
Modelling and Analysing Highly-Configurable Services
Jesús García-Galán

Lero - The Irish Software Research Centre
Limerick, Ireland

Jesus.Galan@lero.ie

José María García
Universidad de Sevilla

Sevilla, Spain 41012
josemgarcia@us.es

Pablo Trinidad
Universidad de Sevilla

Sevilla, Spain 41012
ptrinidad@us.es

Pablo Fernández
Universidad de Sevilla

Sevilla, Spain 41012
pablofm@us.es

ABSTRACT
Since the emergence of XaaS and Cloud Computing paradigms, the
number and complexity of available services have been increasing
enormously. These services usually o�er a plethora of con�guration
options, which can even include additional services provided as a
bundled o�er. In this scenario, usual tasks, such as description,
discovery and selection, become increasingly complex due to the
variability of the decision space. The notion of Highly-Con�gurable
Service (HCS) has been coined to identify such group of services
that can be con�gured and bundled together to perform demanding
computing tasks. In this paper we characterize HCSs by means of an
abstract model and a text-based, human-readable notation named
SYNOPSIS that facilitates the execution of various service tasks. In
particular, we validate the usefulness of our model when checking
the validity of HCSs descriptions in SYNOPSIS, as well as selecting
the optimal con�guration with regards to user requirements and
preferences by providing a prototype implementation.

KEYWORDS
Con�gurable Services, Service Modelling, Validity Checking, Ser-
vice Selection, Automated Analysis

1 INTRODUCTION AND MOTIVATION
A Highly-Con�gurable Service (HCS) can be intuitively de�ned as
a service which o�ers multiple con�guration options [15]. Some

authors simply employ the term “con�gurable service” in related
scenarios, such as con�gurator systems [13], con�gurable processes
in the cloud [21], and con�guration of real-world services [2, 8],
to name a few. However, to the extent of our knowledge, there is
no clear and precise de�nition of what an HCS is. The number of
actual con�gurations (a.k.a. decision space) provided by an HCS
varies from just a few choices (e.g. 3 di�erent plans in Dropbox)
to thousands (16,991 possible con�gurations in Amazon EC2 [12]).
Furthermore, some con�gurations may require the integration of
additional services (e.g. some Amazon EC2 machines require the
use of an EBS) or instances (load balancing for multiple virtual
machines), resulting in an explosive growth in the number of con-
�gurations to be considered. This inherent complexity present in
HCSs requires automated support and reasoning to leverage their
con�gurability.

Variability in HCSs has been traditionally addressed in the same
way as in other systems. Multiple authors have employed state-
of-the-art Feature Models (FMs) to describe and reason on their
con�guration options [12, 17, 18, 23]. However, that requires service
engineers and customers to speak in terms of variability and prod-
uct lines rather than services and their characteristics. In addition,
and even more importantly, such approaches are limited to single,
atomic services, neglecting the inherent interplay of HCSs with
other services within their ecosystem. In that sense, multi product
lines [5, 6] have made some advances on the management of multi-
ple and di�ering variability views. However, these approaches are
still limited in terms of reasoning and do not properly cover the
particularities of HCSs.

In this paper, we consider HCSs �rst-class citizens and propose
a speci�c approach for their variability description, and analysis,
which relies on existing FM reasoning support. First, we present
SYNOPSIS, a Domain Speci�c Language (DSL) that enables the
rigorous de�nition of HCSs. SYNOPSIS is focused on capturing
the decision space while including interrelated concepts that play
a fundamental role in relevant tasks during the service delivery
work�ow. Second, we introduce a catalogue of operations that en-
able the automated analysis of certain interesting properties when
specifying HCSs, hence facilitating the automated execution of the
aforementioned service tasks. These operations leverage existing
con�guration and automated reasoning support for Stateful Feature
Models (SFMs) [19, 20], which extend traditional FMs with built-in
con�guration capabilities and have been already implemented and
comprehensively tested [12]. For validating our solution we focus

on two particular tasks: (1) validity checking for HCSs descriptions
with respect to �ve di�erent criteria, and (2) selection of the best
con�gurations with respect to user needs.

The rest of the paper is structured as follows. In Section 2 we
analyse existing approaches related to HCSs. Section 3 presents
our proposed model and notation to characterise HCSs. Then, in
Section 4 and Section 5 we discuss how to check the validity of SYN-
OPSIS documents and the de�nition of user needs, correspondingly.
We present our automated solution to perform various analysis
operations in Section 6. Based on that solution, we showcase our
prototype implementation in Section 7. Finally, Section 8 discusses
di�erent aspects of our approach, and Section 9 concludes the paper
and provide some insights on future work.

2 RELATED WORK
The intersection between variability and service-oriented comput-
ing has produced proli�c research. Several authors [12, 18, 23]
employ FMs to describe and analyse cloud services variability, in
order to support user service con�guration. Nguyen et al. [17]
propose a feature-based framework for developing and maintain-
ing customisable services, using FMs to capture variability and
identify functional requirements for atomic services on the user
side. Similarly, Walraven et al. [22] apply Software Product Line
(SPL) principles to manage and leverage variability in multi-tenant
Software-as-a-Service, enabling �ne-grained service customisation.
However, the semantic distance between FMs and HCSs remains
signi�cant, requiring service engineers to speak a language they
are not familiar with. Furthermore, all these approaches consider
atomic services, neglecting the interplay between di�erent services
and their potential multiple instances.

In the SPL community, the interplay between di�erent variability
sources has been considered with multi-SPLs [5, 6]. A multi-SPL
encompasses multiple variability views of di�erent and intercon-
nected parts of the system, which may be described using di�er-
ing notations. Acher et al. [1] propose the FAMILIAR DSL for the
management of large scale SPLs, which also includes support for
con�guration, composition and reasoning. Galindo et al. [7] present
Invar, an integrative approach for product con�guration which sup-
ports di�erent types of variability models and notations. However,
existing reasoning support for multi-SPLs still target the speci�c
parts and views of the system, instead of the system as a complete
bundle.

Some works have considered the interplay of di�erent services
from the perspective of process-based service compositions. Nguyen
et al. [16] present a process development methodology to explicitly
consider composition variability in business process models, by
using FMs and extending the Business Process Model Notation.
Alférez et al. [3] go further and explore the adaptation of service
compositions to deal with runtime variability. Nonetheless, this
view focuses on putting services together to achieve a particular
process or goal, neglecting the inherent relations among those
services.

3 MODELLING HIGHLY-CONFIGURABLE
SERVICES

In order to address the need for a precise de�nition and compre-
hensive model of HCSs, we propose a DSL that provides a complete
support to describe HCSs and to perform automated analysis over
those descriptions. Figure 1 presents our metamodel that organises
and binds all the concepts that are relevant to HCSs domain.

Essentially, a service is described by a set of terms. In the case of
a con�gurable service, some of these terms are decision terms1 with
at least two possible values. If the provider explicitly o�er di�erent
alternatives for a decision term (e.g., disk type), we say the term
is selectable, and derived in other case (e.g., cost). The di�erent
decision terms and their dependencies (i.e., constraints) conform
the so-named decision space of the service. Such decision space
encompasses all the available con�gurations, i.e. valid combinations
of con�gurable term values.

When a con�gurable service interrelates additional con�gurable
services, we consider the whole bundle of services as a Highly-
Con�gurable Service. HCSs can potentially have multiple items
(i.e., service instances), where each of these can have a di�erent
con�guration (e.g., two disk drives with di�erent capacity). While
the types of the interrelated services must be known beforehand,
their item cardinality can be unbound, letting consumers decide
the exact number of items in their con�guration (e.g., multiple disk
drives associated to the same virtual machine).

As a concrete syntax to describe HCSs, we devised SYNOPSIS
(SimplY a NOtation to sPecify Service con�guratIonS), which is a
text-based, human-readable notation to describe the decision space
of services. It supports the speci�cation of the con�guration capa-
bilities as modelled in Fig. 1, common to services of big providers
such as Amazon, Rackspace or Microsoft, while remaining provider-
agnostic. Listing 1 shows the SYNOPSIS description of a simple
block storage service, which we will use as running example to
explain our model and concrete notation in the following.

3.1 Con�gurable Services
A con�gurable service in SYNOPSIS has two sections to declare
terms and dependencies. The terms are categorised into two groups:
selectable (%SelectableTerms section) and derived (%DerivedTerms
section). In the dependencies section (%Dependencies) we can de-
scribe the relationships among the di�erent terms.

If some of the service terms have two or more possible values,
i.e. they are con�gurable, we say the service is con�gurable, and
hence its terms are decision terms. For example, Amazon EBS (a
block storage service) and Spotify (a music streaming service) are
both con�gurable services. These services can be contracted with
di�erent options, each providing speci�c values for the rest of
decision terms. In the case of our simple storage block example,
the GB cost per month depends on the region and the use of SSD.
Consequently, both region and SSD are presented by the provider
as direct choices, i.e. selectable terms, while the GB cost depends on
the region and SSD values chosen, so it is a derived term.

1We employ con�gurable term and decision term as synonyms in this paper.

DecisionSpace

1

*

Dependency

DecisionTerm

SelectableTerm DerivedTerm

{disjoint}

1

1..*

Term

TermValue
2..*

1
ConfigurableService

HighlyConfigurableService

Service

1 1

1..*

1
1..*

Configuration

Item

*

1..*

1..*

1

1

1

*
1..*

* 1

Figure 1: Highly-Con�gurable Services Metamodel.

Listing 1: Simple Block Storage Service in SYNOPSIS.
Serv ice S i m p l e B l o c k S t o r a g e {

%SelectableTerms
SSD : boolean ;
S i z e : in t [1 , 1 0 0 0] ;
Region : { "USA" , " EU " , " JP " } ;

%DerivedTerms
/ / e u r o s /GB p e r month
costGBMonth : rea l [0 . 0 0 , 0 . 1 5] ;
/ / e u r o s p e r month
volumeCostMonth : rea l [0 . 0 0 , 1 5 0] ;

%Dependencies
/ / p r i c i n g
volumeCostMonth == costGBMonth ∗ S i z e ;
t ab le (Region , SSD −> costGBMonth) {

"USA" , true −> 0 . 1 ;
" EU " , true −> 0 . 1 2 ;
" JP " , true −> 0 . 1 5 ;
"USA" , f a l s e −> 0 . 0 5 ;
" EU " , f a l s e −> 0 . 0 6 ;
" JP " , f a l s e −> 0 . 0 8 ;

}
}

3.2 Decision Terms
Decision terms are declared in SYNOPSIS in the terms sections,
denoted by the %SelectableTerms and %DerivedTerms tags for
the two disjoint categories. The main di�erence between them is
that selectable terms determine the di�erent con�gurations of the
service. In the case of the service of Listing 1, we consider that
con�gurations are determined by the SSD, Region and Size terms.
However, all these term types are described in the same way, using
a declaration syntax close to programming languages. The only
requirement is that each term should have at least two di�erent
term values.

Listing 1 shows the four di�erent types of decision terms. For
example, SSD is a boolean selectable term that indicates if the stor-
age is ssd-based, Size is an integer selectable term that indicates
the storage capacity, Region is an enumerated selectable term that

declares the available regions of the service, and costGBMonth is a
real derived term to describe the cost hour of the di�erent con�gu-
rations.

A user must choose one and only one term value for each se-
lectable term to de�ne a con�guration. Thus, in our example a user
can only choose a region among three options: U.S.A., E.U. and
Japan, while SSD o�ers a boolean choice and the size of the storage
has to be within the speci�ed limits. The GB cost and volume cost
per month are derived terms that are not con�gurable but their
value changes depending on the said selectable terms.

3.3 Dependencies
Our model de�nes all the values that selectable and derived terms
can take. However, not any combination of them is allowed and
values can be bound in di�erent forms, a�ecting to the way a
service can be con�gured. For example, cost terms depend on the
size, region and ssd terms. In order to represent such dependencies,
we de�ne a set of constraints that restricts the decision space.

SYNOPSIS provides a set of expressions and operators in order
to de�ne the dependencies in the decision space. They include the
classic logical, relational and arithmetic operators, and also aggrega-
tion functions to relate HCS global terms to standard terms. Every
dependency declared in SYNOPSIS should be logical, although it
may be composed by other expression types. Table 1 summarises
such expressions.2,3

Additionally, SYNOPSIS provides tables to declare groups of
dependencies which involve the same terms with di�erent values.
Listing 1 shows an example of these tables, which are useful to
describe, for instance, the pricing policies. In the table constructor
we declare the con�gurable terms and the dependency relationship
(from left to right, separated by the implication -> symbol). Each
additional row provides the values for each term.

2E represents the set of all enumerated values of the document.
3sum, max and min functions aggregate standard terms into global terms.

Table 1: Dependency Expression Types for SYNOPSIS

Type Expressions

Boolean B ::= b | tb | B && B | B ‖ B | !B | B -> B | B <-
> B | I > I | I >= I | I < I | I <= I | I == I | I ! = I |
R > R | R >= R | R < R | R <= R | R == R | R! = R |
E == E | E! = E

Integer I ::= i | ti | I + I | I − I | I ∗ I | I/I | −I | I I | sum(ti) |
max (ti) | min(ti)

Real R ::= r | tr | R + R | R − R | R ∗ R | R/R | −R | sum(tr) |
max (tr) | min(tr)

Enumerated E ::= e | te
tb any boolean term, ti any integer term, tr any real term, te any enumerated term.

b ∈ {true, f alse }, i ∈ Z, r ∈ R, e ∈ E

3.4 Highly-Con�gurable Services
The con�guration capabilities of a service may go further, by con-
sidering multiple service items (i.e., instances) of the service, and
even additional linked services. This leads to the so-named Highly-
Con�gurable Services (HCS). While some con�gurable services do
not allow this – e.g. Dropbox or Spotify – others do, such as EC2
or Heroku. In the case of EC2, we can contract di�erent comput-
ing instances of di�erent types and in di�erent regions, and even
additional storage through the Elastic Block Storage (EBS) service
(which resembles our example in Listing 1), all of them related to the
same Amazon account. In the case of Heroku, we can also contract
di�erent Dynos and Postgres of di�erent types. Di�erent items of
the same service may be interrelated by means of dependencies.
For instance, Amazon provides a volume-based discount which
depends on the total cost of all the items contracted.

Listing 2: Volume Storage HCS in SYNOPSIS.
Highly−configurable Service VolumeStorage {

%Services
s t o r a g e : S i m p l e B l o c k S t o r a g e [1 , ∗] ;

%GlobalTerms
t o t a l C o s t M o n t h : rea l [0 . 0 0 , 1 0 0 0 0 . 0 0] ;
d i s c o u n t : rea l [0 . 0 0 , 1 0 0 0 . 0 0] ;

%Dependencies
/ / c o s t a g g r e g a t i o n
t o t a l C o s t M o n t h == sum (s t o r a g e . volumeCostMonth) ;
/ / d i s c o u n t p o l i c y
t o t a l C o s t M o n t h > 3000 −>

d i s c o u n t == t o t a l C o s t M o n t h ∗ 0 . 1 ;
}

Listing 2 presents an HCS in SYNOPSIS, which has three sections
to declare the component services and their cardinality, global terms
and global dependencies. For the two latter sections, the syntax is
the same as for the con�gurable services described before. In the
%Services section we declare the services that compose the HCS,
their cardinality (lower and upper bounds for the items), and an
alias to refer to it. The speci�c number of service items to hire is
up to the consumer.

Global terms a�ect the whole aggregation of the con�gurable
services in an HCS. This kind of term is necessary to describe, for

instance, the total cost or the discount of an HCS, which depends
on all the aggregated services. These terms are declared in the
%GlobalTerms section of the HCS. Besides the standard operators
for dependencies, global terms have available especial aggregation
expressions (e.g. sum), already enumerated in Sec. 3.3.

Listing 2 shows a couple of HCS global terms: the total cost and
the discount. The value of totalCostMonth is calculated based
on the aggregation of the volumeCostMonth of each storage item,
while the discount is calculated as a 10% of the total cost when it
exceeds 3000 euros.

4 VALIDITY CRITERIA
A con�gurable service may present di�erent anomalies regarding
its con�guration capabilities. For example, it is possible that some
values of a con�gurable term cannot be selected under any circum-
stance, or that a con�gurable term is actually not con�gurable. In
order to illustrate these anomalies, we de�ne the validity criteria
for con�gurable services using the Simple Block Storage Service of
Listing 1 as a running example. The validity criteria are categorised
in three levels, which in some cases resemble the well-known anom-
alies for traditional FMs [4]:

(1) Warning level, which encompasses anomalies that do
not damage the con�guration capabilities of the service
(redundant dependencies);

(2) Term error level, which encompasses anomalies that
damage the con�guration capabilities of the service, and in
particular of given values and terms (dead values and false
decision terms). Regarding traditional FMs, dead values are
equivalent to dead features, and false decision terms are
equivalent to false optionals.

(3) Service error level, where the errors of this level make
the service not con�gurable (false con�gurable service) or
directly inconsistent (inconsistent service). Regarding FMs,
an inconsistent service is equivalent to a void FM.

4.1 Warning Level
At the �rst validity level, i.e. the warning level, the anomalies de-
tected do not a�ect the con�guration capabilities of the service,
but may complicate the understanding of the decision space. In
particular, we have identi�ed one possible anomaly at the warning
level: the redundant dependency.

A redundant dependency has no e�ect on the decision space of the
service. If such dependency is removed, the resultant decision space
remains unaltered. For instance, the dependency SSD == false ->
costGBMonth < 0.1; would be redundant for the storage service
of Listing 1. The dependency says “if the disk is not SSD-based,
the GB cost/month should be lower than 0.1 $”, while at the same
time we say in the pricing table of Listing 1 that the prices for
non SSD-based volumes are 0.05, 0.06 and 0.08 per GB. In this way,
such dependency does not modify the decision space, and can be
classi�ed as redundant.

4.2 Term Error Level
We name this second validity level as the term error level. Although
at this level the service still presents multiple con�gurations, these
errors damage its con�guration capabilities. We identify two types

of errors that a�ect single values and terms: dead values and false
decision terms.

A dead value in a selectable term is a value which cannot be
selected under any circumstances, i.e. there is no con�guration
in the decision space where that value can be chosen. In this way,
although the value can be apparently chosen, existing dependencies
make it non selectable. In Listing 3 we show an example of dead
values for the storage service of Listing 1. We �nd a constraint
that denies the selection of USA as a region, making such value
dead. At the same time, JP region is also dead, since only SSD-based
instances can be selected in such location, but the cost/GB should
be at most 0.12 $, while in the case of SSD is 0.15 $.

Listing 3: Example of Dead Value and False Decision Term
Region == " JP " −> SSD == true ;
Region == " JP " −> costGBMonth <= 0 . 1 2 ;
Region != "USA" ;

If all the term values but one of a given decision term are dead,
we say the term is a false decision term. Although the term can appar-
ently be con�gurable, there is no possible decision: the consumer
is forced to select the same particular value in every con�guration
in the decision space. Consequently, a false decision term makes all
the remaining alternatives for its con�guration option to be dead.

The example in Listing 3 also generates a false decision term.
Given that the term Region only has three values, the death of
two of them makes the term a false decision term. In this case, the
consumer cannot choose among three regions, but has to select
‘‘EU’’ always.

4.3 Service Error Level
Finally, at the third validity level, namely service error level, the
service presents one or none con�gurations, so consequently these
errors are the most critical ones. We identify two types of service
errors: false con�gurable service and inconsistent service.

A service is a false con�gurable service when there is only a single
available con�guration. In other words, all the decision terms of
a false con�gurable service are false decision terms, i.e. there are
no real choices since the decision space contains only one possible
con�guration. In Listing 4 we show a set of dependencies that make
the Simple Block Storage Service a false con�gurable service. In this
way, only one con�guration can be selected: Region == ‘‘EU’’,
SSD == true.

Listing 4: Example of False Con�gurable Service.
Region == " JP " −> SSD == true ;
Region == " JP " −> costGBMonth <= 0 . 1 2 ;
Region != "USA" ;
SSD == f a l s e −> Region == "USA" ;

When all the values of a decision term are dead, we say that
the service is an inconsistent service. This means that there is no
available con�guration for the service (i.e. its decision space is
empty), and consequently it cannot be delivered to the consumer.
For instance, if we add to the Volume Storage Service the additional
dependency costGBMonth >= 0.2, the service becomes inconsis-
tent due to the con�ict with the pricing de�ned in the table.

5 DESCRIBING USER NEEDS FOR SELECTION
Automated selection of the most suitable con�guration requires the
description of the user needs, over concrete con�gurable services.
In most of the cases, users only have to assign a value to a subset of
these terms (usually selectable terms). The remaining terms depend
on them, but are an important source of information in order to
make a decision about the con�guration that best suits their needs.
So for example a user may make a decision about a Simple Block
Storage service based on the GB cost.

The user needs can be de�ned as a set of constraints that helps to
reduce the decision space to those values that satisfy the provided
constraints. For this particular purpose, we extend SYNOPSIS nota-
tion in order to allow users to express such constraints. Listing 5
presents an example that includes most of the constructions of the
language. As shown, a user can express needs in terms of service
items, requirements and preferences.

Listing 5: User needs on the Simple Block Storage Service.
Needs on VolumeStorage {

%Items
s t o r a g e [" v o l 1 " , " v o l 2 "] ;

%Requirements
s t o r a g e [" v o l 1 "] . S i z e == 5 0 0 ;
s t o r a g e [" v o l 1 "] . Region == "USA" ;
s t o r a g e [" v o l 2 "] . S i z e >= 2 0 0 ;

%Preferences
Favor i tes (s t o r a g e [" v o l 2 "] . SSD) ;
Dis l ikes (s t o r a g e [" v o l 2 "] . Region , " JP ") ;
Lowest (VolumeStorage . t o t a l C o s t M o n t h) ;

}

In the header of the user needs description, the %Items section
speci�es how many items we want of each service, assigning an
alias for each of them which is used for later reference. For instance,
in Listing 5 we declare two SimpleBlockStorage items, vol1 and
vol2.

Requirements are de�ned as a constraint on di�erent items terms
which must be satis�ed by a given con�guration. The available op-
erators and expressions to de�ne requirements are the same already
presented in Table 1. In Listing 5 we can see three requirements for
the size and region of the two items previously declared.

In the third and last section of the user needs document, the
preferences over the items are declared. The available constructs to
de�ne preferences are a subset of the Semantic Ontology of User
Preferences (SOUP) [9], employed for the ranking of services. For
our case, we have adapted �ve SOUP preferences in order to describe
fuzzy user preferences on the con�gurable terms of a service item.
The preference operators are as follows:

• Favorites de�nes a boolean or enumerated term value de-
sired by the user. It receives the term and speci�c value
as inputs – in the case of a boolean term, only the term is
required. For example,
Favorites(storage["vol1"]. Region,"US").

• Dislikes de�nes a boolean or enumerated term value not
desired by the user. It receives the term and speci�c value
as inputs – in the case of a boolean term, only the term is
required. For example,
Dislikes(storage["vol1"]. SSD).

SPLC’17, 25–29 September, 2017, Seville, Spain J. García-Galán et al.

Table 2: User preferences mapping.

Preference Term type Correspondence
Likes(term = v) Enumerated term = v → p = 1

Dislikes(term = v) Enumerated term , v → p = 1
Highest(term) Range p = value−lowerBound

upperBound−lowerBound

Lowest(term) Range p =
upperBound−value

upperBound−lowerBound
Around(term,v) Range p = inverseDistance(value,v)

• Highest de�nes a preference on the highest possible value
for a given real or integer term. It receives the term as
input. For example, Highest(storage ["vol1"].Size).

• Lowest de�nes a preference on the lowest possible value
for a given real or integer term. It receives the term as
input. For example, Lowest(VolumeStorage.totalCost-
Month).

• Around de�nes a preference on a real or integer term to
be around a speci�c value de�ned by the user. It receives
the term and the speci�c value as inputs. For example,
Around(storage["vol1"].costGBMonth,0.1).

User preferences are mapped into real values and aggregated
using a function, as described in prior work [11]. Table 2 shows in
particular how these are mapped into real values between 0 and 1, so
they can be later aggregated using a function to balance preferences
satisfaction and rank service con�gurations. In Listing 5 we can
see some of these preferences. While the two �rst preferences are
expressed on item level terms, the last one refers to an HCS term.
For that case, we employ the name of the service as an alias to refer
to the global terms.

6 AUTOMATED ANALYSIS
In this Section we propose an operational semantics [14] of HCSs
which primary goal is providing these models with an automated
support for certain analysis operations. These operations will en-
able to check the satisfaction of the proposed validity criteria and
support the search of the most suitable con�guration among other
capabilities.

The target domain of the proposed semantics are Stateful Feature
Models (SFMs) [19, 20]. SFMs are intended to describe all the possi-
ble con�gurations of variability-intensive systems and assist their
con�guration. An SFM is divided in two parts: the Feature Model
(FM), and a Con�guration Model (CM). The FM de�nes the vari-
able parts of a system in terms of features which are hierarchically
organised by means of di�erent kinds of relationships, forming a
tree-like structure. Attributes can be linked to features to indicate
any further information that could be relevant to con�gure the
system. The CM enables a user to specify their needs, selecting or
removing features and adding constraints for attribute values. The
main strong point of mapping HCSs to SFMs is taking advantage of
the Automated Analysis of Stateful Feature Models (AASFM) [19],
which provides a wide catalogue of analysis operations in terms of
which the demanded HCS analysis operations can be solved.

We present three mapping tables that summarise the procedure
to generate a SFM from an HCS. First, Table 3 shows how to map
from a single con�gurable service to a SFM. We create a root feature

Table 3: Mapping CSs into SFMs

HCS SFM

Service CSName { ... }
p:#real#[0,1]!

CSName!

%SelectableTerms
Tk : {vk,1, ...,vk, j };

CSName'

Tk'

Vk,1'

1..1'

Vk,j'…'

p:#real#[0,1]'

%DerivedTerms
T1: {v1,1, ...,v1, j };
T2: int[v2,min ,v2,max] ;
T3: real[v3,min ,v3,max] ;
...
Tn : boolean;

T1:${V1,1,…,V1,j}$
T2:int[V2,min,V2,max]$
T3:$real$[V3,min,V3,max]$
…$
Tn:$boolean$
pT1:$real$[0,1]$
…$
pTn:$real$[0,1]$

CSName'

%Dependencies
C1; ... Cn ;

Constraints on the SFM fea-
tures/attributes

Table 4: Mapping HCSs into SFMs

HCS SFM

Highly-con�gurable
Service
HCSName { ... }

p:#real#[0,1]!

HCSName!

%Terms
T1: {v1,1, ...,v1, j };
T2: int[v2,min ,v2,max] ;
T3: real[v3,min ,v3,max] ;
...
Tn : boolean;

T1:${V1,1,…,V1,j}$
T2:int[V2,min,V2,max]$
T3:$real$[V3,min,V3,max]$
…$
Tn:$boolean$
pT1:$real$[0,1]$
…$
pTn:$real$[0,1]$

HCSName(

%Dependencies
C1; ... Cn ;

Constraints on the SFM fea-
tures/attributes

for every service, and a child (mandatory) feature for each selectable
term. Besides, each term value is mapped into a feature. These
features are grouped to their corresponding selectable term feature
by means of an alternative relationship. This structure obligues a
user to select one value for each selectable term in order to de�ne
a con�guration for the service. The derived terms are mapped as
global attributes linked to the root feature with their corresponding
types. Additionally, p attributes are added to allow a user to indicate
their preference for a given selectable or derivable term.

Modelling and Analysing Highly-Configurable Services SPLC’17, 25–29 September, 2017, Seville, Spain

Table 5: Mapping items, requirements and preferences into SFMs

HCS SFM

Items

##On user HCS def.
%Services
CSName[n,m] CSAlias;

##On user needs def.
%Items
CSAlias[Item1,...,Itemk];

HCSName(

Item1(Itemk(…(

Requirements

%Requirements
R1; ... Rn ; Constraints on the SFM features/attributes

Preferences

Favorites(Tk ,Vk, j) Vk, j = sel ⇔ Tk .p = 1 ∧Vk, j = rem⇔ Tk .p = 0
Dislikes(Tk ,Vk, j) Vk, j = rem⇔ Tk .p = 1 ∧Vk, j = sel ⇔ Tk .p = 0
Highest(Tk) HCSName .pTk =

Vk−Vk,min
Vk,max−Vk,min

Lowest(Tk) HCSName .pTk =
Vk,max−Vk

Vk,max−Vk,min

Around(Tk ,Vk, j) HCSName .pTk =
max (Vk, j−Vk,min,Vk,max−Vk, j)−|Vk−Vk, j |

max (Vk, j−Vk,min,Vk,max−Vk, j)

Preferences Composition

HCSName .p =
∑
k Tk .p +

∑
i HCSName .pTi

Volume'
Storage'

p:#real#[0,1]'

vol1'

SSD' Region'

True' False'

1..1'

EU' JP'

1..1'

USA'

costGB:#real#[0,0.15]#
costMonth:#real#[0,150]#
p:#real#[0,5]#
pCostGB:#real#[0,1]#
pCostMonth:#real#[0,1]#

p:#real#[0,1]'

vol2'

SSD' Region'

True' False'

1..1'

EU' JP'

1..1'

USA'

costGB:#real#[0,0.15]#
costMonth:#real#[0,150]#
p:#real#[0,5]#
pCostGB:#real#[0,1]#
pCostMonth:#real#[0,1]#

p:#real#[0,1]'
p:#real#[0,1]'

totalCostMonth:#real#[0,10#000]#
discount:#real#[0,#1#000]#
p:#real#[0,10]#

size'

1' 1000'…'

p:#real#[0,1]'

size'

1' 1000'…'

p:#real#[0,1]'

Figure 2: Volume Storage HCS translated into a SFM.

Second, the HCS and the user needs must be mapped together,
since the speci�c number of instances to be created for each con-
�gurable service within the HCS must be known to generate the
adequate SFM. Tables 4 and 5 show how HCS elements and user
needs are mapped into a SFM. For each item created in user needs,
a SFM is created following the mapping proposed for con�gurable
services. Then, an HCS root feature is created as a way to bind all
the item-speci�c root features by means of mandatory relationships.
Then, attributes are created for HCS-speci�c terms following the
same process than for con�gurable services. Finally, user needs, ei-
ther requirements or preferences are mapped into SFM constraints
as shown in Table 5.

Figure 2 showcases the result of applying the presented mappings
to the whole example scenario that we used throughout the paper,
described in Listings 1, 2, and 5.

The resulting SFM can be analysed using existing AASFM tools.
So for example, a false con�gurable service can be detected if the
resulting SFM is void. Table 6 shows a correspondence table with
the AASFM operations that can be used to perform HCS analysis
operations.

Table 6: Analysis operation correspondences

HCS operation SFM operation

Inconsistent service Void SFM
Dead value Dead feature
False decision term False-optional feature
Redundant dependency Product listing (composite)
Best con�guration Best product

7 PROTOTYPE IMPLEMENTATION
In order to validate our approach, a prototype workbench has been
developed4. This workbench consists of an on-line modeling envi-
ronment and an analysis engine to get the optimal con�guration
for a given user need over an HCS. The tool has been developed
within the context of the IDEAS framework that provides a micro-
services architecture of standardized modules that is based on REST
interfaces. Each module is associated with speci�c languages (such
as SYNOPSIS). The structure of an IDEAS module is comprised of
two sets of operations: (i) Language management operations that
provide syntax checking and the marshalling and unmarshalling
of the di�erent formats and (ii) analysis operations that provide
speci�c functionality to extract information over the document
loaded. In this work, the tool developed is based on a new HCS
module that implements the di�erent operations for a SYNOPSIS
�le modeling an HCS or the de�nition of User Needs.

The key analysis developed is the Optimal Configuration op-
eration, which develops an analysis over the HCS possible con�g-
urations in order to �nd the optimal con�guration that matches
a certain User Needs. Figure 3 shows an screenshot of the tooling
with a particular example of VolumeStorage service and the result
of the optimal con�guration operation over a speci�c user need.
The analysis operation is based on the transformation to the SFM
4This tool is available at http://www.isa.us.es/IDEAS/HCS

Figure 3: Prototype Implementation

formalization presented in Sec. 6; once the model is transformed,
the tool invokes a reasoning engine for the SFM paradigm [12].

8 DISCUSSION
As many other domain-speci�c approaches, SYNOPSIS is focused
and tailored to a speci�c, service-oriented audience. From the con-
tents in previous sections, the reader can infer that SFMs are suf-
�cient to deal with the description and con�guration of HCSs.
Although this is true, our intention with SYNOPSIS is to provide
a simpli�ed interface, which masks the details of variability man-
agement and speaks in terms of services. In this way, we are able
to leverage the expressiveness and reasoning potential from the
world of variability, while o�ering a simple façade for the world of
services.

Our approach, at this stage, still presents several limitations.
HCSs are intrinsically dynamic, evolving in environments where
new services replace old ones and extend the ecosystem constantly.
While our notion of HCSs enables the adaptation of the number of
service instances, the type of these must be known beforehand. This
supposes a limitation, refraining consumers from mixing and match-
ing con�gurable services, instead of providing them with default
HCSs. Additionally, we need further evaluation for our proposal.
In this paper, we have presented a running example to showcase
how SYNOPSIS works for the description of HCSs, and how we
can implement automated analysis relying on existing reasoning
support for SFMs. However, we need to evaluate how good these
modelling and analysis capabilities are compared to traditional
service-oriented and variability approaches, respectively.

9 CONCLUSIONS
HCSs analysis is a demanding task due to the high complexity and
variability that this type of services deliver. In order to automate
analysis operations, such as validity checking or selection of the best
con�guration, a precise de�nition of HCSs is needed. In this paper
we propose a DSL that provides a comprehensive HCS model and
a concrete notation (namely SYNOPSIS) to describe con�gurable
and highly con�gurable services. We o�er a tooling support that
allows the user to perform automated analysis on HCSs, based on a
mapping to SFMs. By using this formalism, we can reuse extensively
evaluated techniques to execute analysis operations [12].

As future work, we plan to support additional preference con-
structs de�ned in SOUP [9], including composite preferences that

http://www.isa.us.es/IDEAS/HCS

will allow the user to express richer and more complex needs. More-
over, we will implement additional analysis operations into the
IDEAS module, such as obtaining all possible con�gurations and
checking for further validity criteria. Finally, we are also devising
other extensions to the model, in particular to adapt the con�gu-
ration of HCSs for addressing speci�c compliance concerns that
might arise due to geographical or regulatory restrictions [10].

ACKNOWLEDGMENTS
This work has been partially supported by the European Commis-
sion (FEDER), the Spanish and the Andalusian R&D&I programmes
(grants P12-TIC-1867, TIN2015-70560-R), SFI grant 13/RC/2094 and
ERC Advanced Grant no. 291652 (ASAP).

REFERENCES
[1] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B France. 2013.

Familiar: A domain-speci�c language for large scale management of feature
models. Science of Computer Programming 78, 6 (2013), 657–681.

[2] Hans Akkermans, Ziv Baida, Jaap Gordijn, Nieves Peña, Ander Altuna, and Iñaki
Laresgoiti. 2004. Value Webs: using ontologies to bundle real-world services.
IEEE Intelligent Systems 19, 4 (July 2004), 57–66. DOI:https://doi.org/10.1109/
MIS.2004.35

[3] Germán H Alférez, Vicente Pelechano, Raúl Mazo, Camille Salinesi, and Daniel
Diaz. 2014. Dynamic adaptation of service compositions with variability models.
Journal of Systems and Software 91 (2014), 24–47.

[4] David Benavides, Sergio Segura, and Antonio Ruiz Cortés. 2010. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Information
Systems 35, 6 (9 2010), 615–636.

[5] Jan Bosch. 2009. From software product lines to software ecosystems. In Proceed-
ings of the 13th international software product line conference. Carnegie Mellon
University, 111–119.

[6] Deepak Dhungana, Dominik Seichter, Goetz Botterweck, Rick Rabiser, Paul
Grunbacher, David Benavides, and Jose A Galindo. 2011. Con�guration of multi
product lines by bridging heterogeneous variability modeling approaches. In
Software Product Line Conference (SPLC), 2011 15th International. IEEE, 120–129.

[7] José A Galindo, Deepak Dhungana, Rick Rabiser, David Benavides, Goetz Botter-
weck, and Paul Grünbacher. 2015. Supporting distributed product con�guration
by integrating heterogeneous variability modeling approaches. Information and
Software Technology 62 (2015), 78–100.

[8] José M. García, Pablo Fernandez, Carlos Pedrinaci, Manuel Resinas, Jorge Cardoso,
and Antonio Ruiz-Cortés. 2017. Modeling Service Level Agreements with Linked
USDL Agreement. IEEE Transactions on Services Computing 10, 1 (2017), 52–65.

[9] José M. García, Martin Junghans, David Ruiz, Sudhir Agarwal, and Antonio
Ruiz-Cortés. 2013. Integrating Semantic Web Services Ranking Mechanisms
Using a Common Preference Model. Knowledge-Based Systems (2013).

[10] Jesús García-Galán, Liliana Pasquale, George Grispos, and Bashar Nuseibeh. 2016.
Towards adaptive compliance. In Proceedings of the 11th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems. ACM, 108–114.

[11] Jesús García-Galán, Liliana Pasquale, Pablo Trinidad, and Antonio Ruiz Cortés.
2016. User-centric Adaptation Analysis of Multi-tenant Services. Transactions
on Autonomous and Adaptive Systems (2016).

[12] J. García-Galán, P. Trinidad, O. F. Rana, and A. Ruiz-Cortés. 2016. Automated Con-
�guration Support for Infrastructure Migration to the Cloud. Future Generation
Computer Systems (2016).

[13] Mikko Heiskala, Juha Tiihonen, and Timo Soininen. 2005. A conceptual model
for con�gurable services. In Papers from the Con�guration Workshop at IJCAI’05,
Dietmar Jannach and Alexander Felfernig (Eds.). 19–24.

[14] A. H. M. Ter Hofstede and H.A. Proper. 1998. How to Formalize It? Formalization
Principles for Information System Development Methods. Information and
Software Technology 40 (1998), 519–540.

[15] Ste�en Lamparter, Anupriya Ankolekar, Rudi Studer, and Stephan Grimm. 2007.
Preference-based selection of highly con�gurable web services. In Proceedings of
the 16th international conference on World Wide Web. ACM, 1013–1022.

[16] Tuan Nguyen, Alan Colman, and Jun Han. 2011. Modeling and managing vari-
ability in process-based service compositions. In International Conference on
Service-Oriented Computing. Springer, 404–420.

[17] Tuan Nguyen, Alan Colman, and Jun Han. 2016. A Feature-Based Framework
for Developing and Provisioning Customizable Web Services. IEEE Transactions
on Services Computing 9, 4 (2016), 496–510.

[18] Clément Quinton, Nicolas Haderer, Romain Rouvoy, and Laurence Duchien.
2013. Towards multi-cloud con�gurations using feature models and ontologies.

In Proceedings of the 2013 international workshop on Multi-cloud applications and
federated clouds. ACM, 21–26.

[19] Pablo Trinidad, Antonio Ruiz-Cortés, and David Benavides. 2013. Automated
Analysis of Stateful Feature Models. In Seminal Contributions to Information
Systems Engineering. Springer, 375–380.

[20] Pablo Trinidad, Antonio Ruiz-Cortés, and Jesús García Galán. 2014. Con�gurable
Feature Models. In Actas de las XIX Jornadas de Ingeniería del Software y Bases de
Datos. 335–348.

[21] Wil MP Van Der Aalst. 2010. Con�gurable services in the cloud: Supporting
variability while enabling cross-organizational process mining. In On the Move
to Meaningful Internet Systems: OTM 2010. Springer, 8–25.

[22] Stefan Walraven, Dimitri Van Landuyt, Eddy Truyen, Koen Handekyn, and
Wouter Joosen. 2014. E�cient customization of multi-tenant Software-as-a-
Service applications with service lines. Journal of Systems and Software 91
(2014).

[23] Erik Wittern, Jörn Kuhlenkamp, and Michael Menzel. 2012. Cloud service selec-
tion based on variability modeling. In Service-Oriented Computing. Springer.

https://doi.org/10.1109/MIS.2004.35
https://doi.org/10.1109/MIS.2004.35

	Abstract
	1 Introduction and Motivation
	2 Related Work
	3 Modelling Highly-Configurable Services
	3.1 Configurable Services
	3.2 Decision Terms
	3.3 Dependencies
	3.4 Highly-Configurable Services

	4 Validity Criteria
	4.1 Warning Level
	4.2 Term Error Level
	4.3 Service Error Level

	5 Describing User Needs for Selection
	6 Automated Analysis
	7 Prototype Implementation
	8 Discussion
	9 Conclusions
	Acknowledgments
	References

