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Abstract. The objective of this paper is to study a perturbed linear hyper-

bolic differential equation. The first part of this work is dedicated to study

perturbation of the equilibrium (special solution) of a perturbed hyperbolic
system. On the second part we analyze the stable and the unstable manifolds

of a perturbed semilinear differential equation. We assume that the perturbed

forcing function belongs to an L2 class and that it is developed in a series of
wavelets. Then we analyze the effect of this development on the special solu-

tion of the perturbed equation. Similar study is provided for the stable and

unstable manifolds of this special solutions.

1. Introduction. The object of this paper is to study the dynamics of a class of
ODEs in infinite dimension. Assuming a hyperbolic structure of the linear part we
first study a special bounded solution in the real line of the forced equation with a
forcing f(t), that is a perturbation of the equilibrium. In the weakly nonlinear, case
if the vector field f(t, x, ε) in the variable t belongs to an L2 space we develop it in
a series using a wavelet basis. Then we analyze how this special bounded solution
inherits properties of the vector field. We also consider similar questions for the
stable and unstable manifolds of that solution.

Many classical works in Nonlinear Oscillations study this problem when the forc-
ing term is periodic, almost periodic or almost automorphic, respectively. Unfortu-
nately these classes of functions are not robust with respect to local perturbation
in time.

In a previous paper Kloeden and Rodrigues [15] studied an alternative class of
functions extending periodic and almost periodic functions which has the property
that a bounded solution of a nonautonomous ordinary differential equation belongs
to this class when the forcing term is introduced here. Specifically, the class of
functions consists of uniformly continuous functions, defined on the real line and
taking values in a Banach space. This class includes periodic, almost periodic
or almost automorphic and many nonrecurrent functions. Assuming a hyperbolic
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structure for the unperturbed linear equation and certain properties for the linear
and nonlinear parts, the existence of a special bounded entire solution, as well the
existence of stable and unstable manifolds of this solution are established. Moreover,
it is shown that this solution and these manifolds inherit the temporal behaviour
of the vector field equation. In the stable case it is shown that this special solution
is the pullback attractor of the system. A class of infinite dimensional examples
involving a linear operator consisting of a time independent part which generates a
C0-semigroup plus a small time dependent part is presented and applied to systems
of coupled heat and beam equations. Since in that class on cannot use Fourier Series
an alternative strategy was to associate to each function of the considered class a
set of sequences. Then they proved that the special solution is not more complicate
than the forcing function.

In our case we study equations of the form ẋ = Ax + f(t, x, ε) where A is
hyperbolic and f(·, x, ε) belongs to a space L2. First we consider the case when the
forcing function is f(t). When f belongs to L2, the special bounded (in R) solution
belongs to a space of bounded functions. Each function of the considered basis of
wavelets will give rise to a special solution. Therefore associated to the basis of
wavelets we will have a kind of basis of bounded functions. We develop f in a series
of wavelets and the special solution will be developed as a series of this basis of
bounded solutions.

The multiresolution is also analyzed. We also study the stable and unstable
manifolds of the special solution x∗(t, ε) of ẋ = Ax+ f(t, x, ε).

What are some novelties of this paper? In the classical study of nonlinear os-
cillations, as treated for example in Hale [10], in the finite dimensional case, the
equations are defined in terms of periodic or almost periodic functions and the
Fourier Series Theory is used. In Kloeden and Rodrigues [15], in infinite dimen-
sions, a similar problem is treated with a larger class of equations using uniformly
continuous functions, instead of periodic or almost periodic functions, but Fourier
Theory was not available. In this case, besides working in infinite dimensions, we
allow f(·, x, ε) to belong to an L2(R) space. This has the advantage that it can be
expanded in wavelets series with a convenient basis and the multiresolution analysis
can be used. This treatment allows to consider local perturbations in time and also
very complicate perturbations.

This paper is organized as follows. In Section 2 we consider the particular case
where the perturbation is a function f(t), t ∈ R. Besides the study of properties of
the special solution, we analyze its expansion in a wavelets series and its multires-
olution. We also compute the terms of the expansion in a specific example using
Haar basis of wavelets and the stable and unstable manifolds of the special solution.

In Section 4 we study weakly nonlinear equations. Using Banach Fixed Point
Theorem we investigate the special solution of an equation of the form dx

dt = Ax+
f(t, x, ε), where f(·, x, ε) to belong to an L2(R) space.

In Section 5, using a wavelet basis and multi resolution analysis we study ap-
proximations of this solution, the saddle point property, the existence of its stable
and unstable manifolds, and approximations of these manifolds as approximations
of the stable and unstable manifolds of the special solution.

Finally, in Section 6, using previous results, we discuss the existence of the pull-
back attractor in the case that in the linear part we have only a stable part and the
multiresolution of the pullback attractor which shows that it inherits properties of
the nonlinear part of the equation.
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2. Perturbation of the Equilibrium. Preliminaries. To study a nonlinear
autonomous equation one should be concerned with all its solutions, but this could
be a difficult task. Then, one may try to analyze the simplest solutions, that is
the equilibria. If besides the nonlinear autonomous perturbation one has a non
autonomous perturbation that depends on t ∈ R, then the first attempt could be
to study perturbation of equilibria. This will be treated in this section and in the
subsequent sections.

Let X be a complex Banach space with the norm ‖ · ‖. Let A : D(A) ⊂ X → X
be the infinitesimal generator of the C0 semigroup T (t) for t ≥ 0. We suppose that
P : X→ X is a projection and f : R→ X.

Consider the equation

ẋ = A x+ f(t). (1)

Lemma 2.1. Suppose the following exponential dichotomy holds, that is, there exist
positive constants K and α such that

‖T (t)P‖ ≤ Ke−αt, for t ≥ 0 and ‖T (t)(I − P )‖ ≤ Keαt, for t ≤ 0. (2)

Suppose that f ∈ L2(R,X). Then there exists a unique solution of (1) that is
bounded in R and it is given by:

xf (t) =
∫ t

−∞
T (t− s) P f(s) ds+

∫ t

∞
T (t− s) (I − P ) f(s) ds (3)

This will be a solution in the mild sense as considered in Pazy [17]. or in other
words it is a continuous function and will satisfy the equation a.e. If f is continuous
in R, then it will be a solution in R in the usual sense.

Moreover

sup
t∈R
‖xf (t)‖ ≤ K

√
2
α

[∫ ∞
−∞
‖f(s)‖2ds

]1/2
:= K∗

[∫ ∞
−∞
‖f(s)‖2ds

]1/2
, (4)

where K∗ = K
√

2
α .

Proof: It is straightforward to check that xf (t) is solution of (1). Let us check now
that the solution is bounded. The uniquenessss is obvious because the difference of
two bounded soution for (1) is a bounded solution of ẋ = Ax, that is will be the
zero solution.
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‖xf (t)‖ ≤
∫ t

−∞
‖T (t− s) P‖‖f(s)‖ds

+
∫ ∞
t

‖T (t− s)(I − P )‖|f(s)‖ ds

≤ Ke−αt
∫ t

−∞
eαs‖f(s)‖ds

+Keαt
∫ t

−∞
e−αs‖f(s)‖ds

≤ Ke−αt
[∫ t

−∞
e2αs

]1/2 [∫ t

−∞
‖f(s)‖2ds

]1/2
+Keαt

[∫ ∞
t

e−2αs

]1/2 [∫ ∞
t

‖f(s)‖2ds
]1/2

≤ K

√
2
α

[∫ ∞
−∞
‖f(s)‖2ds

]1/2
.

Let UCB(R,X) be the space of all bounded and uniformly continuous functions
from R to X with the topology of uniform convergence.

Lemma 2.2. Let fn ∈ UCB(R,X), n ∈ N be such that fn → f uniformly for
t ∈ R. Then f ∈ UCB(R,X).

For a proof see Kloeden and Rodrigues [15].

For our goal, we will consider a subspace of UCB(R,X). To be more precise, let
F be the space of all uniformly continuous functions from R to X with precompact
range with the topology of uniform convergence.

Lemma 2.3. Let (M, d) be a complete metric space. Then a subset A of M is
relatively compact if and only if for every ε > 0 there exists a relatively compact Bε
such that A ⊂ Vε(Bε) := {x ∈M : d(x,Bε)} < ε, an ε-neighborhood of Bε.

See Bachman and Narici [1].

Lemma 2.4. F is a closed subspace of UCB(R,X).

For a proof see Kloeden and Rodrigues [15]

Lemma 2.5. Under the assumptions of Lemma 2.1 if f ∈ L2(R,X) then xf (t) ∈ F .

Proof: Let us consider the case P = I, the identity operator. The general case is
proved in a similar way. Given f ∈ L2(R,X), and ε > 0 let N ∈ N, N = N(ε), such
that

max

{∫ −N
−∞
‖f(t)‖2dt,

∫ ∞
N

‖f(t)‖2dt

}
< ε.

Let

fN (t) =
{

0, if t ∈ (−∞,−N), or t ∈ (N,∞),
f(t) if t ∈ [−N,N ],
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and

xN (t) :=
∫ t

−∞
T (t− s) fN (s) ds.

Then xN (t) = 0 if t ∈ (−∞,−N), xN (t) :=
∫ t
−N T (t−s) fN (s) ds if t ∈ [−N,N ],

xN (t) :=
∫ N
−N T (t− s) fN (s) ds if t ∈ [N,∞].

Using the above exponential dichotomy assumptions one can show that xN (t)→
0 as t→ ∞. Therefore xN (t) is uniformly continuous in R.

Let us consider now x(t)− xN (t). For t ∈ (−∞,−N),

‖x(t)− xN (t)‖ =
∥∥∥∥∫ t

−∞
T (t− s) f(s) ds

∥∥∥∥
≤ Ke−αt

∫ t

−∞
eαs ‖f(s)‖ ds

≤ Ke−αt
(∫ t

−∞
e2αs ds

) 1
2
(∫ t

−∞
‖f(s)‖2 ds

) 1
2

≤ K√
2
ε.

For t ∈ [−N,N ],

‖x(t)− xN (t)‖ =
∥∥∥∥∫ t

−∞
T (t− s) [f(s)− fN (s)] ds

∥∥∥∥
=

∥∥∥∥∥
∫ −N
−∞

T (t− s) [f(s)− fN (s)] ds

+
∫ t

−N
T (t− s) [f(s)− fN (s)] ds

∥∥∥∥
=

∥∥∥∥∥
∫ −N
−∞

T (t− s) [f(s)] ds

∥∥∥∥∥
≤ Ke−αt

∫ −N
−∞

eαs ‖f(s)‖ ds

≤ Ke−αt

(∫ −N
−∞

e2αs ds

) 1
2
(∫ −N
−∞
‖f(s)‖2 ds

) 1
2

≤ K√
2
εe−αte−αN

=
K√

2
εe−α(t+N)

≤ K√
2
ε.
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For t ∈ (N,∞), using similar estimates we obtain

‖x(t)− xN (t)‖ =

∥∥∥∥∥
∫ −N
−∞

T (t− s) [f(s)− fN (s)] ds

+
∫ N

−N
T (t− s) [f(s)− fN (s)] ds

+
∫ t

N

T (t− s) [f(s)− fN (s)] ds
∥∥∥∥

≤

∥∥∥∥∥
∫ −N
−∞

T (t− s) f(s) ds

∥∥∥∥∥+
∥∥∥∥∫ t

N

T (t− s) f(s) ds
∥∥∥∥

≤ K√
2
ε+

K√
2
ε

= K
√

2 ε.

To conclude the proof we should just use Lemma 2.2 and Lemma 2.3 .

Now we define operator S : f ∈ L2(R,X) 7→ Sf := xf ∈ F and let

S := S(L2(R,X)) ⊂ F .

From Lemma 2.1 it follows that operator S is linear and continuous. Moreover

sup
t∈R
‖S(f)(t)‖ ≤ K∗

(∫ −∞
−∞

‖f(t)‖2dt
)1/2

.

Now we introduce some basic concepts and notations and results about wavelets.
See [9, 12, 16]. Consider the scaling function φ : R → C and the wavelet function
ψ : R→ C, such that

φ(t) =
√

2
∑
n∈N

hnφ(2t− n), ψ(t) =
√

2
∑
n∈N

gnφ(2t− n) (5)

where hn ∈ C and gn = (−1)nh−n+1

It is usually assumed that
∫∞
−∞ φ(t) dt = 1 and

∫∞
−∞ ψ(t) dt = 0.

φj,k(t) = 2j/2φ(2jt− k), ψj,k(t) = 2j/2ψ(2jt− k) (6)

Then {φj,k(t), k ∈ Z} is an orthonormal basis for the space Vj . Therefore we
have a chain of closed subspaces:

· · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · , (7)

such that ⋃
j∈Z

Vj = L2(R),
⋂
j∈Z

Vj = {0}, (8)

where we indicate L2(R) := L2(R,C). Since Vj ⊂ Vj+1, let Wj be the orthogonal
complement of Vj in Vj+1, that is Vj ⊕Wj = Vj+1. An orthonormal basis of Wj is
given by {ψj,k(t) = 2j/2ψ(2jt− k), k ∈ N}.

Definition 2.6. Let Pj be the orthogonal projection of L2(R) onto Vj and Qj be
the orthogonal projection of L2(R) onto Wj.
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It is known that Pj and Qj are also orthogonal to each other.
With the above notation the equations in (5) can be rewritten as

φ0,0(t) =
√

2
∑
n∈N

hnφ1,n(t), ψ0,0(t) =
√

2
∑
n∈N

gnφ1,n(t). (9)

Let us see now what will be the implication of the above relations on the corre-
sponding solutions.

Lemma 2.7. Given x0 ∈ X let f1(t) := φj,n(t)x0, f2(t) := ψj,n(t)x0 and let xj,n(t)
and yj,n(t) be the corresponding solutions of (1) given by (3). Then xj,n(t) =
xj,0(t− n) and yj,n(t) = yj,0(t− n). Moreover (9) implies:

x0,0(t) =
√

2
∑
n∈N

hnx1,n(t), y0,0(t) =
√

2
∑
n∈N

gny1,n(t)

and so

x0,0(t) =
√

2
∑
n∈N

hnx1,0(t− n), y0,0(t) =
√

2
∑
n∈N

gny1,0(t− n)

Proof: Given f ∈ L2(R,X), consider the function g(t) := f(t− n), if we substitute
in (3)

xg(t) = xf(·−n)(t)

=
∫ t

−∞
T (t− s) P f(s− n) ds+

∫ t

∞
T (t− s) (I − P ) f(s− n) ds.

If we let τ = s− n in the above integrals, we obtain:

xg(t) = xf(·−n)(t)

=
∫ t−n

−∞
T (t− (τ + n)) P f(τ) dτ

+
∫ t−n

∞
T ((t− (τ + n)) (I − P ) f(τ) dτ

=
∫ t−n

−∞
T ((t− n)− τ) P f(τ) dτ

+
∫ t−n

∞
T ((t− n)− τ) (I − P ) f(τ) dτ

= xf (t− n).

Now we suppose that X is a separable complex Hilbert space and that {ei, i ∈ I}
is an orthonormal basis, with I countable, finite or infinite.

Let us see the implications of the previous relations on the coordinates.

Definition 2.8. Let f = (f iei)i∈I ∈ L2(R,X), where f i ∈ L2(R). For each j ∈ Z
we define a projection Pj : L2(R,X) → L2(R,X) as Pjf := ((Pjf i)ei)i∈I and let
Vj := Pj(L2(R,X)). Similarly we define Qj : L2(R,X) → L2(R,X) as Qjf :=
((Qjf i)ei)i∈I and let Wj := Qj(L2(R,X)).

From (7) and (8) it follows that

· · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · , (10)
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such that ⋃
j∈Z

Vj = L2(R,X),
⋂
j∈Z

Vj = {0}, (11)

It also follows that Vj+1 = Vj ⊕Wj , Vj and Wj orthogonal.
Recalling that S := S(L2(R,X)) ⊂ F , for each j ∈ Z we define the subspace

Vj := S(Vj) and Wj := S(Wj). Then Vj+1 = Vj ⊕Wj and

· · · V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · · , (12)

For each x = x(·) ∈ S let f ∈ L2(R,X) such that Sf = x. For such a x ∈ S and
for each j ∈ Z we define the projection Pjx := S(Pjf). Therefore Pj(S) = Vj .

In a similar way we can define for each y = y(·) ∈ S let f ∈ L2(R,X) such
that Sf = y. For such a y ∈ S and for each j ∈ Z we define the projection
Qjx := S(Qjf). Therefore Qj(S) =Wj .

Now we introduce the following notation. Given f ∈ L2(R,X) we write f =∑
i∈I f

iei and for each i ∈ I we consider the special solutions xi := xfiei
, yi :=

yfiei
. Therefore xf =

∑
i∈I x

i, yf =
∑
i∈I y

i.

Lemma 2.9. Let A be the generator of a C0-semigroup, such that A−1 is bounded
and that the above exponential dichotomy (2) is satisfied. Consider the equations

ẋ = Ax+ 2j/2φ(2jt)ei = Ax+ φj,0(t) ei, ẏ = Ay + 2j/2ψ(2jt)ei = Ax+ ψj,0(t) ei,
(13)

where φ, ψ are given as above. Let xij(t) (respectively yij(t)) be the unique bounded
solution on R of the above equation. Let P the projection defined by the exponential
dichotomy. Then xij(t) can be written as

xij(t) = xi−j (t) + xi+j (t),

where,

xi−j (t) = 2−j/2eAt
∫ 2jt

−∞
e−A(2−js)Pφ(s)ds ei,

xi+j (t) = −2−j/2e−At
∫ ∞

2jt

eA(2−js)(I − P )φ(s)ds ei.

Similar result for yij(t).

yij(t) = yi−j (t) + yi+j (t),

where,

yi−j (t) = 2−j/2eAt
∫ 2jt

−∞
e−A(2−js)Pψ(s)ds ei,

yi+j (t) = −2−j/2e−At
∫ ∞

2jt

eA(2−js)(I − P )ψ(s)ds ei.

Proof: Let a = 2−j . From (13) we obtain the equations:

ẋ = Ax+ a−1/2φ(a−1t)ei, ẏ = Ay + a−1/2ψ(a−1t)ei, (14)

Let z(t) := x(at). Then z(t) satisfies the following equation:

ż = aAz + a1/2φ(t)ei.
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The unique bounded solution on R is given by:

z(t) = a1/2

[∫ t

−∞
eAa(t−s)Pa1/2φ(s) ds ei −

∫ ∞
t

eAa(s−t)(I − P )φ(s) ds ei

]
.

Returning to the original variable we obtain

x(t) = z(a−1t)

= a1/2

[∫ ta−1

−∞
eAa(a

−1t−s)Pφ(s) ds ei −
∫ ∞
ta−1

eAa(s−a
−1t)(I − P )φ(s) ds ei

]

= a1/2

[∫ ta−1

−∞
eA(t−as)Pφ(s) ds ei −

∫ ∞
ta−1

eA(as−t)(I − P )φ(s) ds ei

]
.

Now we let a = 2−j again to obtain

x(t) = 2−j/2
[∫ 2jt

−∞
eA(t−2−js)Pφ(s) ds ei

−
∫ ∞

2jt

eA(2−js−t)(I − P )φ(s) ds ei

]
= x−j,i(t) + x+

j,i(t).

2.1. The Multiresolution Analysis. At this point we should do the multireso-
lution for functions f ∈ L2(R).

Let fJ ∈ L2(R) an approximation of f , fJ ∈ VJ , for J sufficiently large. Then fJ
can be written as fJ = fJ−1 + gJ−1, where fJ−1 ∈ VJ−1 and gJ−1 ∈ WJ−1. Then
fJ = fJ−2 + gJ−2 + gJ−1, where fJ−2 ∈ VJ−2 and gJ−2 ∈ WJ−2 and so on, until
fJ = f0 + · · · . In each step we can consider fJ−1 as a lower resolution of fJ , fJ−2

a more lower resolution of fJ untilf0 the lowest resolution of fJ , in this sequence.
Then fJ(t) =

∑
n∈Z aJ,nφJ,n(t).

The multiresolution implies

fJ(t) =
∑
n∈Z

cJ,nφ0,n(t) +
∑

0≤j≤J−1,n∈Z
dj,nψj,n(t) (15)

The first sum above will be the lowest resolution in this series. The coefficients
above can be obtained as follows:

cJ,n =
∫ +∞

−∞
fJ(s)φ0,n(s)ds, dj,n =

∫ +∞

−∞
fJ(s)ψj,n(s)ds.

Remark 2.10. When in (15) J is very large the coefficients dj,n will be associated
to the details. Some of them may be zero or very small. The last ones are considered
as zeroes in the reconstruction process.

We are going to show that the multiresolution analysis that is done for functions
in L2(R,X) induces a similar resolution for the special solutions defined by Lemma
2.1.

Let f ∈ L2(R,X). We first obtain an approximation of f in a space VJ , say
fJ(t) =

∑
i∈I
∑
n∈Z a

i
J,nφJ,n(t)ei, by taking the orthogonal projections of f on the

space VJ .
Using the multiresolution analysis in L2(R,X) we can write
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fJ(t) =
∑
i∈I

∑
n∈Z

ciJ,nφ0,n(t)ei +
∑
i∈I

∑
0≤j≤J−1,n∈Z

dij,nψj,n(t)ei. (16)

For each f ∈ L2(R,X) we have the special solution xf ∈ S. Then we have the
corresponding approximated solution in the space VJ :

xJ(t) =
∑
i∈I

∑
n∈Z

aiJ,nxJ,n(t) ds ei.

The corresponding multiresolution analysis for this solution becomes

xJ(t) =
∑
i∈I

∑
n∈Z

ciJ,nx0,n(t)ei +
∑
i∈I

∑
0≤j≤J−1,n∈Z

dij,nyj,n(t)ei. (17)

We remark that coefficients in (16) and in (17) are the same.

Remark 2.11. From the previous remark and as it was stated in (2.10) the recon-
struction of the solution xJ(t) could be done directly from (17).

2.2. Some Special Cases. In some cases, the functions φ, ψ are zero outside
the bounded unit interval. This is the case of Haar wavelets, which takes the value
1 inside the bounded interval. In such situation the relations obtained in Lemma
2.9 can be improved.

Lemma 2.12. Under assumptions of Lemma 2.9, if φ(s) = 0, s < 0 and φ(s) =
0, s > 1 we have that

xi−j (t) = 0, t < 0

xi−j (t) = 2−j/2
∫ 2jt

0

eA(t−2−js)Pφ(s) ds ei, 0 ≤ t ≤ 2−j ,

xi−j (t) = 2−j/2eAt
∫ 1

0

e−A(2−js)Pφ(s) ds ei, t ≥ 2−j .

Similar results hold for xi+j (t):

xi+j (t) = 0, t > 2−j ,

xi+j (t) = −2−j/2e−At
∫ 1

2jt

eA(2−js)(I − P )φ(s) ds ei, 0 ≤ t ≤ 2−j ,

xi+j (t) = −2−j/2e−At
∫ 1

0

eA(2−js)(I − P )φ(s) ds ei, t < 0.

Similar results hold for yij(t).

yi−j (t) = 0, t < 0

yi−j (t) = 2−j/2eAt
∫ 2jt

0

e−A(2−js)Pψ(s) ds ei, 0 ≤ t ≤ 2−j ,

yi−j (t) = 2−j/2eAt
∫ 1

0

e−A(2−js)Pψ(s) ds ei, t ≥ 2−j .

Similar results hold for yi+j (t).
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yi+j (t) = 0, t > 2−j .

yi+j (t) = −2−j/2e−At
∫ 1

2jt

eA(2−js)(I − P )ψ(s) ds ei, 0 ≤ t ≤ 2−j

yi+j (t) = −2−j/2e−At
∫ 1

0

eA(2−js)(I − P )ψ(s) ds ei, t < 0

Proof: The proof is elementary.

Lemma 2.13. Let f ∈ L2(R,X), and f(t) =
∑
i∈J fi(t)ei, where

fi(t) =
∑
n∈Z

∑
j∈Z

aij,n2j/2φ(2jt− n).

Then the unique bounded solution on R of

ẋ = Ax+ f(t)

is given by
x(t) =

∑
i∈J

∑
n∈Z

∑
j∈Z

aij,nx
i
j(t− n),

where xij(t) is given in Lemma 2.9.
A similar result holds true for y(t).

Proof: The proof follows from Lemma 2.9 and by linearity.

3. Applications with the Haar basis. As a first example we consider the Haar
basis:

φ = X[0,1], ψ = X[0,1/2) −X[[1/2,1)].

In this case h0 = h1 = 1√
2
, g0 = 1√

2
, g1 = − 1√

2
.

φ(t) =
√

2[
1√
2
φ(2t) +

1√
2
φ(2t− 1)] =

√
2[h0φ(2t) + h1φ(2t− 1)]

ψ(t) =
√

2[
1√
2
φ(2t)− 1√

2
φ(2t− 1)] =

√
2[g0φ(2t) + g1φ(2t− 1)]

Lemma 3.1. Under the assumptions of Lemma 2.12 using now the Haar basis with
φ = X[0,1], we obtain the following results:

xi−j (t) = 0, t < 0,

xi−j (t) = −2j/2A−1eAt(e−At − I)Pei, 0 ≤ t ≤ 2−j ,

xi−j (t) = −2j/2A−1eAt(e−2−jA − I)Pei, t ≥ 2−j .

xi+j (t) = 0, t > 2−j .

xi+j (t) = −2j/2A−1e−At(e2
−jA − eAt)(I − P )ei, 0 ≤ t ≤ 2−j ,
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xi+j (t) = −2j/2A−1e−At(e2
−jA − I)(I − P )ei, t < 0.

The corresponding results for y(t), using ψ instead of φ, are given by:

yi−j (t) = 0, t < 0,

yi−j (t) = −2j/2A−1eAt(e−At − I)Pei, 0 ≤ t ≤ 2−(j+1),

yi−j (t) = 2j/2A−1eAt[I − 2e−A2−(j+1)
+ e−At]Pei, 2−(j+1) ≤ t ≤ 2−j ,

yi−j ((t) = 2j/2A−1eAt[I − 2e−A2−(j+1)
+ e−A2−j

]Pei, 2−j ≤ t.

yi+j (t) = 0, 2−j ≤ t

yi+j (t) = −2j/2A−1e−At(e2
−jA − eAt)(I − P )ei, 2−(j+1) ≤ t ≤ 2−j ,

yi+j (t) = −2j/2A−1e−At(2eA2−(j+1)
− e2

−jA − eAt)(I − P )ei, 0 ≤ t ≤ 2−(j+1),

yi+j (t) = −2j/2A−1e−At(2eA2−(j+1)
− I − e2

−jA)(I − P )ei, t ≤ 0.

Now we consider a more specific example.

ẋ = −x+ 2j/2φ(2jt)
From the expressions,

xi−j (t) = −2j/2A−1eAt(e−At − I)Pei, 0 ≤ t ≤ 2−j ,

xi−j (t) = −2j/2A−1eAt(e−2−jA − I)Pei, t ≥ 2−j ,
taking ei = 1, A = −1 P = I, we obtain:

xj(t) = 0, t ≤ 0,

xj(t) = 2j/2(1− e−t), 0 ≤ t ≤ 2−j ,

xj(t) = 2j/2e−t(e2
−j

− 1), t ≥ 2−j .
Corresponding results can be obtained for y(t).

ẏ = −y + 2j/2ψ(2jt)ei,

yj(t) = 0, t < 0,

yj(t) = 2j/2e−t(et − 1), 0 ≤ t ≤ 2−(j+1),

yj(t) = −2j/2e−t[1− 2e2
−(j+1)

+ et], 2−(j+1) ≤ t ≤ 2−j ,

yj(t) = −2j/2e−t[1− 2e2
−(j+1)

+ e2
−j

], 2−j ≤ t.
Proof: To obtain the results above the calculations are elementary.
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Below in Fig. 1 we show scaling solutions for j = 2 and j = −2. In Fig. 2 we
show scaling solutions for j = 1 and j = −1

Figure 1. Scaling solution xj(t) for j = 2 (red), and j = −2 (green).

Figure 2. Wavelet solution yj(t) for j = 1 (red), and j = −1 (green).
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3.1. The Stable and the Unstable Manifolds. Under the above assumptions
let f ∈ L2(R,X) and xf (t) be the special solution given in (3). The object of this
section is to describe the stable and the unstable manifolds associated to it.

Following the assumptions and the notations of Lemma 2.1, let S := PX and
U := (I − P )X, respectively, the stable space and the unstable space associated to
the hyperbolic linear map A.

The section of the stable manifold associated to the special solution xf (t) of
the equation given in Lemma 2.1 will be given by S(t) := S + xf (t). Similarly
U(t) := U + xf (t).

Considering the multiresolution, we obtain an approximation of f in a space VJ ,
say fJ(t) =

∑
n∈Z aJ,nφJ,n(t), by taking the orthogonal projections of f on the

space VJ . Then we have the corresponding approximated special solution:

xJ(t) =
∑
n∈Z

aJ,nxJ,n(t),

where the special solution xJ(t) is given in Lemma 2.9.
Using the estimate

sup
t∈R
‖S(f)(t)‖ ≤ K∗

∫ −∞
−∞

‖f(t)‖2dt,

it follows that
sup
t∈R
‖xJ(t)‖ ≤ K∗

∑
n∈Z
|cJ,n|2.

The approximated section of stable and unstable manifolds in the time t will be
given by,

xJ(t) + S =
∑
n∈Z

aJ,nxJ,n(t) + S, xJ(t) + U =
∑
n∈Z

aJ,nxJ,n(t) + U.

Using the wavelet multiresolution analysis we can decompose it in the form:

xJ(t) =
∑
n∈Z

cJ,nx0,n(t) +
∑

0≤j≤J−1,n∈Z
dj,nyj,n(t).

In this case, the approximated section of stable and unstable manifolds will be
given by

SJ(t) := xJ(t) + S =
∑
n∈Z

cJ,nx0,n(t) + S +
∑

0≤j≤J−1,n∈Z
dj,nyj,n(t).

UJ(t) := xJ(t) + U =
∑
n∈Z

cJ,nx0,n(t) + U +
∑

0≤j≤J−1,n∈Z
dj,nyj,n(t).

4. Weakly Nonlinear Equations. To give a motivation for what will be treated
in the next section we present a simple example.

Example 4.1. Let us consider the following differential equation

ẋ = −x+ h(t)x3 + εf(t),

where h and f belong to L2(R,R).
When we project h and f on VJ we obtain the approximated equation:

ẋ = −x+ hJ(t)x3 + εfJ(t).
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4.1. The special solution. Following the ideas of Hale [10] and of Kloeden and
Rodrigues [15] we now consider nonlinear differential equations of the form

dx

dt
= Ax+ f(t, x, ε), (18)

where A is as before and the nonlinear term belongs to the class

Lip(η,M) :=
{
f : R× Ω(ρ0, σ0)→ X,

(∫ +∞
−∞ ‖f(t, 0, ε)‖2dt

)1/2

≤M(ε),(∫ +∞
−∞ ‖f(t, x(t), ε)− f(t, y(t), ε)‖2dt

)1/2

≤ η(ρ, σ) supt∈R ‖x(t)− y(t)‖
}

for all (t, x(t), ε), (t, y(t), ε) ∈ R× Ω(ρ, σ), ρ ≤ ρ0 and 0 < σ ≤ σ0, where

Ω(ρ, σ) :=
{

(x(t), ε) ∈ X× Rm : sup
t∈R
‖x(t)‖ ≤ ρ, |ε| ≤ σ

}
,

Bρ :=
{
x(t) ∈ X : sup

t∈R
‖x(t)‖ ≤ ρ

}
,

and let η(ρ, σ), M(σ) for ρ ≥ 0, σ ≥ 0, be continuous functions which are nonde-
creasing in both variables with η(0, 0) = 0 and M(0) = 0.

Theorem 4.2. Suppose that assumptions in Lemma 2.1 hold. Suppose also that the
function f ∈ Lip(η,M). Then, there are constants ρ1 > 0, σ1 > 0 and a function
x∗(t, ε) such that x∗(·, ε) ∈ F , x∗(t, 0) = 0, |x∗(·, ε)| ≤ ρ1, 0 ≤ |ε| ≤ σ1, such that
x∗(·, ε) is the unique solution of (18) with norm ≤ ρ1 and x∗(·, ε) ∈ F .

Proof: Let Bρ1 := {x(·) ∈ F : |x(t)| ≤ ρ1, ∀ t ∈ R }, where 0 < ρ1 ≤ ρ0, and
consider the operator

(T x(·))(t) = (Tεx(·))(t) =∫ t

−∞
eA(t−s)Pf(s, x(s), ε) ds+

∫ ∞
t

eA(t−s)(I − P )f(s, x(s), ε) ds,

which is motivated by the solution operator S : f ∈ L2(R,X) 7→ Sf := xf ∈ F
defined by (3) for the nonhomogeneous linear differential equation (1).

We will show that T has a unique fixed point in Bρ1 . Following Hale [10] and
Kloeden and Rodrigues[15], using (4) we obtain

sup
t∈R
‖(T x(·))(t)‖ ≤ K∗

[∫ ∞
−∞
‖f(s, x(s), ε)‖2ds

]1/2
≤ K∗

(
η(ρ1, σ1) sup

t∈R
‖x(t)‖+M(σ1)

)
< ρ1,

if ρ1 and σ1 are taken sufficiently small.

sup
t∈R
|T x(·))(t)− T y(·)(t)| ≤ K∗η(ρ1, σ1)‖x(t)− y(t)‖

≤ θ sup
t∈R
‖x(t)− y(t)‖,

where θ can be taken sufficiently small, say θ < 1
2 .
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This shows that T is a uniform contraction on Bρ1 for |ε| ≤ σ1 and, thus, has
a unique fixed point x∗(·, ε) in Bρ1 . Moreover, x∗(t, ε) is a solution of (18) and
x∗(t, 0) = 0.

Remark 4.3. Now we will consider the multiresolution analysis on the special
solution. We recall that

x∗(t, ε) =
∫ t

−∞
eA(t−s)Pf(s, x∗(s, ε), ε) ds+

∫ ∞
t

eA(t−s)(I − P )f(s, x∗(s, ε), ε) ds,

(19)
Since f(·, x∗(·, ε), ε) ∈ L2(R,X), now f(·, x∗(·, ε), ε) will play the role of f in

(3). Let x∗J(·, ε) the projection of x∗(·, ε) in the space VJ and fJ(·, x∗(·, ε), ε) the
projection of f(·, x∗(·, ε), ε) in the space VJ .

Therefore from (19) we obtain the following approximation of x∗(·, ε),

x∗J(t, ε) =
∫ t

−∞
eA(t−s)PfJ(s, x∗(s, ε), ε) ds+

∫ ∞
t

eA(t−s)(I −P )fJ(s, x∗(s, ε), ε) ds,

(20)
As in Lemma 2.9, using the Hilbert space structure, we write f(s, x∗(s, ε), ε) =∑
i∈I f

i(s, , x∗(s, ε), ε)ei.
Next we consider the orthogonal projection of f i(·, x∗(·, ε), ε) in the space VJ ,

obtaining f iJ(s, x∗(s, ε), ε) =
∑
n∈Z a

i
J,n(ε)φJ,n(s), where

aiJ,n(ε) =
∫ +∞

−∞
f i(s, x∗(s, ε), ε)φJ,n(s)ds.

Now we define fJ(s, x∗(s, ε), ε) =
∑
i∈I f

i
J(s, x∗(s, ε), ε)ei.

From now on the multiresolution analysis follows the same steps as in (16).

x∗J(t, ε) =
∑
i∈I

∑
n∈Z

aiJ,n(ε)xJ,n(t)ei,

x∗J(t, ε) =
∑
i∈I

∑
n∈Z

ciJ,n(ε)x0,n(t)ei +
∑
i∈I

∑
0≤j≤J−1,n∈Z

dij,n(ε)yj,n(t)ei. (21)

5. Another approximation of the perturbed equilibrium. Under the above
assumptions, for each x ∈ X the function ‖f(·, x, ε)‖ is square integrable in R. Next
we will find an approximation fJ(·, x, ε) for the function f(·, x, ε).

As in Lemma 2.9, taking into account the Hilbert space structure, we write
f(s, x, ε) =

∑
i∈I f

i(s, x, ε)ei. Next we consider the orthogonal projection of f i(·, x, ε)
in the space VJ , that we denote by f iJ(s, x, ε). Then we denote fJ(·, x, ε) :=∑
i∈I f

i
J(s, x, ε).

The function fJ(s, x, ε) satisfies similar conditions as f(s, x, ε) in the above the-
orem.

Therefore there exists a unique small solution x∗(t, ε, J), which is the fixed point
of

x∗(t, ε, J) =
∫ t

−∞
eA(t−s)PfJ(s, x∗(s, ε, J), ε) ds

+
∫ ∞
t

eA(t−s)(I − P )fJ(s, x∗(s, ε, J), ε) ds.
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Remark 5.1. At this point we can also provide a multiresolution analysis. In
order to do this we have to project the function fJ(·, x∗(·, ε, J), ε) in the space VJ
and proceed as in Remark 4.3.

5.1. A motivation example for the Stable and the Unstable Manifolds.
In this section we follow the ideas of Hale [10] and of Kloeden and Rodrigues [15].
As a motivation we will consider the example:{

ẋ1 = x1

ẋ2 = −x2 + h(t)x3
1 + εφ(t), (22)

where φ = X[0,1], h(t) = et, t ≤ 0 and h(t) = e−t, t ≥ 0. We have already computed
the unique small bounded solution in R, x0(t) and it is given by(

x0
1(t)
x0

2(t)

)
,

where x0
1(t) = 0, ∀ t ∈ R, x0

2(t) = 0, t ∈ (−∞, 0], x0
2(t) = ε(1− e−t), t ∈ [0, 1] and

x0
2(t) = ε(e−t(e− 1)), t ∈ [1,∞).

In order to compute the stable and unstable manifolds of this special solution,
we consider the change of variables y1 = x1, y2 = x2 − x0

2(t) and obtain the new
system: {

ẏ1 = y1
ẏ2 = −y2 + h(t)y3

1 .
(23)

Now we will compute the stable and unstable manifolds of the equilibrium solution.

The stable manifold is given by S =
(

0
y2

)
.

Now we will calculate the unstable manifold for t ≤ 0. If we solve the first
equation we obtain the solution y1(t) = aet. If we substitute in the second equation
we obtain the equation ẏ1(t) = −y2 + a3e4t, for t ≤ 0. If we look for a bounded
solution for t ≤ 0 we solve this equation and obtain y2(t) = a3

5 e
4t.

Therefore the section of the unstable manifold at the time t ≤ 0 is given by

U(t) =
(
aet

a3

5 e
4t

)
.

The section of the stable and unstable manifolds of the solution x0(t) are given,
respectively, by: x0(t) + S and x0(t) + U(t).

5.2. The saddle property. In this section we will establish the existence of sta-
ble and unstable manifolds of the special solution x∗(t, ε) and also prove that they
inherit some properties of the original equation (18). Under the set up and as-
sumptions of the last section we consider the change of variables on the equation
(18)

x = x∗(t, ε) + y,

and for the equation on y we obtain
dy

dt
= Ay + F (t, y, ε) (24)

where F (t, y, ε) := f(t, x∗(t, ε)+y, ε)−f(t, x∗(t, ε), ε). The function F (t, y, ε) plays
the role for (24) that the function f(t, y, ε) played for (18). Since F (t, 0, ε) = 0 and
M(ε) = 0, the unique entire solution in Bρ1 is the zero solution.
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For any t0 ∈ R, let y(t, t0, yt0 , ε) denote the solution of (24) with the initial value
y(t0, t0, yt0 , ε) = yt0 and let K∗ be as in Lemma 2.1. For each δ > 0 we define the
local stable and unstable manifolds as

S(t0, δ, ε) :=
{
yt0 ∈ X : |Pyt0 | < δ

2K∗
, |y(t, t0, yt0 , ε)| < δ, t ≥ t0

}
, (25)

and

U(t0, δ, ε) :=
{
yt0 ∈ X : |(I − P )yt0 | < δ

2K∗
, |y(t, t0, yt0 , ε)| < δ, t ≤ t0

}
, (26)

respectively. Their existence and other properties are given by the next theorem.

Theorem 5.2. Suppose that assumptions of Theorem 4.2 hold with F in the place
of f . If F ∈ Lip(η, 0), then there are constants δ > 0, ε1 > 0, β > 0 such that,
for any t0 ∈ R, |ε| ≤ ε1, the mapping P is a homeomorphism of S(t0, δ, ε) onto
PX ∩Bδ/2K , S(t0, δ, 0) which is tangent to PX at zero and∣∣y(t, t0, yt0 , ε)

∣∣ ≤ 2K∗|Pyt0 |e−β(t−t0), t ≥ t0,

for any yt0 ∈ S(t0, δ, ε) and the mapping I − P is a homeomorphism of U(t0, δ, ε)
onto (I − P )X ∩Bδ/2K , U(t0, δ, 0) which is tangent to (I − P )X at zero and

|y(t, t0, yt0 , ε)| ≤ 2K∗|(I − P )yt0 |eβ(t−t0), t ≤ t0,

for any yt0 ∈ U(t0, δ, ε).
Moreover, if g(·, t0, ε) : PX∩Bδ/2K → S(t0, δ, ε) is the inverse of the homeomor-

phism P , then g(y−, t0, ε) is Lipschitz in y− with Lipschitz constant 2K∗.
The same conclusions hold for the inverse of the homeomorphism I − P of

U(t0, δ, ε) onto (I − P )X ∩Bδ/2K∗ .

Proof: The proof is similar to the proof of Theorem 3.1, page 159, in Hale [10] or
in Kloeden and Rodrigues [15]. Since we are working in a different but similar class
of nonlinear problems, we will present just some key steps to adapt the proof there
to our notation and assumptions.

Any solution of (24) which is bounded in [t0,∞) will have the form:

x(t) = eA(t−t0)x− +
∫ t

t0

eA(t−s)PF (s, x(s), ε) ds (27)

+
∫ t

∞
eA(s−t)(I − P )F (s, x(s), ε) ds

for t ≥ t0, where x− ∈ PX.
In addition, any solution of (24) which is bounded in (−∞, t0] has the form

x(t) = eA(t0−t)x+ +
∫ t

t0

eA(s−t)(I − P )F (s, x(s), ε) ds (28)

+
∫ t

−∞
eA(t−s)PF (s, x(s), ε) ds

for t ≤ t0, where x+ ∈ (I − P )X.
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It follows from (2) that |P | ≤ K and |I − P | ≤ K. If K and α are as in (2) and
η is the Lipschitz constant of f(t, x, ε) with respect to x we can choose δ > 0 and
ε1 > 0 such that

4K∗Kη(δ, ε1) < 1 .

For each x− ∈ PX with |x−| ≤ δ/(2K) consider the set

G(t0, x−, δ) :=
{
x : [t0,∞)→ X continuous, |x| := sup

t∈[t0,∞)

|x(t)| ≤ δ, P (t0)x = x−
}
,

which is a complete metric space with the topology of the uniform convergence. For
x ∈ G(t0, x−, δ) define T x by

(T x)(t) = eA(t−t0)x− +
∫ t

t0

eA(t−s)PF (s, x(s), ε) ds (29)

+
∫ t

∞
eA(s−t)(I − P )F (s, x(s), ε) dst ≥ t0.

As in Hale [10], page 160, it follows from the contraction principle that T has a
unique fixed point x∗(·, t0, x−, ε) for |ε| ≤ ε1, which depends continuously upon t,
t0, x− and x∗(·, t0, 0, ε) = 0 and satisfies the estimate

∣∣x∗(t, t0, x−, ε)− x∗(t, t0, x′−, ε)∣∣ ≤ 2KK∗e
−α(t− t0)

2
∣∣x− − x′−∣∣ (30)

for t ≥ t0. In view of its definition, here

S(t0, δ, ε) =
{
x : x = x∗(t0, t0, x−, ε) ∈ (PX) ∩Bδ/2K

}
(31)

for |ε| ≤ ε1. Since x∗(·, t0, 0, ε) = 0, from (30) and (31) we obtain∣∣x∗(·, t0, xt0 , ε)∣∣ ≤ 2K|P (t0)| e−β(t−t0), t ≥ t0,

with β := α/2 .

Remark 5.3. From 5, as before we can approximate the function f(t, x, ε) by
fJ(t, x, ε) and consider the equation

dx

dt
= Ax+ fJ(t, x, ε) (32)

obtaining the special solution x∗(t, ε, J).
If we let y = x− x∗(t, ε, J) and

FJ(t, y, ε) := fJ(t, x∗(t, ε, J) + y, ε)− fJ(t, x∗(t, ε), ε, J),

we obtain the equation
dy

dt
= Ay + FJ(t, y, ε), (33)

where FJ(t, 0, ε) = 0.
Therefore we can obtain the stable and unstable manifolds associated to the zero

solution of the above equation. These manifolds can be interpreted as approxima-
tions of the previous ones.



20 H.M. RODRIGUES, T. CARABALLO AND M. GAMEIRO

6. The Pullback Attractor. The theory of pullback attractors has recently proven
very useful in analyzing the dynamics of nonautonomous dynamical systems appear-
ing in the applied sciences, and has experienced a significant development over the
last two decades (see, for instance, [3, 4, 5, 6, 13, 14, 15] and the references therein).
We would like to emphasize now that this theory can be also applied to provide in-
teresting information about the problem we have considered in this paper. Indeed,
let us consider the nonautonomous equation

ẋ = Ax+ f(t, x, ε), (34)

and assume that there exists positive constants K, α such that

‖eAt‖ ≤ Ke−αt

for t ≥ 0.
Then, is we also suppose that f(t, x, ε) satisfies the conditions of Theorem 4.2,

we can follow the ideas of Kloeden and Rodrigues in [15] to conclude that the
special solution x∗(t, ε) of (34) gives rise to the pullback attractor for equation (34).
Therefore, as we did before, we can perform a similar analysis to construct the
multiresolution analysis of the pullback attractor.
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