Direct magnetocaloric measurements of Fe-B-Cr-X (X = La, Ce) amorphous ribbons J. Y. Law, 1,2 V. Franco, 2,a) and R. V. Ramanujan 1 ¹School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore ²Dpto. Física de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, Sevilla 41080, Spain (Received 20 May 2011; accepted 23 June 2011; published online 29 July 2011) A procedure has been developed to directly measure the adiabatic temperature change of amorphous melt-spun Fe-based ribbons displaying attractive room temperature magnetocaloric properties. Polycrystalline Gd ribbons are used as a reference material to compensate for the contribution of the sample holder to the experimental values. Fe₇₈B₁₂Cr₈Ce₂ and Fe₇₅B₁₂Cr₈Ce₅ melt-spun ribbons exhibited a peak adiabatic temperature change $(\Delta T_{ad}^{pk}) \sim 58\%$ larger than Co_{82.9}Si_{5.9}Fe_{4.5}Cr₄B_{2.7} amorphous ribbons. The ΔT_{ad}^{pk} in Fe₇₈B₁₂Cr₈Ce₂, Fe₇₅B₁₂Cr₈Ce₅, and Fe₇₉B₁₂Cr₈La₁ ribbons displayed $\sim 18-33\%$ enhanced ΔT_{ad}^{pk} compared to a GdAl₂ alloy. © 2011 American Institute of Physics. [doi:10.1063/1.3613666] ## I. INTRODUCTION The magnetocaloric effect (MCE) has been attracting great interest due to its application in energy efficient magnetic refrigeration (MR) technology. The magnetocaloric parameters of a magnetocaloric material (MCM), which are crucial to its practical application in MR, are the adiabatic temperature change (ΔT_{ad}) and the isothermal magnetic entropy change (ΔS_M) associated with a magnetic phase transition. The ΔT_{ad} is directly related to the temperature span achievable by a MCM; hence, ΔT_{ad} is an important factor in the performance evaluation of MCM. Many MCM in the form of ribbons or thin films have been reported.³⁻⁶ Soft magnetic MCM ribbons offer low magnetic hysteresis, high electrical resistivity, enhanced corrosion resistance, good mechanical properties, and tunable T_C by composition variation.^{5,7,8} However, little attention has been paid to ΔT_{ad} investigations in MCM ribbons, due to the intrinsic difficulties for its measurement. Direct MCE measurements of MCM are usually performed using a ΔT_{ad} measurement device, such as the magnetocaloric measuring setup (MMS) (Advanced Magnetic Technologies and Consulting, Ltd. (AMT&C), Russia). However, this kind of device is optimized for characterizing ΔT_{ad} of bulk materials, for which the thermal mass of the sample holder is negligible with respect to that of the sample. Challenges in measuring direct MCE in materials with small mass and thickness (e.g., ribbons) are due to the small thermal mass of the ribbons. While polycrystalline materials in ribbon shape can be replaced by bulk samples for performing such measurements, that is not the case for amorphous alloys, since the high cooling rate required for obtaining amorphous microstructures prevents the fabrication of most of these alloys in bulk form. Hence, in order to characterize the ΔT_{ad} of our amorphous ribbons, a procedure to extend the MMS to characterize ΔT_{ad} of samples of small size and mass has been developed. The method involves using Gd ribbons to calibrate the response of the measuring device, allowing us to find a correction factor due to the shape and thermal mass of the sample. Using this relationship, analysis of the Fe-based amorphous samples was carried out. ## **II. EXPERIMENTAL** Gd (Alfa Aesar, 99.99% purity) ribbons of 3 mm width and 20-28 µm thickness were prepared by melt spinning (Edmund Bühler GmbH., Melt Spinner SC). The ΔT_{ad} of the samples was measured by a magnetocaloric measuring setup ("MagEq MMS 902," manufactured by AMT&C Corporation, Moscow, Russia). The measurement details were similar to those reported earlier. 9-11 The magnetic field (H) was produced by a permanent magnet Halbach magnetic field source with variable H in its working bore ($H_{max} = \pm 1.775$ T). ΔT measurements were obtained by a differential thermocouple with its measuring junction secured between two pieces of sample under investigation and a reference junction positioned on the nonmagnetic metallic sample holder. ΔT and H values were recorded simultaneously over the whole cycle of ΔH . Bulk Gd samples (8 × 4 × 0.75 mm, 397 mg) were used to calibrate the MMS and as a reference for the amorphous ribbon samples. Ten (22.72 mg), twenty (43.74 mg), or forty (88.02 mg) pieces of Gd ribbon, with 8 mm length, were stacked on top of one another with the aid of vacuum grease. The ΔT_{ad} for the optimized number of ribbons was measured at magnetizing speeds ranging from 1 to 3 Ts⁻¹. Fe_{80-x}B₁₂Cr₈Re_x (RE = La or Ce, x = 1-5 at.%) melt-spun ribbons were then measured for their direct MCE and their preparation method, and other characterization results have been reported elsewhere. 12 The measurements were performed for temperatures ranging from 180-350 K in $< 10^{-3}$ Torr vacuum, with the magnetic field applied along a)Author to whom correspondence should be addressed. Electronic mail: vfranco@us.es; Fax: +34 954552870. FIG. 1. (Color online) Time dependence of the magnetic field (H) and the difference between the temperature of the sample and the temperature of the sample holder (ΔT_{ad}) for 40 ribbon pieces of Fe₇₈B₁₂Cr₈Ce₂ alloy at 332 K. the ribbons axis, and recorded over a full cycle of the magnetic field change $(0 \to H_{max} \to -H_{max} \to 0)$. Figure 1 shows the time dependence of the magnetic field and the difference between the temperature of the sample and the temperature of the sample holder (ΔT_{ad}) for a Fe₇₈B₁₂Cr₈Ce₂ alloy at a temperature of 332 K. ## III. RESULTS AND DISCUSSION The ΔT_{ad} (T) curve for the Gd bulk sample for a maximum H value of 1.775 T is presented in Fig. 2. Its peak adiabatic temperature change (ΔT_{ad}^{pk}) was observed at 297 K; near the Curie temperature (T_{C}) of Gd, the $\Delta T_{ad}^{pk}/\Delta H_{max}$ is $\sim 2.34~{\rm KT}^{-1}$, in good agreement with the literature. Hence, this value was used for comparison with Gd ribbons. The $\Delta T_{\rm ad}$ (T) curves for Gd ribbon stacks ranging from 10 to 40 ribbon pieces are presented in Fig. 3. It was observed that less noise was obtained for a larger number of Gd ribbons, being the improvement especially noticeable when increasing from 10 to 20 pieces. When 40 ribbon pieces were used, the ΔT_{ad}^{pk} value was not significantly altered from that of FIG. 2. Temperature dependence of adiabatic temperature change measured in Gd bulk sample (dH/dt = 1 Ts^{-1} , $\Delta H = \pm 1.775 \text{ T}$). FIG. 3. (Color online) Temperature dependence of $\Delta T_{ad}~(H\,{=}\,1.775~T)$ for different number of pieces of Gd ribbons. 20 ribbon pieces. The experimentally obtained ΔT_{ad}^{pk} value for 40 ribbons was 0.77 K. However, this value is affected by the thermal mass of the sample holder (which, in this case, is not negligible with respect to the thermal mass of the sample), thermal contact between the ribbons, presence of vacuum grease (which, although in a minimal amount, is necessary to stack the pieces), etc. These factors, which are mainly associated with the geometry of the samples, will produce a lower value reported by the instrument compared to the value determined for the bulk sample. The ΔT_{ad} (T) curves of Gd ribbon stack containing 40 ribbons subjected to different magnetic field sweeping rates are shown in Fig. 4. For magnetic field sweep rate (dH/dt) of 3 Ts⁻¹, the ΔT_{ad} (T) curve was less noisy with a larger ΔT_{ad}^{pk} value of 0.99 K. The larger field ramp rate allows for a better approximation to adiabatic conditions and minimizes, to some extent, losses associated with the small thermal mass of the sample. If the value provided by the MMS setup for the set of ribbons has to be corrected for the effect of their small thermal mass, it can be assumed that FIG. 4. (Color online) Temperature dependence of ΔT_{ad} for 40 Gd ribbons at various dL/dt FIG. 5. (Color online) Temperature dependence of (a) ΔT_{ad} for $dH/dt\,{=}\,3$ Ts^{-1} and (b) ΔS_M for the Fe-based ribbons. $$\Delta T_{ad}^{pk}(corrected) = k\Delta T_{ad}^{pk}(ribbons),$$ (1) where k is a proportionality constant, which depends on the thermal contact between the ribbon pieces and the sample holder, the number of pieces used, the field ramp rate, etc. For experiments performed under the same experimental conditions, the value of k should be independent of compositions. As mentioned before, after stacking a certain number of ribbons, the experimental value for ΔT_{ad}^{pk} is not altered, which demonstrates the weak dependence of k on the mass of the samples and simplifies the obtention of the corrected values of ΔT_{ad}^{pk} . For 40 pieces of Gd ribbon and a field ramp rate of 3 Ts⁻¹, $k \sim 4.2$ was determined from Eq. (1). This correction factor was used for the subsequent analysis of the rare-earth containing amorphous alloys measured under similar experimental conditions. It is worth mentioning, however, that the adiabatic temperature change of materials with a second order phase transition have a typical caret-like shape and that it scales with field in a certain way.¹³ Therefore, if a low mass sample is measured and it does not follow a caret-like behavior, the correction procedure described in this paper should not be used. Moreover, the temperature at which the peak entropy change and the peak adiabatic temperature change take place should be similar (within the experimental error). The ΔT_{ad} (T) curves of Fe_{80-x}B₁₂Cr₈RE_x (RE = Ce or La, x = 1–5 at.%) were plotted in Fig. 5. Fe₇₈B₁₂Cr₈Ce₂ melt-spun ribbons exhibited a $\Delta T_{ad(ribbons)}^{pk}$ of 0.33 K, occurring at 332 K, which agrees with the temperature of the peak magnetic entropy change (T_{pk}). When the ΔT_{ad}^{pk} of the ribbons was multiplied by the k factor determined earlier, $\Delta T_{ad(corrected)}^{pk}$ of 1.4 K was obtained (see Table I). For Fe₇₅B₁₂Cr₈Ce₅ melt-spun ribbons, ΔT_{ad}^{pk} of 0.34 K at 292 K was obtained in excellent agreement with its T_{pk}, its $\Delta T_{ad(corrected)}^{pk}$ value was also 1.4 K (Table I). The ΔT_{ad}^{pk} of Fe₇₉B₁₂Cr₈La₁ ribbons was observed to be 0.30 K at 352 K, which is also in agreement with its T_{pk}, the $\Delta T_{ad(corrected)}^{pk}$ value was estimated to be 1.3 K (Table I). The adiabatic temperature change of a sample can be expressed as $$\Delta T_{ad} = -\mu_0 \int_0^H \frac{T}{c_p} \left(\frac{\partial M}{\partial T} \right)_H dH. \tag{2}$$ If we approximate c_p as field independent, Eq. (2) can be rewritten as $$\Delta T_{ad} \approx \frac{T\Delta S}{c_p}$$. (3) The specific heat capacity of La (188.41 J kg⁻¹ K⁻¹) is larger than that of Ce (175.85 J kg⁻¹ K⁻¹); this could explain why the La containing alloy has a lower ΔT_{ad}^{pk} . The field dependence of ΔT_{ad}^{pk} as well as the corrections The field dependence of ΔT_{ad}^{pk} as well as the corrections from experimental ribbon values to bulk-like form are presented in Table I. The direct MCE values of some other magneto-caloric materials are also listed. When the field dependence of Fe₇₈B₁₂Cr₈Ce₂ and Fe₇₅B₁₂Cr₈Ce₅ ribbons were calculated, they showed a $\sim 58\%$ larger ΔT_{ad}^{pk} than the corresponding values for Co_{82.9}Si_{5.9}Fe_{4.5}Cr₄B_{2.7} amorphous ribbon. For Fe₇₉B₁₂Cr₈La₁ melt-spun ribbons, ΔT_{ad}^{pk} was $\sim 42\%$ larger than that of Co_{82.9}Si_{5.9}Fe_{4.5}Cr₄B_{2.7} ribbon. The ΔT_{ad}^{pk} of our samples was $\sim 33\%$ higher than that of GdAl₂, $\sim 20\%$ smaller than TABLE I. Peak temperature and peak adiabatic temperature change measured by MMS and calculated field dependences, including corrections from ribbons to bulk material form. For comparison, results for $Co_{82.9}Si_{5.9}Fe_{4.5}Cr_4B_{2.7}$ alloy of Ref. 14, REAl₂ alloys, and TbCo₂ and RE₂Fe₁₇ alloys from Ref. 9 are also presented. | Nominal composition | Crystallinity C - crystalline A - amorphous | Material form | $\begin{array}{c} T_{pk(\Delta T \text{ad})} \\ (T_{pk(\Delta} S_M^{pk})) \\ (K) \end{array}$ | ΔT_{ad}^{pk} (experimental, ribbon form) (K) | ΔT_{ad}^{pk} (corrected) (K) | $\begin{array}{c} \Delta T_{ad}^{pk} \\ /\Delta H_{max} \\ \text{(corrected) (KT}^{-1}) \end{array}$ | Ref. | |---|---|---------------|---|--|--------------------------------------|--|-----------------| | Gd | С | Bulk | 297 | 0.99 (1.775T) | 4.2 (1.775T) | 2.4 | This work | | $Fe_{78}B_{12}Cr_8Ce_2$ | A | Ribbons | 332 (325) | 0.33 (1.775T) | 1.4 (1.775T) | 0.78 | This work, (12) | | $Fe_{75}B_{12}Cr_8Ce_5$ | A | Ribbons | 292 (295) | 0.34 (1.775T) | 1.4 (1.775T) | 0.80 | This work, (12) | | $Fe_{79}B_{12}Cr_8La_1$ | A | Ribbons | 352 (348) | 0.30 (1.775T) | 1.3 (1.775T) | 0.71 | This work, (12) | | Co _{82.9} Si _{5.9} Fe _{4.5} Cr ₄ B _{2.7} | A | Ribbons | 302 | 0.24 (2T) | | | 14 | | $GdAl_2$ | C | Bulk | 168 | | | 0.6 | 9 | | $TbAl_2$ | C | Bulk | 107 | | | 1 | 9 | | TbCo ₂ | C | Bulk | 232 | | | 1 | 9 | | Y_2Fe_{17} | C | Bulk | 328 | | | 0.9 | 9 | | Nd ₂ Fe ₁₇ | C | Bulk | 325 | | | 0.9 | 9 | TbAl $_2$ and TbCo $_2$, and \sim 11% smaller than Y_2Fe_{17} and Nd $_2Fe_{17}$ alloys. ## IV. CONCLUSIONS The adiabatic temperature change of iron based amorphous alloy ribbons was directly measured. In order to extract the information which is characteristic of the material, the experimental results of bulk and ribbon shaped Gd samples have been used as calibrating samples. A correction factor was calculated for the experimental conditions used. The ΔT_{ad}^{pk} of Fe₇₈B₁₂Cr₈Ce₂ and Fe₇₅B₁₂Cr₈Ce₅ ribbons was $\sim 58\%$ larger than that of Co_{82.9}Si_{5.9}Fe_{4.5}Cr₄B_{2.7} amorphous ribbon. The ΔT_{ad}^{pk} in Fe₇₈B₁₂Cr₈Ce₂, Fe₇₅B₁₂Cr₈Ce₅, and Fe₇₉B₁₂Cr₈La₁ ribbons displayed $\sim 18-33\%$ enhancement when compared to GdAl₂ bulk alloy. ## **ACKNOWLEDGMENTS** This work was supported by the Spanish Ministry of Science and Innovation and EU FEDER (Project MAT 2010-20537), the PAI of the Regional Government of Andalucía (Project FQM-6462), the United States Office of Naval Research (Project N00014-11-1-0311), and the US AOARD (AOARD-08-4018, program manager, Dr. R. Ponnappan). J.Y.L. would like to thank the School of Materials Science and Engineering for funding the research attachment in Sevilla University. - ¹A. M. Tishin and Y. I. Spichkin, *The Magnetocaloric Effect and its Applications* (Institute of Physics Publishing, Bristol, 2003). - ²B. Yu, M. Liu, P. W. Egolf, and A. Kitanovski, Int. J. Refrig. **33**, 1029 (2010). - ³R. Caballero-Flores, V. Franco, A. Conde, K. E. Knipling, and M. A. Willard, Appl. Phys. Lett. 96, 182506 (2010). - ⁴J. Y. Law, R. V. Ramanujan, and V. Franco, J. Alloys Comp. **508**, 14 (2010). - ⁵I. Škorvánek and J. Kovác, Czech. J. Phys. **54** (Suppl. D), D189 (2004). - ⁶T. Mukherjee, S. Sahoo, R. Skomski, D. J. Sellmyer, and Ch. Binek, Phys. Rev. B 79, 144406 (2009). - ⁷V. Franco, J. S. Blazquez, C. F. Conde, and A. Conde, Appl. Phys. Lett. **88**, 042505 (2006). - ⁸F. Johnson and R. D. Shull, J. Appl. Phys. **99**, 08K909 (2006). - ⁹Y. I. Spichkin, I. Zubkov, A. M. Tishin, K. A. Gschneidner Jr., and V. K. Pecharsky, in *3rd International Conference of IIR on Magnetic Refrigeration at Room Temperature*, Des Moines, IA, 11-15 May 2009, p. 139. - p. 139. ¹⁰A. M. Tishin, K. A. Gschneidner Jr., V. K. Pecharsky, and Y. I. Spichkin, in 2nd IIF-IIR Interanational Conference on Magnetic Refrigeration at Room Temperature, Portoroz, Slovenia, 11-13 April 2007, p. 35. - ¹¹Y. I. Spichkin, A. M. Tishin, D. B. Kopeliovich, and A. Y. Malyshev, in 3rd International Conference of IIR on Magnetic Refrigeration at Room Temperature, Des Moines, IA, 11-15 May 2009, p. 173. - ¹²J. Y. Law, V. Franco, and R. V. Ramanujan, Appl. Phys. Lett. 98, 192503 (2011). - ¹³V. Franco, A. Conde, J. M. Romero-Enrique, Y. I. Spichkin, V. I. Zverev, and A. M. Tishin, J. Appl. Phys. **106**, 103911 (2009). - ¹⁴V. D. Buchelnikov, S. V. Taskaev, I. V. Bychkov, V. V. Sokolovskiy, M. O. Drobosyuk, E. V. Smyshlyaev, I. I. Danilova, F. V. Averin, O. Smolyakova, S. V. Klimov, A. M. Aliev, A. B. Batdalov, L. N. Khanov, V. V. Khovaylo, H. Miki, and T. Takagi, in 3rd International Conference of IIR on Magnetic Refrigeration at Room Temperature, Des Moines, IA, 11-15 May 2009.