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Abstract
The Dam methylase of gamma-proteobacteria and the CcrM methylase of alpha-proteobacteria
catalyze an identical reaction (methylation of adenosine moieties using S-adenosyl-methionine as
methyl donor) at similar DNA targets (GATC and GANTC, respectively). Dam and CcrM are of
independent evolutionary origin. Each may have evolved from an ancestral restriction-modification
system that lost its restriction component, leaving an “orphan” methylase devoted solely to epigenetic
genome modification. Formation of 6-methyladenine lowers the thermodynamic stability of DNA
and changes DNA curvature. As a consequence, the methylation state of specific adenosine moieties
can affect DNA-protein interactions. Well known examples include binding of the replication
initiation complex to the methylated oriC, recognition of hemimethylated GATCs in newly replicated
DNA by the MutHLS mismatch repair complex, and discrimination of methylation states in
promoters and regulatory DNA motifs by RNA polymerase and transcription factors. In recent years,
Dam and CcrM have been shown to play roles in host-pathogen interactions. These roles are diverse
and only partially understood. Especially intriguing is the evidence that Dam methylation regulates
virulence genes in E. coli, Salmonella, and Yersinia at the postranscriptional level.
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Introduction
Postreplicative DNA methylation superimposes on the primary DNA sequence secondary
information that has significance for DNA transactions such as transcription, transposition,
initiation of chromosome replication, and prevention of mutations by DNA repair (reviewed
in Løbner-Olesen et al., 2005; Casadesus & Low, 2006; Wion & Casadesus, 2006; Low &
Casadesus, 2008). The most common postreplicative base methylations are N6-methyladenine
(6-meA) and 5-methylcytosine, which are found in both prokaryotes and eukaryotes, and N4-
methylcytosine which is restricted to bacteria. The chromosomes of the model gamma-
proteobacteria Escherichia coli and Salmonella enterica serovar Typhimurium (S. enterica
hereafter) contain about 20,000 6-meA residues which are the products of two distinct
methyltransferases. Most adenine methylations occur in the sequence GATC catalyzed by the
enzyme DNA adenine methyltransferase (Dam). In E. coli about 600 6-meA residues are due
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to the action of M.EcoK, part of a classical type I restriction/modification system. A third
adenine methyltransferase, YhdJ, is not produced under normal laboratory conditions, and its
role in cellular metabolism remains unknown (Broadbent et al., 2007). The adenine
methyltransferases discussed in this article are not part of a restriction/modification system and
are often referred to as orphan or solitary methyltransferases. An exception, however, is the
modification subunit of a type III DNA restriction system which regulates gene expression in
Haemophilus influenzae (Fox et al., 2007) (see below).

Another model organism that has been used to study the physiological roles of DNA adenine
methylation is Caulobacter crescentus, a member of the alpha branch of proteobacteria. In C.
crescentus, the DNA adenine methyltransferase CcrM (cell cycle-regulated methyltransferase)
recognizes and methylates the sequence GANTC, and has a role in cell-cycle regulated events
(Marczynski & Shapiro, 2002). CcrM methylation in C. crescentus and a few other members
of the alpha-proteobacteria are included in this review.

The Dam enzyme is encoded by the dam gene, and much of our knowledge about the cellular
functions of Dam came from studying dam mutants in E. coli and S. enterica. The properties
of these mutants showed that the DNA transactions most affected are Dam-directed mismatch
repair, initiation of chromosome replication, and regulation of gene expression. As discussed
below, altered gene expression patterns in dam mutants impair host-pathogen interactions. In
addition to the known examples of transcriptional regulation, there are hints that Dam
methylation may also influence gene expression by postranscriptional mechanisms. We list the
instances of postranscriptional regulation and speculative models to explain them. This article
is a companion to other recently published reviews (Løbner-Olesen et al., 2005; Casadesus &
Low, 2006; Wion & Casadesus, 2006; Heusipp et al., 2007; Low & Casadesus, 2008).

Dam methylation
The Dam methyltransferase

The E. coli Dam enzyme, which is a monomer in solution, catalyzes transfer of the methyl
group from S-adenosyl-L-methionine (SAM) to the N6 position of the adenine residue in GATC
sequences, using base flipping to position the base in the enzyme's catalytic site. The natural
substrate for the enzyme is hemimethylated DNA, where one strand is methylated and the other
is not. This is the configuration of DNA immediately behind the replication fork. Double-
stranded DNA is a better methyl acceptor than denatured DNA, and there is little difference in
the rate of methylation between unmethylated and hemimethylated DNA (Herman & Modrich,
1982). The enzyme appears to have two SAM binding sites; one is the catalytic site and the
other increases specific binding to DNA, probably through an allosteric transformation
(Bergerat et al., 1991). Dam is thought to bind the template and to slide processively along the
DNA, methylating about 55 GATC sites per binding event (Urig et al., 2002). The atomic
structure of Dam complexed with DNA has been solved to 1.89 angstrom resolution in the
presence of S-adenosyl-homocysteine (a product of the Dam reaction) (Horton et al., 2006).
The structure shows both non-specific backbone contacts and specific contacts with the GATC
bases. Importantly, the aromatic ring of Y119 intercalates into the DNA between GA and TC,
thereby flipping the adenine into the enzyme's active site. The unpaired T residue can adopt
an intrahelical or extrahelical position. Four other important contacts are made: K9 to G, L122
and P134 to C and by R124 to T. These and flanking phosphate contacts by conserved residues
(R95, N126, N132, and R137) position Dam on the DNA duplex.

There are about 130 molecules of Dam per E. coli cell, and this level is optimal to allow a
period of time between synthesis of the extending nucleotide chains and methylation of GATC
sequences within them (Boye et al., 1992). The actual time between synthesis and methylation
can be rapid for plasmid molecules (2–4 sec) (Stancheva et al., 1999) or about 1 min for
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chromosomal DNA in slow-growing cells with a doubling time of about 100 min (Campbell
& Kleckner, 1988). Increases or decreases in the number of Dam molecules can profoundly
alter the physiological properties of the cell (see below). Adenine methylation lowers the
thermodynamical stability of DNA and alters DNA curvature, thereby affecting DNA-protein
interactions at certain GATC-containing DNA motifs (Wion & Casadesus, 2006). Steric
hindrance of protein binding by the methyl group is also conceivable (Wion & Casadesus,
2006).

The cellular level of Dam is regulated mainly by transcription. The dam gene transcripts arise
from five distinct promoters. The major dam promoter (P2) is located 3 kb upstream of the
gene (Løbner-Olesen et al., 1992), and is regulated by growth rate: the faster the growth rate
the greater the level of transcript. This makes sense for Dam as fast growing cells, which contain
multiple replication origins, are expected to require a greater concentration of the enzyme than
slow growing ones which contain few replication origins. Dam is a substrate for the Lon
protease, and there might be regulation of the enzyme level by this mechanism (Calmann &
Marinus, 2003).

Dam competes with two other proteins, MutH and SeqA, for hemimethylated GATC substrate
sites. These two proteins act before Dam to participate in removal of replication errors (MutH,
see below) and to form the compacted and properly supercoiled chromosome structure for the
nucleoid (SeqA). Increasing the cellular level of Dam causes a decrease in the amount of
hemimethylated DNA, and prevents these two proteins from carrying out their functions,
leading to an increased mutation rate and a change in supercoiling of the chromosome,
respectively (Herman & Modrich, 1981; Marinus et al., 1984; Løbner-Olesen et al., 2003).

Although Dam methylase is a highly processive enzyme, it may become less processive at
GATC sites flanked by specific DNA sequences (Peterson & Reich, 2006). Reduced
processivity may allow competition between Dam and specific DNA binding proteins, thus
permitting the formation of nonmethylated GATCs. For instance, the E. coli chromosome
contains about 36 specific, unmethylated dam sites (Ringquist & Smith, 1992; Wang & Church,
1992; Hale et al., 1994; Tavazoie & Church, 1998). The number of unmethylated sites in the
chromosome varies depending on growth phase and growth rate, suggesting that the proteins
which bind to them could be involved in gene expression or in the maintenance of chromosome
structure. The unmethylated dam sites appear to be mostly (Ringquist & Smith, 1992) or
completely (Palmer & Marinus, 1994) modified in strains overproducing Dam, suggesting that
the enzyme competes with other DNA binding proteins at these specific sites. Evidence for
competition between Dam and other DNA binding proteins at several unmethylated sites has
been obtained, as discussed in more detail below (Regulation of Gene Expression).
Alternatively or in addition, some GATC sites in DNA structures [e.g., non-B-form DNA such
as H-DNA (Parniewski et al., 1990)] are relatively resistant to methylation at the normal
cellular level of the enzyme. Palindromic structures containing GATCs are also relatively
resistant to Dam methylation (Allers & Leach, 1995).

In addition to the unmethylated GATC sites discussed above, persistent hemimethylated
sequences have been detected in the chromosome (Ogden et al., 1988; Campbell & Kleckner,
1990). These are distinct from the transiently hemimethylated GATC sites which occur
immediately behind the replication fork due to the time lag between DNA replication and Dam
methylation. The persistent hemimethylated sites are discussed in more detail below (Initiation
of Chromosome Replication).

Dam-directed mismatch repair
Errors that arise from DNA replication need to be removed from the newly synthesized DNA
strand, and not from the parental strand. In E. coli and S. enterica, this discrimination is

Marinus and Casadesus Page 3

FEMS Microbiol Rev. Author manuscript; available in PMC 2010 September 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



achieved by virtue of the hemimethylated state of DNA behind the replication fork: the newly
synthesized DNA is not methylated but the parental strand is methylated (Pukkila et al.,
1983). The base mismatch formed by a replication error (e.g., G-T) is recognized and bound
by the MutS protein which recruits the MutL protein (a molecular matchmaker) to form a
ternary complex with MutH. The latent endonuclease activity of MutH is unmasked by the
complex, and the enzyme cleaves the unmethylated strand 5' to the G at a nearby GATC site.
MutH is then displaced from the complex by the UvrD helicase. UvrD unwinds DNA and the
exposed single strand is degraded by exonucleases until the mismatch is removed. The resultant
gap is filled in by DNA polymerase III holoenzyme, and the is nick sealed by DNA ligase.
Finally the hemimethylated GATC is symmetrically methylated by Dam (reviewed in Iyer et
al., 2006). Since MutH is active on hemimethylated, but not fully methylated DNA, mismatch
repair action is confined to the hemimethylated region behind the replication fork.

Among the evidence supporting the above model is that lack of Dam methylation and
overproduction of Dam both lead to the same result: an increase in spontaneous mutation
frequency (Marinus & Morris, 1974; Herman & Modrich, 1981). Overproduction of Dam leads
to premature methylation of new DNA, thereby preventing MutH action if a mismatch is
present. In turn, lack of Dam results in loss of strand discrimination, leading to use of the
parental strand as template for mismatch repair with a ½ probability.

Single- and double-strand breaks have been detected in the chromosome of dam mutants as a
consequence of mismatch repair (Marinus & Morris, 1974; Wang & Smith, 1986).
Homologous recombination is required to repair the double-strand breaks, and this explains
why mutations inactivating homologous recombination are synthetically lethal in a dam mutant
background (Marinus, 2000).

Initiation of Chromosome Replication
As mentioned above, persistent hemimethylated sites have been detected at the origin of
chromosome replication, oriC, and the region surrounding it (Campbell & Kleckner, 1990).
This region includes the dnaA gene which is located 43 kb from oriC. DnaA initiates
chromosome replication by binding to oriC and facilitating duplex opening to load DnaB
helicase and DNA polymerase III holoenzyme. The persistence of the hemimethylated state is
due to the high density of GATC sequences in oriC (11 in 245 bp) and in the promoter region
of dnaA (8 in 219 bp), providing multiple binding sites for the SeqA protein. The SeqA-induced
hemimethylated state in this region of the chromosome lasts for about one-third of the cell
cycle (“sequestration”), but the mechanism by which it is relieved is not known. The purpose
of sequestration is to prevent re-initiation from oriC from occurring more than once per cell
cycle. For initiation to occur most efficiently, oriC and the dnaA promoter region must be fully
methylated. This also contributes to ensuring that initiation occurs only once per cell cycle
(Braun et al., 1985; Yamaki et al., 1988). In Salmonella enterica, SeqA may play replication-
related roles similar to those described in E. coli (Prieto et al., 2007). In V. cholerae, both Dam
methylation and SeqA are essential (Julio et al., 2001; Saint-Dic et al., 2008), and SeqA
overproduction causes DNA replication arrest (Saint-Dic et al., 2008).

In fast growing E. coli or S. enterica cells, the time required for chromosome replication
exceeds the doubling time. Under such conditions, E. coli and S. enterica cells contain multiple
copies of oriC due to initiations that occurred two or three generations ago. These origins fire
simultaneously during the cell cycle leading to synchronous initiation, which is thought to be
due to the immediate release of DnaA from an origin after initiation (reviewed in Nielsen &
Løbner-Olesen, 2008). This release will temporarily increase the DnaA/oriC ratio in wild type
cells for the remaining fully methylated origins. After initiation, other mechanisms ensure that
DnaA is not in the proper conformation for initiation. Among these mechanisms is a reduction
in transcription of the dnaA gene. Sequestration by SeqA after initiation keeps the dnaA
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promoter region in a hemimethylated state which reduces transcription initiation because the
dnaA promoter GATC sequences need to be fully methylated for maximal expression (Braun
et al., 1985).

In E. coli dam cells there is no sequestration by SeqA; consequently, DnaA can immediately
rebind origins after the first initiation event, and initiate a second time when the concentration
of the active form of DnaA is high enough. Transcription from the dnaA gene continues
throughout the cell cycle although at a reduced level. Dam methylation, therefore, is not
essential for replication initiation; rather the cell uses methylation to discriminate between old
and new origins.

Regulation of Gene Expression
Since the state of GATC sites (methylated, unmethylated, hemimethylated) can affect specific
binding of DpnI (cuts methylated DNA), DpnII (cuts unmethylated DNA), Dam, SeqA and
MutH, then it is not surprising that the presence of this tetranucleotide in promoter or regulatory
sequences can affect gene expression by regulating binding of RNA polymerase or
transcriptional regulators. The promoter region of the dnaA gene discussed above, for example,
is maximally active in the fully methylated state, consistent with its biological role. In contrast,
there is evidence that specific protein binding yields about 36 unmethylated GATCs in the E.
coli chromosome (reviewed in detail by Casadesus & Low, 2006). Nine such GATCs are in
the cyclic AMP binding protein (CAP) binding sites preceding the mtlA, cdd, flhD, gcd,
ycdZ, yffE, ppiA, and proP operons (Wang & Church, 1992), suggesting that gene expression
might be modulated by Dam methylation through differential CAP binding. Other genes with
GATCs that overlap with protein binding sites are: hrsA, kdgT (Fnr), pspA, yjdG (IHF), fep
(Fur), carA (CarP, IHF), agn43 (flu) (OxyR), ppiA (Lrp, CAP), and yhiP (Lrp) (Hale et al.,
1994; Tavazoie & Church, 1998). Data supporting specific binding of a regulatory protein
either in vivo or in vitro are only available for a fraction of the genes listed. Additional
unmethylated GATC sites were found in the non-coding regions of rspA, ydjL, yahM, bhsA,
yjdD, yhiP, yiaK, yidX, and yihU/V genes (Hale et al., 1994; Tavazoie & Church, 1998),
although their significance is not known.

Studies on the pap operon have provided the most detailed evidence that unmethylated GATCs
are involved in transcriptional control (reviewed in Casadesus & Low, 2006). Pyelonephritis-
associated pilus (Pap) expression is regulated by a phase variation mechanism in which
individual cells either express pili (phase-on) or not (phase-off). When Pap pilus gene
expression is in the phase-off state, GATC1028 is fully methylated and GATC1130 is
unmethylated. Conversely, in the phase-on state, the methylation state at these two sites is
reversed. In a strain overproducing Dam, the transition from phase-off to phase-on is prevented,
whereas in a dam mutant the opposite transition does not occur. The mechanism of phase
variation involves competition between Dam and the transcriptional activators Lrp and PapI.
Lrp is required for methylation protection of GATC1130, and both Lrp and PapI are required
for protection of GATC1028 (Casadesus & Low, 2006). Other pilus systems also appear to be
under Dam control, but they have not been analyzed as deeply as pap (Casadesus & Low,
2006). Formation of Dam methylation patterns also regulates the agn43 gene of E. coli, which
encodes a non-fimbrial adhesin (Henderson & Owen, 1999; Waldron et al., 2002; Wallecha
et al., 2002).

In addition to unmethylated sites, there is also evidence that hemimethylated GATCs can
control gene expression. Transposition of Tn10 is regulated by the methylation state of two
specific GATC sites in IS10 right (Roberts et al., 1985). Overproduction of Dam decreases
transposition, whereas it is increased in a dam mutant. One of the GATC sites overlaps the -10
region of the transposase (tnp) promoter, while the other is near the inner end of IS10 in the
target area for transposase action. In DNA that is not being replicated, these sites are methylated
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and inert for transposition. Upon replication, these sites become hemimethylated but only one
of the hemimethylated species is activated for transposition. In a wild-type strain, the
transposase promoter is only active in the IS10 species that presents methylation of the
transposase coding strand and unmethylation of the non-coding strand. Coupling of transposase
synthesis and activity to hemimethylation implies that transposition is repressed for most of
the cell cycle, and can only be induced when the element is replicated. The asymmetry imposed
at the replication fork means that only one of the two copies of the element can transpose.
Hence one copy can remain in place while the other finds an alternative location. Coupling
transposition to replication may help to prevent potentially deleterious effects of excessive
transposition (Roberts et al., 1985). Other transposons such as Tn5 and Tn903 and the insertion
element IS3 also use Dam methylation to control transposition (Curcio & Derbyshire, 2003).

Another case of transcriptional activation by strand-specific hemimethylation has been
described in the traJ gene of the S. enterica virulence plasmid, albeit with the difference that
the regulatory GATC is not located in the promoter itself but in an upstream binding site for
the transcriptional activator Lrp (Camacho & Casadesus, 2002). Another difference is that the
active configuration is opposite to that of IS10: methylation of the traJ non-coding strand
permits Lrp binding and subsequent traJ transcription, but methylation of the coding strand
does not (Camacho & Casadesus, 2005).

Several E. coli promoters have GATC sites in their −10 or −35 regions. These include promoter
regions for the sulA, trpS, trpR, tyrR, and glnS genes, and expression of these genes is increased
in dam mutants (reviewed by Plumbridge, 1987; Barras & Marinus, 1989; Marinus, 1996). It
is not known whether expression of these genes is increased in a hemimethylated configuration,
but even if it were the physiological role for coupling their transcription to replication is not
obvious.

In the finP gene of the Salmonella virulence plasmid, which encodes a small regulatory RNA,
Dam methylation prevents repression by the nucleoid protein H-NS (Camacho et al., 2005).
In contrast, the overlapping traJ gene is also repressed by H-NS but in a Dam-independent
manner. Protection from H-NS repression is still observed when a GATC that overlaps the −10
module of the finP promoter is eliminated by site-directed mutagenesis (Camacho et al.,
2005). This observation suggests that the effect of Dam methylation on finP transcription is
not local but global, perhaps reflecting, among several possibilities, the existence of structural
differences between dam+ and dam nucleoids.

Global gene expression analysis comparing wild type and dam mutants using microarrays has
been performed in E. coli and S. enterica (Oshima et al., 2002; Løbner-Olesen et al., 2003;
Robbins-Manke et al., 2005; Balbontin et al., 2006). The results are difficult to compare given
the differences in strain backgrounds, media, arrays, and other experimental conditions, as well
as in the goals of the experiments. However, upregulation of SOS gene expression in the
dam background was detected in each case, and decreased motility in two out of three studies.

Dam methylation also occurs in many bacteriophages that infect enterobacteria. The regulation
of phage genes by Dam and the role of Dam methylation in P1 development have been reviewed
elsewhere (Marinus, 1996; Wion & Casadesus, 2006).

CcrM methylation
Caulobacter

Caulobacter crescentus, a member of the alpha-proteobacteria, has defined morphological
stages in its life cycle. The DNA methyltransferase in this organism is CcrM, which methylates
adenine moieties in the sequence GANTC (Marczynski & Shapiro, 2002). Although the DNA
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methylation target of CcrM is similar to that of Dam, CcrM belongs to a different family of
methyltransferases. In contrast to Dam, CcrM is more active on hemimethylated than
unmethylated DNA. However, like Dam, CcrM is highly processive. Unlike Dam in E. coli or
S. enterica, CcrM is an essential function in Caulobacter, and is not present at all stages of the
life cycle. Both Dam and CcrM are substrates for the Lon protease (Reisenauer et al., 1999).

The life cycle of Caulobacter involves differentiation into two cell types, stalked cells and
swarmers. Chromosome replication occurs only in stalked cells, and involves the sequential
action of three key unstable regulators: DnaA, GcrA, and CtrA (Collier et al., 2007). The genes
for these regulators are located sequentially on the chromosome, with dnaA closer to the origin
of replication (Cori) and ctrA at the most distal location. The action of these regulators, acting
as a transcriptional cascade, is determined by the state of methylation of chromosomal DNA.
DnaA initiates chromosome replication at the fully methylated Cori in a manner similar to that
described in E. coli. Since CcrM is not present at this stage, replication produces two
hemimethylated daughter DNA molecules during fork progression. As in E. coli, expression
of the dnaA gene, which lies near Cori, is attenuated on hemimethylated DNA, thereby reducing
the possibility of premature initiation. DnaA also activates transcription of the gcrA gene, the
product of which controls transcription of replication genes encoding DNA polymerase III
holoenzyme, DNA helicase and primase. GcrA in turn activates transcription of the ctrA gene,
which contains two GANTC sequences in the upstream regulatory region of the promoter and
one close to the −35 hexamer (Collier et al., 2006). Again, this promoter is active only when
hemimethylated; expression of the gene is, therefore, coordinated with the cell cycle
(Reisenauer & Shapiro, 2002). CtrA binds Cori to prevent premature initiation. In addition,
CtrA activates transcription of the ftsZ and ccrM genes, and represses transcription of gcrA.
FtsZ is a key cell division protein and its CtrA-controlled production can couple chromosome
replication and cell division. Transcription of the ccrM gene occurs only in the hemimethylated
state, and is activated by CtrA binding to the upstream regulatory region of ccrM (Collier et
al., 2007). This arrangement ensures that the concentration of CcrM increases toward the end
of the replication cycle. The ccrM promoter also contains two GANTC sequences presumably
ensuring autoregulation of the gene (Reisenauer, et al., 1999). The production of CcrM is
followed by methylation of the daughter chromosomes, which silences the ctrA and ccrM genes
and activates transcription of dnaA. CcrM also prepares Cori for replication initiation by fully
methylating it.

After cell division, the DNA of both cell types is fully methylated (Marczynski & Shapiro,
2002). In the swarmer cell, CtrA remains bound to Cori and the CcrM protein is degraded,
preventing further methylation and thereby ensuring that the origin is hemimethylated and inert
for further initiation. In the stalked cell, however, CtrA is destroyed by proteolysis, allowing
initiation to proceed on the fully methylated Cori (Marczynski & Shapiro, 2002).

Other bacteria
At least 20 other members of the alpha subdivision of proteobacteria contain CcrM homologs
(Reisenauer et al., 1999). In Agrobacterium tumefaciens, Sinorhizobium (Rhizobium)
meliloti, and Brucella abortus, the ccrM gene is indeed essential for viability (Wright et al.,
1997; Robertson et al., 2000; Kahng & Shapiro, 2001), and the ccrM genes from S. meliloti
and C. crescentus are functionally interchangeable (Wright et al., 1997). When overproduced
in any of these organisms, CcrM causes defects in cell division, cell morphology and initiation
of DNA replication. All the data above suggest that the physiological functions of CcrM in
Caulobacter might be conserved in these other species.
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Roles of DNA adenine methylation in host-pathogen interactions
Evidence for a relationship between Dam methylation and bacterial virulence was first
provided by the regulation of adhesin-encoding genes like the pap operon of E. coli and others
(Casadesus & Low, 2006). However, the role of Dam methylation in the infection of model
animals was first investigated in Salmonella enterica, and later in other pathogens (Heusipp
et al., 2007). A simple genetic approach was to compare the LD50 of a dam mutant with that
of the wild-type. Additional details about the infection process were provided by examination
of animal organs and in vitro studies using cell cultures. In bacterial species where DNA
adenine methylation is essential, an alternative strategy was to examine the effects of Dam and
CcrM methylase overproduction (see below). Although not known to occur in nature, Dam
methylase overproduction provides a useful laboratory tool, both to overcome viability
problems and to detect cases in which undermethylation is a critical factor for gene expression.
However, Dam overproduction in E. coli leads to a seqA phenotype (Løbner-Olesen et al.,
2003). If this is also the case in other organisms, certain phenotypic effects seen upon Dam
overproduction might be the result of SeqA deficiency.

Salmonella enterica
Dam methylation is an essential factor in Salmonella virulence, and its absence causes severe
attenuation in the mouse model: the LD50 of a dam mutant is 10,000-fold higher than that of
the wild type by the oral route, and 1,000-fold higher intraperitoneally (Garcia-del Portillo et
al., 1999; Heithoff et al., 1999). Lack of SeqA causes a more modest decrease in Salmonella
virulence, and attenuation is only observed by the oral route (Prieto et al., 2007). In the last
few years, a combination of genetic screens, transcriptomic and proteomic analyses, cell culture
studies and organ analysis upon mouse infection have provided insights on the causes
underlying the extreme attenuation of Salmonella dam mutants. To date, the following
virulence-related defects have been described:

(i) Salmonella dam cells show reduced capacity to interact with the intestinal epithelium, due
to impaired epithelial cell invasion (Garcia-del Portillo et al., 1999). The main cause of this
defect seems to be inefficient activation of genes in pathogenicity island I (SPI-1) (Balbontin
et al., 2006). Inefficient SPI-1 expression in dam mutants reflects the existence of lowered
levels of the main SPI-1 transcriptional activator, HilD. However, Dam-dependent regulation
of hilD appears to be postranscriptional, and therefore indirect (López-Garrido, J., Casadesus,
J., unpublished data).

(ii) Reduced motility, another relevant defect of Salmonella dam mutants, may also contribute
to inefficient invasion. Transcriptome analysis has shown that dam mutants have multiple
alterations in the expression of flagellar genes, in a pattern too complex to be readily deciphered
or even modeled (Balbontin et al., 2006).

(ii) Lack of Dam methylation causes envelope instability, with release of outer membrane
vesicles and leakage of proteins (Pucciarelli et al., 2002). Vesicle release has been tentatively
associated with impaired binding of Tol and PAL envelope proteins to peptidoglycan. Protein
leakage may also be a side effect of envelope fragility. One factor contributing to envelope
instability in dam mutants may be reduced transcription of the lppB gene, which encodes Braun
lipoprotein (Balbontin et al., 2006).

(iii) The std fimbrial operon, which is tightly repressed under laboratory conditions, undergoes
derepression in dam mutants, and the StdA fimbrial protein becomes one of the most abundant
proteins detected in cell extracts (Alonso et al., 2005). Ectopic production of Std fimbriae
contributes to virulence attenuation in S. enterica dam mutants, as indicated by the observation
that an stdA dam strain outcompetes a dam strain during mouse infection (Jakomin et al.,
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2008). It is possible that massive expression of Std fimbriae in dam mutants may interfere with
signal exchange between the host and the pathogen, and may additionally overalert the host
immune system. Dam methylation probably controls binding of transcriptional regulators to
the std upstream activating sequence (UAS), which contains a cluster of 3 GATC sites. Genetic
screens for std regulators have identified the GATC-binding protein SeqA and RosE, an
homolog of the arginine repressor ArgR, as repressors of std expression (Chessa et al., 2008;
Jakomin et al., 2008). In turn, the poorly known HdfR protein, a LysR relative, is an activator
of std expression in dam and seqA mutants. Interestingly, derepression of the std operon by
dam and seqA mutations occurs in only a fraction of the bacterial culture, suggesting the
occurrence of either bistable expression or phase variation (Jakomin et al., 2008).

(iv) Salmonella dam mutants are extremely sensitive to bile salts, a defect that may compromise
their survival in the hepatobiliary tract (Heithoff et al., 2001; Pucciarelli et al., 2002). The main
extracellular niche for Salmonella in persistent infections and during chronic carriage is the
gall bladder, which contains high concentrations of bile. Because of their envelope defects,
dam mutants are more sensitive to the detergent activity of bile salts. In addition, lack of DNA
strand discrimination for mismatch repair makes dam mutants more sensitive to the DNA
damaging activity of bile salts (Prieto et al., 2004). The relevance of bile-induced DNA damage
during animal infection is illustrated by the ample repertoire of Salmonella DNA repair
functions required to cope with bile-induced DNA lesions: besides Dam-directed mismatch
repair, bile resistance also requires base excision repair, SOS translesion synthesis, and RecB-
mediated recombinational repair (Prieto et al., 2006). Although bile salts are weak mutagens,
long exposure to high concentrations of bile (e. g., in persistent and chronic infections) might
increase genetic polymorphism in Salmonella populations. This view is consistent with the
high frequency of chromosome rearrangements known to occur in Salmonella typhi (Echeita
& Usera, 1998) and other host-adapted serovars (Liu & Sanderson, 1995; Liu & Sanderson,
1998).

Enterohemorrhagic Escherichia coli OH157:O7
A critical step during colonization and pathogenesis by enterohemorrhagic E. coli is the
formation of “pedestals” that result from the accumulation of actin filaments beneath adherent
bacteria, elevating them above the surrounding cell surfaces (Hayward et al., 2006). Wild type
E. coli O157:H7 show relatively poor pedestal formation on cultured mammalian cell lines
while deletion of the dam gene results in a dramatic increase in both adherence and actin
pedestal formation (Campellone et al., 2007). Increases in adherence and pedestal formation
in vitro correlate with elevated protein levels of intimin, Tir, and another secreted protein,
EspFU.

Dam methylation plays an additional role in enterohemorrhagic E. coli by controlling
production of a virulence factor, Shiga toxin 2 (Stx2) (Murphy et al., 2008). This toxin is
encoded by a lambdoid prophage that has a relatively low threshold for induction. During
infection, prophage induction may occur in a fraction of the bacterial population, thereby
permitting Stx2 release.

Haemophilus influenzae
Certain strains of Haemophilus influenzae, a causative agent of respiratory tract infections,
require Dam methylation for efficient invasion of both endothelial and epithelial cell lines
(Watson et al., 2004). In other strains, however, dam mutants are fully invasive. The cause of
these strain-specific differences is not known (Watson et al., 2004).

In addition to Dam, H. influenzae possesses a DNA methyltransferase (Mod) which is part of
a type III restriction-modification system and undergoes phase-variation expression due to
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DNA repeat instability. Mod has been shown to regulate a number of H. influenzae genes, some
positively and others negatively (Srikhanta et al., 2005). Phase variation of Mod expression
may cause random switching of genes such as dnaK, potentially involved in cell adhesion,
hbpA, which encodes a heme transport protein, and several genes for surface proteins of
unkown function. Phase variation of Mod may thus provide a mechanism for the generation
of diversity in H. influenzae populations by controlling a phase variable regulon or
“phasevarion” (Srikhanta et al., 2005; Fox et al., 2007). Systems of this kind might exist in
other bacterial pathogens as Helicobacter pylori and Neisseria meningitidis.

Pasteurella multocida
In the bovine respiratory pathogen Pasteurella multocida, overproduction of Dam methylase
causes attenuation in the mouse model, suggesting that Dam methylation may control the
expression of virulence genes (Chen et al., 2003). It is not known whether the Pasteurella Dam
methylase, which is closely related to that of H. influenzae, is essential or dispensable.

Actinobacillus actinomycetemcomitans
Synthesis and secretion of leucotoxin, a potential virulence factor related to RTX poreforming
hemolysins, is exacerbated in dam mutants of the periodontal disease agent Actinobacillus
actinomycetemcomitans. Furthermore, A. actinomycetemcomitans dam mutants show reduced
invasion of epithelial cells (Wu et al., 2006).

Klebsiella pneumoniae
In Klebsiella pneumoniae, an opportunistic pathogen causing respiratory and urinary tract
infections, lack of Dam methylation causes partial attenuation upon intranasal or
intraperitoneal inoculation of mice (Mehling et al., 2007). The mild attenuation of Klebsiella
dam mutants has not been hitherto correlated with altered expression of known virulence genes.

Campylobacter jejuni
Knockout of a putative DNA methyltransferase gene (cj1461) in the intestinal pathogen
Campylobacter jejuni causes reduced motility, aberrant flagellar appearance, and
hyperadherence to epithelial cells accompanied by reduced invasion (Kim et al., 2008). Some
of these traits are reminiscent of virulence-associated defects previously described in
Salmonella dam mutants. However, the putative Cj1461 protein shows little homology with
Dam methylase, and neither its DNA methylation activity nor its DNA target have been so far
determined.

Yersinia enterocolitica
Dam methylation is essential in certain strains of Yersinia, and dispensable in others (Julio et
al., 2001; Robinson et al., 2005). In Yersinia strains in which Dam methylation is essential,
Dam methylase overproduction does not impair growth (Julio et al., 2001). However, Dam-
overproducing strains are attenuated in the mouse model, and their avirulent phenotype is
pleiotropic (Julio et al., 2001; Julio et al., 2002). A relevant defect of Y. enterocolitica Dam
overproducers is enhanced invasion capacity, probably associated to transcriptional alterations
in invasin genes inv and ail, and to changes in the composition of lipopolysaccharide (LPS)
O-antigen (Fälker et al., 2007). The latter phenotype may involve postranscriptional control
(see below). Furthermore, Y. enterocolitica Dam overproducing-strains show impaired
secretion of Yop effector proteins, which become insensitive to Ca2+-mediated control (Julio
et al., 2002). The latter defect is associated with enhanced degradation of LcrG, which in turn
reflects increased transcription of the gene encoding ClpP protease (Fälker et al., 2005). An
additional trait that may contribute to attenuation in Dam-overproducing strains is enhanced
bacterial motility (Fälker et al., 2007). Some such defects have been also described in viable
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dam mutants of the related species Y. pseudotuberculosis and Y. pestis (Robinson et al.,
2005; Taylor et al., 2005).

Vibrio cholerae
Vibrio cholerae mutants lacking Dam methylase are not viable. However, as described above
for Y. enterocolitica, Dam overproduction does not impair bacterial growth. V. cholerae
overproducers of Dam methylase are attenuated in the suckling mouse model, but the causes
of attenuation remain to be established (Julio et al., 2001).

Aeromonas hydrophila
Aeromonas, a promiscuous pathogen and humans and animals, requires Dam methylase for
viability. However, as in similar cases reported above, investigators have been able to examine
the involvement of Dam methylation in pathogenesis by constructing Dam methylase-
overproducing strains (Erova et al., 2006). Attenuation was observed upon intraperitoneal
infection of mice with a Dam overproducer, and several virulence defects were identified in
vitro: (i) reduced cytotoxicity associated to type 3 secretion; (ii) reduced motility; and (iii)
enhanced cytotoxic and hemolytic activities associated to the Act enterotoxin, which is secreted
by a type 2 secretion system. All virulence-related alterations associated to Dam methylase
overproduction disappeared when critical amino acids within its DNA methylation motif were
eliminated, thereby confirming that DNA adenine methylation is involved in Aeromonas
hydrophila pathogenesis (Erova et al., 2006).

Brucella abortus
Overproduction of CcrM methylase decreases proliferation of B. abortus inside murine
macrophages, suggesting that CcrM methylation may play a role in intracellular replication,
which is a hallmark of Brucella infections (Robertson et al., 2000). Because CcrM is essential
in this species, specific inhibitors of the enzyme have been sought and considered as potential
antimicrobials (Benkovic et al., 2005).

GATC regulation by DNA adenine methylation: Facts
Very Short Patch (VSP) Repair in Escherichia coli

A system that altered the frequency of recombinants by correcting T-G mismatches with repair
tracts shorter than 20 bp was discovered during a study of homologous recombination in
bacteriophage lambda, and termed “very short patch” (VSP) repair (Lieb, 1983). A hotspot for
C to T transitions in the lambda cI gene turned out to be located in a DNA cytosine
methyltransferase recognition sequence, CCAGG, altering it to CTAGG (Coulondre et al.,
1978). Deamination of 5-methylcytosine (5-meC) yields thymine, and thus creates a T-G
mismatch. Mutations due to 5-meC deamination occur in stationary phase, but not in
exponentially growing bacteria, and the role of VSP repair is to prevent the resulting mutagenic
event by restoring C-G pairs prior to DNA replication (Lieb & Bhagwat, 1996; Lieb & Rehmat,
1997). T-G mismatches are recognized and cleaved 5' to the T by the Vsr endonuclease
(Hennecke et al., 1991); conventional base excision repair involving DNA polymerase I and
DNA ligase then follows (Lieb & Bhagwat, 1996). There is also a requirement for the MutS
and MutL proteins of Dam-directed mismatch repair, but their role is uncertain (Bhagwat &
Lieb, 2002). The level of Vsr in the wild type is low in logarithmic phase cells, and high in
stationary phase cells as expected from the biological rationale for VSP (Macintyre et al.,
1999).

The E. coli vsr gene is in a transcriptional unit with the dcm (DNA cytosine methyltransferase)
gene. The 3' end of the dcm gene is overlapped by the first six codons of the vsr gene, which
is in a +1 register relative to dcm (Dar & Bhagwat, 1993). Such an overlap is uncommon in
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E. coli, and in this case may serve to couple expression of these genes. Both dcm and vsr appear
to be transcribed into a single mRNA, and translation of vsr appears to be dependent upon
translation of the upstream dcm coding sequence (Dar & Bhagwat, 1993). However, western
analysis showed that the Vsr level varies with growth rate, while the level of Dcm does not
change during the exponential and stationary phases of growth. The mechanism by which this
is achieved is not known. The location of the promoter and its mode of regulation are also
unknown.

Surprisingly, VSP repair is reduced in E. coli dam mutants as measured by an increase in the
mutation frequency of CCAGG to CTAGG (Bell & Cupples, 2001). Western blotting indicated
that, unlike the wildtype, there was no increase in Vsr level upon entrance into the stationary
phase in dam cultures. However, the level of Dcm remained unaltered. Since the vsr and
dcm genes are co-transcribed, it was concluded that regulation of Vsr in a dam mutant is
probably achieved by a postranslational mechanism (Bell & Cupples, 2001). Because the vsr
mRNA levels in dam+ and dam strains were not determined, an effect on mRNA stability
cannot be excluded.

Pedestal formation in enterohemorrhagic E. coli O157:H7
As described in the host-pathogen interactions section above, dam mutants of
enterohemorrhagic E. coli show increased adherence and pedestal formation in vitro, which is
correlated with elevated protein levels of three effector proteins: intimin, Tir, and EspFU.
However, the increased levels of effectors did not result from an increase in mRNA levels as
measured by microarrays, northerns and RT-PCR, suggesting a post-transcriptional
mechanism of regulation (Campellone et al., 2007). To further investigate the basis of this
observation, an E. coli O157:H7 hfq mutant was constructed, and pedestal formation was as
robust as in a dam mutant (Brady, M., Leong, J.M., Marinus, M.G., unpublished data). The
hfq mutant contains an elevated level of Tir (Fenton, A., Marinus, M.G., unpublished data).

LPS composition in Yersinia enterocolitica
Dam overproduction in Yersinia enterocolitica causes numerous metabolic alterations,
including a change in the composition of LPS O-antigen, which contains increased amounts
of lipid A core without O-antigen subunits (Fälker et al., 2007; Heusipp et al., 2007). The O-
antigen gene cluster consists of two transcriptional units but the transcript levels in the Dam
overproducer, as measured by RT-PCR, of representative genes in each cluster (ddhA, gne and
rosA) was unchanged relative to wild type. Thus, the modulation of LPS structure seems to
involve an unknown postranscriptional mechanism (Fälker et al., 2007).

Transcription of S. enterica pathogenicity island SPI-1
As described in the host-pathogen interactions section above, pathogenicity island SPI-1 is
essential for virulence of S. enterica. Transcriptomic analyses of S. enterica model strain
SL1344 and dam derivatives showed that transcription of invasion genes in pathogenicity
island SPI-1 was decreased in the absence of Dam methylation (Balbontin et al., 2006). In
confirmation, using a lac transcriptional fusion to one of the SPI-1 genes (sipC), beta-
galactosidase activity was found to increase when a culture of the wild type entered the
stationary phase. In contrast, dam mutants showed a low level of expression in both the
exponential phase and the starionary phase (Balbontin et al., 2006). Transcriptional data were
recapitulated at the protein level: more SipC was found in the wild type than in dam mutants.
A similar effect of Dam methylation was found for other representative SPI-1 genes, suggesting
that the whole island might be under Dam control.

Transcriptional control of pathogenicity island SPI-1 is complex and multi-layered (reviewed
by Jones, 2005). Transcription of the hilA gene in SPI-1 appears to be central for the expression
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of the other genes on the island. Expression of hilA is activated by RtsA, HilC and HilD, the
latter being the more important. HilD is a member of the AraC/XylS family of transcriptional
activators. Expression of hilD is in turn modulated by the products of the csrA and csrB genes,
which have opposite effects on transcript levels. CsrA destabilizes specific mRNA molecules
by interactions at the ribosome binding site. The csrB gene encodes an untranslated RNA that
binds CsrA to prevent mRNA degradation. While deletion of the csrB gene has only a mild
effect on hilA transcription and none on invasion, deletion of csrA or overexpression of CsrA
both reduce hilA transcription about 10-fold, and invasion of epithelial cells about 100-fold.
CsrA, therefore, appears to have both positive and negative regulatory effects on SPI-1 gene
expression.

GATC regulation by DNA adenine methylation: Hypotheses
Proteolysis

Postranscriptional regulation can occur at the level of the message and/or at the protein level.
There are many examples of “unstable” regulatory proteins whose concentration is determined
by the balance between synthesis and degradation by specific proteases. For example, one
model for E. coli VSP repair could be that proteolysis is more active on Vsr during logarithmic
growth than in the stationary phase. This would imply that a specific protease activity is
decreased in cells approaching the stationary phase of growth. In dam mutants, this decrease
would not occur, leading to continued proteolysis. Similar arguments can be made for the other
systems described above. Whatever the mechanism of postranscriptional regulation turns out
to be, the key proteins will be subject to proteolysis. even though this may not be the primary
regulatory mechanism. For further discussion, however, we will assume that proteolysis is not
the primary mechanism of postranscriptional control.

mRNA translation
For some of the examples of postranscriptional regulation listed above (e. g., VSP repair in E.
coli), mRNA levels have not been determined, leaving open the possibility that mRNA stability
is altered in dam mutants. In other examples above, the steady-state mRNA levels have been
measured and are unchanged. An appealing model for such situations is to invoke translational
regulation through the involvement of a small RNA molecule, either an antisense RNA or a
small non-coding RNA (sRNA). An example of Dam-mediated regulation was described in
the synthesis of FinP, an antisense RNA acting on the traJ transcript (Torreblanca et al.,
1999; Camacho et al., 2005). Transcription of finP is decreased in dam mutants (Camacho et
al., 2005).. In addition to this example, microarray analysis indicates that many non-coding
regions of the E. coli chromosome show either increased or decreased transcript levels in a
dam mutant versus wild type (Campellone et al., 2007). For each example of posttranslational
regulation discussed below we offer a hypothesis invoking small RNA molecules.

The vsr transcript also includes, and is preceded by, the dcm coding sequence. While the Dcm
protein is present at the same steady-state level in both exponential and stationary phases, the
Vsr protein is induced in stationary phase (Bell & Cupples, 2001). A sRNA could be induced
upon entry into stationary phase allowing translation of the vsr gene but not affecting the
upstream dcm sequence. The sRNA could, for instance, unmask a readthrough region of the
transcript or stabilize the 3' end. This hypothesis fits with the observation that many sRNAs
are induced as cells enter the stationary phase (Majdalani et al., 2005). In dam mutants,
transcription of the particular sRNA might be downregulated, thereby preventing vsr
translation.

The EHEC tir transcript also encodes the gene (eae) encoding intimin but not that for EspFU.
Since there are examples of an sRNA molecule binding to two separate messengers, co-
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regulation of translation of espFU and tir is possible. In this case an sRNA might bind
constitutively to the mRNAs to prevent translation (negative regulation). Alternatively, some
structural feature of the mRNA might prevent translation, and the sRNA might modify it to
allow translation (positive regulation). By a signal currently unknown, transcription of the
sRNA gene might be altered when the organism finds itself at the right place in the alimentary
tract, allowing translation of the messages. In a dam mutant, synthesis of the sRNA would be
altered, allowing constitutive translation of the effector messages.

A similar type of model can be proposed for LPS composition changes in Yersinia.
Overexpression of Dam is known to alter transcription profiles such that genes not normally
expressed are activated, and these could include loci for small regulatory RNAs and/or
antisense RNAs. Such changes in sRNA or antisense RNA levels might be due to Dam
preventing SeqA to access its substrate sites. Hence, it would be interesting to analyze LPS
composition in a Yersinia seqA mutant.

For pathogenicity island SPI-1, a role for sRNA or antisense RNA could also be invoked for
one of the many regulators known to activate transcription of the island. As mentioned above,
one of these regulators is a small RNA, csrB. Increased csrB transcription in a dam mutant
could affect the level of CsrA, which in turn activates SPI-1 gene expression through HilD.
However, preliminary evidence suggests that neither csrA nor csrB are under Dam methylation
control (López-Garrido, J., Casadesus. J., unpublished data).

Most sRNA molecules require Hfq for binding to their cognate mRNAs. If the models above
require sRNAs, then the effects of dam methylation should be mirrored in an hfq mutant. A
positive correlation would support the model while a negative one would exclude Hfq-
dependent sRNAs but not antisense RNAs.

Practical uses of DNA adenine methylation: vaccines and DNA adenine
methylase inhibitors

The strong attenuation of dam mutants, combined with their capacity to persist at low levels
in animal organs (causing an almost asymptomatic infection), makes Salmonella dam strains
appropriate to be used as live vaccines. In fact, dam mutants of S. enterica have been shown
to elicit immune responses in chickens and calves with paramount efficiency (Dueger et al.,
2001; Heithoff et al., 2001; Dueger et al., 2003). An oral, live dam vaccine has been also
described in Haemophilus influenzae (Watson et al., 2004). Interestingly, a viable dam mutant
of Yersinia pseudotuberculosis was found to protect mice against infection by the wild type,
and also to cross-protect against plague (Robinson et al., 2005). An alternative and efficient
strategy for the design of live vaccines against Y. pseudotuberculosis is Dam overproduction
(Julio et al., 2002).

A negative trait that may hamper use of dam mutants as live vaccines for humans is
hypermutation, caused by lack of DNA strand discrimination for mismatch repair. In
Salmonella, lack of Dam methylation increases spontaneous mutation rates 10–15 fold
(Torreblanca & Casadesus, 1996). Dam overproduction does not provide a solution to
overcome this problem: early studies in E. coli dam mutants showed that Dam overproduction
increases mutation rates well above Dam absence (Marinus et al., 1984). Similar observations
have been made in Salmonella: expression of Dam methylase from a multicopy plasmid
increases the spontaneous mutation rate over 400-fold (Torreblanca & Casadesus, 1996).
Increased mutation rates might, however, allow the use of dam vaccines in livestock animals,
if animal health regulations permit.
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Attenuation of dam strains in a variety of human pathogens has also raised the possibility of
using Dam or CcrM methylase inhibitors as antibacterial drugs (Benkovic et al., 2005;
Mashhoon et al., 2006). In alpha-proteobacteria, such drugs would be bactericidal. In
Salmonella and other pathogens in which Dam methylation is not essential, Dam inhibitors
could be expected to attenuate virulence by transforming wild-type bacteria into phenocopies
of dam mutants. Because Dam methylation is a dispensable function in enteric bacteria,
inhibitors specifically targeted at Dam methylase should be harmless for the normal intestinal
flora. A drug of this kind should be also harmless for the host, because adenine methylation is
rare, if not absent, in mammalian cells (Ratel et al., 2006).

Whatever the fate of Dam-based vaccines and Dam inhibitors in Salmonella and other
pathogens, neither strategy can be envisaged as universally valid. Enterohemorrhagic E. coli
dam mutants show increased production of both actin pedestals and Shiga toxin (Campellone
et al., 2007; Murphy et al., 2008). They are therefore potentially more virulent, and useless as
live vaccines. In turn, administration of a Dam-inhibiting drug to infected animals might
increase enterohemorrhagic E. coli virulence. An additional potential problem is that a Dam
inhibitor might increase spontaneous mutation rate in the intestinal flora.
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Figure 1.
States of GATC site methylation in gamma-proteobacteria. DNA replication generates
hemimethylated GATC sites, usually short-lived since Dam methylation occurs shortly after
synthesis of the daughter DNA strand. At certain GATC sites, however, the default
methylation-hemimethylation cycle associated with DNA replication can be skewed by
binding of proteins that prevent DNA methylase activity. Such binding can merely delay
methylation or prevent it beyond cell division, thereby permitting daughter cells to inherit the
hemimethylated state if methylation hindrance persists. Replication of hemimethylated GATC
sites produces unmethylated DNA, generating DNA methylation patterns like those occurring
in eukaryotic cells.
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Figure 2.
Overview of the roles of 6-meA in enteric bacteria. When known, the methylation-sensitive
DNA-binding proteins involved in each process are also indicated.
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Figure 3.
Cell functions under Dam methylation control in bacterial pathogens.
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Table 1

Examples of transcriptional regulation by Dam methylation

Gene Location of regulatory GATC(s)a Protein(s) involved Active state

agn43 Operator SeqA, OxyR Methylated

dnaA Promoter SeqA, DnaA Methylated

finP Unknown H-NS Methylated

IS10 Promoter RNA polymerase Hemimethylated

mom UAS OxyR Hemimethylated

pap UAS Lrp, PapI Methylated/unmethylated pattern

std UAS SeqA, HdfR Umethylated

traJ UAS Lrp Hemimethylated

a
“Operator” is used in the classical Jacob & Monod sense, to describe a regulatory sequence for repressor binding. “UAS” is an acronym for “upstream

activating sequence”.
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Table 2

Examples of transcriptional regulation by CcrM methylation

Gene Location of regulatory GANTC(s) Protein(s) involved Active state

dnaA Promoter Unknown Methylated

ctrA Promoter GcrA Hemimethylated

ccrM Leader CtrA Hemimethylated
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Table 3

Virulence-related defects of Salmonella dam mutants

Stage of infection Virulence defect Tentative cause

Intestinal Bile sensitivity Envelope instability

MutHLS-induced DNA breakage

Deficient invasion of epithelial cells Reduced SPI-1 expression

Reduced colonization of the caecum Ectopic synthesis of Std fimbriae

Systemic Sensitivity to hydrogen peroxide MutHLS-induced DNA breakage

Reduced colonization of lymph nodes, liver and spleen Impaired expression of spv operon products

Reduced spleen colonization Ectopic synthesis of Std fimbriae
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