
On User Preferences and Utility Functions in
Selection: A Semantic Approach

José Maŕıa Garćıa, David Ruiz, and Antonio Ruiz-Cortés

Universidad de Sevilla
Escuela Técnica Superior de Ingenieŕıa Informática

Av. Reina Mercedes s/n, 41012 Sevilla, España
josemgarcia@us.es

Abstract. Discovery tasks in the context of Semantic Web Services are
generally performed using Description Logics. However, this formalism
is not suited when non-functional, numerical parameters are involved
in the discovery process. Furthermore, in selection tasks, where an op-
timization algorithm is needed, DLs are not capable of computing the
optimum. Although there are DLs extensions that can handle numerical
parameters, they bring decidability problems. Other solutions, as hybrid
approaches which use DLs in functional discovery and other formalisms
in non-functional selection, do not provide a semantic framework to de-
scribe user preferences based on non-functional properties. In this work,
we propose to semantically describe user preferences, so they can be used
to perform selection within a hybrid solution. By using semantically de-
scribed utility functions in order to define user preferences, our proposal
enables interoperability between service offers and demands, while pro-
viding a high level of expressiveness in these preferences and including
them within SWS descriptions.

Keywords: NFP-based Selection, Quality of Services, Utility Functions,
Semantic Web Services.

1 Introduction

Concerning Semantic Web Services (SWS), discovery is one of the main research
topics that have been widely studied and discussed, among others like compo-
sition. Description Logics (DLs) usually have become the natural choice when
discovering SWS. Traditionally, discovery tasks have been interpreted as a func-
tional filter, where demands are matched with compatible offers in terms of func-
tionality. However, including non-functional properties (NFP) in the discovery
process leads to an optimization problem. Selection of the best offer by means
of their NFP has not been contemplated as a main task in discovering, so DLs
reasoners are not well suited to select optimal offers. However, there are some
proposals to perform NFP-based discovery, as the ones discussed in this work.
� This work has been partially supported by the European Commission (FEDER) and

Spanish Government under CICYT project Web-Factories (TIN2006-00472).

Optimization problems can be handled by solvers based on different for-
malisms, like Linear Programming, Constraint Programming, or Dynamic Pro-
gramming, among others. Thus, it is possible to split discovery and selection
tasks in terms of functional and non-functional requirements, so the former task
can be performed by DLs reasoners, while the latter can be performed by solvers,
taking a hybrid approach [3].

Focusing on selection, service demands have to state an optimality criterion,
i.e. user preferences, so a solver can obtain the best offer in terms of these
preferences. We propose to describe these user preferences by means of utility
functions, whose domains are the different QoS parameters used to define NFP of
service offers. In a SWS context, these utility functions have to be semantically
described, allowing to match demands and offers described by different, but
possibly equivalent, QoS parameters, enabling semantic interoperability between
these descriptions.

The paper is structured as follows. In Sec. 2 we analyze current approaches
on selecting SWS. Then, in Sec. 3 we show our proposal, describing what is a
utility function and how to give semantics to it, showing an example. Finally, in
Sec. 4 we discuss our conclusions.

2 Selecting Semantic Web Services

Once a set of services are discovered using a functional filter, the next step is
to select the best offer in terms of NFP and user preferences. Thus, selection is
modeled as an optimization problem. This kind of problem refers to a minimiza-
tion or maximization of a real function, choosing the appropriate values of the
involved variables.

In this context, the function to optimize is frequently called utility function or
objective function. There are different techniques to obtain the optimal value of
these functions, like Linear Programming, Constraint Programming or Dynamic
Programming, for instance. In the following, we present the different approaches
on selecting offers by means of NFP, characterizing their features and limitations
with respect to user preferences.

2.1 Current Approaches

An early approach on modeling QoS in the context of SWS discovery are found
in [10]. In this work, Ran presents a uddi extension and a catalog of QoS param-
eters that can be included in uddi descriptions. Discovery is performed using
queries with functional requirements, as well as conditions on QoS. However,
the actual discovery algorithm is not defined, and queries that use NFP are not
shown, so their expressiveness is unknown. Additionally, uddi only supports a
keyword based search, so no form of inference or flexible match can be performed
[15]. Apart from that, user preferences can not be expressed in the query and the
resultant services are not ranked, so the user have to perform different queries
in order to find the best suited service.

Although their proposal is not semantically defined, Liu et al. present a QoS

computation model including a selection algorithm [5], which is adapted in other
approaches [9,16]. They propose an extensible QoS model that comprises both
generic and domain specific criteria. Selection is performed using an algorithm
based on matrices normalization, where services are ranked in terms of their QoS

matrix description and a vector of relative weights between QoS parameters,
which express user preferences.

Pathak et al. also model mappings between ontologies in [9]. They propose
to use domain specific ontologies to define NFP among offers and demands. In
their work, selection is done using matching degrees at a first stage. Then, QoS

parameters values are collected in a quality matrix, which is used to calculate a
fixed, weighted utility function for each offer. Finally, offers whose utility function
is above a given threshold, are ranked by one QoS parameter to obtain the
optimal offer.

Wang et al. provide an extension to wsmo ontology [11] to handle QoS pa-
rameters [16]. They define a QoS selection model and an algorithm based on
a quality matrix that contains values of QoS parameters. The user preferences
are described in terms of tendencies, i.e. a demand may prefer parameters to be
as small as possible, as large as possible, or around a given value.

Maximilien and Singh present a framework and a QoS ontology for dynamic
selection in [8]. They use an agent-based approach where NFP are modeled via a
three-layer ontology: an upper ontology which defines basic concepts associated
with a quality parameter, a middle ontology which defines the most frequent
QoS parameters and metrics, and a user-defined lower ontology that depends
on the domain of the service. Although it constitutes a well-defined framework
to semantically describe NFP and it is referenced by many authors [2,4,9], it
lacks of a way to semantically describe user preferences.

An extension to daml-s
1 to include QoS profiles is proposed in [18] by Zhou

et al. This proposal only allows order conditions between QoS parameters, so it
performs discovery and selection using DLs. The QoS ontology is simple and can
be easily linked to the daml-s service profile. However, its selection algorithm
uses matching degrees to order the resulting set of services, so the user preferences
can not be expressed, as they are inherent to that selection algorithm.

Another daml-based proposal is also presented in [14], where S. Bilgin and
Singh provide a daml-based query language, instead of just extending owl-

s. Using this Semantic Web Services Query and Manipulation Language, they
advertise QoS attributes and perform the selection. The main drawbacks of
this approach are the same as in [10], with limitations on the expressiveness of
queries, due to the use of daml as its foundation. Thus, user preferences can
not be expressed in those queries, and are inherent to their selection algorithm,
as in [18].

Dobson et al. presents QoSOnt in [2], which is an ontology that extends owl-s

to describe QoS attributes and metrics. However, they do not explicitly explain
how to perform selection, and their proposal suffers from owl limitations, so

1
daml-s is an early version of owl-s [6].

they have to use an ad-hoc XML language to allow custom data ranges. User
preferences are modeled using the acceptability direction, that is the preferred
tendency of metric values (e.g. the higher the best).

On the other hand, Zeng et al. show a basic QoS model to Web services
composition in [17], although it can be applied to discovery and selection. They
propose an algorithm based on utility functions, which are already defined for
all the contemplated QoS parameters. The optimization is implemented using
Integer Programming, providing weights to the different QoS parameters in-
volved. The main drawbacks of this proposal are that it do not take semantics
into account and that the utility functions are fixed, so the user can define its
preferences only by means of weights.

Ruiz-Cortés et al. describe a QoS-aware discovery using Constraint Program-
ming, where optimization is modeled as a Constraint Satisfaction Optimization
Problem that minimize a weighted composition of utility functions, which are
defined by the client using QoS parameters from a catalog [12]. As in [17], this
proposal does not provide semantics, but user preferences, described by utility
functions, can be defined by the user with high expressiveness.

An extension to [7] is presented in [4] by Kritikos and Plexousakis. They
propose an ontology similar to the proposed by Maximilien and Singh [8], mix-
ing offers and demands within an owl-s description. Moreover, they present
a matching algorithm to infer equivalences between different named QoS pa-
rameters that are semantically equivalent, although it is generally undecidable.
Concerning discovery and selection, they use CSPs to perform the matchmaking
of compatible offers, and then select the best service by means of a weighted
composition of utility functions, which balance the worst and best scenarios to
compute the utility value. However, these user preferences are not semantically
defined in their QoS ontology.

2.2 Analysis

We show an analysis of the features of the different approaches introduced in
the section before in Table 1. In this table, ordered by the order of exposition,
we analyze if the given proposal semantically defines NFP, how it express user
preferences, and the selection algorithm used.

We obtain several conclusions from this comparison. Firstly, there are a few
proposals that uses utility functions to express user preferences [4,12,17], al-
though only [12] allows the user to define complex utility functions. These three
proposals use optimization techniques, as Integer Programming or Constraint
Programming, to select the best offers. Therefore, utility functions become the
natural choice to define highly expressive user preferences.

Secondly, there are many proposals that provide a semantic framework to
define NFP [2,4,8,9,14,16,18], although [8] do not handle user preferences in
their ontology and [14,18] have a fixed definition of user preferences, inherent to
their selection algorithm. [4] is the most expressive when defining user prefer-
ences, followed by [2,9,16], that limit their preferences to weights and parameter

Table 1. Comparison between discussed proposals

Proposal Semantic Defs. User Preferences Selection
Ran [10] No Not defined Not defined
Liu et al. [5] No Weights Quality matrix
Pathak et al. [9] Yes Weights Quality matrix
Wang et al. [16] Yes Tendencies Quality matrix
Maximilien & Singh [8] Yes External Matching degree
Zhou et al. [18] Yes Fixed Matching degree
S. Bilgin & Singh [14] Yes Fixed Query lang.
Dobson et al. [2] Yes Tendencies Not defined
Zeng et al. [17] No Utility and weights Integer Prog.
Ruiz-Cortés et al. [12] No Utility and weights Constraint Prog.
Kritikos & Plexousakis [4] Yes Utility and weights Constraint Prog.

tendencies. According to all those proposals, it is clear that NFP have to be
defined semantically.

Finally, we conclude that none of the above proposals semantically define user
preferences, although in [2,16] the authors include in their ontology extension
the tendency of QoS parameters. What is more, most of the proposals that
perform selection tasks in terms of user preferences describe them using ad-hoc,
non-semantic descriptions completely decoupled with the ones used to describe
service functionality, causing a semantic gap between functional descriptions and
user preferences.

The motivation of our work is precisely to tackle the previous problems. Most
recent proposals use utility functions to express user preferences, and there are
many NFP ontologies which our proposal can be integrated with. This proposal
comes from mixing the expressiveness of utility functions and weights proposed
by Ruiz-Cortés et al., the semantic definition of NFP from Maximilien and Singh
or Kritikos and Plexousakis, and an extension to give semantics to utility func-
tions. Thus, we take full advantage of Semantic Web approaches on selecting the
best services, while allowing to define user preferences using the most expressive
solution, i.e. utility functions. Furthermore, we put functional, non-functional,
and user preferences at the same semantic level, by means of using extensions
to current SWS ontologies.

3 Our Proposal

Utility functions are the most expressive approach presented to describe user
preferences that are used when selecting the best offers among a set. Although
there are proposals that semantically describe QoS parameters and NFP, no
one contemplates the conceptualization of utility functions. In this Section, we
firstly give an overview of utility functions. Then, an ontology of user preferences
is proposed to be used in the context of discovery and selection of SWS, showing
a concrete example.

3.1 Utility Functions

An utility function is a normalized function (ranging over [0, 1]) whose domain
is a given QoS parameter, that gives information about which values of that
QoS parameter are preferred by the user. Fig. 1 shows an example of a utility
function for the mean time to failure (MTTF) parameter. This function is a
piecewise linear function that defines a minimum utility (0) when MTTF is
below 60 minutes, and a maximum utility (1) when MTTF is above 120 minutes.
Between these two limits, the function grows linearly.

Fig. 1. Utility example for Mean Time To Failure

When selecting the best offers, a composition of different utility functions (one
for each QoS parameter involved in NFPs) is often used to compute a global
utility value, which serves to sort the service offers. In this composition, each
utility function has an associated weight in the global function, so the user can
specify how important is each QoS parameter when selecting offers. The general
form of this weighted composition of utility functions U is as follows [12]:

U(p1, . . . , pn) =
n∑

i=1

ki Ui(pi) , ki ∈ [0, 1]
n∑

i=1

ki = 1 (1)

where each pi denotes a QoS parameter, each ki its associated weight ranging
over [0, 1], and each Ui its associated utility function also ranging over [0, 1] with
the semantics previously defined.

3.2 Giving Semantics to Utility Functions

In order to provide semantic interoperability between utility functions defined
on differently named QoS parameters, we propose to model these functions,

or more generally, user preferences, as an ontology. This ontology has to be
instantiated by each user preference describing utility functions, so equivalences
between QoS parameters can be inferred. Furthermore, this conceptualization
allows the user to describe the whole service, including functional descriptions,
at the same semantic level, without coupling user preferences descriptions with
the selection algorithm.

Our proposed model is shown in Fig. 2. The main concept (or class) is User-
Preference, which references a Quality concept via the hasReference object prop-
erty. This Quality concept is analogous to the defined in [8], and represents the
QoS parameter which is used in the definition of the corresponding user pref-
erence. Furthermore, the UserPreference concept has a key datatype property,
hasDefinition, which links the more generic preference concept with the utility
function that defines it. Note that Quality class is the link to QoS parameters
used in the semantic definition of NFP. This definition can be performed using
the ontology from Kritikos and Plexousakis [4] or from Maximilien and Singh
[8], for instance.

Class

UserPreference

Class

Quality

range

domain

range

domain

DataTypeProperty

hasDefinition

range

domain

String Float

domain

range

ObjectProperty

hasReference

DataTypeProperty

hasName

DataTypeProperty

hasWeight

XMLLiteral

Fig. 2. Proposed ontology to model user preferences

The utility function is initially modeled as a property that contains an XML
expression that describe the definition of each function in terms of OpenMath
standard [1], as used in [4,13], allowing the evaluation of the function with a
proper compiler or a mathematical tool, such as Mathematica.

Finally, our main concept UserPreference has two datatype properties: has-
Name and hasWeight. The former is used as an identifier of a given instance.

The latter is a real number which corresponds to the relative weight associ-
ated with the corresponding QoS parameter, used to compute the global utility
function of an offer.

Fig. 3 shows an instance of our proposed ontology, in the case of an user
preference about MTTF , with an associated weight of 1. Thus, the instance
MTTFUserPreference references an instance UserMTTF of MTTF class, that is
a subclass of Quality class from [8]. Moreover, the concrete utility function is
specified as an OpenMath object that represent the one showed in Fig. 1, using
XML.

hasReference
hasName

“MTTF_UP”
1.0

hasWeight

hasDefinition
MTTFUserPreference

UserMTTF

Class

UserPreference

Class

MTTF

instanceOf

instanceOf

<om:OMOBJ>

</om:OMOBJ
Class

Quality

subClassOf

Fig. 3. Instance of our proposed ontology

The link with the rest of the semantic description of a service, including
both functional and non-functional properties, is the QoS parameter MTTF ,
i.e UserMTTF instance in our example. In this case, the engine that perform
the selection only has to be aware of the part showed in Fig. 3 and the cor-
responding NFPs that involve the MTTF parameter, but generally, there are
more parameters and user preferences involved in the selection process.

4 Conclusions

In this work, we provide a semantic framework to define user preferences on
semantically defined QoS parameters, provided that it is used in conjunction
with another proposal that semantically defines NFP, like [4,8]. Thus, all facets of
SWS description (functional, non-functional, and user preferences) are described
at the same semantic level, so discovery and selection tasks are completely done
within a single semantic framework, allowing interoperability between different
service definitions.

Furthermore, our proposal uses a very expressive solution to define user pref-
erences, i.e. utility functions and weights, as in [4,12,17]. This formalism becomes
more generic and powerful that ones used in other approaches. Additionally, we
propose the use of a hybrid discovery engine to perform the different tasks in

discovery and selection using the best suited technique in each case. Thus, we
optimize these tasks without compromising expressiveness.

In conclusion, our proposal allows a semantic definition of the whole discovery
and selection process, using a hybrid approach without losing expressiveness.
These facts allow to decouple the definition of user preferences from the concrete
selection algorithm used.

Acknowledgments. The authors would like to thank the reviewers of the
NFPSLA-SOC’07 Workshop, whose comments and suggestions improved the
presentation substantially.

References

1. Buswell, S., Caprotti, O., Carlisle, D.P., Dewar, M.C., Gaëtano, M., Kohlhase, M.:
The OpenMath standard. Technical Report Version 2.0, The OpenMath Society
(2004)

2. Dobson, G., Lock, R., Sommerville, I.: Qosont: a qos ontology for service-centric
systems. In: EUROMICRO-SEAA, pp. 80–87. IEEE Computer Society Press, Los
Alamitos (2005)

3. Garćıa, J.M., Ruiz, D., Ruiz-Cortés, A., Mart́ın-Dı́az, O., Resinas, M.: An hybrid,
QoS-aware discovery of semantic web services using constraint programming. In:
Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp.
69–80. Springer, Heidelberg (2007)

4. Kritikos, K., Plexousakis, D.: Semantic QoS metric matching. In: ECOWS 2006,
pp. 265–274. IEEE Computer Society Press, Los Alamitos (2006)

5. Liu, Y., Ngu, A.H.H., Zeng, L.: Qos computation and policing in dynamic web
service selection. In: WWW (Alternate Track Papers & Posters), pp. 66–73 (2004)

6. Martin, D., Burstein, M., Hobbs, J., Lassila, O., Mcdermott, D., et al.: OWL-S:
Semantic Markup for Web Services. Technical Report 1.1, DAML (2004)

7. Mart́ın-Dı́az, O., Ruiz-Cortés, A., Benavides, D., Durán, A., Toro, M.: A quality-
aware approach to web services procurement. In: 4th VLDB Workshop on Tech-
nologies for E-services TES 2003, pp. 42–53 (2003)

8. Maximilien, E.M., Singh, M.P.: A framework and ontology for dynamic web services
selection. Internet Computing 8(5), 84–93 (2004)

9. Pathak, J., Koul, N., Caragea, D., Honavar, V.G.: A framework for semantic web
services discovery. In: WIDM 2005: Proceedings of the 7th annual ACM interna-
tional workshop on Web information and data management, New York, NY, USA,
pp. 45–50. ACM Press, New York (2005)

10. Ran, S.: A model for web services discovery with QoS. SIGecom Exch. 4(1), 1–10
(2003)

11. Roman, D., Lausen, H., Keller, U.: Web Service Modeling Ontology (WSMO).
Technical Report D2 v1.3 Final Draft, WSMO (2006)

12. Ruiz-Cortés, A., Mart́ın-Dı́az, O., Durán-Toro, A., Toro, M.: Improving the auto-
matic procurement of web services using constraint programming. Int. J. Cooper-
ative Inf. Syst. 14(4), 439–468 (2005)

13. Sánchez-Macián, A., López, D., López de Vergara, J.E., Pastor, E.: A framework
for the automatic calculation of quality of experience in telematic services. In: 13th
HP-OVUA Workshop, Sophia Antipolis, France (May 2006)

14. Soydan Bilgin, A., Singh, M.P.: A DAML-based repository for QoS-aware semantic
Web service selection. In: IEEE International Conference on Web Services, pp. 368–
375 (2004)

15. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, in-
teraction and composition of semantic web services. J. Web Sem. 1(1), 27–46 (2003)

16. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-Aware Selection Model for
Semantic Web Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS,
vol. 4294, pp. 390–401. Springer, Heidelberg (2006)

17. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H.:
QoS-aware middleware for web services composition. IEEE Transactions on Soft-
ware Engineering 30(5), 311–327 (2004)

18. Zhou, C., Chia, L., Lee, B.: DAML-QoS ontology for web services. In: IEEE Inter-
national Conference on Web Services, pp. 472–479 (2004)

	On User Preferences and Utility Functions in Selection: A Semantic Approach
	Introduction
	Selecting Semantic Web Services
	Current Approaches
	Analysis

	Our Proposal
	Utility Functions
	Giving Semantics to Utility Functions

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

