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Elastic cross sections for the scattering of 6He projectiles by 208Pb at
energies around the Coulomb barrier measured at the Cyclotron Research
Center of Louvain la Neuve (Belgium) have been analyzed using a simple
analytic expression for the elastic cross section obtained in a semiclassical
model. The results are consistent with recent Optical Model calculations.
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1. Introduction

In the last decade there has been an important development of radioac-
tive beam facilities, which has motivated an intense theoretical and experi-
mental research activity to study the scattering of exotic nuclei. A signifi-
cant part of this effort has been dedicated to low energy reactions induced
by halo nuclei. Is is found that the cross sections distributions of the elastic
scattering at energies around the Coulomb barrier show a strong reduction
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extending up to very small scattering angles [1–5]. This is a clear signa-
ture of long range reaction mechanisms that should be investigated in more
detail. In this work we present a simple semiclassical model to describe
strong absorption in elastic scattering at Coulomb barrier energies. We de-
rive an analytic expression for the elastic cross sections assuming that the
ions follow Coulomb trajectories. The final result depends on the survival
probability, which becomes energy dependent due to the kinematics of the
absorption process. The model is applied to describe the elastic scattering of
6He+208Pb recently measured at the Cyclotron Research Center at Louvain
la Neuve (Belgium). We also compare our results with optical model (OM)
calculations [5] for the same scattering system.

2. Semiclassical description

The starting point of our description is the semiclassical expression ob-
tained in [6]. In this approach the elastic cross section ( dσ

dΩ
)el can be written

as a product of a survival probability Pel and the corresponding classical
elastic cross sections ( dσ

dΩ
)class

(

dσ

dΩ

)

el

= Pel

(

dσ

dΩ

)

class

. (2.1)

In this expression the survival probability is given by

P (ξ)el = exp



−
2

~

∞
∫

−∞

W (r(t))dt



 , (2.2)

where W (r) is the imaginary part of the optical potential and ξ stands
for the parameters needed to determine the classical trajectory along which
the integral must be evaluated. Collisions between heavy ions at Coulomb
barrier energies are governed by the Coulomb potential. Therefore, the ions
would tend to follow Coulomb trajectories and we can use the Rutherford
cross section in equation (2.1) above. In this case the validity of the model
can be determined by the value of the Sommerfeld parameter [7]

η =
Z1Z2e

2

~v
≫ 1 (2.3)

with Z1, Z2 being the charge of the colliding nuclei and v the relative velocity.
For collision energies between E = 14 to 27 MeV one obtains parameter
values from ∼12 to ∼17. Using equations (2.1) and (2.2) we can write the
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quotient between elastic and Rutherford cross sections as

dσel

dσR
= Pel = exp



−
2

~

∞
∫

−∞

W (r(t))dt



 , (2.4)

where the integral must be evaluated along a classical Coulomb trajectory.
A convenient method based in the use of hyperbolic coordinates is described
in [7]. In the present work we have used as form factor for the imaginary
potential W (r)

W (r) = −W0 exp−

(

r − R

a

)

, (2.5)

where R is the potential radius an a the corresponding diffuseness. This form
factor has the advantage that it is possible to derive an analytic expression
for the integral (2.4) above. On the other hand, for large values of the relative
coordinate r, the surface potential becomes very similar to the Woods–Saxon
potential, which is commonly used in optical model calculations. This is
also a reasonable approximation at this low collision energies, where the
scattering should be dominated by peripheral reactions taking place at large
distances. Inserting (2.5) into (2.4) we get

Pel = exp



W0 exp

(

Rw

aw

)(

−
2

~

)

∞
∫

−∞

exp

(

−
r(t)

aw

)

dt



 . (2.6)

We consider the following transformation

r = a0 (ǫ cosh(u) + 1) ,

t =
a0

v
(ǫ sinh(u) + u) , (2.7)

where the parameter u varies in the range (−∞ , +∞), with u = 0 at the
point of closest approach. From this equations we get

dt =
dt

du
du =

a0

v
(ǫ cosh(u) + 1) du . (2.8)

Then, Eq. (2.6) results as follows

Pel = exp

[
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)
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The integrand in this equation is even, so it is possible to rewrite it

Pel = exp

[

W0
a0

v
exp

(

Rw − a0
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)(
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du
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. (2.10)

Taking into account (2.7), we finally obtain

log

(

dσel

dσR

)

= −4W0
a0

~v
exp

(

R − a0

a

)

[

K0

(a0

a
ǫ
)

+ ǫK1

(a0

a
ǫ
)]

, (2.11)

where a0 = Z1Z2e
2/2E is half the distance of closest approach in a head-on

collision and ǫ = 1/ sin (θ/2) is the excentricity parameter for a Coulomb
orbit of asymptotic scattering angle θ. In this expression K0(z),K1(z) are
the modified Bessel functions

Kν(z) =

∞
∫

0

e−z cosh (t) cosh (νt)dt . (2.12)

This result can be further simplified using an expansion of the Bessel func-
tions valid for large values of the argument z ≫ 1 [8]

Kν(z) ≈

√

π

2z
e−z

(

1 +
4ν2

− 1

8z
+ . . .

)

. (2.13)

It can also be shown that by retaining only the first term the result coin-
cides with the one obtained with the usual parabolic approximation to the
Coulomb trajectories around the distance of closest approach rca = a0(1+ǫ).

3. Analysis and results

Throughout the present work the semiclassical calculations have been
performed with the code MATHEMATICA [9]. We have used the values
R = 7.86 fm and a = 1.7 fm obtained in [5] from the analysis of 6He
elastic scattering by means of OM calculations. In this way the only free
parameter is the depth W0 of the imaginary potential. This parameter has
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been varied in order to optimize the fits to the angular distributions of the
elastic scattering measured at E = 14, 16, 18 and 22 MeV as reported
in [5]. We also include in our analysis the data obtained in [3]. The best fit
parameters determined at each energy along with the results of [5] are listed
in Table I. In Fig. 1 it is depicted the variation of the ratio elastic/Rutheford
cross sections with the distance of closest approach rca. The solid lines
represent the fit using the semiclassical model and the dashed lines the
results of the corresponding OM fit.
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Fig. 1. The ratio of cross sections elastic/Rutheford versus the distance of closest

approach rca (fm). See text for details.

We observe a good agreement between the semiclassical and OM calcula-
tions. As the semiclassical model has no real nuclear potential, this feature
suggests that the dispersion process is very much dominated by the imagi-
nary part of the potential. These results are also in agreement with those
in Refs. [1, 2] for the scattering of 6He by 209Bi. The χ2 values obtained in
the semiclassical analysis are slightly higher than in the optical model cal-
culations, in particular at E = 18 MeV, which is very close to the Coulomb
barrier of this scattering system. Heavy ion collisions at barrier energies
show usually strong interference effects between the Coulomb and the real
part of the nuclear potential. This term is not included in our model, so
interference effects are not reproduced.
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TABLE I

Values of the depth of the imaginary potential W0 and associated χ2 (NF is the
number of degrees of freedom) for present semiclassical calculations. The results
using Optical Model calculations are taken from [5]. See text for more details.

Semiclassical model Optical model

E(MeV) W0(MeV) χ2 W0(MeV) χ2 NF

27 9.8(5) 64 8(5) 32 31
22 9.31(12) 32 9.8(8) 32 30
18 7.19(14) 52 5(1) 46 31
16 5.54(16) 17 5(1) 17 31
14 3.1(5) 20 0(3) 41 31

4. Summary and conclusions

We present a simple semiclassical model to describe the elastic scattering
of heavy ions at low collision energies. We obtain an analytic expression
for the elastic cross sections using Coulomb trajectories and a surface form
factor for the imaginary part of the nuclear potential. We have used the
model to describe recent data on the elastic scattering of 6He by 208Pb. The
calculations reproduce the data properly and agree with the results of OM
calculations using the same geometry. This simple model can be a useful
tool to describe.
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