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Abstract  

 This work presents an evaluation of a high performance series of water gas shift (WGS) 

catalysts in the preferential CO oxidation reaction (PrOx) in order to examine the applicability of 

the same catalyst for both processes as a first step for coupling both reactions in a single process. 

Gold based catalysts are applied in an extensive study of the CO-PrOx reaction parameters, such 

as λ, WHSV, CO concentration and [H2O]/[CO2] ratio in order to obtain the best 

activity/selectivity balance. CO and H2 oxidation reactions were treated separately in order to 

establish the degree of CO/H2 oxidation competition. Additionally the catalysts behavior in the 

CO-PrOx parallel reactions such a WGS and RWGS have been also carried out to analyze their 

effect on product composition. 
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1. Introduction 

 The hydrogen-fueled polymer electrolyte membrane fuel cell (PEMFC) is considered a 

very promising candidate to directly convert chemical into electrical energy [1]. PEMFCs appear 

to be a viable technology for small-scale electricity production as required for electric vehicles 

and residential power generators due to their advantageous features, such as low-operating 

temperature (80-200 ºC), sustained operation at high current density, low weight, and 

compactness, potential for low cost, fast start-up and suitability for intermittent operation [2]. 

These small-scale units depend on processing a hydrocarbon fuel for producing a H2-rich product 

that fuels PEMFCs. Fuel processors convert liquid hydrocarbons, the volumetric energy content 

of which is much larger than that of bottled hydrogen, into an almost CO-free H2-rich product 

through the coupling of several catalytic reactions, such as reforming, usually steam reforming, 

WGS, PrOx and/or methanation ones [3-6]. The water gas shift reaction (CO + H2O  CO2 + 

H2) is a critical step in fuel processors for preliminary CO clean-up and additional hydrogen 

generation prior to the CO preferential oxidation or methanation step [4-7]. WGS units are 

placed downstream of the reformer to lower the CO content and improve the H2 yield. However 

WGS is an equilibrium-limited reaction and CO concentrations below 10 ppm (requisite for the 

PEMFC anode) cannot be reached even with high H2O/CO ratios at reaction temperatures above 

200 ºC [8]. Therefore, an additional CO removal process is always required. 

 Preferential CO oxidation of the pre-cleaned reformate stream (PrOx) with air is one of 

the most effective methods for CO abatement from the reformate stream prior to its introduction 

in the PEM cell [9]. High CO oxidation activities coupled with low hydrogen ones (at the desired 

oxidation temperature) are essential requirements for the PrOx catalysts [10, 11]. 
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 In recent years, there has been great interest in the CO oxidation reaction over gold-based 

catalysts [12-14]. Despite bulk metallic gold being a very poor catalyst in this reaction, supported 

gold nanoparticles are able to eliminate CO even at sub-ambient temperatures [15, 16]. Nanogold 

catalysts are promising candidates for the PrOx reaction for two main reasons: i) they show 

extraordinarily high activity in the low temperature range, which is appropriate for fuel cell 

applications, ii) the rate of CO oxidation exceeds that of hydrogen oxidation in the relevant 

temperature range [17, 18]. In addition to high activity and selectivity, a suitable PrOx catalyst 

must also tolerate high amounts of CO2 and H2O present in the reformate stream [19]. Generally, 

the presence of both CO2 and H2O diminishes CO conversion, especially at low temperatures 

[20, 21]. An excellent WGS catalyst withstands high amount of H2O. The ability of a catalyst to 

admit large ranges of CO2 concentrations in both WGS and PrOx, generally depends on its 

composition, specifically on the support nature, with acid supports more resistant to deactivation. 

It was recently reported by Tabakova et al. [2] that a Au/CeO2-Fe2O3 system can successfully 

tolerate CO2 and H2O allowing good performance in the PrOx reaction. For the WGS reaction an 

efficient catalyst based on a similar system, Au/CeO2-FeOx/Al2O3 was also reported [22].  

Following the concept of process intensification, it would be interesting to design a reactor 

where both reactions (PrOx and WGS) are successfully carried out in a single catalytic wall 

reactor by careful control of the temperature profile of the reactor and the reactant insertion 

zones, this way doing away with one reactor on the overall CO clean-up process (Scheme 1). The 

development of such an advanced reactor may reduce cost and system volume allowing the 

adaptation of this type of fuel processor to smaller devices for portable applications. Considering 

the experimental conditions in which WGS and PrOx take place, i.e. space velocity, temperature 

window, equilibrium limitations etc., coupling these reactions in a single reactor is a great 
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challenge. Nevertheless, as a first step toward process intensification, the preparation of one 

efficient catalyst for both processes is required.   

Considering the promising features of gold based systems for these reactions, the aim of 

this work is to study the possibilities of use of a gold-based WGS catalyst in the PrOx reaction 

with the idea of facilitating the possible future coupling of these reactions in a single reactor. 

 

2. Experimental 

2.1. Catalyst preparation 

 The supports were prepared by impregnation of Ce(NO3)3·6H2O and Fe(NO3)3·9H2O 

(Aldrich) on γ-alumina powder (Sasol) in order to obtain a cerium-iron mixed oxide dispersed on 

alumina. The precursor amounts were calculated in such a way so that the final loading of CeO2, 

FeOx or CeO2-FeOx solid solution were 15 wt.% of the final solid. In order to ensure the 

production of a FeOx-CeO2 solid solution, the FeOx content was always maintained below 3wt% 

[22]. Gold (2 wt.% nominal) was deposited by the direct anionic exchange method, assisted by 

NH3, as described elsewhere [23].  

 In the adopted nomenclature, oxygen is omitted for simplification and the FeOx contents 

are expressed as the theoretical catalyst loading. For example, the Au/CeFe0.5/Al solid contains 

2wt.% Au loading over a CeFe mixed oxide in which the FeOx content is 0.5wt.% and CeO2 

loading is approximately 14.5 wt.%, deposited on Al2O3 support. 
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2.2. Catalytic activity and selectivity 

2.2.1. Preferential CO oxidation 

 PrOx reaction was carried out at atmospheric pressure on a cylindrical fixed bed quartz 

reactor (9 mm inner diameter) at 60000 cm3 gcat
-1 h-1. For each test, 100 mg of catalyst sieved 

between 100-200 μm were loaded in the reactor. To minimize, as far as possible, the thermal 

effects due to the oxidation reaction, the samples were diluted in quartz. The feed flow rate was 

100 cm3 min-1 containing 1% CO, 1.5% O2, 50% H2 and He as a balance. To study the effect of 

H2O and CO2 on catalyst activity and selectivity, 10% of each compound was added in the feed. 

Prior to catalytic measurements, the samples were treated under a 100 cm3 min-1 flow of 21% O2 

in He, at 300 ºC for 1 h.  The influence of the λ parameter (λ= 2[O2]/[CO]) was studied varying λ 

from 1 to 4 conserving 1% of CO in all the cases. The influence of space velocity was studied by 

varying the WHSV between 12000 and 120000 cm3 gcat
-1 h-1. Water was added to the dry gas 

stream via a HPLC pump (Gilson 307). Product and reactant analyses were carried out by a gas 

chromatograph (ShimadzuGC-14B) equipped with a TCD detector. 

 The CO conversion was calculated according to Eq. (1) where COin is the CO 

concentration in the inlet and COout is the one at the outlet: 

 

	 	 % 	 100     (1) 

The O2 selectivity towards CO2 formation was calculated with Eq. (2). O2in corresponds 

to oxygen in the inlet and O2out to the one at the outlet. 

	 	 % 	
	 	 100

2 	 	
							 2  
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2.2.2. CO and H2 oxidation: 

 CO and hydrogen oxidation were carried out at atmospheric pressure in a stainless steel 

fixed bed reactor (9 mm inner diameter) at 30000, 60000 and 120000 cm3 gcat
-1 h-1. The 

composition of the CO oxidation stream was 1% CO, 1.5% O2 and N2 as balance, while for H2 

oxidation the reactant stream was 1.5% O2, 50% H2 balanced in N2. The catalyst (100 mg, 

100 < ϕ < 200 μm) was diluted with crushed glass particles in the same particle size range 

forming a bed of about 5 mm in length. Products and reactants were analyzed by on-line gas 

chromatography (Agilent® 6890) equipped with a HP PLOT Q and HP-5 columns and a TCD 

detector. Prior to catalytic measurements, the samples were treated under a 100 cm3 min-1 flow of 

21% O2 in N2, at 300 ºC for 1 h. 

 

2.2.3. Water gas shift and Reverse water gas shift reactions 

 The study of the water gas shift reaction was carried out at atmospheric pressure in a 

stainless steel fixed bed reactor (7.5 mm inner diameter) at 60000 cm3 gcat
-1 h-1. A 100 cm3 min-1 

reaction mixture composed of 1% CO, 10% H2O and N2 as balance was flowed over 100 mg of 

catalyst. For the reverse water gas shift, the reaction flow was composed of 10% CO2, 50% H2 

and N2 as balance and the same space velocity was used. Products and reactants were analyzed 

by on-line URAS 2G CO, CO2 gas analyzers (ABB A02020) 

 

2.2.4. CO/H2 and CO/O2/CO2/CO pulses 

For pulse experiments 100 mg of catalyst was loaded into a U-shaped quartz reactor. The 

samples were first activated in an O2/He flow (50 cm3 min-1) at 300 ºC during 1h.  After cooling 
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and stabilizing the temperature, 10 O2 pulses followed by 10 H2 pulses (1 cm3 each) were sent in 

order to reproduce as far as possible the PrOx reaction conditions. After that, CO-H2 pulses were 

alternatively introduced in the reactor every 2 min. The gas composition at the exit of the reactor 

was analyzed by a mass spectrometer PFEIFFER Vacuum Prisma Plus controlled by the program 

Quadera®.  

To study the inhibitory effect of CO2, a series of CO/O2/CO2/CO pulses were also studied. The 

sample was pretreated at 300 ºC as explained above. Afterwards, the sample was cooled and the 

temperature was fixed at 150 ºC. CO/O2/CO2/CO pulses (1 cm3 each) were sent and the gas 

composition at the exit of the reactor was analyzed with the same mass spectrometer. 

 

3. Results and discussion 

3.1 Effect of iron in the PrOx reaction 

 Full details of characterization and preparation of the studied catalysts have been given 

elsewhere [22]. Although, they are not subject of this study they will be further used for 

correlating the results obtained in the present work with the catalyst properties. Nevertheless, it is 

worth to briefly summarize the main results obtained in such previous work. In that study a high 

variation of WGS activity of Au/CeFeX/Al samples (with X varying from 0-3wt.%) with similar 

gold particle size was reported, depending on the extent of Ce-Fe interaction. The WGS activity 

is governed not only by the presence of gold and its particle size but also by the formation of a 

ceria–iron solid solution. The activity enhancement is related to a Ce–Fe synergetic effect that 

favors water activation, either by the redox or associative mechanism. Deactivation of gold 
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catalysts was observed and was attributed principally to the formation of carbonate and formate 

species, identified by Diffuse Reflectance Infrared Spectroscopy (DRIFT), which limit the 

accessibility of the support active sites for the activation of water. 

The use of the same series of catalysts in the preferential CO oxidation leads to the activity and 

selectivity results presented in Figures 1A and 1B, respectively. All catalysts are very active at 

low temperature. In general, a decrease in CO conversion is observed with increase of 

temperature, due to the increase of the hydrogen oxidation rate. As in WGS, the PrOx activity 

seems to be influenced by the catalyst composition, more precisely by the nature of the support. 

The Au/Al2O3 catalyst was the least active followed by Au/Fe/Al. On the other hand, Au/Ce/Al 

showed high activity for the preferential CO oxidation. This result points to the need of an active 

support to obtain a good CO abatement performance. The role of an active support like ceria is 

double, firstly it supplies oxygen to the CO oxidation process and secondly, the structural defects 

of ceria namely oxygen vacancies, may act as oxygen activation sites leading to more reactive 

oxygen species that further react with CO. The Au/Ce/Al catalytic properties are enhanced when 

iron is added to the catalyst. The promotion of iron to ceria is evidenced in terms of the activity 

improvement, especially at low temperatures. Au/CeFe2/Al is the most active system in the 

temperature range 90-120 ºC where an efficient PrOx catalyst should operate for fuel cell 

applications. This sample achieved 92% CO conversion and 40% O2 selectivity at low 

temperature (50 ºC) and 80% CO conversion with 33% of oxygen selectivity towards CO2 at 110 

ºC. The same sample, Au/CeFe2/Al, was also the most efficient catalyst within the examined 

series in the WGS reaction, showing high yield of hydrogen in the medium temperature WGS 

window (160-350 ºC), attributed to the strongest Ce-Fe interaction resulting in an enhancement 

of the number of oxygen vacancies and therefore promoted redox properties. Indeed, in a recent 
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paper, it has been demonstrated that the oxygen storage complete capacity (OSCC) and the 

oxygen storage capacity (OSC) of gold catalysts supported on ceria are considerably promoted 

by the addition of iron [24]. The numbers of atomic oxygen layers that participate in the redox 

process is higher when iron is employed as a ceria dopant. The inclusion of iron in the ceria 

lattice alters the covalent character of Ce-O bonds favoring oxygen mobility and leading to 

promising materials for CO oxidation. 

 Regarding selectivity, the trend is similar for all catalysts: the higher the temperature, the 

lower the selectivity towards CO oxidation pointing out that H2 oxidation starts already from low 

temperatures and becomes more important when the temperature is increased. Au/Al sample was 

the least selective within the series. This can be correlated again with the redox properties of the 

supports in the PrOx reaction. As can be seen in Figure 1B, all the ceria containing samples 

presented similar selectivity profiles while Au/Al and Au/Fe/Al are slightly different. It seems 

that the activation of oxygen in the support, which is a key step in the CO oxidation process, 

determines the shape of the curve. This oxygen activation is enhanced in the ceria-based samples 

due to a higher amount of structural defects in the ceria lattice, especially when iron is 

incorporated thus modulating both activity and selectivity. 

 

3.2 Influence of CO2 and H2O 

 To study the effect of CO2 in the series of catalysts, 4 samples were selected: Au/Al 

(binary system), Au/Ce/Al, Au/Fe/Al (ternary systems) and Au/CeFe2/Al (quaternary system). 

The effect of CO2 on activity and selectivity is analyzed in Figures 2A and 2B, respectively. The 

presence of CO2 in the gas mixture has a negative effect on both oxygen selectivity and CO 
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conversion. The Au/Al catalyst was the less sensitive in CO2 presence. Regarding the ternary 

systems, CO2 affects more dramatically Au/Ce/Al than Au/Fe/Al in the temperature range 90-

120 ºC. Moreover, the negative effect of CO2 in Ce and Fe systems seems to be an additive effect 

since the quaternary Au/CeFe2/Al system is the most affected by the presence of CO2. As 

discussed in previous reports [25-27] the detrimental effect of CO2 may be due to the competitive 

adsorption of CO (or H2) and CO2 on the catalyst surface. The nature of the support is thought to 

affect the catalyst behavior in the presence of CO2; acidic supports seem to be more resistant to 

deactivation than basic ones [28]. Generally, the intrinsic acid-base properties of ceria containing 

materials depend on the oxidation state of the cerium cations, with Ce3+ being a weaker acid than 

Ce4+. Considering the highly reducing atmosphere of the PrOx reaction, the presence of Ce3+ 

species is expected. Actually XANES data revealed that ceria evolves from Ce4+ to Ce3+ during 

the WGS reaction, which involves also a reducing atmosphere [29]. These reduced cerium 

species may give rise to the formation of stable carbonates (according to Pearson acidity [30] the 

interaction between Ce3+, a soft acid and CO3
2-, a soft base would produce a stable covalent 

bond) and this can be the reason of the strong inhibition of the CO conversion caused by CO2. As 

for the iron promoted ceria sample, not only cerium carbonates but also iron ones (FeCO3) 

should be considered. These species may block anionic sites on the support where oxygen 

adsorption occurs [31].  

 The influence of water was studied in the most active catalyst (Figure 3A and 3B). The 

addition of water involved a decrease on activity (Figure 3A) and selectivity (Figure 3B). The 

curves show that the detrimental effect of water is not as strong as the one observed by CO2. As 

was proposed for CO2, water could manifest a competitive adsorption behavior with CO for the 

active sites. In addition, the possible competition of water with oxygen for the electron-rich sites 
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in the support where oxygen activation takes place should not be disregarded. This effect could 

also account for the decrease on the catalytic activity when water is included in the reaction 

mixture. In principle, the presence of water could generate via WGS reaction a beneficial effect 

in terms of CO abatement [32], although it also implies an additional hydrogen production, 

which competes with CO for the oxygen in the stream. Irrespectively the competitor molecule 

(CO2, H2O or H2) CO adsorption sites will be less available and CO oxidation activity 

necessarily decreases.  The simulation of a real reformate stream with the inclusion of both H2O 

and CO2 in the input stream was also evaluated (Figure 3A and 3B). The catalytic performance is 

highly affected by the presence of these two species, leading to a drop of almost 40% in CO 

conversion at 100 ºC.  The negative effect of CO2 and H2O seems to be cumulative. The decrease 

in both activity and selectivity of the PrOx catalysts, due to the competitive adsorption of CO, 

CO2 and H2O on the catalyst surface has been broadly reported [33-36]. Again a decrease on the 

O2 activation rate due to the competition of oxygen with water and carbon dioxide should be 

considered. However, it seems that the deactivation is not attributed to any physicochemical 

modification of the catalysts, since the activity is fully recovered by switching to a H2O-CO2 free 

atmosphere. Therefore the activity inhibition observed in a real reformate stream is not 

irreversible. From the later it be can deduced that the formation of carbonates species is not the 

only factor that explains the loss of activity. Lee et al. [37], demonstrated for a CuOx/CeO2 

model catalyst that the rate of the CO and H2 oxidation reactions depends on the partial pressure 

of CO2 and H2O resulting in negative reaction orders with respect to these compounds which 

agrees with our results.  
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3.3 Carbon monoxide and hydrogen oxidation 

Deeper insights of the CO and H2 oxidation competition could be obtained if both processes are 

studied separately. Figure 4 and Figure 5 summarize the data obtained when these two oxidation 

processes are carried out individually. Because of the large error in the quantification of water 

and the small change in hydrogen concentration due to the large excess of this compound, 

oxygen conversion has been selected for the comparative study of H2 combustion activity. Figure 

4A presents the oxygen conversion during hydrogen combustion at different space velocities. 

The curves show that hydrogen oxidation starts from the very beginning at low temperatures and 

total oxygen consumption was achieved in all cases. It was observed that the hydrogen oxidation 

activity decreases when the space velocity is increased. Full oxygen conversion (or in other 

words, maximum hydrogen combustion) was reached at 110 ºC and 30000 cm3 g-1 h-1 while total 

oxidation of  hydrogen at 120000 cm3 g-1 h-1 was achieved at slightly higher temperatures.  

The catalytic behavior of the Au/CeFe2/Al in the CO oxidation reaction is presented in Figure 5. 

Taking into account the oxygen and the carbon monoxide input (1.5% and 1% respectively) the 

maximum expected O2 conversion is 33% when full CO conversion is obtained. The oxygen 

consumption increases with the contact time. The lower the space velocity, the higher the O2 

conversion is at the same temperature (Figure 5A). Regarding CO abatement, the same tendency 

was observed, CO oxidation increases when the space velocity decreases. Full CO conversion 

has been reached in all the experiments at about 140 ºC (Figure 5B). Comparing Figure 4A and 

5A, very relevant information can be extracted regarding CO and H2 competition for the oxygen 

available in the stream. At 120000 cm3 g-1 h-1 and at low temperatures, for example 55 ºC, 25% of 

the introduced oxygen was consumed in CO oxidation (maximum possible value of 33%, taking 

into account, that for lambda parameter of 3 only 1/3 of the oxygen can be consumed for CO 
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oxidation), which corresponds to almost 80% of selectivity towards CO oxidation. At the same 

time only 21% (maximum possible value of 100%) of oxygen was consumed in hydrogen 

oxidation. The later reinforces the idea that the CO oxidation is favored at low temperatures but 

the rate of hydrogen oxidation increases with the temperature. 

Another interesting point to comment is that CO oxidation at low temperatures seems to be 

favored by the presence of H2. As it can be observed, the CO oxidation activity in the PrOx 

reaction of this sample at 60 ºC is about 90% CO conversion (Figure 1A) while the CO 

conversion on the CO oxidation at the same temperature is 60% (Figure 5B). Generally, the CO 

oxidation rate decreases in the presence of hydrogen for gold-based systems [38, 39]. The 

negative effect is normally attributed to the competitive adsorption of CO and H2 on the catalyst 

surface. However, Rossignol and co-workers observed a boosting effect in CO oxidation activity 

when H2 was introduced in the reaction mixture [40]. In their work, they point out that molecular 

oxygen can be transformed through reaction with hydrogen into active species e.g. hydrogen 

peroxy-like compounds capable of oxidizing CO. Recently, DFT studies have supported the 

beneficial effect of H2 on CO oxidation over gold containing systems [41]. In this study, they 

propose the formation of OOH species on the support due to the reaction of O2 with H. The OOH 

species dissociates easily resulting in the formation of active oxygen for CO oxidation. The later 

correlates with our results, where H2 promotes the CO-PrOx activity in the low temperature 

range. In this context, a good PrOx catalyst has to be paradoxically also active in the H2 

oxidation or at least in the H2 dissociation. H2 oxidation in the presence of water is also worth to 

consider (Figure 4B). We have tested the activity of the Au/CeFe2/Al sample in the hydrogen 

oxidation including water in the feed stream. As can be seen in Figure 4B, full conversion of 

oxygen was achieved in the whole studied temperature range regardless of the space velocity 
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used. According to these results it can be established that the presence of H2O does not affect the 

H2 oxidation in the studied temperature range. Nevertheless the results obtained for the CO 

oxidation in the presence of steam (Figure 5C) revealed that the presence of H2O decreases the 

CO oxidation activity. Under dry conditions (Figure 5B) total CO conversion was obtained at 

140 ºC for all contact times studied, however the inclusion of water in the reactants mixtures 

remarkably shifts the activity window. Total CO conversion was achieved at 230 ºC and 60000 

cm3 h-1 g-1 while for higher space velocities this point was not reached. From these results it can 

be established that water does compete with CO and O2 or at least, blocks the CO adsorption 

sites in the catalyst surface decreasing the CO oxidation activity.  

3.4 Influence of WGS and RWGS 

All these data reveal that the addition of water to the PrOx stream (Figure 3) alters the CO 

oxidation activity. In order to elucidate the effect of the possible parallel reactions, the water gas 

shift and the reverse water gas shift (RWGS) reactions were examined under PrOx conditions 

(temperature window 110-230 ºC and similar space velocity) using the Au/CeFe2/Al sample. As 

an excellent WGS catalyst, activity in these processes is expected in the 160-350 ºC temperature 

range and indeed some activity for both reactions at temperatures below 150 ºC was found. In the 

case of the WGS the catalyst reached 14% of CO conversion at 230 ºC, which is a high value 

taking into account the space velocity (60000 cm3 g cat-1 h-1). As for the RWGS also some 

activity was detected with 4.1 % of CO2 conversion at 230 ºC. According to these data both 

WGS and RWGS reactions are expected to contribute above 200 ºC. 
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3.5 Pulse experiments 

Very interesting information concerning H2/CO competition was deduced from pulse 

experiments, which are summarized in Figure 6. In good agreement with the activity data, CO 

oxidation is favored at low temperatures. At 30 ºC (Figure 6A) every CO pulse is accompanied 

with a CO2 signal accounting for the oxidation of CO. Hydrogen combustion was not observed at 

30ºC. Nevertheless H2 oxidation could not be totally discarded since at this temperature the 

corresponding peak of water may not appear due to the possible adsorption of water in the 

catalyst surface. It seems that CO is preferentially adsorbed on the catalysts at this temperature 

and the inclusion of hydrogen does not displace it, being CO oxidation the reaction that will 

proceed. However, on increasing the temperature to 90 or 150 ºC (Figures 6B and 6C 

respectively) the competition of both molecules for adsorption on the catalyst increases 

provoking a noticeable loss of CO oxidation yield. CO is no longer able to remove H2 molecules 

from the catalyst surface. In fact, at these temperatures, after three H2/CO pulses, CO oxidation 

is almost negligible pointing that H2 adsorption prevails over CO adsorption influencing the 

selectivity of the process. These results correlate with the activity data presented in Figure 1A for 

this Au/CeFe2/Al sample, where a decreasing tendency on CO conversion was observed. The 

pulse experiments easily demonstrate that the selectivity towards CO oxidation necessarily 

diminishes with temperature due to the competitive CO/H2 adsorption on the catalyst surface. It 

should be noted that these experiments have been carried out in the absence of oxygen and, 

therefore, CO and H2 oxidation took place with oxygen provided by the catalysts (most probably 

oxygen from the ceria lattice). Further important information regarding the inhibitory effect of 

CO2 is extracted from Figure 6D. Here the sample was treated first with ten O2 pulses (not shown 

in the figure) and after that some CO pulses were sent. CO oxidation was observed by the 
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formation of CO2 (circle 1 in the figure). Afterward, some O2 pulses were sent again to recover 

the original situation and subsequently two CO2 pulses were sent in order to saturate the catalyst 

surface. CO was flowed just after CO2 and the CO oxidation activity in terms of CO2 formation 

notoriously decreased (circle 2). The area of the CO2 peak produced in this situation was half the 

one obtained in situation 1 pointing that CO oxidation activity is two times higher when CO2 is 

not present. The later confirms the hypothesis that CO2 blocks the oxygen activation sites 

limiting the catalytic performance in the PrOx reaction in good agreement with the activity 

results discussed above. 

3.6 Effect of lambda and space velocity. 

 Frequently, from the industrial point of view, selectivity is more important than activity. 

We have tried to improve the activity/selectivity balance by modulating the λ parameter. The 

activity and selectivity data obtained for different λ values are presented in Figures 7A and 7B 

respectively. CO conversion and O2 selectivity show opposite trends on changing λ. The higher 

the value of λ, the higher the CO conversion and lower the O2 selectivity is.  

 This behaviour evidences the high activity of gold for both CO and H2 oxidation that has 

been discussed above. For low lambda values, lower CO conversion was obtained but at high 

selectivity because the majority of the available oxygen reacts preferentially with CO than with 

H2 especially at low temperatures, as observed in the independent CO and H2 oxidation tests. For 

high lambda values, high activity for both CO and hydrogen oxidation was observed, thus 

decreasing the selectivity. It is worth to point out that the differences in selectivity when lambda 

is changed are more significant at low temperatures (60-90 ºC), where the CO oxidation is 

favored. However when the temperature is increased, H2 oxidation becomes important even for 
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low lambdas values. Finally it must be underlined that there are no differences in terms of CO 

conversion between λ = 3 and λ = 4 confirming that λ = 3 is an optimum value. 

 The contact time is also a point to consider for improving the conversion/selectivity ratio. 

Figures 8A and 8B show the influence of space velocity on the conversion and selectivity of the 

selected Au/CeFe2/Al catalyst. The conversion and selectivity follow the same tendency, the 

higher the WHSV, the lower the conversion and selectivity. In other words, the 

conversion/selectivity balance can be improved by increasing the contact time between the 

reactive molecules and the catalyst. It should be noted that better selectivity values can be 

achieved at low temperatures with 30000 cm3 g-1 h-1 instead of 12000 cm3 g-1 h-1 suggesting that 

30000 cm3 g-1 h-1 could be the optimum space velocity. However the higher CO conversion was 

obtained for the lowest space velocity. This observation is directly correlated with the tendency 

presented in the WGS reaction where the lower the space velocity, the higher the CO conversion 

[22]. 

3.7 Influence of O2/CO and the H2O/CO2 

 Finally, in an attempt of arriving at the best conversion/selectivity balance, the influence 

of the O2/CO (Figure 9A) and the H2O/CO2 (Figure 9B) ratios in a simulated reforming stream at 

the optimum value of 30000 cm3 g-1 h-1 WHSV and the temperature at 110 ºC was studied. Figure 

9A suggests that the best conversion/selectivity balance in these realistic conditions is achieved 

for a λ value of 2.5 whereas the CO conversion is 53% with an oxygen selectivity value of 27%. 

Concerning H2O/CO2, Figure 9B reveals that the CO conversion and the O2 selectivity increase 

with increase of this ratio. Taking into account that both CO2 and H2O inhibit the activity, CO2 

being the strongest inhibitor, it seems that water mitigates the CO2 detrimental effect. Part of CO 
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could be also consumed by the water gas shift reaction, enhancing the global CO oxidation 

activity. 

 

3.8 Influence of CO concentration 

To confirm this hypothesis, PrOx reaction in a realistic reforming stream using different 

amounts of CO in the inlet was evaluated and the results are presented in Figure 10. Very 

relevant information is extracted from the CO conversion trend in Figure 10A. The increase of 

the CO concentration, dramatically improves the CO conversion. For low carbon monoxide 

levels, 0.5 and 1 v/v % (typical CO concentrations in the PrOx reactor inlet), the conversion is 

low and decreases with the temperature. Nevertheless, for higher CO levels (1.5 and 2 v/v %), 

the conversion is remarkably superior and remains stable with temperature. In other words, when 

the reaction conditions approach those of the WGS reaction (high CO and H2O concentrations), 

CO oxidation is favored confirming that a part of CO abatement takes place via WGS due to the 

suitability of this Au/CeFe2/Al sample for the shift reaction. Similar beneficial effect was found 

for the selectivity values (Figure 10B). The increase of the CO amount in the feed is associated 

to the increase on the selectivity towards CO2 indicating that the competition among CO and H2 

oxidation is sensitive to the amount of CO due to the WGS influence and the higher surface 

coverage of CO at high CO concentration in the feed. This is a very promising result considering 

the idea of coupling WGS and PrOx since, in the case of a not very successful WGS step, a high 

concentration of CO will be introduced in the PrOx unit and this catalyst tolerates large amounts 

of CO. 



19 
 

 From all the above, relevant information can be extracted in order to address the main 

issue of this work; could these efficient WGS catalysts be successfully used in the PrOx 

reaction? It is not that easy to find a definite answer. It has been demonstrated in this work that a 

gold catalyst supported on ceria-iron mixed oxide is very active in CO oxidation in the presence 

of H2 but its selectivity is limited especially in the high temperature range. In addition, the 

approach to a real reformate stream limits the CO oxidation activity of this system. It seems that 

this catalyst does not successfully tolerate the presence of H2O and CO2, especially CO2, but this 

detrimental effect could be mitigated with increase of the [H2O/CO2] ratio, which leads to an 

increase on the activity and selectivity. Moreover, a relevant point to consider is that this catalyst 

works more efficiently at high CO concentrations whereas CO evidently competes more 

favorably than hydrogen for the active sites. Overall, it can be concluded that Au/CeFe2/Al could 

effectively oxidizes CO in a H2-rich stream as long as the reaction would occur at the lowest 

temperature and space velocity possible, the highest H2O/CO2 ratio, uppermost CO 

concentrations and a properly modulated λ value. Under the mentioned reaction conditions the 

best activity/selectivity balance is obtained for this kind of catalysts. 

 

4. Conclusions 

 The possible application of a highly effective WGS series of catalysts in the PrOx 

reaction for H2 clean up processes has been investigated. All the prepared solids are very 

efficient for CO oxidation in the presence of hydrogen especially at low temperatures in an ideal 

PrOx atmosphere (CO2 and H2O free). The inclusion of CO2 and H2O in the stream involves a 

loss of activity, with CO2 being the strongest inhibitor.  
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 The study of CO and H2 oxidation separately revealed that both molecules do compete for 

the oxygen in the stream. CO oxidation is favored at low temperatures, however these gold-based 

catalysts are able to oxidize also H2 at low temperatures. The ability of the samples to oxidize H2 

limits the selectivity of the process. However, the presence of H2 increases the CO oxidation 

activity most probably due to the formation of additional reactive intermediates in the presence 

of hydrogen. 

 As a final remark, an excellent WGS catalyst like the Au/CeFe2/Al system could also be 

a promising catalyst for the PrOx reaction. Nevertheless, it has to be taken into account that the 

conditions of both processes (temperature window, space velocity, and amount of H2O, CO, CO2 

and H2) are different and therefore, a careful modulation of the reaction parameters is required 

for a successful coupling of both reactions with the same catalyst. Even by modulating the 

reaction parameters, our systems are not able to satisfy the demanding requirements of fuel cells 

and further investigations are needed to achieve this goal with the same catalyst via WGS and 

PrOx. However this study provides some clues towards the future development of such a 

multirole catalyst. In particular with our catalysts, higher CO oxidation yields are achieved when 

the reaction conditions get closer to those of the WGS (higher amounts of CO and lower space 

velocities). Also the increase of the [H2O]/[CO2] ratio promotes both activity and selectivity. 

According to the promoted CO oxidation activity due to the influence of the WGS reaction the 

presented catalysts should be especially useful in CO-rich PrOx atmospheres. 
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Scheme 1: H2 clean-up process via WGS-PROX reactions. 

Figure 1 Catalytic PROX screening; A) CO conversion; B) O2 Selectivity.  

Figure 2 Influence of CO2 in the PROX stream; A) CO conversion; B) O2 Selectivity. Reaction mixture: 

1%CO; 1.5% O2 ; 50%H2 ; 10% CO2 balanced in N2  

Figure 3 Influence of water and CO2 in the PROX behavior of the most active catalyst. A) CO 

conversion; B) O2 Selectivity. 

Figure 4 H2 oxidation test of the most active catalyst A) dry conditions (gas mixture: 1.5% O2; 50% H2 

balanced in N2) B) H2 oxidation in the presence of water (gas mixture: 1.5% O2; 10% H2O, 50% H2 

balanced in N2). 

Figure 5 CO oxidation test of the most active catalyst A) O2 conversion in dry conditions (gas mixture: 

1.5% O2; 1% CO balanced in N2) B) CO conversion in dry conditions (gas mixture: 1.5% O2; 1% CO 

balanced in N2) C) CO conversion under steam (gas mixture: 1.5% O2; 1% CO 10% H2O balanced in N2) 

Figure 6 CO/H2 pulses experiment. A) Sequence of CO (red lines)/H2 (black lines) pulses at 30ºC; B) 

Sequence of CO/H2 pulses at 90ºC; C) Sequence of CO /H2 pulses at 150ºC. D) Effect of CO2. For all the 

cases CO and H2 oxidation are followed by the apparition of CO2 (olive line) and H2O (magenta line) 

signals. 

Figure 7 Effect of λ parameter in the A) Activity and B) Selectivity of the most active catalyst. 

Experiments carried out at 60000 cm3g-1h-1 and in the absence of H2O and CO2 in the stream. 
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Figure 8 Effect of WHSV in the A) Activity and B) Selectivity of the most active catalyst. Experiments 

carried out at λ=3 and in the absence of H2O and CO2 in the stream. 

Figure 9 Influence of the O2/CO A) and H2O/CO2 B) ratios in a simulated reforming stream at selected 

WHSV and temperature. 

Figure 10 Influence of CO concentration (at λ = 3 and 60000 cm3g-1h-1) A) CO conversion; B) O2 

Selectivity. Experiments carried out in the presence of 10% of CO2 and 10% of H2O. 
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Figure 5 
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Figure 7 
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Figure 9 
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