Towards Discovering Conceptual Models
behind Web Sites

Inma Hernéndez, Carlos R. Rivero, David Ruiz, and Rafael Corchuelo

University of Sevilla, Spain
{inmahernandez,carlosrivero,druiz, corchu}@us.es

Abstract. Deep Web sites expose data from a database, whose concep-
tual model remains hidden. Having access to that model is mandatory to
perform several tasks, such as integrating different web sites; extracting
information from the web unsupervisedly; or creating ontologies. In this
paper, we propose a technique to discover the conceptual model behind
a web site in the Deep Web, using a statistical approach to discover re-
lationships between entities. Our proposal is unsupervised, not requiring
the user to have expert knowledge; and it does not focus on a single view
on the database, instead it integrates all views containing entities and
relationships that are exposed in the web site.

Keywords: URL Patterns, Conceptual Models, Model Discovery.

1 Introduction

The Deep Web comprises a number of web sites that expose data stored in a
back-end database, publishing them in a friendly format [§]. Entry points to these
web sites are submittable query forms, which return as a response a number of
web pages that are generated by filling a template with data [4JTT]. The data that
fill each template is the result of executing a view over the back-end database [2].

Since query forms are the unique entry points to the Deep Web, the different
views that provide the data to fill each template are not accessible. Therefore,
the conceptual model of the database, which comprises a number of entities and
a number of relationships amongst these entities, remains hidden.

Having access to the conceptual model of a web site is mandatory to per-
form several tasks, such as integrating different (semantic or non-semantic) web
sites [2IT4IT5], extracting information from the web without supervision [TI7ITT],
or creating ontologies by means of query forms [16].

As a consequence, there are many proposals in the literature that deal with
discovering conceptual models behind web sites [TI2I4I5IGIUTOITTIT2IT3IT6]. Some
of these proposals deal with models composed solely of entities, without taking

* Supported by the European Commission (FEDER), the Spanish and the An-
dalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-TIC-
4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E, and
TIN2010-09988-E).

—

the relationships between them into account [AJ5GITOT2IT3]. Other proposals
discover models with entities and relationships [2I6], but they are supervised
and require the intervention of the user, providing expert knowledge about each
web site. Finally, the rest of the proposals focus on a single template, discovering
only one view of the model [TU9TT].

In this paper, we propose a technique to discover the conceptual model behind
a web site in the Deep Web. The model our technique is able to discover from each
web site does not represent the complete, hidden conceptual model of the back-
end database, but the union of the views over that conceptual model, composed
of those entities and relationships that are exposed in the web site.

Our technique takes a set of URL patterns as input, each of which represents
an entity in a particular web site. It follows a statistical approach to detect re-
lationships between those entities. Our hypothesis is that each relationship is
materialised in HTML links that go from pages of one class to pages of another
class, so an XPath pattern targeting those links is created to represent each rela-
tionship. The URL patterns that support our technique can be either handmade
by the user, or automatically built by any of the former proposals [SJ6ITO/T3)].

Our proposal presents some advantages: it creates a conceptual model con-
sisting not only of entities, but also of relationships between those entities; it
is not supervised, which saves the user a significant amount of time in labelling
training sets, and does not require the user to have expert knowledge; and it
integrates different views from the different templates in the site. Moreover, our
proposal discovers all the possible anonymous relationships in the model, and we
leave the user the task of labelling those relationships with an appropriate name
and selecting those relationships that are useful for his or her model. Therefore,
the set of relationships we automatically discover can be used as a first approach
to the model, which can be refined by an expert data modeller, with a significant
reduction in time investment [17].

The rest of this article is organised as follows: Section [reports on the re-
lated work on web site modelling; Section [3] defines our proposal to discover
relationships in web sites; Section] shows the validation of our technique, using
a well-known academical web site; finally, Section [Al lists some of the conclusions
drawn from the research and concludes the article.

2 Related Work

There are many proposals related to web site modelling in the literature. Some
of these proposals deal with models composed solely of entities [4U5IGITOIT2IT3],
while others deal with more complex models including entities and relationships
between those entities [TI2J9UTTITE]

Models including only entities are usually discovered by web page clustering
proposals, which unsupervisedly classify the pages in the web site. This cluster-
ing is based in features either from the page content or its structure [I7], which
implies that the page must be downloaded beforehand [5I12], or from URL fea-
tures, which prevents having to download it [4J6JT0/T3]. In the latter case, the

result is a collection of URL patterns representing each class. All the former
proposals discover models of web sites that are exclusively composed of entities,
but none of them discovers relationships amongst those entities.

Other proposals deal with models composed of both entities and the rela-
tionships amongst those entities. These proposals are usually focused on web
information extraction, since extractors require such a model, that can be either
provided by the user (supervised proposals) [2/16], or automatically inferred after
analysing the pages of the web site (unsupervised proposals) [TI9IIT].

On one hand, supervised proposals rely on the user to define the model. Tao
et al. [I6] analysed the problem of learning ontologies from web sites. Their
proposal, FOCIH, consists of providing the user with a wizard-like application to
design the model, and annotate pages from the web site according to that model.
From that annotations, FOCIH infers an ontology, composed of concepts and
relationship between the concepts. Atzeni et al. [2] proposed the Araneus Data
Model, which defines a user-generated model for each web site that describes
the different views of the schema of the web site, including the different entities
and relationships. Supervised proposals require the user to have both the expert
knowledge about each site to model it, and the expertise in data modelling to
create a good model from scratch.

On the other hand, unsupervised proposals infer a model from the analysis
of the web site. Kayed et al.[TI] proposed FivaTech, a technique to discover the
model behind a template, by analysing the DOM tree of a reduced set of web
pages generated from that schema. Crescenzi and Meccal9] proposed RoadRun-
ner, an information extractor which automatically discovers the model behind
one template in a web site, and uses this model to extract information. Finally,
Arasu and Garcia-Molina [I] proposed EXALG, an information extractor based
on grammar inference. The former proposals only discover the model behind one
single template in the site, although web sites are usually composed of several
templates, one for each type of information it offers. Therefore, each template
allows discovering one different view on the back-end database, and all views
should be integrated to infer a single conceptual model.

3 Proposal

Our technique takes a set of URL patterns that describe all classes of information
offered in a web site as input, and discovers relationships between the classes. In
the following subsections, we first introduce a running example, then we define
some concepts that support our technique, and finally we describe the technique.

3.1 Running Example: Microsoft Academic Search

Microsoft Academic Search (from now onwards, MsAcademic) is an scholarly
web site that offers different classes of information about academic publications
(authors, papers, publishing hosts, such as journals or conferences, and research
keywords, amongst others). Also, relationships between these classes of informa-
tion are offered as well, e.g., author pages include a list of papers written by that

author, and also a list of papers that cite this author. Furthermore, for each of
the former papers, they offer the list of co-authors, the host it was published in,
as well as the citations of the paper.

For the sake of simplicity, in this paper we focus on classes Paper, Author,
Journal, Conference and Citation, and the relationships amongst them. An
analysis of the MsAcademic site by the pattern building proposal in [10] yields
the following URL patterns:

— p1 = (http, academic.research.microsoft.com, Publication, %, %),

— p2 = (http, academic.research.microsoft.com, Author, *, *),

— p3 = (http, academic.research.microsoft.com, Journal, x, x)

— ps = (http, academic.research.microsoft.com, Conference, *, x)

— ps = (http, academic.research.microsoft.com, Detail, €T, 1, sT, 5, id, *)

For example, pattern py, matches all URLs in MsAcademic containing informa-
tion about conferences (e.g., URLhttp://academic.research.microsoft.com/
Conference/195/ex contains information about the ER conference).

3.2 Preliminaries

Definition 1 (Tokenisation). Let s be a string, we define 7(s) =
(81,82, ...,8n) as the sequence of tokens that is obtained after tokenising s.

Note that this definition is applicable to both URLs and XPath locators.

Definition 2 (Pattern). We define a pattern as a sequence of tokens, such
that some of the tokens are literals, whereas others are wildcards. We denote a
patternp asp = (t1,ta, ..., tm). We distinguish between URL patterns and XPath
patterns. The latter are class-dependent, since XPath expressions are calculated
in the context of a given page of a certain class c.

We represent patterns by means of a subset of regular expressions that includes
only literals and wildcard expressions. A wildcard is represented with symbol *,
and it represents any sequence of characters, excluding token separators defined
for a particular tokenisation. Next, we define the problem of finding a match of
a given pattern in another string.

Definition 3 (Pattern Matching). Let p be a pattern p = (p1,p2,...,D1),
and s be a sequence of tokens s = (s1, 82,...,81), both of length l. We define that
s matches p, and we denote it as s ~ p iff each token in p is either a wildcard,
or it is equal to the correspondent token in s.

Note that p can be either a URL or XPath pattern, and that both URLs and
XPath expressions are strings, hence we can apply the matching predicate on
both URLs and XPaths.

Let P = {p1,p2,...,0n} be a set of URL patterns obtained from website .
Each of those patterns, according to the labels assigned by the user, corresponds
to some class, e.g., pattern p; corresponds to class Paper, pattern ps corresponds
to class Author, and so on.

http://academic.research.microsoft.com/Conference/195/er
http://academic.research.microsoft.com/Conference/195/er

Definition 4 (Class-Pattern Correspondence). Let C be the set of classes
of information offered by a website W, and P be the collection of URL patterns
obtained from W. We define the injective function @ : C — P, which assigns to
each class in C the different patterns from P that have been labelled as corre-
sponding to that class by the user.

For example, after obtaining URL patterns p1, ps, ps, ps and ps in MsAcademic,
we assign a label to each pattern, e.g., stating that $(Paper) = p1, $(Author) =
p2, ®(Journal) = p3, (Conference) = py and H(Citation) = ps.

Definition 5 (Detail Page Set). Let C be the set of classes of information
offered by a website W. We define the set of detail pages of any class ¢ € C, and
we denote it by D¢ as the set of pages in W containing information of type c.

Note that the D¢ of a class ¢ is composed of those pages whose URLs match the
patterns that have been labelled by the user as corresponding to that page.

Definition 6 (Locator). Let w be a web page, and u € w be a URL. We define
the locator of URL w in w, and we denote it by X Path(u,w) as the XPath
expression that points at the position of u in w.

We use a tree notation to represent tokenisations of XPath expressions based
on the PATRICIA trees (XPathTree), which allows representing large collec-
tions of strings efficiently and compactly. Every node in an XPathTree is an
XPathTreeNode, defined by a label n;, and it refers to a token ¢;. Note that
each path from the tree root to a leaf represents a single XPath. An example of
a tree containing XPath expressions is presented in Figure [[al For the sake of
readability, each token in each node is preceded by the character that separates
it from the previous token.

3.3 Relationships Discovery

We base the discovery of relationships between two classes on the detection
of HTML links in pages of one class whose target is a page of another class.
We extract the XPath locators of those links, and we apply a statistical-based
technique to estimate the variability of each token in each locator. Then, we
abstract the tokens with a high variability (again, using a statistical criterion),
creating XPath patterns. Finally, each XPath pattern represents a particular
relationship between the former classes.

There is an abstract relationship between two classes a and b, if there are links
to pages of class b in most pages of class a. However, more than one type of rela-
tionship may exist between any given pair of classes a and b. For example, pages
of class Author in MsAcademic contain both a list of publications, which include
coauthors of the publication, and a list of citations, which includes authors that
cited this author, as shown in Figure 2l Therefore, there are two different types
of relationships in this model between class Author and itself: 1) isCoauthorO f
and 2) cites.

m, lldiv

n2, [@id
n3;='cti00_divCenter']
g, [div

O OLaz N
O[] Ones (2 Onw3 Onss, (] Oner, 2105, [3] Ones, [4] Ongo, 5]
Ong, ldiv O Nes, /div O nat/div Ong, /div O Nz, [div O nsg, /div Ones, /div Onzs, /div O ngs, [div O no1, div
Onol2d O Onz[2) Ono 2] Onso (2 Onsg, 2] On7,[2] Ons, 2 One, 2]
Onitfa Qnla Ongy, fa O, fa O, /a Ono fa Quzs la (Qnss, /a () o3, fa
OnarOnzsOnas OnaOnasOnaOnss, Oz OneaOnee ONssONes, On7sOnso) ngOnez OnesOnesOns,
UNNCIE Mm 2 B mnoe o[oWoE M@ B (R
OnNan () NesD) Neg,
Onae, O nssOnasO nar m 2 @
1 02 3
On120n130mns, n20,n21.ﬂ21,[b Ff][];f[];f[]:f?;
U R A (U)| OnrOn720n7s0n7s,
2 @
(a) XPathTree containing the XPaths of URLs of class Author in pages of class Author
m, /ldiv
n2, [@id
n3,='ctl00_divCenter']

ng, /div

node token Q V(ni)
n1l /a {11,3,3} 4.62
n26 /a {3,43} 058
n33 /a {4,3,3} 0.58
ndl /a {241} 153
nd9 /a {152} 2.08
n6l /a {455} 058

n70 /a {434} 058 [z]
n78 /a {343} 058 nes, n;:
ng6 /a {332} 058 O, Owe, Ows, Ows, OWer O, OWr, Owa, OW, O winp,
n93 /a_ {458 208 (%] [%] [*] [*] [x] [*] (%] [x] [*] [*)]

(b) V function values (c) XPathTree, after compression

Fig. 1. Representation of the technique, which compresses an XPathTree by abstract-
ing children of nodes with a high variability

Using only URL patterns, we are not able to discern between these different
types of relationships, since all URLs match the same pattern, regardless of the
type of relationship they represent. Therefore, other features must be extracted
from the URLs to classify them according to their role.

We assume that links whose URL matches the same URL patterns may appear
in different locations in the page, but all links representing the same relationship
appear in similar locations. Therefore, we use the XPath of the different links,
which denotes their location in the page. We apply a technique to build patterns
for those XPath, which starts by tokenising all XPath locators and inserting all
their tokens in order in an XPathTree. Then, we use some criterion to discern
tokens that must be abstracted (replaced by a wildcard), based on the concept
of variability of a token.

Microzofe” [

Academic
‘Search

Search

Paolo Atzeni Universita degli Studi Roma Tre

Publications: 145 | Citations: 1698 | Glndex: 38 | Hndex: 22
Interests: Databases, Data Mining, Algorithms & Theory

Collaborated with 92 co-authors from 1981 to 2011; Cited by 1439 authors
Homepage | Bing

Publications (145

A framework for semi-automatic identification. disambiguation and
storage of protein-related abbreviations in scientific literature

Citations (1698 times by 1235 pubications)

Unity: Speeding the creation of community vocabularies for
information integration and reuse

Ken Smith, Peter Mork, Len Seligman, Peter Leveille, Beth Yost, Maya LI
Chuis Wolf

Paolo Atzeni, Fabio Polticell, Daniele Toti

Conference: Intermational Conterence on Data Enginesring - ICDE, pp. 5961,
2011

Conference: Information Reuse and Integration - IRI, 2011

Co- An Automatic Identification and Resolution System for Protein- P . Cltlng
Related ARk 10 Scientific Paner. Data integration with dependent sources
authors

authors |FanIoAtzeni. Fabio Polticelli,_Danisle Toti I

Conference: Evo\Workshops, pp. 171-176, 2011

Anish Das Sarma, Xin Luna Dong, Alon Y. Halevy
omference: Extending Databass Technology - DT, pp. 401412, 2011

Data exchange and schema mappings in open and closed worlds

Leonid Libkin, Cristina Sirangelo

TGurnaT, JoumaT of Computer and System Sciences - JCSS, vol. 77, no. 3, pp-
542-571, 201

Polymorphism in Datalog and Inheritance in a Metamadel (ctations: 1)
Conference: Foundations of Information and Knowledge Systems - Folk, pp.
114-132, 2010

Fig. 2. Detail page of class Author

The variability of a token refers to how spread the numbers of tokens that
follow that token in different XPath locators in different pages of the same class
(i.e., the different numbers of children of the node representing that token in each
page) are. Since we do not analyse all pages of a site, but only a representative
sample, we estimate the variability by means of the following definition.

Definition 7 (Variability Estimator:). Let D¢ be a set of detail pages of class
¢, © an XPath expression and n; be a tree node referring a token t, we define
the variability estimator of node n;, and we denote it as V(n) as the standard
deviation of the numbers of children of node n; in the different pages of D€.

Based on these variability estimators, we define a process to generate XPath
patterns. For each node n; in the XPathTree, we check if its variability estimator
is significatively high, and in that case, all its children nodes have their token
replaced with a wildcard, and the subtrees rooted at them are merged. Contrarily,
children of nodes with a low variability are probably part of a pattern, so they
are not abstracted, but kept as literals.

Our technique to mine relationships between classes a and b consists of two
steps: XPathTree building and XPathTree compressing.

In the first step, we extract all URLs matching pattern @(b) in pages from
D?, and we calculate an XPath locator for each of them. XPath locators are
tokenised, and each token is inserted in an XPathTree as a node with a variability
estimator. An example of an XPathTree built using this technique is presented
in Figure[Tal It contains XPath expressions of URLs matching ¢(Author) in the
running example, extracted from detail pages of class Author.

In the second step, we apply a compressing algorithm that performs a depth-
first traversal on the XPathTree, and for each visited node, uses its variability
estimator to discern nodes with a variability higher than a given parameter
6 > 0. Those nodes have their token abstracted into a wildcard (x). As an
example, nodes with variability higher than 0.5 are presented in Figure

After the whole tree has been traversed and processed, each of the resulting
tree branches represents a different pattern. Furthermore, each pattern refers to a
different type of relationship between classes a and b. As an example, in Figure[Id
we show the example tree containing XPath expressions of links between class
Author and itself, after processing all its nodes. The tree contains ten branches,
which correspond to ten XPath patterns.

At the end of this process, for each pair of classes a and b, we have obtained a
set of XPath patterns, that represent the different relationships between them.
These relationships are anonymous, and it is left to the user the task of labelling
them with an appropiate name. Moreover, we have identified all the possible
relationships, but some of them might be duplicated (i.e., we discover a relation-
ship between a and b, which is the same as another relationship between b and
a). Therefore, the user has the opportunity to select the relationships that are
most suitable for his or her model, discarding the rest. Therefore, although we
are indeed automatically discovering the relationships between entities, the user
still has the complete control over the final model.

As an example, consider the former patterns discovered in Figure[Id The first
five patterns correspond to links to authors that co-author, respectively, the five
most recent papers of an author. Meanwhile, patterns sixth to tenth correspond
to links to authors of, respectively, the five most recent papers that cite the
author. Therefore, the five first patterns correspond to a particular relationship
between class Author and itself(isCoauthorOf), while the five last patterns
correspond to a different relationship (cites).

4 Validation

We present an experiment to validate our technique. Microsoft Academic Search
was analysed to discover the conceptual model behind it, by means of two steps:
in the first step, we discovered the entities in the model, using the URL patterns
obtained with the technique described in [I0]; in the second step we discovered
the relationships between these entities, with the former URL patterns as input,
and using the technique described in this paper.

We show the relationships discovered for this site in Figure Bal using a UML
class diagram. After the intervention from the user, a possible model obtained
from the former relationships is presented in Figure BBl For example, relation-
ships r3, r4, r5, r6 and r7, represent respectively the co-authors of the most
recent paper of an author, the co-authors of the second most recent paper, and
so on. The user analyses these relationships and decides that all these relation-
ships are actually the same, and labels it isCoauthorOf.

Using our technique, it is also possible to infer hierarchical relationships be-
tween classes, by identifying classes that share a common group of relationship
with other classes. For example, in the former example model for MsAcademic,
classes Journal and Con ference both share exactly the same types of relation-
ships (Journal is related to Paper by means of r23 and r24, to Author by means
of rl and r2 and to Clitations by means of r19 and r20. Similarly, Con ference

13, 4, 15, 16, 17

18,19, 110, r11, r12

122
126 Conference
1 Citation & 7 1

A |4 r18

7 r19

r15 120

r16

(a) Relationships for MsAcademic

publishes|n / includesPublicationFrom

isCoauthorCf

writes / isWrittenBy
Journal

cites

3 Conference
R

cites / hasCitations
cites / hasCitations

publishes|n / includesPublicationFrom

(b) Model for MsAcademic

Fig. 3. Model discovered for the validation site

is related to the same set of classes, with two relationships with each class).
Therefore, our technique proposes the user the generalisation of Journal and
Conference into another class, and lets the user name it (e.g., Host).

5 Conclusions

In this paper, we present a technique to discover the conceptual model behind
a web site in the Deep Web. Using a set of URL patterns as input, we use
a statistical approach to discover all the different relationships between those
entities. These relationships can be later analysed by the user, who is responsible
for labelling them appropriately, and selecting those relationships that are useful
for his or her particular model. We validate our proposal using a well-known
academical web site, Microsoft Academic Search.

Other proposals have dealt with the problem of discovering the model behind
a web site. Some of them discover models composed only of entities, neglect-
ing the discovery of relationships, which we deal with. Others are supervised,
which require expert knowledge from the user, while our technique is completely
unsupervised. Finally, other proposals discover only one view of the conceptual
model, which corresponds to a particular template; contrarily, we discover a

model composed of the union of all views over the complete model that include
entities and relationships that are exposed in the web site.

References

10.

11.

12.

13.

14.

15.

16.

17.

Arasu, A., Garcia-Molina, H.: Extracting structured data from web pages.
In: SIGMOD, pp. 337-348 (2003)

Atzeni, P., Mecca, G., Merialdo, P.: Managing web-based data: Database models
and transformations. IEEE Internet Computing 6(4), 33-37 (2002)

Bar-Yossef, Z., Keidar, 1., Schonfeld, U.: Do not crawl in the dust: different URLs
with similar text. In: WWW, pp. 111-120. ACM (2007)

Blanco, L., Bronzi, M., Crescenzi, V., Merialdo, P., Papotti, P.: Automatically
building probabilistic databases from the Web. In: WWW, pp. 185-188 (2011)
Blanco, L., Crescenzi, V., Merialdo, P.: Structure and semantics of Data-Intensive
Web pages: An experimental study on their relationships. J. UCS 14(11),
1877-1892 (2008)

Blanco, L., Dalvi, N., Machanavajjhala, A.: Highly efficient algorithms for struc-
tural clustering of large websites. In: WWW, pp. 437-446. ACM (2011)

Chang, C.-H., Kayed, M., Girgis, M.R., Shaalan, K.F.: A survey of web information
extraction systems. IEEE TKDE 18(10), 1411-1428 (2006)

Chang, K.C.-C., He, B., Li, C., Patel, M., Zhang, Z.: Structured Databases on the
Web: Observations and Implications. SIGMOD Record 33(3), 61-70 (2004)
Crescenzi, V., Mecca, G.: Automatic information extraction from large websites.
J. ACM 51(5), 731-779 (2004)

Hernéandez, I., Rivero, C.R., Ruiz, D., Corchuelo, R.: A statistical approach to
URL-based web page clustering. In: WWW, pp. 525-526 (2012)

Kayed, M., Chang, C.-H.: Fivatech: Page-level web data extraction from template
pages. IEEE Trans. Knowl. Data Eng. 22(2), 249-263 (2010)

Mecca, G., Raunich, S., Pappalardo, A.: A new algorithm for clustering search
results. Data Knowl. Eng. 62(3), 504-522 (2007)

Deepak, P., Khemani, D.: Unsupervised learning from URL corpora. In: COMAD,
pp. 128-139 (2006)

Popa, L., Velegrakis, Y., Miller, R.J., Hernandez, M.A., Fagin, R.: Translating web
data. In: VLDB, pp. 598-609 (2002)

Rivero, C.R., Hernandez, 1., Ruiz, D., Corchuelo, R.: Generating SPARQL Exe-
cutable Mappings to Integrate Ontologies. In: Jeusfeld, M., Delcambre, L., Ling,
T-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 118-131. Springer, Heidelberg (2011)
Tao, C., Embley, D.W., Liddle, S.W.: FOCIH: Form-Based Ontology Creation and
Information Harvesting. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de
Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 346-359. Springer, Heidelberg
(2009)

Thonggoom, O., Song, I.-Y., An, Y.: Semi-automatic Conceptual Data Modeling
Using Entity and Relationship Instance Repositories. In: Jeusfeld, M., Delcambre,
L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 219-232. Springer, Heidelberg
(2011)

	Towards Discovering Conceptual Models
behind Web Sites
	Introduction
	Related Work
	Proposal
	Running Example: Microsoft Academic Search
	Preliminaries
	Relationships Discovery

	Validation
	Conclusions
	References

