0<k<dnp+2n+2p+ 1} U{Br |0 <k <dnp+2n+2p+2}U
{7 10 <k <4dnp+2n}U
{ejll<j<pfU{grll<j<pAO<k<np—1}U
{di 11 <5 <p} U{mijnTije i, [1Si<nALT<j<pA
I<k<2n+2np+n(j—1)+(G—-1)}
where the input alphabet is X = {xi,j,mfi,j,Oasz‘p |1<i<nAl<j<p}
(2)H ={0,1,2}
(3)Membrane structure: u=[[[ ]2 |1 Jo, that is, up = (V, E) where V = {0,1,2}
and
E={(0,1),(1,2)};
(4)Initial multisets:
My = {ao,ﬁo}, My = {’Y()}U{Tf7Ff | 1< < n}7 My = {am | 1< < n};
(5) The set of rules R consists of the following rules:

5.1Counters for synchronize the answer of the system.
[ — agy1 o, for 0 <k <dnp+2n+2p
[Be — Brrilo, for 0 <k <dnp+2n+2p+1
[ Y6 — Yet1 ]1, for 0 <k <dnp+2n—1
5.2Rules to generate 2™ membranes labelled by 1 and 2" membranes labelled
by 2 (these encoding all possible truth assignment of n variables of the
input formula).
[ai2i1]o — [tiil2 [ fii]e, for 1 <i<n

[ai)j—>ai,j+1 ]2, fOIQSiSn,lSjSQi—Q
([l el —[[]h [[]h
[tij — tij+1 )2

,for1<i<n,i<j<2n-1
[ fij — fijn 2} J
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5.3Rules to produce exactly p copies of each truth assignment encoded by
membranes labelled by 2.

[ti2jnle — tigjnt1 [ ]2

, for 1<i<n, 1<j<
[fi2jnl2 — fi2jnt1 []2} J=P

[ tsos — tio ] l<i< n,
©,2jn+k ,2jn+k+1 |1 } , for 1 S ] Sp,
[ fizjntk — fizjntk+1 11 l<k<n_1

ti2j+0n Fil J2 — [ti,jsine1 |2 } for 1<i<n,
fizj+vm Tl o — [ ficirtntr 12 1<j<p-1
[ ti(2j+D)ntk — bi(2j+1)ntk+1 ]2 } f 1<i<n,
Ji2j+0n+k — fi,2i+1)ntht1 ]2 1<j<p
ti,2np+n Fz[ ]2 — [#]2
fignpin Ti[ ]2 — [#]2
5.4Rules to prepare the input formula for check clauses:
1<i<n,
I1<j<p
0<k<2np+2n
+n(-1)+@E—-1)—1
5.5Rules implementing the first checking stage.

}, for1<i<n

[ Zijk — Tijkt1 J1
[fzjkﬂfz]k—kl] ,fOI‘
[ z_] k —Z ,]7k+1 ]

T; fz‘,j,2np+2n+n(j—1)+(i—1)[ Jla — [cj0l2
T; Ti.j2np+2n4n(j—1)+(i- yl e — [#

Ti x ,g 2np+2n+n(j—1)+(i— 1)[ ]2 — [#]2 f 1<i<n,
, for .

F; T j,2np+2n+n(j—1)+(i— 1[ }2_> [#]2 1 J p

Fi ZijonproninG-D+G-1)l l2 — [cjol2

Fix 1,],2np+2n+n(J71)+(z71)[ ]2 — [#]2
5.6Rules implementing the second checking stage.

[cjk — Cjpy]e, for 1<j<p, 0<k<np—2

[Cjnp—1l2 —> ;[ ]2, for 1<j<p

Yanpran C1] J2 —> [di ]2

[dj]g—) dJ[ ]2, fOI‘lSjSp

dj cjyr [ Jo— [djp1 ]z, for1<j<p-1
5.7Rules to provide the correct answer of the system.

[ dp ]1 — dp[ ]1

Qanptont2ptr dp[ ]1 — [yes |

QYnp+4+2n4+2p+1 B4np+2n+2p+2[ ]1 — [IlO ]1

[yes]1 — yes[ |1

[IlO ]1 — IlO[ ]1

[yes]o — vyes[ o

[no]o — mno[ Jo

(6)the input membrane is the membrane labelled by 1 (i;,, = 1) and the output

region is the environment (iy,; = env).
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5 A formal verification

Let ¢ = Cy A ... AN C, an instance of SAT problem consisting of p clauses
Cj =g V...V, 1 < j < p, where Var(p) = {z1,...,z,}, and [ €
{zi,—z;]1 <i<n},1<j<p 1<k<r;. Let us asume that the number of
variables, n, and the number of clauses, p, of ¢, are greater or equal to 2.

We consider the polynomial encoding (cod, s) from SAT in IT defined as follows:
For each ¢ € Igyr with n variables and p clauses, s(p) = (n,p) and

cod(p) = {wi jolri € Cj} U{Ti jol~wi € Cs} U{ay;lws & Cj,~xi & Cj}

For instance, the formula ¢ = (21 + 22 + T3)(T2 + 24) (T2 + 23 + T4) is encoded
as follows:
T1,1,0 2,1,0 T3,1,0 £1.1,0
cod(p) = | 2720 T2,2,0 T3 2,0 T4,20
71 30 T2,3,0 3,3,0 T4,3,0

That is, j-th row (1 < j < p) represents the j-th clause C; of ¢. We denote
(cod(go))? the code of the clauses Cj,...,Cp, that is, the expression containing
from j-th row to p-th row. For instance,

* — *
cod(ga)g _ fﬂ}k,z,o 22,2,0 L3220 f4,2>0
27,3,0 £2,3,0 £3,3,0 £4,3,0

We denote (cody(p))¥) the code cod(¢)¥ when the third index of the variables
equal 3. For instance: row to p-th row. For instance,

* a7 *
cods () = [ “1:23 T223 U323 T423
* —_ —
Z1,3,3 12,3,3 13,3,3 14,3,3

We denote (cod),())}) the code cod(p)? when the third index of the variables
equal 3. For instance: row to p-th row. For instance,

*/ —/ */ /
cod’( )p _ [T 123%223% 323423
3\P)2 = e = 2 =
1,3,3 £2,3,3 333 L433

We denote (cod*(¢))%) the code cod()? when the third index does not exist.
For instance: row to p-th row. For instance,

* = *
T 12 T22 T T4,2
COd*(gO)g — Lo 3,2 o
X71,3 2,3 3,3 T4,3

The Boolean formula ¢ will be processed by the system II(s(¢)) + cod(p).
Next, we informally describe how that system works.

The solution proposed follows a brute force algorithm in the framework of
recognizer P systems with active membranes, minimal cooperation in object evo-
lution rules and division rules only for elementary membranes, and it consists of
the following stages:
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e (eneration stage: using separation rules, beside other rules that make a
“simulation” of division rules, we get all truth assignments for the variables
{z1,...,z,} associated with ¢ are produced. Specifically, 2" membranes la-
belled by 2 and 2" labelled by 1 are generated. Each of the former ones en-
codes a truth assignment. This stage takes exactly 2n 4 2np steps, being n the
number of variables of ¢.

e First Checking stage: checking whether or not each clause of the input formula
 is satisfied by the truth assignments generated in the previous stage, encoded
by each membrane labelled by 2. This stage takes exactly np steps, being n the
number of the variables and p the number of clauses of .

e Second Checking stage: checking whether or not all clauses of the input formula
o are satisfied by some truth assignment encoded by a membrane labelled by
2. This stage takes exactly np + 2p steps, being n the number of variables and
p the number of clauses of .

o QOulput stage: the system sends to the environment the right answer according
to the results of the previous stage. This stage takes 4 steps if the answer is
yes and 5 steps if the answer is no.

5.1 Generation stage

Through this stage, all the different truth assignments for the variables associated
with the Boolean formula ¢ will be generated within membranes labelled by 1, by
the applications of rules from 5.2 and 5.3. In the first 2n steps, 2" membranes
labelled by 2 and 2" membranes labelled by 1, alternating between the division of
membranes labelled by 2 (in odd steps) and the division of membranes labelled by
1 (in even steps).

Proposition 1. Let C = (Cy,C1,...,Cq) be a computation of the system II(s(p))
with input multiset cod(yp).

(ao) For each 2k (0 < k <n —1) at configuration Ca, we have the following:
- Coi(0) = {aok, for}
- There are 2 membranes labelled by 1 such that each of them contains
*  the input multiset coday(p);
* an object vyor; and
* p copies of every T; and F;, 1 < i <mn.
- There are 2 membranes labelled by 2 such that each of them contains
* objects a; ok4+1, K+ 1 <1< n; and
* a different subset {r1;,...,7%;}, k+1<j <2k, being r € {t, f}.
(a1) For each 2k +1 (0 < j <n—1) at configuration Cor+1 we have the following:
- Cop41(0) = {a2k+1, Bak+1}
- There are 2 membranes labelled by 1 such that each of them contains
* the input multiset codagy1(p);
* an object yar4+1; and
* p copies of every T; and F;, 1 <i < n.
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- There are 2"t membranes labelled by 2 such that each of them contains
* objects a; ap41), k+1<1i<n;and
* a different subset {71 j,...,k11,}, k+1 < j <2k+1, beingr € {t, f}.
(b) C2,(0) = {@an, Ban}, and in Cayy, there are 2™ membranes labelled by 1, such
that each of them contains the input multiset coda, (@), p copies of every T;
and F; (1 <i < n) and an object vya,,; and 2" membranes labelled by 2, such
that each of them contains a different subset of objects 7 on+1—i, 1 <1< n

Proof. (a) is going to be demonstrated by induction on k

- The base case k = 0 is trivial because:
(ap) at the initial configuration Cy we have: Co(0) = {ao, So} and there exists
a single membrane labelled by 1 containing the input multiset cod(y), an
object v and p copies of T; and F;, being 1 < ¢ < n; and a single membrane
labelled by 2 containing the objects a1,1,...,an,1. Then, configuration Cy
yields configuration C; by applying the rules:

[ar1 ]2 = [t 2 [ fi1le
ailﬁazz]g,fork+1<z<n
C¥0—>Ck1]

Bo — B Jo

T5.5,0 — Tj.5,1 ]1
acuo—)xw, i pfor1<i<n,1<j<p
Li,5,0 -z i,5,1 ]1
(a1) at C; we have C1(0) = {aq, f1} and there exists a single membrane labelled
by 1 containing the input multiset cod;(p), an object v, and p copies of
T; and F;, being 1 < i < n; and two membranes labelled by 2 containing
the objects az2,...,a,,2 and one with the object ¢; 1 and the other one
with the object fi 1. Then, the configuration C; yields configuration Cy by
applying the rules:
ti1 —ti2 ]2
f1 1= fi2 ]2
[ 2l l2h=[[ Lh[[ lh
a12—>a13]2,f0r2<z<n

[
[
[
[
[Oll—>042]
[
[
[
[

[
[
[
[Y0—7
[
[
[ =}

B1— B2 Jo

=72 h

T4,5,1 — Xy 0,2 ]1

x”,l—mcwg]l for1<i<n,1<j;<p

[ Ty 7,1 - l‘ %,7,2 ]1

Thus, C3(0) = {as, B2}, and there exist two membranes labelled by 1 con-
taining the input multiset cods(¢), an object 2 and p copies of T; and F;,
being 1 <7 < n; and two membranes labelled by 2 containing the objects
a2.3,...,0y,,3 and one with the object ¢1 » and the other one with the object
f1,2. Hence, the result holds for k = 1.
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- Supposing, by induction, result is true for k (0 < k <n —1)
- Cax(0) = {vak, Bor
- In Cyy there are 2 membranes labelled by 1 such that each of them contains
* the input multiset codak();
* an object vyox; and
* p copies of T; and F;, 1 <i < n.
- In Cyy there are 2 membranes labelled by 2 such that each of them contains
* objects a; ok4+1, K+ 1 <14 <n;and
* a different subset {ry ;,...,rx;}, k+1<j <2k, being r € {¢t, f}.
Then, configuration Csy, yields configuration Cox41 by applying the rules:
[ak2kt+1 )2 = [tk J2 [ frr |2
[ Gigkt1 = Giokyo |2, fork+1<i<n
[tig = tijen o }f0r1<i<k—l k+1<j<2k
[ fij = fijr1 e - ’ =7=
[ aor — azrs1 Jo
[ Bor — Bak+1 Jo
[ Y2k = Y2k+1 1
[ Ti,j,2k 7 Ti,5,2k+1 I
[Tij1 = Tijoksr )1 plorl<i<n,1<j<p
[ R R TR J1
Therefore, the following holds
- Cokt1(0) = {aok+1, Bok+1}
- In Coiyq1 there are 2% membranes labelled by 1 such that each of them
contains
* the input multiset codagt1();
* an object vyory1; and
* pcopies of T; and F;, 1 <i < mn.
- In Coiyq there are 2k+1 membranes labelled by 2 such that each of them
contains
* objects a;2(k41), kK +1 <7 <n;and
* a different subset {ry ;,..., 76415} k+1<j <2k+1, being r € {¢, f}.
Then, configuration Cay 1 yields configuration Cy(x4.1) by applying the rules:
Hiitfﬁl]i} for1<i<h+1k+1<j<2%+1
[[ ol =0 l2h [[ ]2k
[ @i2(kt1) = Gi2(k+1)41 2, fork+1<i<n
[ ori1 — Q2(k+1) lo
[ Bort+1 = Bagr+1) o
[ Yort1 = Vak+1) 11
[ Tij,2k+1 — Li j,2k+2 I
[ Tijokt1 = Tijort2 1 pfor1<i<mn,1<j<p
[ 2] joks1 = TFjoks2 11
Therefore, the following holds
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- Coky1)(0) = {agrs1)s Bogrrny }
- In Cyy1) there are 2k+1 membranes labelled by 1 such that each of them
contains
*  the input multiset coda(r11)();
* an object ya(x41); and
* p copies of T; and F;, 1 <i < n.
- In Cyy1) there are 2k+1 membranes labelled by 2 such that each of them
contains
* objects a; o(k+1)4+1, k+1 <4 <n;and
*  a different subset {ri ;,..., 741}, k+1<j<2(k+1)+1
Hence, the result holds for &k + 1.
- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration Cs,_1 holds:
- Con—1(0) = {a2n—1, Pon—1}
- In Cop_1 there are 27~! membranes labelled by 1 such that each of them
contains
* the input multiset coda,—1p(p);
* an object y2,_1; and
* p copies of T; and F;, 1 <i < n.
- In Cy,_1 there are 2™ membranes labelled by 2 such that each of them
contains a different subset of objects r; 9,,—;, 1 <7 <.
Then, configuration Ca,_1 yields Ca,, by applying the rules:
[ tion—i = tiont1—i |2 for 1 <i<n
[ fion—i = fiont1-1 ]2
[ 2l o= [0 LI [[ ]k
[ a2n—1 — a2n Jo
[ Ban—1 — Ban o
[ Y2n—1 = 72n 11
[ Tij2n—1 —7 Tijon ]1
[Tijon—1 = Tijon 1 plor1<i<n 1<j<p
[ T7 jon—1 > T jon I
Then, we have C3,(0) = {aan, Ban}, and there exist 2™ membranes labelled
by 1 containing the input multiset codsy,(¢), an object va,, and p copies of
T; and F;, being 1 < ¢ < n; and 2" membranes labelled by 2 containing a
different multiset of objects r; 2,,41—4, being 1 <47 < n.

O
When the tree structure is created, we start assigning a truth assignment to each

branch. It is executed in the next 2np steps. The last n steps are different from
the previous ones, so they deserve another proposition of the following one.

Proposition 2. Let C = (Cy,C1,...,Cq) be a computation of the system II(s(p))
with input multiset cod(yp).
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(ag) For each k (1 <k <m)andl (0 <1 <p—1) at configuration Coptointir we
have the following:

- C2n+2ln+k(0) - {a2n+2ln+ka B2n+2ln+k}
- There are 2™ membranes labelled by 1 such that each of them contains

*
*
*

*

the input multiset codantain+1(@);

an object Yon2in+k;

p copies of every T; and F;, 1 < i < n if the truth assignment associated
to the branch contains its corresponding t; or f; object, and p —1 copies
otherwise; and

objects ri ont2intk—it1, 1 < i <k, being r € {t, f}.

- There are 2™ membranes labelled by 2 such that each of them contains a
different subset of objects r; onyoin+k—it1, k+1 < i <n, being r € {t, f}.
(a1) For each k (1 <k <mn)andl (0 <1 <p-—2) at configuration Czptointr we
have the following:
- Cang2in+k(0) = {@snr2imtk; B3ntainik}
- There are 2 membranes labelled by 1 such that each of them contains

*
*
*

*

the input multiset codsyoin+k(@);

an object Yan+2in+k;

p copies of every T; and F;, 1 < i < n if the truth assignment associated
to the branch contains its corresponding t; or f; object; otherwise, there
are p— 1 objects if k+1<i<mn, p—1—1 otherwise; and

objects Ti snt2in+k—it1, kK +1<i<mn, being r € {t, f}.

- There are 2™ membranes labelled by 2 such that each of them contains a
different subset of objects 1; sptaintk—i+1, 1 < i <k, being r € {t, f}.

(0) Crgonp(0) = {ant2np, Bntanp}, and in Cpiony there are 2™ membranes labelled
by 1, such that each of them contains the input multiset codptony(®), an ob-
ject Ynionp, p copies of every T; and F;, 1 < i < n if the truth assignment
associated to the branch contains its corresponding t; or f; object, and 1 object
otherwise and objects r; nyonp—it1, 1 < @ < n, being v € {t, f}, that is, the
truth assignment associated with the branch; and 2™ empty membranes labelled

by 2.

Proof. (a) is going to be demonstrated by induction on [

- The base case I = 0 is going to be demonstrated by induction on k
(ap) The base case k =1 is trivial because:

at configuration Ca, we have: C3,(0) = {2y, f2,n} and there exist 2"
membranes labelled by 1 containing the input multiset cods,(¢), an
object v2,, and p copies of T; and F;, being 1 < i < n; and 2" membranes
labelled by 2 containing a different subset of objects r; 25, —i+1, 1 < ¢ < n,
being r € {t, f}, the corresponding truth assignment of the branch.
Then, configuration Ca,, yields configuration Ca,11 by applying the rules:

[tian ]2 = tign+1] ]2

[ fion ]2 — fi,2n+1[ ]2
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t; i — i .
,2n+1—1 ,2n+2—1 ]2 fOI' 9 S i S n
fiont1—i = fiont2—1 J2

[
[
[ a2n = a2n11 Jo
[ B2n = Bont1 Jo
[Y2n = Y2nt1 1
[ Tij.2n = Lij2n+1 h
[Tijon = Tijont1 1 plfor1 <i<n,1<j<p

[ T jon X7 jont1 J1
Thus, Cont1(0) = {@2n+1,P2n+1}, and there exist 2" membranes la-
belled by 1 containing the input multiset cods,+1(¢), an object yapn+1,
p copies of T; and Fj, being 1 < ¢ < n and an object 71 2p41, being
r € {t, f}; and 2™ membranes labelled by 2 containing a different subset
of objects 7 2n—it2, 2 < i < n, being r € {t, f}.

- Supposing, by induction, result is true for k (1 < k < n)

Contx(0) = {a2nik; Bonii}
In Coy 4 there are 2™ membranes labelled by 1 such that each of them
contains
* the input multiset coday, 1 (¢);
* an object Yyon+k;
* p copies of every T; and F;, 1 <i < n; and
*  objects 1 onyk—it1, 1 <@ <k, being r € {t, f}.
In Coy 4k there are 2™ membranes labelled by 2 such that each of them
contains a different subset of objects 7; opyx—it1, £+ 1 < i < n, being
re{t f}.
Then, configuration Ca, 41 yields configuration Coy, 441 by applying the
rules:
[tht1,2n )2 = teg12nt1] 2
[ frt12n 2 = feri2n41[ 2
[ tionth—it1 — tionth—it2 )2 fork+2<i<n
[ fignth—it1 = fignth—it2 |2
[ tiogntk—it1 = tigntk—it2 11 } for1<i<k
[ fignth—it1 = fignth—it2 11
[ Qonik = Q2nykt1 o
[ Bantk — Bantkr1 Jo
[ Yontk = Yontk+1 1
[ Tijon+k —7 Lij2n+k+1 I
[ Tijontk = Tijontktr J1 pfor 1 <i<n,1<j<p
[ 27 jontk = Tijontki1 11
Therefore, the following holds
Contk11(0) = {2nskt1, Bonyht1}
In Coy 441 there are 2 membranes labelled by 1 such that each of them
contains
* the input multiset codantk+1(9);
* an object Yontk+1;
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* p copies of T; and F;, 1 < i <mn; and

*  objects r; ontk—it2, 1 <i < k+1, being r € {¢, f}.

In Coy 1 k41 there are 2 membranes labelled by 2 such that each of them
contains a different subset of objects 7; opyx—it2, E+ 2 < i < n, being

re{t f}.

(a1) The base case k =1 is trivial because:

at configuration Cs,, we have Cs,(0) = {asn, B3} and there exist 2"
membranes labelled by 1 containing the input multiset cods,(¢), an
object 73y, p copies of T; and F;, being 1 < i < n and a different subset of
objects r; 3n41-i, 1 <1 <mn, being r € {t, f}, that is, the corresponding
truth assignment of the branch; and 2" empty membranes labelled by
2. Then, configuration Cs, yields configuration Cs,+1 by applying the
rules:

tiagn F1[ ]2 = [ti3ne1 ]2

Jfian Tl J2 = [ fine |2

[ tign—i+1 = tign—it2 1 } for2<i<n
[ fidn—it1 = fisn—it2 1
[ @3n — a3nt1 Jo
[ Ban = Ban+1 o
[ Y3n = Y3n+1 11
[ Tij.3n = Ti,j,3n+1 ]1
[Tijan = Tijant1 1 pfor1<i<n,1<j<p

[ T} g~ Tiant1 i
Thus, C3,+1(0) = {@3n+1,03n+1}, and there exist 2" membranes la-
belled by 1 containing the input multiset cods,+1(¢), an object y3p+1,
p copies of T; and F;, being 2 < i < n, and p — 1 copies of T (resp.
F1) if we have its corresponding f; (resp. t1) object in that branch, p
copies otherwise, and a different subset of objects r; 3,—it2, 2 <7 < n,
being r € {t, f}; and 2™ membranes labelled by 2 containing an object
T1,3n+1, being r € {t, f}.

- Supposing, by induction, result is true for k (1 < k <n)

C3n+k(0) = {a3n1k: Ban+i}

In C3p 4% there are 2™ membranes labelled by 1 such that each of them

contains

*  the input multiset cods, 1 (¢);

* an object vsn4k;

* p copies of every T; and F;, if k + 1 < i < n or their corresponding
t; or f; is assigned to that branch, p — 1 copies otherwise; and

*  objects r; sn4k—it1, K+ 1 <i<mn, being r € {¢t, f}.

In C3p 4% there are 2" membranes labelled by 2 such that each of them

contains a different subset of objects 7; 3p+k—i+1, 1 < ¢ < K, being

re {t, f}.

Then, configuration Cs,, 4 yields configuration Cs,, 441 by applying the

rules:
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thr13nFk] ]2 = [ tht1,3n+1 |2
Jrer13nTel J2 = [ fra13n41 2
[tz3n+k: z+l_>tz3n+k z+2] }fOIk+2<Z<’I’L
[ .fz 3nt+k—itl —7 fz 3n+k—i+2 ]1
[ i,3n+k—i+1 - tz 3n+k—i+2 ]2 for 1 < i < k
[ fisntk—it1 = fisntk—it2 |2
[ A3tk = @3niky1 Jo
[ Ban+k = Bantk+1 o
[ V3n+k = V3ntkt1 11
[ x’L,j 3n+k — xl,j 3n+k+1 ]
[ xz,J,?m-&-k — xz,373n+k+1 ] for1<i<n,1<35<p
[ z,j,3n+k - ':l:’L,j,S’I’LJrkJrl ]
Therefore, the following holds
- C3nyk41(0) = {3ntkt1, B3nths1}
- In Csp4k41 there are 2" membranes labelled by 1 such that each of them
contains
% the input multiset codsntk+1(¢);
* an object Y3n4k+1;
* p copies of every T; and F;, if £+ 2 < ¢ < n or the corresponding t;
or f; is assigned to that branch, p — 1 copies otherwise; and
* objects r; sntk—it2, k+2 <i<mn, being r € {t, f}.
- In Cs;4 k41 there are 2 membranes labelled by 2 such that each of them
contains a different subset of objects 7; 34 k—it+2, 1 <% < k + 1, being
re{t f}.
- Supposing, by induction, result is true for I (0 <1 <p—1)
(ag) The base case k = 1 is trivial because:
- at configuration Copq(41)n’ we have: Cont41)n(0) = {@2nt@41)n
Bon+@+1)n} and there exist 2" membranes labelled by 1 containing the
input multiset coday, 1 (141)n (@), an object Yoy, 4141y, and p copies of T;
and F;, being 1 <4 < n, and p—I copies for T; (resp. F;) objects that are
in a branch with an object f; (resp. t;); and 2" membranes labelled by 2
containing a different subset of objects r; 2n 4 (141)n—i+1, 1 < @ < n, be-
ing r € {t, f}, the corresponding truth assignment of the branch. Then,
configuration Coy, 4 (141)n yields configuration Copi(141)n+1 by applying
the rules:
[ ,2n+(I+1)n ]2 — tz 2n+(l+1)n+1[ ]2
[ fiznt+1)n J2 = fionsrarnmerl |2
[ ,2n+(l+1)n+1—1 — tz 2n+(l+1)n+2—1 ] for 2 < i < n
[ fz 2n+(l14+1)n+1—1 — fz 2n+(l4+1)n+2—1: ]2

! Note that (I + 1)n = In + n, and it has been demonstrated in the first step of the
induction that it is correct.
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[ Q2n (141)n 7 Q2n+(I+1)n+1 |0 lo
[ Bont+1)n = Bant+)nt1 Jo
[ V2n+(I+1)n 7 V2n+(+1)n+1 J1
[ I’L,j 2n+(l4+1)n — xz,] 2n+(14+1)n+1 ]
[ ,],2n+ (I+1)n — X ,j,2n+(l+1)n+1 ]1 for 1 S v S n, 1 S ,] S P
[ CL’ 4,J,2n+(l+1)n - LE i,7,2n+(l14+1)n+1 1
Thus, Cont11)n+1(0) = {@2nta+1)n+1s Bont+1)nt1}, and there
exist 2" membranes labelled by 1 containing the input multiset
coday 1 (141)n+1(p), an object Yo, 4 (141)n+1, P copies of T; (vesp. F;) be-
ing 1 < i < n if the corresponding ¢; (resp. f;) object exists in that
branch, and p — I copies of F; (resp. T;) and an object 71 24 (141)n+1,
being r € {t, f}; and 2" membranes labelled by 2 containing a different
subset of objects ; 25,4 (14-1)n—i+2, 2 < @ < n, being r € {t, f}.
- Supposing, by induction, result is true for k (1 < k <n)
- Cont+1)n+k(0) = {2t (14 1)n+k> Bont (14 1)n+k |
- In Copy(41)n+k there are 2" membranes labelled by 1 such that each of
them contains
x  the input multiset coda, 4 (141)n+1(9);
x an object Yon i (14 1)ntk;
* p copies of T; (resp. F;) being 1 < i < n if the corresponding t;
(resp. f;) object exists in that branch, and p — [ copies of F; (resp.
T;); and
*  objects 7 opt (14 1)ntk—it1, L < @ <k, being r € {t, f}.
- In Copy(41)nsr there are 2" membranes labelled by 2 such that each of
them contains a different subset of objects 7; 24 (141)ynyr—it1, K+ 1 <
i <n, being r € {¢t, f}.
Then, configuration Cay, 4 yields configuration Copy(141)n+r+1 by ap-
plying the rules:
[ tht1.2n+(+D)n |2 = Lot 2n+0+1)nt1[ ]2
[ frt1 2n+(14+1)n Jo = frt1 2n+(l+1)n+1[ J2
[ ©,2n+(I+1)n+k—i+1 — tl 2n+k—i+2 ] } for k +2 S i S n
[ .fz 2n4(I+1)n+k—i+1 —7 fz 2n+k—i+2 |2
[ i2n+(I+1)n+k—i+1 —7 t; 2n+(I4+1)n+k—i+2 ] } for1<i<k
[ fi 2n+(+Dn+k—i+1 = Jignt(+1)ntk—it2 11
[ Qont(1+1)n+k = Q2nt(+1)n+k+1 Jo
[ Bant+1)ntk = Bont+1)ntht1 lo
[ Y2n+(I+1)n+k 7 V2n+(+1)n+k+1 I
[ x’b,j 2n+(l4+1)n+k — xz,j 2n+(l4+1)n+k+1 ]1
[ xz,j 2n+(I+1)n+k — x’b,j 2n+(I4+1)n+k+1 ]1 for 1 < 7 < n, 1 < ] < p
[ %7 ontrtyntk = Tij2nt (4 1)ntht1 11
Therefore, the following holds
- Cont (14 1)n+k+1(0) = {@2np (14 1)ntk+15 Bont (14 1ntkt1)
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- In Cong(i41)n+r+1 there are 2" membranes labelled by 1 such that each
of them contains
% the input multiset coday,y(14+1)n+k+1(9);

* an object Yony (14 1)ntkt1;

* p copies of T; (resp. F;) being 1 < ¢ < n if the corresponding ¢;
(resp. f;) object exists in that branch, and p — I copies of F; (resp.
T;); and

% objects 1 ont(141)ntk—it2, 1 <4 < k41, being r € {t, f}.

- In Cong(i41)n+k+1 there are 2" membranes labelled by 2 such that each
of them contains a different subset of objects r; 2 (14-1)n+r—it2, k+2 <
i <n, being r € {t, f}.

(a1) The base case k = 1 is trivial because:

- at configuration Csnq41)n We have Cspy41)n(0) = {@ntsi)n
B3n+@+1)n} and there exist 2" membranes labelled by 1 containing the
input multiset codsy, 4 (14+1)n (¢), an object Y3y, 4 (141)n, P copies of T; (resp.
F;) being 1 < i < n if the corresponding ¢; (resp. f;) object exists in that
branch, and p —1 copies of F; (resp. T;) and a different subset of objects
i 3n+(41)n—it1, 1 <4 < n, being r € {t, f}, that is, the corresponding
truth assignment of the branch; and 2" empty membranes labelled by
2. Then, configuration Cs,,y(141), yields configuration Cs,y(141)n+1 by
applying the rules:

t gnt(+0)m F1l J2 = [t 304 1)nt1 )2

Jransasn Tl 2 = [ fisntentr ]2

[ tisnt(+D)n—i+1 = Lignr+1)n—i+2 11 for 2 <i<n

[ fisnt(+1yn—i+1 = fignt(+D)n—i+2 1

[ Q3n+(I1+1)n 7 X3n+(I+1)n+1 J0 Jo

[ B3n+(l+1)n — /83TL+(1+1)71+1 ]O

[ V3n+(4+1)n = Vant(+1)n+1 11

[ :Ez,] 3n+(l+1)n — xz,] 3n+(I+1)n+1 ]

[ xz] 3n+(l+1)n — ng 3n+(+1)n+1 ]1 for 1 < 1 < n, 1 < ] < P
[ z,j,3n+(l+1)n z,j,3n+(l+1)n+1 1

Thus, C3n+(l+1)n+1(0) = {a3n+(l+l)n+17B3n+(l+1)n+1}7 and there

exist 2" membranes labelled by 1 containing the input multiset
cod3 4 (1+1)n+1(¢), an object Yz, 4 (141)n+1, P copies of T; (resp. F;) be-
ing 1 < ¢ < n if the corresponding ¢; (resp. f;) object exists in that
branch, and p — [ copies of F; (resp. T;) if k+1 <i<n,p—-1-1

otherwise, and a different subset of objects r; 34 (141)n—it2, 2 <7 < m,

being r € {t, f}; and 2" membranes labelled by 2 containing an object

T1,3n+(1+1)n+1, being 7 € {t, f}.

- Supposing, by induction, result is true for k (1 < k <n)

- Conr (14 1)n+k(0) = {304 1+ 1)n+k> B3nt-(14+1)ntk }

- In Cspnq(41)nsr there are 2" membranes labelled by 1 such that each of
them contains
% the input multiset cods, i (111)n+k(¥);
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*x an object V3n 1 (14 1)ntk;

* p copies of T; (resp. F;) being 1 < i < n if the corresponding t;
(resp. f;) object exists in that branch, and p — [ copies of F; (resp.
T;)if k+1<i<mn,p-—1—1 otherwise; and

*  objects r; sn4k—it1, k+1 <i<mn, being r € {¢, f}.

In C3y,4 (141)n+k there are 2™ membranes labelled by 2 such that each of

them contains a different subset of objects 7; 34 (141)n—it1, 1 <@ <K,

being r € {t, f}.

Then, configuration Cs, (14 1)n+# yields configuration Csp, 4 (14-1)n+k+1 By

applying the rules:
ter1,3n+0+0)n Fel ]2 = [ tir13ne0a1nt1 J2
Jett,3nta+0n Tl o = [ fot1,3n+a+0)n41 J2
[ ti3n4-(+Dnth—it1 = Li3nt(+1)nth—it2 |1 fork+2<i<n
[ fisnt(+1)ntk—it1 = [isnt(+1)nth—it2 11
[ 6,304+ 1nth—itl = tidnt(+Dntk—it2 |2 for1<i<k
[ fz B3n+(14+1)n+k—i+1 — fz B3n+(1+1)n+k—i+2 ]2
[ a3n+(l+1)n+k — Q3n4(1+1)n+k+1 J0
[ B3 3n+(I+1)n+k —7 53n+(l+1)n+k+1 lo
[ V3n+(I+1)n+k 7 V3n+(I+1)n+k+1 I
[ xl,j 3n+(l+1)n+k — xl,j 3n+(l+1)n+k+1 ]

[ x’b,] 3n+(+1)n+k — x’b,] 3n+(l+1)n+k+1 ]1 for 1 < ) < ’I’L,l < ] < p
[ z,j,3n+(l+1)n+k - z,j,3n+(l+1)n+k+1 1

Therefore, the following holds

Cant-(1+1)n+k+1(0) = {03n4 (14 1) ntk+15 B3nt(1+1)n+k+1}

In C34 (141)n4k+1 there are 2™ membranes labelled by 1 such that each

of them contains

% the input multiset cods;,y(1+1)n+r+1(9);

* an object Y3, (14 1)ntkt1;

* p copies of T; (resp. F;) being 1 < i < n if the corresponding ¢;
(resp. f;) object exists in that branch, and p — [ copies of F; (resp.
T))if k+2<i<mn,p—1—1 otherwise; and

% objects 1 3n1 (141 ntk—it2, K+ 2 < i < n, being r € {t, f}.

In C34 (141)n4k+1 there are 2™ membranes labelled by 2 such that each

of them contains a different subset of objects 7; 3,4 (141 n+k—it2, 1 <

i <k-+1, being r € {¢t, f}.

- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration C,,12n,—12 holds:

Cn+2np—1(0) = {Oén+2np—17 ﬁn+2np—1}

In Cp42np—1 there are 2" membranes labelled by 1 such that each of them
contains

* the input multiset cody,+onp—1(p);

* an object Tn+2np—1;

2 Note that n+2np —1=2n+2n(p — 1) + (n — 1)
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* p copies of T; (resp. F;) being 1 < i < n if the corresponding ¢; (resp.

fi) object exists in that branch, and 1 copy otherwise; and
* objects 1y pionp—i, 1 <i<n—1

- In Chyonp—1 there are 2" membranes labelled by 2 such that each of them

contains an object ry, 2y, being r € {t, f}.
Then, configuration C,anp—1 yields Cp42np by applying the rules:

[ tn,an ]2 — tn,2np+1[ ]2

[ fn,2np ]2 — fn,2np+1[ ]2

[ ti,n+2np—i — ti,n+2np—i+l ]1 } forl<i<n-—1

[ fi,n+2np7i — fi,n+2np7i ]1

[ an+2np71 — an+2np ]O

[ 6n+2np71 — Bn+2np ]0

[ '7n+2np—1 — ’Yn+2np ]1

[ Ti,jn+2np—1 — Li,jn+2np ]1

[ Tijntanp—1 = Tijmtanp 1 pfor1 <i<n,1<j<p

[ x;(,j,n+2np71 - xz,j,n+2np h
Then, we have Cpy2np(0) = {@nt2np, Bntanpt, and there exist 2" mem-
branes labelled by 1 containing the input multiset cod,+2n,(p), an object
Ynt2nps P copies of T; (resp. F;) being 1 < ¢ < n if the corresponding t;
(resp. f;) object exists in that branch, and 1 copy otherwise and a different
multiset of objects r; nyonp—it1, 1 < @ < n, being r € {t, f}, that is, the
truth assignment associated with the branch; and 2™ empty membranes
labelled by 2.

d

Proposition 3. Let C = (Cy,C1,...,Cq) be a computation of the system II(s(p))
with input multiset cod(p).

(a) For each k (1 <k <n—1) at configuration Cpionp+r we have the following:
- Coyonp+#(0) = {0t 2np ks Bntonpri}

- There are 2 membranes labelled by 1 such that each of them contains

*  the input multiset cody+onp+k(¥);

* an object Ynyonptk;

* p copies of T; (resp. F;) being 1 < i < n if the corresponding t; (resp. f;)
object exists in that branch, and 1 copy of F; (resp. T;) if k+1 <i <mn;
and

*  objects i pronprk—it1, k+1<i<mn, beingr e {t, f}.

- there are 2" membranes labelled by 2 such that each of them contains k
objects #

(0) Cant2np(0) = {2n+t2np; Bontanp}, and in Copionp there are 2™ membranes
labelled by 1, such that each of them contains the input multiset codant2np(¥),
an object Yoptonp, P copies of every T; and F;, 1 <1 < n if the truth assignment
associated to the branch contains its corresponding t; or f; object; and 2"
membranes labelled by 2, such that each of them contains n objects #.
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Proof. (a) is going to be demonstrated by induction on k

- the base case kK = 1 is trivial because:

at Cpyonp We have Cyyonp(0) = {@nt2np, Bntonp} and there exist 2" mem-
branes labelled by 1 containing the input multiset cod,+an,(p), an object
Ynt2np P copies of T; (resp. F;) being 1 < ¢ < n if the corresponding t;
(resp. f;) object exists in that branch, and 1 copy otherwise and a different
multiset of objects i nyonp—it1, 1 < ¢ < n, being r € {t, f}, that is, the
truth assignment associated with the branch; and 2™ empty membranes
labelled by 2. Then, configuration C,, 12y, yields Cpyonp+1 by applying the
rules.

tintonp Fil o = [# ]2

fl,n+2np Tl[ ]2 - [ # ]2

[ tintonp—it1 = bintanp—it2 1 } for2<i<n

[ fint2np—it1 = fintonp—it2 1

[ Qn4-2np — On42np+1 ]O

[ Brtonp = Bntanpr1 o

[ Ynt2np = Ynt2np+1 1

[ T4, j,n+2np — Li,j,n+2np+1 ]1

[ Tijntonp = Tijntonpt1 1 plor1 <i<n,1<j<p

[ x;j,n+2np - m;ﬁ,j,n+2np+1 ]1
Thus, Cpionp+1(0) = {ant2npt1, Bntonpri}), and there exist 2" mem-
branes labelled by 1 containing the input multiset cody,2np+1(p), an object
Yn+2np+1, D copies of T; (resp. F;) being 1 < ¢ < n if their corresponding
t; (resp. f;) object exists in that branch, and 1 copy of F; (resp. T;) if
k+2 <i < n and objects 1; ptonp—ite, k+2 <i <mn, being r € {t, f}; and
2™ membranes labelled by 2 containing an object #.

- Supposing, by induction, result is true for k (1 <k <n—1)

Crtonpt+k(0) = {ny2np i, Botonprk}

In Cp42np+k there are 2" membranes labelled by 1 such that each of them

contains

* the input multiset cody+2np+x(9);

% an object Yni2nprk;

* p copies of T; (resp. F;) being 1 < i < n if their corresponding t;
(resp. f;) object exists in that branch, and 1 copy of F; (resp. T;) if
k+1<i<n;and

*  objects r; nyonp+k—it1, k+1 < i <n, being r € {t, f}.

In Cp42np+k there are 2" membranes labelled by 2 such that each of them

contains k objects #.

Then, configuration C,,42pp+ yields configuration Cy,42nptx+1 by applying

the rules:
totintonp Fi[ Jo = [ # |2
Tettniznp Th[ ]2 = [ # ]2
[ tint2nptrk—i+t1 = tintonpth—it2 |1 } for2<i<n
[ fi,n+2np+k7i+1 — fi,n+2np+k7i+2 1
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[ an+2np+k — an+2np+k:+1 ]O

[ 6n+2np+k — Bn+2np+k+1 ]0

[ Yn+2np+k — Yn+2np+k+1 ]1

[ Ti jn+2np+k —7 Lijn+2np+k+1 ]1

[ T'L,j n+2np+k — E’L,j n+2np+k+1 ] for 1 S 1 S n, 1 S ] S p
[ i,7,n+2np+k - ,],n+2np+k+1 ]1

Therefore, the following holds

Crt2np+k+1(0) = {@nt2nptk+1, Bntonpth+1}

In Cpt2nptk+1 there are 2 membranes labelled by 1 such that each of them

contains

* the input multiset cody+2npt+k+1(9);

* an object Ynionpt+kt1;

* p copies of T; (resp. F;) being 1 < i < n if their corresponding t;
(resp. f;) object exists in that branch, and 1 copy of F; (resp. T;) if
k42 <1t <mn;and

*  objects r; nyonprk—ite, k+2 <i<n, being r € {¢, f}.

In Cp,y2np+k+1 there are 2" membranes labelled by 2 such that each of them

contains k + 1 objects #.

- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration C2n+2np,13 holds:

62n+2np71(0) = {a2n+2np717ﬂ2n+2np71}
In Copq2np—1 there are 2" membranes labelled by 1 such that each of them
contains
% the input multiset codaont2anp—1(¢);
* an object Yan42np-1;
* p copies of T; (resp. F;) being 1 < ¢ < n if the corresponding t; (resp.
fi) object exists in that branch, and 1 copy of F}, (resp. T3,); and
* an object 7y, pionp, being r € {t, f}.
In Copqonp—1 there are 2" membranes labelled by 2 such that each of them
contains n — 1 objects #.
Then, configuration Cap12np—1 yields configuration Coy42np by applying the
rules:
tnntonp Fi[ Jo = [# ]2
fn,n+2np Tl[ ]2 — [ # ]2
[ Q2p+2np—1 —7 O2n+2np ]0
[ 52n+2np—1 — ﬂ2n+2np ]0
[ 72n+2np71 — ’72n+2np ]1
[ T j2n+2np—1 —7 Ti j 2n+2np ]1
[ @i jont2np—1 = Tijontonp 1 pfor1 <i<mn,1<j<p
[ J";:j,2n+2np—l - xr,j,2n+2np 1
Therefore, the following holds
62n+2np(0) = {a2n+2np7 B2n+2np}

3 Note that 2n+2np —1=n+2np+ (n — 1)
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- In Cyp42np there are 2" membranes labelled by 1 such that each of them
contains
* the input multiset codan42np(¢);
* an object yap4onp; and
* p copies of T; (resp. F;) being 1 < i < n if their corresponding t; (resp.

/i) object exists in that branch.

- In Cypq2np there are 2" membranes labelled by 2 such that each of them

contains n objects #.

O

5.2 First checking stage

At this stage, we try to determine the clauses satisfied for the truth assignment
encoded by each branch. For that, rules from 5.5 will be applied in such manner
that in the m-th step, being m = In+k (1 <k <n,0 <1 <p-—1), clause Cj; will
be evaluated with the k-th variable of the formula. This stage will take exactly np
steps.

Proposition 4. Let C = (Cy,C1,...,Cq) be a computation of the system II(s(p))
with input multiset cod(p).

(a) For each k (1 <k <mn)andl (0 <1 <p—1) at configuration Copt2np+intk
we have the following:
- C2n+2np+ln+k(0) = {a2n+2np+ln+k7ﬂ2n+2np+ln+k}
- There are 2™ membranes labelled by 1 such that each of them contains
* the (n — k)-th last elements of cod2n+2np+ln+k(90)§ﬂf
% the input multiset codant2anptin+k (ga)ﬁrz;
* an object Yontonptintk; and
* p—1 copies of objects T; or F;, k+1 <i<n, p—I1—1 copies otherwise,
corresponding to the truth assignment assigned to the branch.
- There are 2™ membranes labelled by 2 such that each of them contains
* m objects cjp (1 <j<I1+1,0<t<In+k—1) thatis, clauses that
have been satisfied by any variable; and
* n+In+k—m objects #.

(0) Cant3np(0) = {2n+3np; Bont3npts and in Conysnp there are 2™ membranes
labelled by 1, such that each of them contains an object Yanianp; and 2" mem-
branes labelled by 2 such that each of them contains m objects c;; (1 < j <p,
0 <t <np—1), that is, the clauses satisfied by any variable and n + np —m
objects #.

Proof. (a) is going to be demonstrated by induction on [

- The base case [ = 0 is goig to be demonstrated by induction on &
- The base case k = 1 is trivial because:
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at configuration Cay42np we have: Copt2np(0) = {@2n+2np, Bontonp } and
there exist 2” membranes labelled by 1, such that each of them con-
tains the input multiset codant2np(¢), an object Yyo2n12np and p copies
of objects T; and F;, 1 < i < n, representing the correspondent truth
assignment to the branch; and 2 membranes labelled by 2 such that
each of them contains n objects #. Then, configuration Cay42pp yields
configuration Cop42np+1 by applying the rules:

T1 11 2n42np |2 — [c1,0]2

Ty T112n42np) |2 — [#]2

Ty xil,2n+2np[ ]2 — [ } 4

Fy 211 0nvonpl ]2 — [#]2

Fi T11.2n42np] ]2 — [c10]2
Fy IT,1,2n+2np[ ] [#]2
[ Q2n+42np —7 Q2n+42np+1 lo
[ 52n+2np - 62n+2np+1 ]O
[ '72n+2np — 72n+2np+1 ]1
[ Li,5,2n+2np — Li,j,2n+2np+1 ]1
[ @i jontonp = Tijontonpt1 1 pfor1 <i<mn,1<j<p
[ T7 i ontonp 7 i ont2npt1 I

Thus, C2n+2np+1(0) = {a2n+2np+1,ﬂ2n+2np+1}, and there exist 2" mem-
branes labelled by 1 containing the last n — 1 elements of COd2n+2np+1(90)%,
the input multiset codayt2np+1(¢)5, p copies of T; or F;, being 2 < i < n,
and p — 1 copies of T} or Fi; and 2" membranes labelled by 2 containing n
objects # and an object ¢ if the corresponding truth assignment makes
true clause 1 with variable 1, another object # otherwise.

Supposing, by induction, result is true for k (1 < k < n)

CZn+2np+k (0) = {a2n+2np+k7 ﬂ2n+2np+k}

In Coptonpti there are 2™ membranes labelled by 1 such that each of

them contains

the (n — k)-th last elements of codaytonp+k(¢)1;

*  the input multiset codaytonp+k(9)5;

* an object Yan42nptk; and

* p copies of objects T; or F;, k+1<i<mn,p—1 copies if 1 <i <k,
corresponding to the truth assignment assigned to the branch.

In Copntonptr there are 2" membranes labelled by 2 such that each of

them contains

* m objects c1; (0 < t < k — 1), that is, the number of variables
with the corresponding truth assignment that makes true the input
formula ¢; and

* n+k —m objects #.

Then, configuration Cap42np+k yields configuration Copyonptr+1 by ap-

plying the rules:

*

YIfk=1,1=0,theni=1,j=1,s0 2np+2n+n(j—1)+ (i — 1) = 2n + 2np
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Th Try1,12n+r2nprkl ]2 — [c1,0]2
Ty Trgr12n+2np+kl J2 — [#2

Ty, xz+1,1,2n+2np+k[ la— [#2 5
Fi Tig11.2n42np+k 2 — [#2
Fi Tht11.2n+2np+k] |2 — [c1,0]2
F, $Z+1,1,2n+2np+k[ lo — [#2

[ Q2n4-2np+k — Q2n4-2np+k+1 ]O
[ B2n+2np+k — 62n+2np+k+1 ]0
[ Yon42np+k —7 V2n+2np+k+1 ]1
[ Tijon+2np+k —7 Lij2n+2np+k+1 I
[ Tijontonprk — Tij2ntonpth+1 1 pfor 1 <i<n,1<j<p
[z} — x¥
i,§,2n+2np+k i,3,2n+2np+k+1 11
[Cl,t — C1,t+1 ]QfOI‘O <t< k—1

Therefore, the following holds

C2n+2np+k+1 = {a2n,+2np+k+la 182n+2np+k+1}

In Conyonpri+1 there are 2" membranes labelled by 1 such that each of

them contains

x  the (n — k + 1)-th last elements of codantanp+k+1(¢)1;

*  the input multiset codatanp+k+1(p)h,

* an object Yantonp+k+1; and

*  p copies of objects T; or F;, k+2 < i < n,p—1copiesif 1 <i < k+1,
corresponding to the truth assignment assigned to the branch.

In Coptonpti+1 there are 2" membranes labelled by 2 such that each of

them contains

* mobjects c1 4 (0 <t < k), that is, the number of variables with the
corresponding truth assignment that makes true the clause Cy; and

* n+k+1—m objects #.

- Supposing, by induction, result is true for { (0 <1 <p—1)
- The base case k = 1 is trivial because:

at configuration Caponp+(1+1)n We have: Congonpt(i4+1)n(0) =
{02nt2np+(+1)n> B2nt2np+(1+1)n } and there exist 2" membranes labelled
by 1 containing the input multiset codayonp++1)n ()] 41, an object
Yon+2np+(1+1)n and p — [ copies of objects T; or Fy, 1 < i < n; and 2"
membranes labelled by 2 containing m objects ¢;; (1 < j <I1,0<t<
In — 1), that is, the number of variables with the corresponding truth
assignment that makes true the clauses from C; to C; and n+ (I+1)n—
m objects #. Then, configuration Copq2pnpt(+1)n yields configuration
Cont2np+(+1)n+1 by applying the rules:

SIfl=0,theni=k+1,j=1,502np+2n+n(j—1)+ (i —1)=2n+2np+k
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T z11 2n+2np+(1+1)n [
T T1,1 2n+2np+(1+1)n
T m1 1,2n+2np+(+1)n [
F1 211 ont2npt(i4+1)n|
Fi T4 1 ong2npt(i+1)nl
Fy x1 1,2n+2np+( l+1)n[
O‘2n+2np+(l+1)n — Q2n42np+(I+1)n+1 |0 Jo

2n+2np+(I+1)n 7 52n+2np+(z+1)n+1 lo

Y2n+2np+(I+1)n 7 V2n+2np+(I+1)n+1 i
i,7,2n4+2np+(I+1)n 7 Ti j2n+2np+(I+1)n+1 I 1<
i 2n4 2np (D)0 ™ T 2nt anp (L 1)nt1 Jo pfor | 2
i\j,2n42np+(+1)n xzj72n+2np+(l+1)n+1 1 o
Cit = Cjpq1 Jofor 1 <j<l+1,0<t<In-1

T;
x;

[
[5
[
[
[
K
[
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Thusa C2n+2np+(l+1)n+1(0) = {a27n+2np+(l+1)n+1> ﬂ2n+2np+(l+1)n+1}a and
there exist 2" membranes labelled by 1 containing the last n — 1 elements
of cod2n+2np+(l+1)n+1(@)éﬁ, the input multiset coday 2np+(1+1)n+1(9)7 425
p—I1 copies of T; or F;, being 2 < ¢ < n, and p—I—1 copies of T} or F}; and 2"
membranes labelled by 2 containing m objects ¢;; (1 < j <In, 0 <t <lIn),
that is, the number of variables with the corresponding truth assignment
that makes true the clauses from C; to C;11 and n+ (I +1)n+1—m objects

#.

Supposing, by induction, result is true for k& (1 < k < n)

C2n+2np+(l+1)n+k(o) = {a2n+2np+(l+1)n+ka ﬁ2n+2np+(l+1)n+k}

- In Contonpt(+1)ntk there are 2" membranes labelled by 1 such that
each of them contains

*

*
*
*

the (n — k)-th last elements of COdon 4 2np+(I+1)n+k (@)iﬁ,
the input multiset cod2n+2np+(l+1)n+k(‘P)f+27
an object Von yonpt(i+1)ntk; and

p — | copies of objects T; or F;, k+1 < i < n, p—1—1 copies if
1 < i < k, corresponding to the truth assignment assigned to the

branch.

- In Conqonpr(i+1)ntk there are 2" membranes labelled by 2 such that

each of them contains
m objects ¢;; (1 < j <I1+1,0 <t <In+k—1), that is, the
number of variables with the corresponding truth assignment that

*

*

makes true clauses from C; to Ci41; and
n+ (I +1)n+k+1—m objects #.

Then, configuration Cay,42np+(141)n+k yields configuration
Cont2np+(i+1)n+k+1 by applying the rules:
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Ty 11 2n42np+(+D)n+kl 2 — [Ci1,0]2
Tk fl 1,2n+2np+(1+1) n+k[ ]2 — [#]2
Ty a1 4 2n+2np+(l+1)n+k[ Jo — [#]2
Fr 211 2n42np+(+1)ntkl |2 — [#]2
Fi T1 1 2n42npt+- (4 )ntkl ]2 = [cir1,02

Fy w7, 2n+2np+(l+1)n+k[ Jo — [#]2
a2n+2np+(l+1)n+k — a2n+2np+(l+1)n+k+1 ]
Bant2np+(+1)n+k — Bent2np+(+1)ntk+1 )0
Y2n+2np+(I+1)n+k 7 Von+2np+(I4+1)n+k+1 1

[ Ty i,7,2n+2np+(l+1)n+k — xz,] 2n+2np+(14+1)n+k+1 ] i<n
[ x; ,j 2n+2np+(14+1)n+k — xz,] 2n+2np+(I+1)n+k+1 ]1 for 1 <_,] <_p
[ 4,5,2n+2np+(l+1)n+k - 7_],2n-|—2np-i—(l-i-l)n-&—k:-‘,—l 1 -

[t = a1 Jafor 1 <j<i+1,0<t<In+k—-1

Therefore, the following holds

CQn+2np+(l+1)n+k+1(0) = {a2n+2np+(l+1)n+k+1a 62n+2np+(l+1)n+k+1}

- In Conqonpr(+1)ntk+1 there are 2™ membranes labelled by 1 such that
each of them contains

*

*
*
*

the (n — (k + 1))-th last elements of cod2n+2np+(z+1)n+k+1(90);11v
the input multiset coday2npt(141)n+k+1(2)] 1

an object Yan 4 2np+ (14+1)n+k+13

p — | copies of objects T; or F;, k4+2 < i <n, p—1—1 copies if
1 < i < k+1, corresponding to the truth assignment assigned to
the branch.

- In Congonpy(+1)ntks1 there are 2" membranes labelled by 2 such that
each of them contains

*

*

m objects ¢;; (1 <j <{+1,0<t<lIn+k), that is, the number of
variables with the corresponding truth assignment that makes true
clauses from C; to C;41; and

n+ (I+1)n+k+1—m objects #.

- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration Copny3np—1 6 holds:
- 62n+3np71(0) = {a2n+3np717 ﬂ2n+3np71}
- In Cpy3np—1 there are 2" membranes labelled by 1 such that each of them
contains

% the last element of codan43np—1(9)%;

p?

* an object Yan43np—1; and
* an object T}, or F,, corresponding to the truth assignment assigned to
the branch.

- In Copy3np—1 there are 2" membranes labelled by 2 such that each of them
contains

S Note that 2n +3np—1=2n+3n(p—1)+ (n — 1)
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* mobjects ¢ (1 < j<p,0<t<np—2),thatis, the number of variables
with the corresponding truth assignment that makes true clauses from
C1 to Cp; and

* n+np—1—m objects #.

Then, configuration Copy3np—1 yields Copy3np by applying the rules:

Jo — [epo2

[#]2

B

Tn xn,p,2n+3np—1[
T En,p,2n+3np—1[ ]
T l’ n,p,2n+3np— 1[ ] [
F, Tn,p,2n+3np— 1[ } [ ]
F fn,p,QnJr?)npfl[ ]2 — [CJD, }
F T, n,p,2n+3np— 1[ ]2 — [#]2
[ Qon42np+(I+1)n+k 7 C2n42np+(I1+1)n+k+1 |0 lo
[ B2n+2np+ (I+1)n+k — /82n+2np+(l+1)n+k:+1 ]
[ Yon+2np+(4+1Dn+k 7 V2n+2np+(I+1)n+k+1 I
[ 7_],271-1—27117—1—(l-i-l)n-‘,—k — X ©,J,2n+2np+(1+1)n+k+1 ]1
[ mz,] 2n+2np+(I+1)n+k — x’L,j 2n+2np+(I+1)n+k+1 ]1 for
[ 4,7,2n+2np+(l+1)n+k - x ©,J,2n+2np+(1+1)n+k+1 ]1
[Cjt = Cjupr Jofor 1 <j<i+1,0<t<np—2
Therefore, the following holds
- C2n+3np(0) = {042n+3npa 52n+3np}
- In Cyp43np there are 2" membranes labelled by 1 such that each of them
contains an object y2p43np-
- In Cyp43np there are 2" membranes labelled by 2 such that each of them
contains
* m objects ¢;; (1 <j<p,0<t<np—1), that is, the number of
variables with the corresponding truth assignment that makes true
clauses from C; to Cp; and
* 1+ np—m objects #.

5.3 Second checking stage

At this stage, started at configuration Copn43np, We try to determine the truth
assignments that make true the input formula ¢, using rules from 5.6. We are
going to divide this stage in two phases. The first one will be devoted to send out
all the objects c;, for 1 < j < p in order to get them ready for the next phase.
Let k =In+4+1i (0 <1 <p-1,1 <i < n), sowe can refer to each clause

p

({4 1) when we are doing the verification. Let m = ) m, being m; the number
j=1

of objects c; in each membrane 2 at step Can3np. In this stage, we cannot be

sure of how many objects ¢;11, are present at each membrane when ¢ # 0 7. soif

" That is because objects c;,x do not have to be created consecutively.
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we cannot be sure of that, we are going to say that there are m; (remember that
m; is always less than or equal to m;) objects within membrane 2. We will ignore
objects # since they have no effect from here.

Proposition 5. Let C = (Cy,C1,...,Cq) be a computation of the system II(s(p))
with input multiset cod(y).

(a) For each k (1 <k <np—1) at configuration Cont3np+r we have the following:
- CQnJrSanrk (0) = {a2n+3np+k7 ﬁ2n+3np+k}
- There are 2 membranes labelled by 1 such that each of them contains
* an object Yop+3np+k; and
* my objects ¢; for 1 < j <1 and my41 — my41 objects i1
- There are 2™ membranes labelled by 2 such that each of them contains myy1
objects cir1 (p—1)n+ 1<t <mp—1) and m; objects ¢;; (1+2<j <
pln+i<t<np-—1)
(D) Cantanp(0) = {aan+anp, Bontanp}, there are 2™ membranes labelled by 1, such
that each of them contains m objects ¢; (1 < j < p) and an object ~yop+anp;
and 2™ empty membranes labelled by 2.

Proof. (a) is going to be demonstrated by induction on k

- The base case kK = 1 is trivial because: At configuration Ca,43,, we have:
Con+3np(0) = {02n43np, Bantanp} and there exist 2" membranes labelled by 1
containing an object y2y,43np; and 2" membranes labelled by 2 containing m
objects ¢j; (1 < j < k,0 < ¢ < np—1). Then, configuration Coy43np yields
configuration Can43np+1 by applying the rules:

[ Q20 +3np — A2n+3np+1 ]0
[ Ban+3np = Bont3np+1 Jo
[ Y2n+3np 7 V2n+3np+1 ]1
[Cj,t —>Cj,t+1]27 for 1 S] Spv 0§k§np—2
[c1mp-1]e —> a1 ]2
Thus, Cont3np+1(0) = {02n+3np+1, B2nt3npt1}, and there exist 2" membranes
labelled by 1 containing an object Yopyanp+1 and my — my objects ¢ 8. and
2" membranes labelled by 2 containing m, objects ¢; and m; objects ¢; (2 <
j < p). Hence, the result holds for k£ = 1.
- Supposing, by induction, result is true for k£ (1 <k <np—1)
- 62n+3np+k(0) = {a2n+3np+k752n+3np+k}
- In Copy3np+k there are 2" membranes labelled by 1 such that each of them
contains
* an object Yan43np+k; and
* my; objects ¢; for 1 < j <[ and my41 — my41 objects ¢j41.

8 That is, if the truth assignment of variable 1 made true clause 1, then an object c1.9
were created at (2n + 2np + 1)-th step, and it is going to be sent to the corresponding
membrane 1. So, m1 — m1 can be 0 or 1 in this step.
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- In Copy3nptk there are 2" membranes labelled by 2 such that each of them
contains my4+1 objects ¢11, ((p—1)n+1 <t < np—1) and m; objects ¢;,
(+2<j<pin+i<t<np-—1).

Then, configuration Coy,y3np+k yields configuration Copy3nptr by applying
the rules:

[ Q2n+4-3np+k — Q2n4-3np+k+1 ]0

[ 62n+3np+k: — ﬂ2n+3np+k:+l ]O

[ Yon+3np+k —7 V2n+3np+k+1 ]1

[Cj,t —)Cj,t+1]2, fOI‘l—l—lSjSp,OSkSnp—Q

[Cl+1,np—1]2 — ] o
Therefore, the following holds

- CQn+3np+k+1(0) = {a2n+3np+k+1a ﬂ2n+3np+k+1}

- In Cony3nptk+1 there are 2" membranes labelled by 1 such that each of
them contains
* an object Yan43np+k+1; and
* my; objects ¢; for 1 < j <[ and my41 — My41 objects ¢j41.

- In Conq3nptr+1 there are 2" membranes labelled by 2 such that each of
them contains m;41 objects 11441 (p—1n+1 <t < np—1) and m;
objects ¢j 141 (I+2<j<plln+i<t<np-—1).

Hence, the result holds for k& + 1.
- In order to prove (b) it is enough to notice that, on the one hand, from (a)
configuration Cayyanp—1 holds:
CQn+4np71(0) = {a2n+4np717 52n+4np71}

- In Cypyanp—1 there are 2" membranes labelled by 1 such that each of them
contains
* an object Yontanp—1; and
* my; objects ¢; for 1 < j <p—1and m, —m, 9 objects Cp.

- In Conyanp—1 there are 2" membranes labelled by 2 such that each of them
contains m,, objects ¢p pnp.

Then, configuration Cay44np—1 yields configuration Coyp44np by applying the
rules:

[ aQn+4np—1 — O42n-‘,—4np ]0

[ Bontanp—1 = Bantanp Jo

[ '72n+4np71 — ’72n+4np ]1

[cpmplz — e[ 2
Then, we have Coptanp(0) = {Q2n+4np, Bontanp}, and there exist 2™ mem-
branes labelled by 1 containing an object Y2n44np and m objects c;
(1 < j < p); and there exist 2" empty membranes labelled by 2.

O

When objects ¢; are within the membranes labelled by 1, we can start to check
if all the clauses of the input formula ¢ are satisfied by any truth assignment. As
we use objects ¢; to denote that clause C'; has been satisfied by some variable, it

9 In this case, m, can only take two values: 0 or 1.
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can be possible that some c; are missing, that is, that for some j, 1 < j < p, ¢;
does not appear in any membrane labelled by 1 in Cop4anp. Let § be the index j 10
of that clause. It is going to take 2p steps.

Proposition 6. Let C = (Cy,C1,...,Cq) be a computation of the system II(s(p))
with input multiset cod(yp).

(ap) For each 2k +1 (0 < k < p—1) at configuration Contanpt2r+1 we have the
following:
- Conganpr2k+1(0) = {02ntanprokt1, Bontanprorsi}
- There are 2™ membranes labelled by 1 such that each of them contains
* an object Yonanp OT d;_l (respectively, an object dy,) if the correspond-
ing truth assignment does not make true (resp., makes true) the clause
Cy or Cj (2<j<p) (resp., the first k clauses); and

* mj; — 1 objects ¢; for 1 < j < mmG,k + 1) and m; objects ¢; for
min(j, k+2) < j < p.

- There are 2™ membranes labelled by 2 such that each of them contains an
object dx41 if and only if the truth assignment associated to the branch
makes true the first k + 1 clauses.

(a1) For each 2k (1 <k <p—1) at configuration Coptanpt2r we have the following:

- C2n+4np+2k(0) = {a2n+4np+2k:7 B2n+4np+2k}

- There are 2™ membranes labelled by 1 such that each of them contains
* an object Yantanp OT d}—1 if the corresponding truth assignment does

not make true the clause Cy or C} 2<j<p); and
* mj—1 objects c; forl < j < min(}, k) and m; objects c; for mm(}, k+
1) <j<p.

- There are 2" empty membranes labelled by 2.

(b) Contanp+2p(0) = {Q2ntanpt2p, Ben+anpt2p}, and in Coptanprop there are 27
membranes labelled by 1, such that each of them contains an object d, if and
only if the corresponding truth assignment makes true the input formula ¢
(d}_1 otherwise), mj — 1 objects ¢; for 1 < j < min(j,p+ 1) and m; objects
c; for min(},p +1) < j <p; and 2" empty membranes labelled by 2.

Proof. (a) is going to be demonstrated by induction on &

- The base case k = 1 is trivial because:
(ag) at configuration Coyyanp we have: Copianp(0) = {@2ntanp, Bontanp} and

there exist 2" membranes labelled by 1 containing an object y2p44np and
m objects ¢; (1 < j < p); and there exist 2" empty membranes labelled by
2. Then, configuration Cay,t4np yields configuration Coyqanp+1 by applying
the rules:

[ Q2p+dnp —7 X2n+4np+1 ]o

[ 52n+4np — 5271,+4np+1 }0

Vanp+2n al 2 — [dil2

19 If 7 is not defined, we are going to suposse that it is equal to p + 1.
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(a1) at Contanp+1(0) = {Q2n+dnp+1; Bontanpt1} and there exist 2" membranes

labelled by 1 containing an object 72p44np if and only if there were no
objects ¢; at configuration Coyqanp, m1 — 1 (respectively, m1) objects ¢
if there was any object c; in this membrane in the previous configuration
(resp., m1) and m; objects ¢; for 2 < j < p; and 2" membranes labelled by 2
containing an object dy if and only if there was at least one object ¢; within
membrane labelled by 1 at configuration Cap44np. Then, the configuration
Con+tanp+1 yields configuration Capnqanpt2 by applying the rules:

[ Q2n 4 4np+1 — Qontdanp+-2 }O

[ Bontanpt1 — Bantanpr2 Jo

[di]o— di ]| ]2

Thus, Contanpt+2(0) = {@2n+anp+2, Bontanp+2}, and there exist 2™ mem-
branes labelled by 1 containing an object dyi (respectively, Vaptanp) if
the corresponding truth assignment makes true (resp., doesn’t make true)
clause Cy, mq — 1 (resp., m1) objects ¢; and m; objects ¢; for 1 < j < p;
and there exist 2" empty membranes labelled by 2. Hence, the result holds
for k =1.

Supposing, by induction, result is true for £k (0 < k <p—1)

C2n+4np+2k (O) = {a2n+4np+2k:7 B2n+4np+2k}

In Coptanp+2k there are 2" membranes labelled by 1 such that each of them

contains

* an object Yan44np OF d;_l (respectively, an object dy) if the correspond-
ing truth assignment does not make true (resp., makes true) the clause
Cior Cj (2 <j <p) (resp., the first k clauses); and

% mj — 1 objects ¢; for 1 < j < min(j,k 4+ 1) and m; objects ¢; for
min(j,k+2) <j <p.

In Contanpt2i there are 2™ empty membranes labelled by 2.

Then, configuration Coptanpt2r yields configuration Copyanpior+1 by ap-

plying the rules:
[ Q2ntdnp+2k 7 O2n+tdnp+2k+1 ]0
[ Bon+anpt+2k = Bontanp+2k+1 10
di cer1l J2 — [dry1 2

Therefore, the following holds

Contanpt+2k+1(0) = {02nranpt2k+15 Bontanp+2k+1}

In Copntanptor+1 there are 2" membranes labelled by 1 such that each of

them contains

* an object oy 4anp OF d}q if the corresponding truth assignment does
not make true the clause Cq or C; (2 < j < p); and

* mj—1objects ¢j for 1 < j < min(j, k) and m; objects ¢; for min(j, k+
1)<j<p.

In Copntanptor+1 there are 2" membranes labelled by 2 such that each of

them contains an object di1 if and only if the corresponding truth assign-

ment makes true the first k£ + 1 clauses.
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Then, configuration Coptanpt2r+1 yields Contanpror+2 by applying the
rules:
[ Q2n+dnp+2k+1 —7 X2n44Anp+2k+2 lo
[ 52n+4np+2k+1 - 52n+4np+2k+2 lo
[dit1 ] — dryr [ ]2
Therefore, the following holds
C2n+4np+2k+2 (0) = {a2n+4np+2k+27 52n+4np+2k+2}
In Coptanprok+2 there are 2™ membranes labelled by 1 such that each of
them contains
* an object Yanqanp OF d}71 (respectively, an object djp41) if the corre-
sponding truth assignment does not make true (resp., makes true) the
clause Cy or C; (2 < j < p) (resp., the first k£ + 1 clauses); and
* mj — 1 objects ¢; for 1 < j < min(},k + 2) and m; objects ¢; for
min(j,k+3) <j <p.
In Coptanpr2k+t2 there are 2" empty membranes labelled by 2.
Hence, the result holds for k& + 1.

In order to prove (b) it is enough to notice that, on the one han, from (a)
configuration Coyanptap—1 holds:

62n+4np+2p71(0) = {a2n+4np+2p71; B2n+4np+2p71}
In Coptanptop—1 there are 2" membranes labelled by 1 such that each of
them contains
% an object Yaptanp OF d}—1 if the corresponding truth assignment does
not make true the clause Cq or C; (2 < j < p); and
* mj—1objects ¢j for1 < j < m"mG7 p) and m; objects c; for min(},p—l—
1)<j<p.
In Coptanptop—1 there are 2" membranes labelled by 2 such that each of
them contains an object d,, if and only if the corresponding truth assignment
makes true the input formula ¢.
Then, configuration Capyanpt2p—1 yields configuration Copqanpy2p by ap-
plying the rules:
[ a2n+4np+2p71 — CV2n+4np+2p ]O
[ 52n+4np+2p71 — ﬂ2n+4np+2p ]O
[ dp ]2 — dp [ ]2
Then, we have Coptanp+2p(0) = {@2n+anp+2p, B2ntanprop ), and there exist
2™ membranes labelled by 1 containing an object 7y2y44np Or d}71 (respec-
tively, an object dp) if the corresponding truth assignment does not make
true (resp., makes true) the clause Cy or C; (2 < j < p) (resp., the input
formula ¢), m; — 1 objects ¢; for 1 < j < min(},p + 1) and m; objects ¢;
for min(}, p+1) < j < p; and there exist 2" empty membranes labelled by
2.

d
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5.4 Output stage

The output phase starts at the (2n + 4np + 2p)-th step, and takes exactly four
steps when there is an affirmative answer and five steps when there is a negative
one. Rules from 5.7 are devoted to compute this stage.

Affirmative answer: In this case, at configuration Coptanpt2p, in some mem-
brane 1 there is an object d,. By applying the rule [ d, |1+ — d,[ |1 (at
the same time that | aonianptop — Q2ntanptop+1 Jo and [ Bontanprop —
Bantanp+2p+1 Jo are executed), an object dy, is produced in membrane 0. Then
by applying the rules aupprontoptr1 dp| |1 — [ yes ]1 and [ Bontanptap+1 —
Bantanp+2p+2 lo, an object yes is produced in some membrane labelled by 1
(only in one such membrane). At the next step, an object yes will appear at
membrane labelled by 0 of the configuration Cop4anpt2p+3 by the application
of the rule [ yes |1 — yes[ [i. Let us note that object B2y anpt2p42 cannot
interact with any object «. Finally, at computation step 2n + 4np + 2p + 4
an object yes is released to environment by the application of the rule
[ yes Jo — yes[ Jo and the computation halts.

Negative answer: In this case, at configuration Cap44anp+2p, there are no mem-
branes labelled by 1 that contains an object d,, so the only rules executed are
[ A2n+4np4-2p — Qont+dnp+2p+1 ]O and [ 62n+4np+2p — ﬂ2n+4np+2p+1 ]0- Rule
[ Bontanp+2p+1 = Bantanprap+2 Jo is executed in the next step. Thus, at con-
figuration Copqanpt2p+2 in membrane labelled by 0 we execute have a copy of
object oy tanpt2p+1 and a copy of object Bantanpt2p+2. By applying the rule
Qanpt2nt2pti Banprontopt2] |1 — [no]i, anobject no is produced in only
one membrane labelled by 1 (nondeterministically chosen). At the next step,
this object no will move into membrane labelled by 0 by the application of the
rule [ no ]y — mno[ ;. Finally, at configuration Caj1anp+op+s an object no
is released to the environment when rule [ no Jo — mno[ |o, and then the
computation halts.

5.5 Result

Theorem 1. SAT € PMCp An 0 (4e, mempin,—d,+n)-

Proof. The family IT of P systems previously constructed verifies the following:

(a) The family IT is polynomially uniform by Turing machines because for each

n,p € N, the rules of IT({n,p)) of the family are recursively defined from

n,p € N, and the amount of resources needed to build an element of the family

is of a polynomial order in n and p, as shown below:

— Size of the alphabet: 52 4 6n2p+3n2+2np?+ 332 4 8+ Tp+9 € O(n2p?
ze of the alphabet: =52 +6n°p+3n*+2np°+ =52 +8n+Tp+9 € O(n’p?).

— Initial number of membranes: 3 € O(1).

— Initial number of objects in membranes: 3np +n + 3 € O(np).

—  Number of rules: % +8n2p + 4n? + 41% +5n +5p+ 11 € O(n?p?).
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— Maximal number of objects involved in any rule: 3 € O(1).

(b) The family IT is polynomially bounded with regard to (SAT, cod, s): indeed for
each instance ¢ of the SAT problem, any computation of the system II(s(¢))
with input multiset cod(y) takes at most 2n + 4np + 2p + 5 computation steps.

(e) The family IT is sound with regard to (SAT, cod, s): indeed for each instance
 of the SAT problem, if the computation of II(s(¢)) + cod(p) is an accepting
computation, then ¢ is satisfiable.

(f) The family IT is complete with regard to (SAT, cod, s): indeed, for each instance
© of the SAT problem such that ¢ is satisfiable, any computation of II(s(y¢)) +
cod(¢y) is an accepting computation.

Therefore, the family IT of P systems previously constructed solves the SAT prob-
lem in polynomial time and in a uniform way.

Corollary 1. NP Uco — NP C PMCp g0

+es,mempin,—d,+n)*

Proof. It suffices to mnotice that SAT problem is a NP-complete prob-
lem, SAT € PMCpomo(te, mempin,—d+n)> and the complexity class
PMCpsgro (+e.,mempin,—d,4+n) 15 closed under polynomial-time reduction
and under complement.

6 Conclusions

From a computational complexity point of view and assuming that P # NP, dis-
solution rules play a crucial role in classical polarizationless P systems with active
membranes where there is no cooperation, no changing labels neither priorities. In
that framework, PSPACE-complete problems can be solved in polynomial time
when dissolution rules and division for elementary and non-elementary membranes
are permitted. However, dissolution rules and division rules for non-elementary
membranes can be replaced by minimal cooperation (the left-hand side of the
rules has at most two objects) and minimal production (the right-hand side of
the rules has at most two objects) in object evolution rules in order to obtain the
computational efficiency [11].

In this paper, the ingredient of minimal cooperation and minimal production in
object evolution rules is replaced by minimal cooperation and minimal production
in send-in communication rules but we have need to use division for non-elementary
membranes. The new systems considered are able to efficiently solve computational
hard problems even by considering simple object evolution rules, that is, these kind
of rules only produce one object. An analogous result can be obtained if minimal
cooperation and minimal production are considered only for send-out rules, instead
of send-in rules ([12]).

The case where only elementary division is allowed, while keeping the restric-
tion that minimal cooperation and minimal production are used in communication
rules of the same direction (only in or only out) remains as future work, as well
as the case where division rules are replaced by separation rules.
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What about the class SAMO(+e,, mempin, —d,+n)? That is, what hap-

pens if we revisit the framework studied in this paper but replacing division
rules by separation rules? We can adapt the reasoning used in the proof of
P = PMCsanmo (~d,—n) (see [10]), and we can prove that by using families
of recognizer membrane systems belonging to this class, only problems in class P
can be solved in polynomial time.
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