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A.M. Mármol∗, L. Monroy†, M.A. Caraballo‡, A. Zapata§

Abstract
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ple objectives and, therefore, their utilities cannot be represented by a single
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tional conservative criterion which can be applied in this framework in order

to predict the results of interaction.

The potential application of the theoretical results is shown with an anal-
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1 Introduction

The theory of games with vector payoffs is concerned with situations in which a

number of players must take into account several objectives, each of which depends

on the decision of all players. This type of game was introduced by Blackwell (1956).

Subsequently, Shapley (1959) presented the natural extensions of the concept of

Nash equilibrium, (Nash 1951), for two-person zero-sum finite games with vector

payoffs: strong equilibria and weak equilibria, which are the basic concepts in multi-

objective games. Among the authors who have studied the existence of equilibria

for this kind of game are Zeleny (1975), Corley (1985), and Borm et al. (1988). For

general n-person multi-objective games, the first results on the existence of equilibria

were established in Zhao (1991). Interesting work on the topic includes Voorneveld

et al. (1999), Bade (2005), and Patriche (2014).

The present paper is also devoted to the analysis of equilibria of n-person non-

cooperative games where the payoffs of the agents are multi-dimensional. We call

them games with vector-valued utilities. These games represent situations in which

the preferences of the agents on the results of the interactions are incomplete. In the

existing literature on models with incomplete preferences, the two classic references

are Aumann (1962) and Bewley (1986). More recently, this decisional framework

has been studied from various viewpoints. In particular, certain authors have es-

tablished a formal connection between incomplete preferences and multi-objective

decision-making under certainty and risk (Ok, 2002; Dubra et al., 2004; Sagi, 2006).

The fundamental difficulty is the impossibility of representing incomplete preferences

in terms of utility functions, and hence the application range remains limited. This is

the main cause of the scarcity of results in this line of research. However, as shown in

Ok (2002), under certain not particularly restrictive hypotheses, incomplete prefer-

ences can be represented by means of vector-valued utility functions. This approach

causes no loss of information and enables these situations to be studied from an

analytical standpoint by using the well-developed theory of vector optimization in

the operations research literature. The literature on incomplete preferences mainly

deals with issues of individual choice, and only a few papers address non-cooperative

models of interaction between agents with incomplete preferences. Some exceptions

of note are found in Shafer and Sonnenschein (1975), Bade (2005), and Park (2015).

As mentioned in Bade (2005), one argument for studying games with vector-

valued utilities is the possibility of addressing cases in which agents do have weighted

utilities over multiple criteria but the modeler, as an outside observer, remains
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unaware of agents’ weights. In these situations, the set of equilibria of the game

modeled as a vector-valued game will always include the equilibria of the actual

game.

An alternative interpretation of the equilibria in this model is that the agents are

uncertain about their own weights and they will only deviate when the deviation gain

is positive for every possible weight vector. Nevertheless, in either interpretation,

it is also possible that the agents’ weights are known to belong to certain subsets,

in which case the incorporation of this information into the model should lead to

predictions that are better adjusted.

In the present paper, we initially adopt the formal framework in Bade (2005)

to model n-person games with incomplete preferences that can be represented by

a vector of utility functions. In Bade’s paper, the equilibria for these games are

characterized in terms of the equilibria of weighted games under reasonable con-

cavity assumptions. Her results are then applied to identify the sets of equilibria

in several examples from oligopoly theory. However, the set of equilibria of games

with incomplete preferences may contain a large number of strategy profiles, some

of which may not represent realistic predictions. For this reason, the first goal of our

research is to present a procedure to obtain a number of refinements of the set of

equilibria based on partial preference information. Thus, we can study which kind of

predictions are derived from the information available without requiring additional

assumptions about the utility functions of the agents.

In order to deal with partial information, we need to rely on the weak exten-

sion of the standard concept of the Nash equilibrium (see Shapley, 1959; Wang,

1993; Voorneveld et al., 1999). The adoption of this extension is not, in general, a

drawback, since the sets of strong equilibria and weak equilibria often coincide. In

fact, under certain concavity assumptions, the two concepts of equilibrium coincide.

When they do not, the difference usually lies on boundary points.

A first interesting result is the characterization of equilibria in terms of the

reaction functions of the components of the utility. This result is relevant from an

operational point of view, and will recursively be applied throughout the paper for

the identification of equilibria.

We assume that the underlying incomplete preferences of the agents can be

represented by weighted additive value functions where weights may be interpreted

as the relative importance that the agents assign to the components of their vector

utility functions. The equilibria of the game are then identified with the equilibria of

the corresponding weighted games. In this framework, information about preferences
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is formalized by means of sets of weights which, in general, are different for each

agent. A central result is established which identifies the set of equilibria of the

game with partial preference information with the set of equilibria of a transformed

vector-valued game.

The inclusion of agents’ preferences into the model through admissible weights

provides the equilibria in accordance with these preferences. However, it is often

the case that the agents, even when they admit that a certain set of weights are

possible, might also exhibit a conservative attitude with respect to the results they

will eventually achieve. Empirical evidence that agents are more uncertainty-averse

than uncertainty-loving can be found, for instance, in Wakker (2001). More recently,

Kozhan and Salmon (2009) found significant evidence of uncertainty aversion in the

foreign exchange market.

Thus, we apply a worst-case analysis based on the well-known maxmin criterion

proposed by Wald (1950), and adapted to partial preference information (see also

Gilboa and Schmeidler, 1989). We propose a refinement based on a rule by which

the agents select their decisions by maximizing the worst evaluation from among

those provided by the feasible weights in their information sets.

A second goal of this paper is to show the potential of this analysis for the study

of non-cooperative economic models. The theoretical results herein developed have

been applied to a relevant type of decision-making process with interacting agents.

We have extended the analysis of standard oligopoly models from firms that only

consider the maximization of their own profits to a more realistic situation where

firms incorporate additional goals.

We have focused on mixed oligopoly models. Traditionally, these models are

those that consider private firms that are profit maximizers and public firms with

social goals. Since the seminal paper of Merrill and Schneider (1966) appeared,

there has been a growing literature concerning several aspects and implications of

mixed duopolies in the markets (see De Fraja and Del Bono, 1989, 1990) and the

references therein). Nevertheless, the literature on the topic usually excludes profit

maximization from the goals of the social firms.

Our approach is more flexible and permits the analysis of firms with social objec-

tives which do not completely abandon the pursuit of maximum profits that ensures

their permanence in the market. We specifically analyze the case of mixed duopoly

under various assumptions about the firms’ objectives and present the results and

interpretations regarding the sets of equilibria.

The following notation will be used. Let IR(IR+) denote the set of all (non-
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negative) real numbers and let IRk(IRk
+) be the k-fold Cartesian product of IR(IR+).

The origin of IRk is 0k and 1k is a k-dimensional vector with components equal to

one. We use conventional notation for the comparison of vectors: x = y means that

xi ≥ yi for all i = 1, . . . , k; x ≥ y indicates that x ≥ y and x 6= y; and x > y

indicates that xi > yi for all i = 1, . . . , k. By x · y we denote the scalar product of

vectors x, y ∈ IRk, that is, x · y =
∑k

i=1 xiyi.

The rest of the paper is organized as follows. In Section 2 the concepts of equilib-

ria and weak equilibria for n-person games with vector-valued utility functions are

stated and their relationship with the equilibria of weighted games is investigated.

In Section 3, we present refinements of the equilibria by incorporating information

about the preferences of the agents into the model. Section 4 is devoted to the

analysis of a mixed oligopoly in which the firms pursue additional goals to those of

maximizing profits. Section 5 is devoted to setting out the conclusions. Proofs are

contained in an Appendix.

2 Equilibria in games with vector-valued utilities

This section is devoted to the study of the set of equilibria of n-person games with

vector-valued utility functions.

A vector-valued normal-form game is represented by G = {(Ai, ui)i∈N}, where

N = {1, . . . , n} is the set of agents, Ai is the set of strategies that agent i ∈
N can adopt and the mapping ui : ×i∈NAi → IRsi is the vector-valued utility

function of agent i, ui := (ui1, . . . , u
i
si), where si is the number of components of

the utility function of agent i. We denote by J i = {1, ..., si} the set of indices

of such components. A profile of strategies, a = (a1, . . . , an), with ai ∈ Ai, for

a game G can be written as a = (ai, a−i), where ai is a strategy of agent i, and

a−i = (a1, . . . , ai−1, ai+1, . . . , an) stands for the strategy combination of all players

except player i.

The following definitions are extensions of the concept of Nash equilibrium for

these games with vector-valued utilities. They were introduced by Shapley (1959)

for finite two-person zero-sum games.

Definition 2.1. An action profile a∗ = (a∗1, . . . , a∗n) is a weak equilibrium for the

game with vector-valued utilities G = {(Ai, ui)i∈N} if /∃ i ∈ N with ai ∈ Ai such

that ui(ai, a∗−i) > ui(a∗).

The set of all weak equilibria of game G is denoted by Ew(G).
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A weak equilibrium does not necessarily yield the best overall result for all agents.

However, in a weak equilibrium, agents cannot improve all the components of their

utilities by deviating independently.

The other extension of the concept of Nash equilibrium is stronger than the first

extension:

Definition 2.2. An action profile a∗ = (a∗1, . . . , a∗n) is an equilibrium for the game

with vector-valued utilities G = {(Ai, ui)i∈N} if /∃ i ∈ N with ai ∈ Ai such that

ui(ai, a∗−i) ≥ ui(a∗i, a∗−i).

The set of all equilibria of game G is denoted by E(G).

Note that both Definition 2.1 and Definition 2.2 reduce to the standard definition

of Nash equilibrium when the utility function of each agent is a real-valued function.

The set of weak equilibria and the set of equilibria only slightly differ. Under

certain concavity conditions1, which often hold in applications, both sets coincide.

When these sets are different, the set of equilibria can exclude some of the boundary

points, which are included in the set of weak equilibria.

Let rij denote the correspondence of best response of agent i in relation to the

j-th utility component. Note that for each a−i ∈ A−i, rij(a
−i) ⊆ Ai. The best

response of an agent to the actions of all the others may not exist and when it

does, it is possibly not a singleton. However, under certain conditions on the set of

strategies and on the concavity of the utility functions, it is possible to identify the

set of equilibria of the game with multi-dimensional utilities in terms of the reaction

function of the components as shown in the following result.

Theorem 2.3. If Ai is a non-empty convex compact subset Ai ⊆ IR for all i ∈ N ,

and uij is continuous and strictly concave in its own action for each j ∈ J i, then the

set of equilibria of the game with vector-valued utilities G = {(Ai, ui)i∈N} is

E(G) = {(a1, . . . , an) ∈ ×i∈NAi : ri(a−i) ≤ ai ≤ r̄i(a−i), i ∈ N},

where ri(a−i) = minj∈Ji rij(a
−i), and r̄i(a−i) = maxj∈Ji rij(a

−i).

Under the hypothesis of strict concavity of the components of the utility, the

set of equilibria and the set of weak equilibria coincide. This hypothesis can be

relaxed to concavity, giving rise to a similar result which characterizes the set of

1For instance, a sufficient condition for the two sets to coincide is that the sets Ai are non-empty

convex subsets of a finite dimensional space, and the functions ui
j are strictly concave in ai.
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weak equilibria in terms of the minimum and of the maximum of the best responses,

by slightly modifying the definition of rij(a
−i) and rij(a

−i) when some of the best

responses are not a singleton.

2.1 Weighted games and equilibria

In a game with vector-valued utilities, the preferences of the agents on the profiles

of strategies are incomplete. The literature on vector-valued optimization problems

has focused on the case where the preferences of the agents are represented by

additive value functions since this type of function permits the representation of

preferences under not very restrictive assumptions (see Keeney and Raiffa, 1976).

In this paper, we also assume that the preferences of each agent can be represented

by a weighted additive value function. The weights represent trade-offs between the

various components of the utility, and can be interpreted as the relative importance

that this agent assigns to the components of his/her vector-utility function.

When complete information about the importance of the components is available,

then the preferences of each agent are represented by a value function determined

by a unique vector of weights, and the problem of equilibria identification in the

vector-valued game is reduced to the identification of equilibria in scalar games.

Formally, given a vector of preference weights for agent i, λi ∈ ∆si = {λi ∈ IRsi :∑si

j=1 λ
i
j = 1, λij ≥ 0}, the value of the action profile a ∈ ×ni=1A

i for agent i is given

by
∑si

j=1 λ
i
ju
i
j(a). Consider ∆ = ×ni=1∆si . For λ ∈ ∆, we define the normal-form

weighted game Gλ = {(Ai, viλ)i∈N} with

viλ(a) =
si∑
j=1

λiju
i
j(a).

The concept of equilibrium for the scalar game Gλ is the following.

Definition 2.4. For λ ∈ ∆, an action profile a∗ = (a∗1, . . . , a∗n) is a Nash equilib-

rium for the game Gλ if /∃ i ∈ N with ai ∈ Ai such that vλ(a
i, a∗−i) > vλ(a

∗).

E(Gλ) denotes the set of Nash equilibria for the weighted gameGλ = {(Ai, viλ)i∈N}.

Note that we can write viλ(a) = λi · ui(a). Definition 2.4 can alternatively be

written as: a∗ is a Nash equilibrium for the game Gλ if for each i ∈ N , λi · ui(a∗) ≥
λi · ui(ai, a∗−i), for all ai ∈ Ai.

In vector-valued games, if the agents consider all the possible values of weights,

then all the additive representations of preferences are taken into account. Bade
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(2005) establishes the relationship between the set of equilibria of the game and the

set of equilibria of the weighted games with positive weights and with non-negative

weights. She shows that if the utility functions of all players are concave in their

own actions, and all action spaces are convex, then

∪{E(Gλ) : λ ∈ ∆+} ⊆ E(G) ⊆ ∪{E(Gλ) : λ ∈ ∆}.

where ∆+ = {λ ∈ ∆ : λij > 0, i ∈ N, j ∈ J i}.
This result provides an upper and a lower bound on the set of all equilibria of

the vector-valued game. However, these two sets that bound the set of equilibria,

seldom differ. Indeed, if component-wise strict concavity is assumed, the three sets

coincide.

On the other hand, Wang (1993) states that the equilibria of weighted games with

non-negative weights are weak equilibria for the game with vector-valued utilities,

that is,

∪{E(Gλ) : λ ∈ ∆} ⊆ Ew(G).

This inclusion may be strict, that is, weak equilibria may exist that cannot be de-

termined by using additive value functions. However, under concavity assumptions,

the two sets coincide, as established in the following result.

Theorem 2.5. Let G = {(Ai, ui)i∈N} be a game with vector-valued utilities such

that each Ai is a non-empty convex subset of a finite dimensional space and for each

i, ui is concave in ai, then

∪{E(Gλ) : λ ∈ ∆} = Ew(G).

This result constitutes a generalization of that established by Shapley (1959) for

finite games with vector payoffs.

Moreover, when the components of ui are strictly concave functions, and the

strategy sets are convex, then the set of equilibria coincides with the set of weak

equilibria of all weighted games. This fact follows from our former result and from

Theorem 3 in Bade (2005).

3 Equilibria with preference information

The identification of all equilibria is not always useful in operational terms, given the

large number of equilibria that may exist. In addition, depending on the situation,
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not all equilibria are necessarily likely to be adopted by the agents. It is therefore

valuable to study the appropriate refinements of the notion of equilibrium when

additional considerations are incorporated.

An intermediate situation between the case of certainty about the preference

weights and complete uncertainty is when certain information on these parameters

is available. The information can be formalized by means of information sets, which

in general are different for each agent. We explore the effects of including these

information sets into the analysis with the aim of determining the equilibria which

are in accordance with the agents’ preference information.

Consider a subset of weights for each agent, Λi ⊆ ∆si , representing partial in-

formation on the preference weights of agent i. Denote by Λ = ×i∈NΛi the set

containing the preference information of all the agents.

Definition 3.1. Let G = {(Ai, ui)i∈N} be a game with vector-valued utilities. An

action profile a∗ = (a∗1, . . . , a∗n) is an equilibrium for the game with preference

information Λ ⊆ ∆si if, for each i ∈ N , λi ∈ Λi exists such that viλ(a
∗) ≥ viλ(a

i, a∗−i)

for all ai ∈ Ai.
The set of equilibria of the game with preference information Λ is denoted EΛ(G).

In other words, a∗ is an equilibrium for the game with preference information if

a∗ is an equilibrium of the weighted game for some λ ∈ Λ.

In the absence of information, the information sets are Λi = ∆si for all i ∈ N ,

and, under the assumptions of Theorem 2.5, the set of all weak equilibria is obtained.

It is easy to prove that if Λ′ ⊂ Λ, then EΛ′(G) ⊆ EΛ(G). As a consequence, the

refinement of the preference information yields a reduction of the set of equilibria.

The limit case is when preference information reduces to a vector of weights for

each agent. The preference relation is then complete and the equilibria correspond

to the standard Nash equilibria for the real-valued utilities of the agents. Note that

if the set of information only contains positive weights, then the equilibria with

preference information are equilibria of the game with vector-valued utilities. That

is, if Λ ⊆ ∆+, then EΛ(G) ⊆ E(G).

We are interested in certain special sets of weights, particularly those which can

be described by linear relations. In these cases, the information sets are polyhedra,

and thus they can be characterized by their extreme points.

The following two results are extensions to the more general framework of those

results stated in Section 2. They permit us to incorporate results from games with

complete preferences into the theory of games with incomplete preferences, and they
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allow the identification of the equilibria which are in accordance with the available

preference information.

For i ∈ N , let Λi be a polyhedron with pi extreme points {λ̄(1), . . . λ̄(pi)}, and

let Bi be the pi × si matrix whose rows are the extreme points of Λi. For each

i ∈ N , define a function, viΛ, with values in IRpi , given by viΛ = Bi · ui. Denote by

GΛ = {(Ai, viΛ)i∈N} the transformed vector-valued game.

Proposition 3.2. Let G = {(Ai, ui)i∈N} be a game with vector-valued utilities.

Then

EΛ(G) ⊆ Ew(GΛ).

The following is a central result. It states that, under concavity conditions, the

reverse is true, that is, it identifies the set of equilibria of the game with partial

preference information with the set of weak equilibria of the transformed game.

Theorem 3.3. Let G = {(Ai, ui)i∈N} be a game with vector-valued utilities such

that each Ai is a non-empty convex subset of a finite dimensional space and for each

i ∈ N , ui is concave in ai. Then,

EΛ(G) = Ew(GΛ).

3.1 Conservative equilibria

A conservative attitude is one of the most usual behaviors of the agents when assess-

ing possible outcomes (see for instance, Wakker, 2001; Kozhan and Salmon, 2009).

We now present an analysis of the equilibria of the game with vector-valued utilities

that can be appropriate when the agents are averse to the uncertainty underlying

the weights assigned to the components of the utility. We therefore assume that

the agents’ assessment of the results is based on the worst-case scenario, and by

adopting a conservative attitude, the agents seek to guarantee the best results from

among the worst expectations.

Thus, we consider a conservative value function. Each agent i evaluates an action

profile a as the minimum weighted value among all the feasible weights in Λi. That

is, the value function of agent i is:

vcΛi(a) = min
λi∈Λi

si∑
j=1

λiju
i
j(a).
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Note that since the sets of information are polyhedral and the minimum of a

linear function on a polyhedron is reached at one of its extreme points, then the

value function vcΛi only depends on the extreme points of Λi. Formally, given the

polyhedron of weights Λi ⊆ ∆si with extreme points λ̄i(r), r = 1, ..., pi, the value

function is

vcΛi(a) = min
r=1,...,pi

{viλ̄(r)(a)}.

The decision rule consisting of the maximization of this value function constitutes

the extension of the well-known max-min criterion (Wald, 1950) for the case of

preference information. This extended rule is also formally related with the analysis

of max-min expected utility developed by Gilboa and Schmeidler (1989).

In this conservative setting, the appropriate concept of equilibrium is the follow-

ing.

Definition 3.4. An action profile a∗ = (a∗1, . . . , a∗n) is a conservative equilibrium

for the game with preference information Λ if /∃ i ∈ N with ai ∈ Ai such that

vcΛi(ai, a∗−i) > vcΛi(a∗).

Ec
Λ(G) denotes the set of conservative equilibrium of the game G with preference

information Λ.

Equivalently, a∗ ∈ Ec
Λ(G) if for all i ∈ N , vcΛi(ai, a∗−i) ≤ vcΛi(a∗), for all ai ∈ Ai.

A first question to answer is whether conservative equilibria as defined above are

equilibria for the game with preference information, as defined in 3.1. The answer

is affirmative under the conditions stated in the following result.

Proposition 3.5. Let G = {(Ai, ui)i∈N} be a game with vector-valued utilities. If

Ai is a non-empty convex subset of a finite dimensional space and, for each i ∈ N ,

ui is concave in ai, then Ec
Λ(G) ⊆ EΛ(G).

Note that if functions uij are continuous then vcΛi is continuous, although it is not

differentiable in certain subsets of the strategy sets. Nevertheless, if functions uij are

concave, then vcΛi is also concave and the existence of a conservative equilibrium is

guaranteed as a consequence of the well-known existence results.

4 Mixed duopoly with various objectives

In this section, we consider two firms with several objectives competing in the same

industry. Each firm is primarily concerned with its own benefit, but considers a
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second goal. One of the firms is also a maximizer of the industry profit, i.e., it

also takes into account the benefit of the industry as a whole. The other firm is a

socially responsible firm that is concerned not only with its profit, but also with social

welfare. In this sense, the second firm has features of a public firm and therefore

we have a case within the so-called mixed duopoly models. Although the research

in this type of duopoly goes back to Merrill and Schneider (1966), the expansion

of the literature regarding this model starts in the 80’s with the contribution of De

Fraja and Del Bono (1989). The main innovation of our analysis with respect to the

previous literature is that the social firm maintains the maximization of profits as

one of its objectives.

The key element in the analysis is that the firm cannot compare in monetary

terms the results obtained when it tries to achieve each of the two goals. An ad-

ditional monetary unit of profit for the firm itself does not have the same meaning

as an additional monetary unit in either the industrial profit or in social welfare,

moreover, there is no clear way to aggregate their values. Therefore, the analysis of

this mixed duopoly with firms trying to achieve various objectives is formalized in

this section as a game with vector-valued utilities.

The two firms of the industry compete in quantities under Cournot assumptions

and produce a homogeneous commodity. They face an inverse demand function

given by p = P (Q), where Q = q1 + q2 is the total quantity produced in the market.

Following the standard in the literature (see Kreps and Scheinkman, 1983), we as-

sume that the function P (Q) is twice-continuously differentiable, strictly decreasing,

concave, and non-negative on some bounded interval (0, K), and that P (Q) = 0 for

Q ≥ K.

Firms are allowed to select any non-negative quantity. However, it could be

argued that extremely large quantities are not feasible and so should not be included

in a firm’s strategy space. Therefore, the strategy spaces should be bounded. We

also assume that each Ai is closed. Thus, the strategy set of each firm is represented

by a closed interval, Ai = [0, ki], i = 1, 2. For simplicity, it is assumed that firms

have no fixed costs and that their marginal costs are equal to zero. Under these

assumptions, the quantity K corresponds to the perfect competition quantity. In

addition, we assume that the reservation price and market size are finite.

For i = 1, 2, the first objective for firm i is its profit ui1(q1, q2) = qiP (q1 + q2).

Note that the profit function of each firm is strictly concave in its own action, since
∂2ui1
∂qi∂qi

(q1, q2) < 0. As a consequence, given the action of one of the firms in the
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corresponding interval (0, ki), the profit of the other attains its maximum where its

derivative is null. For qj ∈ (0, ki), the optimal response function of firm i to the

action of firm j, denoted by ri1(qj), is implicitly defined by the following equation.

P (q1 + q2) + qiP ′(q1 + q2) = 0.

For qj ≥ K, the optimal response function is defined as ri1(qj) = 0. Under our

initial assumptions on the inverse demand functions, the reaction functions, ri1, are

non-increasing and strictly decreasing over the range where it is strictly positive,

and continuously differentiable (see Kreps and Scheikman, 1983). Moreover, these

assumptions guarantee the existence of a unique Cournot equilibrium.

However, firms are not only concerned with their own profit. They consider an

additional objective related to the welfare of the other economic agents, consumers

and firms, and this also affects the development of the firm. Firm 1 is interested in

the profit of the whole industry, defined as the joint benefit of the firms involved.

A higher industrial benefit can be interpreted by the firm as a signal of a good

performance of the industry, that could eventually have a positive impact on all

firms. On the other hand, we have regarded Firm 2 as a socially responsible firm in

the sense that it takes into account the welfare of all agents. Therefore, its second

objective is social welfare which includes both the joint benefit of the two firms and

the consumer surplus.

Since the objectives of Firm 1 are related to its own benefit and the industrial

profit, the components of the utility of Firm 1 are its own benefit and the average

benefit of the two firms that make up the industry, u1
2(q1, q2) = q1+q2

2
P (q1 + q2), and

therefore, the vector-valued utility of Firm 1 is

u1(q1, q2) = (q1P (Q),
Q

2
P (Q)).

Firm 2 is concerned with its own benefit and with social welfare. The social

welfare function is modeled as the sum of the joint benefit of the two firms and the

consumer surplus. Thus, the function that evaluates social welfare is u2
2(q1, q2) =

CS(q1 + q2) + (q1 + q2)P (q1 + q2). Therefore, the vector-valued utility of Firm 2 is

u2(q1, q2) = (q2P (Q), CS(Q) +QP (Q)).

Under the assumptions on the inverse demand function, all the functions rep-

resenting the objectives of each firm are strictly concave in the action of the cor-

responding firm. It is easy to see that
∂2u1

2

∂q1∂q1
(q1, q2) < 0, and that the optimal

13
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Figure 1: The set of equilibria of the mixed duopoly

response of Firm 1 to the actions of Firm 2, denoted r1
2(q2), is r1

2(q2) = QM − q2,

where QM is the monopoly quantity, that is to say, the quantity maximizing QP (Q).

Regarding the social welfare function, u2
2, note that

u2
2(q1, q2) = CS(q1 + q2) + (q1 + q2)P (q1 + q2) =

∫ q1+q2

0

P (x)dx.

Therefore,
∂u2

2

∂q2
(q1, q2) = P (q1 +q2), and

∂2u2
2

∂q2∂q2
(q1, q2) = P ′(q1 +q2) < 0. It follows

that u2
2 is also strictly concave in q2. Since

∂u2
2

∂q2
(q1, q2) = P (q1+q2), then the optimal

response of Firm 2 to the actions of Firm 1, denoted r2
2(q1), is r2

2(q1) = QPC − q1,

where QPC is the perfect competition quantity.

It follows from Theorem 2.3 that the set of equilibria of the game with vector-

valued utilities representing the mixed duopoly, G = {(Ai, ui)i=1,2}, can be described

in terms of the best responses as

E(G) = {(q1, q2) : QM − q2 ≤ q1 ≤ r1
1(q2), r2

1(q1) ≤ q2 ≤ QPC − q1}.

Note, that as a consequence of the strict concavity of the components of the

utility, the set of equilibria coincides with the set of weak equilibria.

In order to simplify the presentation, we will graphically illustrate the results

with examples in which the inverse demand functions are linear, that is P (Q) =

a− b(q1 + q2). The shaded area in Figure 1 shows the set of equilibria. Dashed lines

represent the reaction function corresponding to the components of the utilities of

Firm 1. Solid lines are the reactions of the components of the utility of Firm 2.

Since the equilibrium outcomes of the extended Cournot model must lie within

this area, a wide range of action profiles cannot be equilibria. Note that the set of

14



equilibria includes the original Cournot equilibrium. In any of the equilibria, the

firm that maximizes industry profit will offer no more than what it would offer if it

only considered its individual profit. By contrast, the socially responsible firm will

always offer at least its Cournot quantity.

4.1 An additional objective concerning market share

In this subsection, we analyze a situation in which Firm 1, apart from the objectives

considered before (individual profit and average benefit of both firms), also takes an

objective concerning market share into account. Specifically, the firm wishes that

its offer constitutes a certain proportion of the quantity offered by the other firm.

In order to formalize this additional objective, a new component for the utility of

Firm 1 is defined2, u1
3(q1, q2) = −(q1−αq2)2, for α > 0. The parameter α may have

interesting interpretations. A firm strives to ensure a minimum market share against

its competitor should select a value of α below one. A value of α greater than one

could be interpreted as an entry deterrence strategy against potential competitors

or as a signal of an expansive strategy of the firm, in an effort to achieve a dominant

position in the market with the long-term advantages that this would entail.

For Firm 2, the objectives are the same as above. Thus, the corresponding

vector-valued game is Ĝ = {(Ai, ûi)i=1,2}, where

û1(q1, q2) = (q1P (Q),
Q

2
P (Q),−(q1 − αq2)2).

û2(q1, q2) = (q2P (Q), CS(Q) +QP (Q)).

The best response function for the new component u1
3(q1, q2) = −(q1 − αq2)2 is

r̂1
3(q2) = αq2. Theorem 2.3 can also be applied in order to identify the expanded set

of equilibria.

E(Ĝ) = {(q1, q2) : ri(qj) ≤ qi ≤ r̄i(qj), i = 1, 2},

with r1(q2) = minj=1,2,3{r1
j (q

2)}, r̄1(q2) = maxj=1,2,3{r1
j (q

2)}, r2(q1) = minj=1,2{r2
j (q

1)},
and r̄2(q1) = maxj=1,2{r2

j (q
1)}.

Figure 2 represents the expanded set of equilibria for the case of linear demand

functions when α = 1, that is, when Firm 1 wishes to equalize the offer of Firm 2.

The dashed line represents r1(q2) and the dotted line r̄1(q2). With the incorporation

of this additional objective into the game, new equilibria emerge. In fact, in this

2Other representations of this objective exist. However, this form is convenient for our analysis.
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Figure 2: Equilibria of the mixed duopoly with an additional objective

new situation, it is obtained that, unlike the above case with two objectives, there

are equilibria where both firms produce above the Cournot quantity.

4.2 The mixed duopoly with preference information

In this subsection, we turn back to our original mixed duopoly where each firm

takes into account two objectives, G = {(Ai, ui)i=1,2}. We assume that there is

information available about the relative importance of the objectives that the agents

are considering.

In our model, we represent a situation in which Firm 1 gives more relevance

to its first objective and therefore an additional unit of its own benefit is at least

as important as an additional unit of average industrial profit. For Firm 2, the

importance of its second objective is no less than that of the first objective, and

thus an additional unit of social benefit is at least as relevant as an additional unit

of individual benefit. This brings us closer to the traditional mixed oligopoly model,

where there is a private firm that maximizes its own profit and a public firm that is

only concerned about social welfare.

Formally, the information sets for Firm 1 and Firm 2 are respectively: Λ1 =

{λ1 ∈ ∆2 : λ1
1 ≥ λ1

2}, Λ2 = {λ2 ∈ ∆2 : λ2
2 ≥ λ2

1}. The extreme points of these sets

of information are (1, 0), (1/2, 1/2) for Λ1 and (1/2, 1/2), (0, 1) for Λ2. Theorem 3.3

permits us to compute the set of equilibria of the game with partial information as

the weak equilibria of a transformed game with vector-valued utilities {(Ai, viΛ)i=1,2},
where

v1
Λ(q1, q2) = (q1P (Q),

1

4
(3q1 + q2)P (Q)).
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Figure 3: Reaction sets and equilibria with preference information

v2
Λ(q1, q2) = ((

q1

2
+ q2)P (Q) +

CS(Q)

2
, CS(Q) +QP (Q)).

Note that, since they consist of convex combinations of strictly concave functions,

the components of this transformed game are also strictly concave in the action of

the corresponding firm. Thus, the set of equilibria and the set of weak equilibria of

the game {(Ai, viΛ)i=1,2} coincide.

For the components of this transformed game, the best response functions are

r̂1
1(q2) = QM − q2 and r̂2

2(q1) = QPC − q1 (they coincide with r1
1(q2) and r2

2(q1),

respectively). On the other hand, r̂1
2(q2) and r̂2

1(q1) are obtained implicitly from

3P (Q) + (3q1 + q2)P ′(Q) = 0, 2P (Q) + q2P ′(Q) = 0.

For the linear case, the new reaction functions and the set of equilibria are

represented in Figure 3. Note that the new set of equilibria does not include the

Cournot equilibrium. In comparison with the set of equilibria with no preference

information, the quantity offered by Firm 1 is equal or less, and the quantity offered

by Firm 2 is equal or greater.

In order to handle different degrees of importance for the components of the

utilities, the information sets considered above can be generalized in the following

sense: Λ1 = {λ1 ∈ ∆2 : λ1
1 ≥ βλ1

2}, Λ2 = {λ2 ∈ ∆2 : λ2
2 ≥ δλ2

1}, where β, δ ≥ 0.

The extreme points are (1, 0) and ( β
β+1

, 1
β+1

) for Λ1, and ( 1
δ+1

, δ
δ+1

) and (0, 1) for Λ2.

The transformed game is defined by the following vector-valued functions:

v1
Λ(q1, q2) = (q1P (Q),

1

2(β + 1)
((2β + 1)q1 + q2)P (Q)).

v2
Λ(q1, q2) = (q2 +

δ

δ + 1
q1)P (Q) + δCS(Q), CS(Q) +QP (Q)).
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For the case of linear demand, the reaction functions are

r̂1
1(q2) =

a

2b
−q

2

2
, r̂1

2(q2) =
a

2b
−2β + 2

2β + 1
q2, r̂2

1(q1) =
a

b

1 + δ

2 + δ
−1 + δ

2 + δ
q1, r̂2

2(q2) =
a

b
−q1.

The different values that the parameters can adopt determine the size of the set

of equilibria. Note that the smaller the parameter, the wider the sets. For β = 0 and

δ = 0, the original set of equilibria, represented in Figure 1, is obtained. For high

values of these parameters, the relevance of one of the objectives vanishes and the set

of equilibria tends to be a singleton in which Firm 2 offers the perfect competition

quantity and Firm 1 abandons the market.

4.3 Conservative firms

Another situation can arise when, apart from the information on preference weights,

the firms show an attitude towards possible outcomes. We can assume that the firms

adopt a conservative criterion, and, for each profile of strategies, they look at the

worst weighted value from among those obtained with weights in its information set.

For the former mixed duopoly with preference information described by the sets

Λ1 = {λ1 ∈ ∆2 : λ1
1 ≥ λ1

2} and Λ2 = {λ2 ∈ ∆2 : λ2
2 ≥ λ2

1}, assume that the firms

are conservative, in the sense that the evaluation of a pair of strategies consists of

the worst weighted value from among those obtained with weights in Λ1 and Λ2. In

this situation, the value function for Firm 1 is

vcΛ
1(q1, q2) = Min{ q1P (Q),

1

4
(3q1 + q2)P (Q) }.

vcΛ
1(q1, q2) =


q1P (q1 + q2) when q1 ≤ q2

1
4
(3q1 + q2)P (q1 + q2) when q2 ≤ q1.

This function is not differentiable when q1 = q2. In order to describe the reaction

function, the partition of the space of strategies has to be taken into account.

The conservative value function for Firm 2 is

vcΛ
2(q1, q2) = Min{(q

1

2
+ q2)P (Q) +

CS(Q)

2
, CS(Q) +QP (Q)} =

= (
q1

2
+ q2)P (Q) +

CS(Q)

2
, for all (q1, q2).
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Figure 4: Conservative equilibrium with preference information

For the linear case, Figure 4 illustrates the reaction function of Firm 1 in dashed lines,

the reaction function of Firm 2 in solid lines and the unique conservative equilibrium

attained at Ec
Λ(G) = {( a

4b
,
a

2b
)}. Note that the total equilibrium quantity is greater

than the quantity offered when both firms are traditional profit maximizers.

For the generalized sets of weights Λ1 = {λ1 ∈ ∆2 : λ1
1 ≥ βλ1

2}, Λ2 = {λ2 ∈
∆2 : λ2

2 ≥ δλ2
1}, a unique conservative equilibrium always exists and is given by

(q1∗, q2∗) = (
1

3 + δ

a

b
,

1 + δ

3 + δ

a

b
). Note that in this case, the conservative equilibrium

does not depend on the value of β, that is, the relevance of the first objective

with respect to the second objective for Firm 1 does not affect the conservative

equilibrium. When δ tends towards zero, the conservative equilibrium becomes the

Cournot equilibrium. As δ increases, the total quantity offered in the market tends

to be the perfect competition quantity and is only provided by Firm 2.

5 Conclusions

We present an innovative analysis of non-cooperative games with vector-valued util-

ity functions. These games have a high potential to represent situations in which the

agents act strategically in order to achieve several goals simultaneously. We have

shown in the paper that this model permits us to accommodate partial information

about the incomplete preferences of the agents in order to attain predictions of the

results of the interaction of a more realistic nature.

Our first result is interesting since it characterizes the whole set of equilibria for

a wide class of these games in terms of the reaction functions of the components

of the vector-utility of the agents, in a similar way to what happens in the case of
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scalar non-cooperative games. This result also facilitates the identification of the

set of equilibria when the agents provide information about their preferences.

The increase of the dimensionality of the agents’ utilities causes new equilibria

to arise, therefore the possibility of refining the set of equilibria becomes a relevant

issue. We focus on the cases in which preferential information consists of sets of

weights described by linear relations. This way of representing information is easily

understood by the agents and is convenient from the operational point of view. In

this sense, our second result identifies the set of equilibria of the vector-valued game

with preference information with the set of equilibria of a transformed game, which,

in general, is also a vector-valued game.

The results are applied to the analysis of a type of mixed duopoly where the

firms consider different social goals but do not completely abandon the pursuit of

maximum benefit which ensures their permanence in the market. The addition

of the new goals expands the set of equilibria. Nevertheless, the incorporation of

preference information and of possible attitudes that can be adopted by the firms

allows us to obtain equilibria in accordance with the information provided. Since

a conservative attitude of the agents is usual in many economic situations, our

approach also explores the possibility of the adoption of a conservative criterion in

order to identify the corresponding equilibria. In this context, for conservative firms,

the equilibrium is unique and it only depends on the relevance that the social firm

gives to each objective.

Our approach is flexible and provides a useful theoretical framework for the

analysis of various situations in the goods and factors markets where economic

agents wish to attain several goals. This is the case for responsible consumers, who

take into account not only their own welfare but also the social and environmental

impact of their consumption decisions. Moreover, in the labour market, the approach

presented in this paper could be helpful in modeling the behavior of trade unions,

which have objectives related to both the welfare of the workers and also to the

welfare of the institution.
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6 Appendix

Proof Theorem 2.3. First, note that under the assumptions, all the values rij(a
−i)

are well-defined. Let a ∈ ×i∈NAi be a profile of strategies such that for a certain

i ∈ N , ai < ri(a−i). Since uij is strictly concave in its own action, then at ai, uij is

strictly increasing for all j ∈ J i, and by adopting a strategy ai+ε, with ε > 0, agent

i will increase all the components of his utility. Therefore, a is not an equilibrium.

Analogous reasoning can be applied when ai > r̄i(a−i). Let a ∈ ×i∈NAi, such

that ri(a−i) ≤ ai ≤ r̄i(a−i) for all i ∈ N . For i ∈ N , if ri(a−i) = ai = r̄i(a−i), by

moving from his strategy, all the components of the utility of agent i will decrease. If

ri(a−i) < ai < r̄i(a−i), at least one of the inequalities in ri(a−i) ≤ ai ≤ r̄i(a−i) must

be strict. If ri(a−i) < ai, by reducing ai, the utility corresponding to r̄i will decrease.

If ai < r̄i(a−i), by increasing ai, the utility corresponding to ri will decrease.

Proof Theorem 2.5. A first inclusion is proved in Wang (1993). Conversely,

let a∗ ∈ Ew(G). For i ∈ N , define the sets Y i = {x ∈ IRsi : ui(ai, a∗−i) =

x, for some ai ∈ Ai}, and X i = {x ∈ IRsi : ui(a∗) < x}. The sets Y i and X i

are convex and disjoint. Convexity is a consequence of the concavity of ui. To prove

that they are disjoint: If x ∈ Y i then ai ∈ Ai exists such that x 5 ui(ai, a∗−i). If

x ∈ X i then x > ui(a∗). Therefore, if x ∈ Y i ∩X i, then ui(a∗) < x 5 ui(ai, a∗−i),

and ai ∈ Ai exists with ui(a∗) < ui(ai, a∗−i), which contradicts a∗ being a weak

equilibrium of G. It follows from Minkowski’s separating hyperplane theorem that

there exists some non-null vector λi ∈ IRsi and some constant c such that λi · x ≤ c

for all x ∈ Y i, and λi · x ≥ c for all x ∈ X i. It is easy to see that a non-negative λi

and c = λi ·ui(a∗) satisfy this condition. Therefore, for each i ∈ N , λi ·ui(a∗) ≥ λi ·x
for all x ∈ Y i, and since ui(ai, a∗−i) ∈ Y i, for all ai ∈ Ai, a∗i maximizes viλ(a

i, a∗−i).

Since only the direction of the vector matters, λi can be taken in ∆si . It follows

that a∗ ∈ E(Gλ).

Proof Proposition 3.2. If a∗ ∈ EΛ(G), then for each i ∈ N there exists

λi ∈ Λi such that a∗ is an equilibrium of game Gλ. It follows from Definition 3.1

that λi · ui(a∗) ≥ λi · ui(ai, a∗−i), for all ai ∈ Ai. On the other hand, for each

i ∈ N , λi ∈ Λi can be written as a convex combination of the extreme points of

Λi, λi =
∑pi

r=1 α
i
rλ̄

i(r) with αir ≥ 0, and
∑pi

r=1 α
i
r = 1. Thus, for each i ∈ N ,∑pi

r=1 α
i
rλ̄

i(r) · ui(a∗) ≥
∑pi

r=1 α
i
rλ̄

i(r) · ui(ai, a∗−i) for all ai ∈ Ai. It follows that a∗

is a weak equilibrium of game {(Ai, viΛ)i∈N}.

21



Proof Theorem 3.3. A first inclusion is stated in Proposition 3.2. Conversely,

first note that, if for each i, ui is concave in ai, then, viΛ is also concave. Let a∗ be a

weak equilibrium of game {(Ai, viΛ)i∈N}. It follows from Theorem 2.5 that for each

i ∈ N , αi ∈ ∆pi exists such that
∑pi

r=1 α
i
rλ̄

i(r)·ui(a∗) ≥
∑pi

r=1 α
i
rλ̄

i(r)·ui(ai, a∗−i) for

all ai ∈ Ai. Since
∑pi

r=1 α
i
rλ̄

i(r) ∈ Λi, from Definition 3.1 it follows that a∗ ∈ EΛ(G).

Proof Proposition 3.5. Let a∗ ∈ Ec
Λ(G) with Λ = ×i∈NΛi. Thus, /∃ i ∈ N

with ai ∈ Ai such that minr=1,...,pi{viλ̄(r)
(ai, a∗−i)} > minr=1,...,pi{viλ̄(r)

(a∗)}, where

λ̄i(r), r = 1, ..., pi are the extreme points of Λi. Suppose on the contrary that

a∗ 6∈ EΛ(G). Under convexity assumptions, by Theorem 3.3, EΛ(G) = Ew(GΛ).

Hence, a∗ is not a weak equilibrium of the game {(Ai, viΛ)i∈N}. That is, ∃i ∈ N

with ai ∈ Ai such that viΛ(ai, a∗−i) > viΛ(a∗). The components of viΛ are vi
λ̄(r)

for

i = 1, . . . , pi, and therefore vi
λ̄(r)

(ai, a∗−i) > vi
λ̄(r)

(a∗), ∀r = 1, ..., pi. It follows that

minr=1,...,pi{viλ̄(r)
(ai, a∗−i)} > minr=1,...,pi{viλ̄(r)

(a∗)}, and this contradicts that a∗ is a

conservative equilibrium for the game with preference information Λ.
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