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Abstract 

First- and second-order thermal diffuse scattering 
(TDS) intensities are calculated in the long-wave 
approximation allowing for dispersion (LWD) in 
monoclinic phenothiazine from polarization vectors 
and lattice-mode frequencies obtained from lattice 
dynamical calculations within the harmonic approxi- 
mation and the external Born-von K~irmfin formalism 
using an atom-atom potential function in the form 
V(r) = - A / r 6 +  B exp ( -Cr) .  The influence of first- 
and second-order TDS intensity on electronic density 
maps is analysed and compared. Least-squares refine- 
ments of positional and thermal parameters are 
carried out in different ranges of sin 0/A taking into 
account both first- and second-order TDS contribu- 
tions and the results are discussed. 

Introduction 

In previous papers (Criado, Conde & M~irquez, 
1985a, b) we reported a computational procedure to 
calculate first- and second-order thermal diffuse scat- 
tering intensity for molecular crystals from a lattice 
dynamical calculation, using the external Born-yon 
Kfirm~in formalism in the harmonic approximation. 
An atom-atom potential-function model was utilized 
as a sum of pairwise contributions in the form V(r) = 
- A / r  6 + B exp ( -  Cr) and the procedure was applied 
to monoclinic phenothiazine. First-order correction 
factors to integrated Bragg intensities due to thermal 
diffuse scattering (TDS) intensity were calculated 
with the full lattice dynamical formulae and in the 
long-wave (LWD) (Born & Huang, 1968) approxima- 
tion allowing for dispersion and both results were 
practically identical. The influence of first-order TDS 
intensity on electronic density maps was studied; the 
main contribution was a positive additional density 
concentration around the atomic positions. A least- 
squares process was carried out to check the influence 
of first-order TDS intensity upon variable parameters; 
the main influence was found over the thermal param- 
eters, which underwent a decrease with respect to 
their true value. 

Calculations have already been performed 
(Helmoldt & Vos, 1977) on the influence of the first- 
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order TDS contribution upon structural parameters 
and our purpose here is to study the influence of the 
second-order one. 

Basic theory 

First-order TDS intensity has been calculated using 
the LWD approximation in which the expression of 
the intensity at a point S of the reciprocal space such 
that S = G - q ,  where G = 2~rH and H is a reciprocal- 
lattice point, is given by (Cochran, 1963; Cochran & 
Pawley, 1964; Born & I-Iuang, 1968) 

dll(S = G - q ) / d q  

= NS 2 F(G) 2 ~ [Ej(q)/w~(q)]{s. eLW(qj)}2, (1) 
Jac 

where N is the number of unit cells in the crystal, jac 
stands for the different acoustic modes with wave 
vector q, o~j(q) is the angular frequency of mode (q j) ,  
Ej(q) is its energy, s is a unit vector along S, F(G) 
is the Bragg structure factor and eLW(qj) is the 
polarization vector of mode (q j )  in the LW approxi- 
mation; it can be found by solving the eigenvalue 
equation (Born & Huang, 1968; Maradudin, 
Montroll, Weiss & Ipatova, 1971) 

D(q)U(q) = o~2(q)U(q), (2) 

where D(q) is the dynamical matrix. 
The second-order TDS intensity should be calcu- 

lated in the exact lattice dynamical procedure but 
computing times are prohibitive. Because of this, we 
have also adopted the LWD approximation for calcu- 
lating second-order TDS intensity. With this approxi- 
mation, the expression for it is 

dI2(S = G - q ) / d q  
t n 2 t 2 t t  -(S2/2)IF(G)I2E E E {[Ej,(q )Ej,,(q )/o)j,(q )o)j,,(q )] 

q' Jac Jae 

×[s.  eLW(q'j')s, eLW(q'~]")]2}, (3) 

where q' runs over all the allowed wave vectors inside 
the Brillouin zone and q = q'+q". This sum takes a 
long computing time for a crystal of a finite size and, 
as we are only interested in the behaviour of density 
maps and structural parameters with respect to the 
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factor S 4, we have adopted a second simplifying 
approximation (Ramachandran & Wooster, 1951), 
which consists of a theoretical evaluation of the sum 
(integral for a large crystal) over q' assuming a linear 
relation coj(q) = v~q (LW approximation), where vj is 
the velocity of the wave, which is assumed to be 
independent of the direction ofq. The factor involving 
the polarization vectors is replaced with a constant 
factor at the values that minimize the product 

2 , z ,, q, q,, toj,(q)wj,,(q )" = =q/2" and the integral over the 
Brillouin zone is extended to infinity. With these 
approximations, the expression of second-order TDS 
intensity for points sufficiently near the reciprocal- 
lattice points is found to be, at high temperatures 
[ E)(q) = KsT]: 

dI2(S = G - q ) / d q  

= ( NVcS4  q3/16)(K8 T)2] F(G)I 2 

× ~ ~ {[s. eLW(qj')s, eLW(qj")]2/tO],(q)to],,(q)}, 
J~cJae 

(4) 
where V~ is the unit-cell volume. 

Method of calculation 

We have performed our calculations with monoclinic 
phenothiazine and the conditions for calculating the 
correction factors of Bragg intensities due to TDS 
contribution were the same as those adopted for 
first-order calculations (Criado, Conde & Mfirquez, 
1985a), assuming a Bragg-peak symmetric scanning 
volume of parallelepipedic shape centred on the 
reciprocal-lattice points, each edge 7/25 of the corre- 
sponding basic reciprocal vector. Polarization vectors 
and wave frequencies have been obtained from lattice 
dynamical calculations. 

In order to study the influence that second-order 
TDS intensity has over density maps we have con- 
sidered the crystal configuration from which we have 
calculated lattice dynamics and Bragg correction fac- 
tors as the true one. The intensities measured in a 
real experiment would then be obtained by adding 
to the calculated Bragg intensities the TDS calculated 
contribution at 300 K as 

I~xp(G) = IB~Gc(G){1 + a2(G)}, (5) 

where 

a2(G) = I2(TDS, G)/IBRAGG(G), (6) 

and the influence on density maps would be obtained 
by means of a difference Fourier synthesis with 
coefficients Fexp(G)- Fca,(G). 

In this way we have calculated correction factors 
and 'experimental' intensities for 1026 independent 
reflections with sin 0/A <0.6  A,-'. A difference 
Fourier synthesis (program FOURR ; Stewart, 
Kundell & Baldwin, 1970) has been performed, whose 

$ ~ "  N," 

;C : 

1A t 

(a) (b) 
Fig. 1. (a) Second-order difference density map. Contours are 

drawn at intervals of 0.012 e/1. -2. (b) First-order difference 
density map. Contours are drawn at intervals of 0.06 e/~-2. 

projection over a plane perpendicular to b is shown 
in Fig. l (a) ,  where only positive density regions are 
represented, and the black points correspond to the 
'true' atomic positions. In order to make the com- 
parison easier we reproduce in Fig. 1 (b) the difference 
density map obtained with the same reflections but 
considering only the first-order contribution (Criado, 
Conde & M~irquez, 1985a). Both maps present a zone 
of negative density surrounding each positive peak, 
a result that is found to correspond to an undervalu- 
ation of thermal crystallographic parameters 
(Buerger, 1960). As in the first-order case, positive 
density peaks in the second-order map are situated 
around the 'true' atomic positions and therefore it 
must be expected that the second-order TDS contri- 
bution will not alter very much the positional param- 
eters obtained in a structural analysis. Nevertheless, 
distortions of the peaks are greater than in the first- 
order case, especially near the heavier atom (S) 
indicating that the second-order TDS effect is more 
equally distributed between positional and thermal 
parameters than in the first-order case. Whereas in 
the first-order map peaks around H atoms are practi- 
cally non-existent, we have detected small peaks near 
H-atom positions, which may well correspond to an 
alteration of the H-atom density, although they may 
be a residual electronic density as well. 

Least-squares refinement 

To verify the conclusions deduced above we have 
carded out a least-squares process (program 
CRYLSQ; Stewart, Kundell & Baldwin, 1970) with 
the 'experimental' intensities at 300 K from the 'true' 
structure and calculated lattice dynamical thermal 
parameters, keeping the thermal parameters of H 
atoms fixed. Positional and thermal parameters were 
refined together with K, a scale factor defined by 
E6{[Fexp(G)l-lFca,(G)l/K} 2, and three different 
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Table 1. Results of least-squares refinements 

f.a. full angle; 1.o. low order; h.o. high order. 
Ar and A U. are the variations in positional and thermal parameters. 

First order Second order 

~(G)(% ) 
Ar *(X104/~) 
IAr[(H)(xl0 3 A) 
-A Uu( xl04 A 2) 
--A U22(x104 A 2) 
--A U33(X104 A 2) 
Rf (%) 
g~ 

f.a. 1.o. h.o. f.a. 1.o. 

<80 <37 37-107 <40 <10 
5-10 4-8 11-18 5-9 4-7 
5-8 3-6 18-38 19-40 8-13 

55-57 56-58 48-50 21-24 14-16 
51-55 52-54 44-46 7-13 5-7 
47-51 48-51 41-45 15-19 10-13 

8.4-0.4 6.4-0.3 21.4-0.2 2.3-0.6 1-0-0.2 
1.005 1.003 1.047 0.992 0.996 

* Average and maximum deviations. 
f Initial and final agreement factors. 

Final scale factor. 

h.o. 
10-77 
9-18 

60-180 
56-58 
37-41 
47-52 

1.2-0.7 
0.904 

ranges have been chosen with 1026 reflections in each 
one: a full-angle refinement up to sin 0/A = 0.9 A -1, 
a low-order refinement up to sin 0/)t = 0.6/~-1 and 
a high-order one with 0 .7<s in  0 / h < l . 0 / ~  -1. A 
similar process has been performed with first-order 
contributions and we compare the main results in 
Table 1. Variations in positional parameters of non-H 
atoms are of the same order of accuracy in crystallo- 
graphic work and are alike for first and second order 
in spite of the smaller magnitude of second-order 
correction factors. On the contrary, variations for 
H-atom coordinates are greater for second-order 
refinements, a result that agrees with the conclusions 
drawn from the difference Fourier maps. 

Thermal parameters present a decrease for both 
first- and second-order refinements. For first order 
the parameters are smaller at high angles because 
correction factors are large and 1 + a~(G) cannot be 
adjusted to a temperature factor with exponential 
form as well as in full angle or low-order cases. 
Maximum deviations for thermal parameters are very 
close to average, indicating that the effect is more 
important for the translational rigid-body tensor T 
than the librational L. This seems to confirm the 
proposal from the recent project report on the com- 
parison of structural parameters for oxalic acid dihy- 
drate obtained in various laboratories (Coppens 
1984), which shows the main discrepancies are in 
thermal parameters, principally on T tensors, which 
are probably due to TDS contributions. The non- 
transferability of thermal parameters from high-order 
to low-order refinement must be taken into account 
when calculating thermal parameters in accurate elec- 
tronic density studies (Dam, Harkema & Feil, 1983) 
from reflections at high values of sin 0/A where the 
influence of bonding effects over thermal parameters 
is minimized when we use a spherical-atom model. 

In the case of second-order refinements we obtain 
different values of thermal parameters depending on 
the chosen range of sin 0/A because 1 + ce2(G) does 
not adjust at all to a temperature-factor functional 
form, even at low angles; and the pattern is the inverse 

to the first-order case: the decrease is larger in high- 
order refinements. In the same way, variations in the 
scale factor are opposite in first- and second-order 
cases. 

Concluding remarks 

Positional parameters are more sensitive to second- 
than to first-order TDS intensity, especially those 
concerning hydrogen atoms. Thermal parameters are 
different for each range when the second-order TDS 
contribution is not subtracted from measurements 
and, although its influence is small for low-angle 
reflections, it is comparable to that of first-order for 
high-order refinements. So experimental intensities 
should be corrected for second-order contributions 
when calculating accurate thermal parameters from 
high-order refinements, although the best remedy is 
to work at as low a temperature as possible. 

Final agreement factors R are equal or larger for 
second-order refinements, although initial factors are 
much smaller than first-order ones, indicating a 
poorer absorption of TDS contributions in least- 
squares processes. 

As a final overall conclusion we can say that even 
when the second-order contribution is smaller than 
the first-order one, its effects may be comparable to 
first-order ones and are more equally distributed 
among different variable parameters and are not pre- 
dominantly concentrated on thermal parameters, 
which is the case for the first-order contribution. 

This work has been supported in part by the 
Spanish Government through the 'Comisi6n Asesora 
de Investigaci6n Cientffica y T6cnica'. 
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Abstract 

The contribution of homogeneous lattice deforma- 
tions (neglecting internal strains) to elastic properties 
of crystals with triclinic or higher symmetry is 
examined. The deformed lattice constants are 
expressed as functions of the components of the finite 
Lagrangian strain tensor, and their derivatives are 
calculated. Thus equations are obtained that relate 
the second-order elastic constants to first and second 
partial derivatives of the static crystal energy with 
respect to unit-cell parameters. With the assumption 
of a two-body Born-type interatomic potential, the 
energy derivatives were calculated analytically, and 
a rigid-body approximation was introduced to 
account for molecular groups in the crystal structure. 
Test computations of elastic constants were per- 
formed for MgF2 (rutile-type), benzene and naph- 
thalene, using literature potential parameters opti- 
mized on structural data; results are discussed with 
respect to adequacy of the potentials and of the 
approximations of the model used. 

Introduction 

The semi-empirical modelling of interatomic and 
intermolecular forces in crystals has been developed 
intensively in recent years, in order to reproduce and 
possibly predict various chemical-physical properties 
by computer simulations (Catlow & Mackrodt, 1982). 
In the past, this work was mainly performed by fitting 

* A preliminary account of part of this work was presented at 
the XIIIth International Congress of Crystallography, Hamburg, 
Federal Republic of Germany, 9-18 August 1984 (Catti, 1984). 
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the potential parameters to structural properties only, 
so that the least-energy atomic configuration 
approached the experimental one as closely as poss- 
ible (Busing, 1970; Kitaigorodskii, 1973; Williams, 
1981); such potentials were then proposed for deter- 
mining unknown crystal structures by minimum- 
energy search. In attempts to extend the modelling 
to other physical properties of crystals, elastic 
behaviour and vibrational spectroscopic frequencies 
are usually considered, as they are related to the slope 
changes of the energy hypersurface (in the space of 
atomic position vectors) at its minimum point. 
However, vibrational properties are accounted for by 
dynamical methods only, whereas the crystal elas- 
ticity can be related both to lattice dynamics and to 
the statics of equilibrium atomic configuration. In the 
former case a microscopic crystal deformation chang- 
ing with time is examined, through atomic oscillations 
during the propagation of an elastic wave (long- 
wavelength acoustic vibration mode); in the latter, a 
macroscopic static deformation of the crystal is 
assumed, implying atomic shifts from equilibrium 
positions that are constant with time. In both cases 
the elastic properties express the correlation between 
crystal strain and applied stress. The first full theory 
on the subject was developed by Born & Huang 
(1954). 

A previous partial approach (Catti, 1981) is exten- 
ded and the calculation of elastic constants by the 
method of crystal static deformation is considered 
here. The contribution of external strains will be taken 
into account by deriving equations that relate the 
elasticity tensor components to first and second par- 
tial derivatives of the crystal static energy with respect 
to lattice constants, calculated at zero strain, for tri- 
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