On Benchmarking Data Translation Systems for
Semantic-Web Ontologies

Carlos R. Rivero, Inma Hernandez, David Ruiz, Rafael Corchuelo
. . University of Sevilla, Spain
{carlosrivero, inmahernandez, druiz, corchu}@us.es

ABSTRACT

Data translation, also known as data exchange, is an inte-
gration task that aims at populating a target model using
data from a source model. This task is gaining importance in
the context of semantic-web ontologies due to the increasing
interest in graph databases and semantic-web agents. Cur-
rently, there are a variety of semantic-web technologies that
can be used to implement data translation systems. This
makes it difficult to assess them from an empirical point of
view. In this paper, we present a benchmark that provides
a catalogue of seven data translation patterns that can be
instantiated by means of seven parameters. This allows us
to create a variety of synthetic, domain-independent scenar-
ios one can use to test existing data translation systems.
We also illustrate how to analyse three such systems using
our benchmark. The main benefit of our benchmark is that
it allows to compare data translation systems side by side
within a homogeneous framework.

Keywords

Data exchange, Semantic Web and ontologies

*Supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programmes (grants
TIN2007-64119, P07-TIC-2602, P08-TIC-4100, TIN2008-
04718-E, TIN2010-21744, TIN2010-09809-E,
TIN2010-10811-E, and TIN2010-09988-E).

A technical report and an implementation regarding this
paper are available at: http://tdg-seville.info/
carlosrivero/DTSBench

1. INTRODUCTION

The most widespread data models in current databases are
relational and nested relational, which include relational and
semi-structured schemata [3]. However, there is an steady
shift towards modelling data by means of semantic-web on-
tologies [15], which build on the RDF, RDF Schema and
OWL ontology languages for modelling structure and data,
and the SPARQL query language to query these data [2].

Existing databases comprise a variety of heterogeneous
models, created by different organisations for different pur-
poses, and there is a need to integrate them [3, 12]. In
the bibliography, there exist various data integration tasks.
Data translation, also known as data exchange, is one of
these tasks that aims at populating a target model using
data of a source model [6, 7, 13].

Our focus in this paper is on data translation systems
using semantic-web ontologies that build on standard query
engines, i.e., systems that perform the data translation task
by executing a number of queries that extract data from the
source model, transform them, and load the result into the
target model [3, 10, 12].

Currently, there exists a variety of semantic-web technolo-
gies that are suitable to implement the data translation task,
e.g., Jena, TDB, Oracle, or Pellet to mention a few. This
makes it difficult to assess them from an empirical point of
view. It is important to notice that some of these technolo-
gies are data translation systems by themselves, e.g., Oracle.
However, other technologies need to be combined to form a
data translation system, e.g., TDB needs to be combined
with a reasoner like Pellet.

In the bibliography, there is a benchmark that focuses
on data translation systems for nested relational models [1];
however, it cannot be straightforwardly applied to semantic-
web ontologies due to a number of inherent differences with
nested relational models [11, 13]. In addition, there are sev-
eral benchmarks in the bibliography to test semantic-web
technologies, namely: [14] focuses on evaluating the perfor-
mance of SPARQL engines; [5] focuses on both loading on-
tologies and executing SPARQL queries; [16] focuses on the
performance of the Oracle reasoner; LUBM [9] takes into
account loading ontologies, executing SPARQL queries, and
reasoning. Unfortunately, none of these benchmarks focuses
on data translation problems, i.e., they do not provide source
and target ontologies, and a number of queries to perform
the data translation task.

In this paper, we present a benchmark for testing data
translation systems that provides a catalogue of seven data
translation patterns. These patterns are common integra-

tion problems that occur frequently in practice. Note that
this catalogue is not meant to be exhaustive: the patterns
described in this paper are based on our experience regard-
ing information integration, and they are the starting point
to a community effort on extending them. Furthermore, we
provide seven parameters to build synthetic scenarios, which
are instantiations of the data translation patterns.

The expected benefit of our benchmark is that it pro-
vides a homogeneous framework that allows to compare data
translation systems in the context of semantic-web ontolo-
gies side by side, thus alleviating the decision of software
engineers on adopting a specific data translation system to
solve particular integration problems. As far as we know,
this is the first benchmark in the bibliography to test such
systems. Finally, we illustrate how to analyse three data
translation systems using our benchmark and we draw a
number of conclusions from this experimental analysis.

This paper is organised as follows: Section 2 presents the
data translation task. Section 3 describes our catalogue of
data translation patterns. In Section 4, we present the input
and output of our benchmark. In Section 5, we evaluate a
number of data translation systems using our benchmark.
Section 6 presents the related work. And, finally, Section 7
recaps on our main conclusions.

2. THE DATA TRANSLATION TASK

The data translation task between OWL ontologies com-
prises five steps when it is performed by means of SPARQL
queries (cf. Figure 1), namely:

1. Loading: This step consists of loading the source and
target ontologies and the set of SPARQL queries from
files into appropriate internal models of semantic-web
technologies.

2. Reasoning over source: This step is optional and deals
with making the knowledge explicit over the source
ontology. Note that SPARQL only deals with plain
RDF and does not implement RDFS/OWL semantics,
therefore, this step may be mandatory in some inte-
gration problems.

3. Query executing: This step consists of executing the
set of SPARQL queries over the source ontology to
produce instances of the target ontology. Note that
this step may be performed by every SPARQL query
engine, and the result is the same regardless the exe-
cution order of queries.

4. Reasoning over target: This step is also optional and
it deals with making the knowledge explicit over the
target ontology.

5. Unloading: This final step deals with saving the target
ontology into a file.

3. DATA TRANSLATION PATTERNS

A data translation pattern represents a common and rele-
vant integration problem that should be supported by every
data translation system. Furthermore, each pattern repre-
sents an intention of change as occurs in the ontology evolu-
tion context, i.e., when an ontology changes in response to
a certain need [8].

Data translation patterns may be instantiated into a num-
ber of scenarios, each of which is a three element tuple (S,
T, Q), in which S is the source ontology, T is the target
ontology, and Q is a set of SPARQL queries to perform the
data translation task.

Our benchmark provides a catalogue of seven data transla-
tion patterns that usually occur in the context of information
integration. To devise them, we have leveraged our experi-
ence on real-world information integration problems regard-
ing digital libraries (SwetoDBLP and OAEI’s 101), semantic
web services (OWL-S and MSM), film reviews (DBpedia and
Revyu), and ontology evolution (DBpedia 3.2 and DBpedia
3.6). Without an exception, the data translation patterns
described in this section occur frequently in these problems.

Below, we present our data translation patterns, which
are illustrated in Figure 2. The source ontology is on the
left side and the target on the right side; the arrows rep-
resent correspondences between entities of both source and
target ontologies. Keep in mind that these correspondences
are only visual aids to help readers understand the intention
of change behind each scenario [4]. In this notation, classes,
data properties and object properties are represented as cir-
cles, squares and pentagons, respectively. In addition, sub-
classes are represented between brackets, the domain of a
property is represented by nesting the property in a class,
and the range is represented between ‘<’ and ‘>’. Note that
src: and tgt: prefixes are used for the source and target
ontologies, respectively. Note also that we omit SPARQL
queries due to space limitations.

Lift Properties: The intention of change is that the user
wishes to extract common properties to a superclass in a
hierarchy. Therefore, the data properties of a set of sub-
classes are moved to a common superclass. In the example,
src:name and src:birth data properties are lifted to tgt:name
and tgt:birth, respectively.

Sink Properties: The intention of change is that the
user wishes to narrow the domain of a number of properties.
Therefore, the data properties of a superclass are moved
to a number of subclasses. In the example, src:name and
src:birth data properties are sunk to tgt:name and tgt:birth,
respectively.

Extract Subclasses: The intention of change is that the
user wishes to specialise a class. Therefore, a class is split
into several subclasses and data properties are distributed
amongst them. In the example, every instance of src:Person
is transformed into an instance of tgt:Person. Note that,
after performing the data translation task in this example,
all target instances are of type tgt:Person. However, if the
knowledge is made explicit, every instance of tgt: Person with
a data property instance of tgt:paper is also an instance of
type tgt:Author.

Extract Superclasses: The intention of change is that
the user wishes to generalise a class. So, a class is split
into several superclasses, and data properties are distributed
amongst them. Note that, after performing the data trans-
lation task in this example, all target instances are of type
tgt: Author, which are implicitly instances of tgt:Person too.

Extract Related Classes: The intention of change is
that the user wishes to extract a number of classes based on
a single class. Therefore, the data properties of a class are
split into a number of new classes, which are related to the
original one by a number of object properties. In the exam-
ple, the source class src:Paper is split into two target classes

Source Triples Before Reasonin Source Triples After Reasoning

Target Triples Before Reasoning

Target Triples After Reasoning

Load Target

[} [} \ [} \ [} [}
: 1t step s : 3rd step \‘ : 4h step : : Sthstep :
ource

| (populated & explicit) \ | [} | |

— ! \ _ !

Source, Target |-of [oadling Target Query Target Reass)mng B}

and SPARQL (empty & explicit) Executin (populated) (Optlonal) (populated & explicit)

Queries ! | ! |

[} + [} [} !
! ! ! ! !
2 s2 = = =
| Reasoning over Source. | Query Executing. | Reasoning over Target | Unload Target |

Figure 1: Steps of the data translation task

src:PermnO@tgt:Person
src:Author [src:Person] tgt:name <xsd:string>
src:name <xsd:string> tgt:birth <xsd:date>

src:birth <xsd:date> tgt:Author [tgt:Person]
(a) Lift Properties

src:Person
src:name <xsd:string>|
src:birth <xsd:date>

src:Author [src:Person]

src:Authort Otgt:Person
src:name <xsd:string> tgt:name <xsd :string>

src:paper <xsd fStfi”9>.\.tgt:Author [tgt:Person]
tgt:paper <xsd:string>

(d) Extract Superclasses

src:Person (O tgt:Person

src:name <xsd:string >[l—lltgt:name <xsd:string>

src:Author [src:Person]S)/v. tt:totalPapers <xsd :int>

src:totalPapers <xsd:int>

(f) Simplify Specialisation

(b) Sink Properties

O+Ortgt:Person
tgt:Author [tgt:Person]
tgt:name <xsd:string>
tgt:birth <xsd:date>

src.Person OOtgt ‘Person

src:name <xsd:string> [l tgt:name <xsd :string>

src:paper <xsd :string >.\C:tgt :Author [tgt:Person]

tgt:paper <xsd:string>

) Extract Subclasses

src:Paper tgt:Paper
srctitle <xsd:string> tot:title <xsd:string>
src:author <xsd:string> Ptgt: writtenBy <tgt:Author>
.\‘ tgt:Author

tgt:name <xsd:string>

(e) Extract Related Classes

src:Author tgt:Publication

src:name <xsd: string> tgt:author <xsd:string>

src:writes <src:Paper> @ tat:title <xsd :string>

src:Paper ./.
srcititle <xsd:string>

g) Simplify Related Classes

Figure 2: Data translation patterns of our benchmark

called tgt:Paper and tgt:Author that are related by object
property tgt:writtenBy. Note that instances of tgt:Author
are generated by means of function f over the instances of
src:Paper.

Simplify Specialisation: The intention of change is that
the user wishes to remove a hierarchy of classes. So, a set of
specialised classes are flattened into a single class. In the ex-
ample, src:Person and src:Author, which is an specialisation
of src:Person, are simplified into tgt:Person.

Simplify Related Classes: The intention of change is
that the user wishes to join a set of classes that are related by
object properties. Therefore, several source classes, which
are related by a number of object properties, are trans-
formed into one class that aggregates them. In the example,
for every instance of src:Author and src:Paper related by
src:writes, a new instance of tgt:Publication is generated.

4. THE BENCHMARK

A benchmark, amongst other properties, should be scal-
able and the results that it produces should be deterministic
and reproducible. To fulfill these properties, we introduce a
number of parameters to control the automatic instantiation
of our data translation patterns. Furthermore, we describe
the measures that we are able to compute.

4.1 Input

Our benchmark takes a number of input parameters that
allow to tune both structure and data of source and/or tar-
get ontologies. Note that, thanks to these parameters, our
benchmark generates synthetic ontologies in both structure
and data, which are domain-independent. Note also that the
structure of ontologies we generate are trees, each of which
comprises, at least, a single root class.

Structure parameters are used to tune the structure of
these ontologies, which are the following:

e Levels of classes (L): number of relationships (special-
isations or object properties) from the root to each leaf
in the source or target ontologies, L € N.

e Number of related classes (C): number of classes re-
lated to each class by specialisation or object proper-
ties, C' € N.

e Number of data properties (D): the total number of
data properties of the source and target ontologies,
D eN.

Consequently, L allows to scale the structure of ontolo-
gies in depth, C' in width, and D allows to scale the number
of data properties for a particular scenario. L and C' may

be applied over both source and target ontologies, which is
the case of the Lift Properties and Sink Properties patterns;
over the target ontology only, i.e., the Extract Subclasses,
Extract Superclasses and Extract Related Classes patterns;
or over the source ontology only, i.e., the Simplify Special-
isation and Simplify Related Classes patterns. Note that
structure parameters also affect the SPARQL queries gen-
erated by our benchmark, since they vary depending on the
structure of the source and target ontologies. Note also that
the total number of classes an ontology comprises is com-
puted by the following formula:
L

> e

i=0

Regarding data parameters, they are used to tune the in-
stances of the source ontology. Note that the goal of the data
translation task is to populate the target ontology; there-
fore, these parameters are only applied to the source ontol-
ogy since the target ontology remains unpopulated. Data
parameters are the following:

e Number of individuals (I): number of individuals (in-
stances of owl: Thing) that the populated ontology con-
tains, I € N\{0}.

e Number of types (I7): number of types that each in-
dividual has, IT € N.

e Number of data properties (Ip): number of data prop-
erty instances that a given individual has as domain,
Ip € N.

e Number of object properties (Ip): number of object
property instances that a given individual has as do-
main, Ip € N.

Note that we may compute the number of data triples that
a populated ontology comprises by means of the following
formula: Triples =1+ I[Ir + I1Ip + [1o.

4.2 Output

The measures that our benchmark is able to compute are
underlined in Figure 1. These measures are the following:

1) Time and memory consumed by loading and unloading
ontologies: they represent the time and memory consumed
by the data translation system when the source and target
ontologies are loaded from files into internal representations,
and when the target ontology is unloaded for this internal
representation into a file. Note that data translation systems
have uneven performance when loading ontologies [5, 9, 14,
16]; in this case, we are able to test if the time a system
takes to load an ontology depends only on the number of
instances or also on its structure.

2) Time and memory consumed by reasoning over source
and/or target ontologies: these measures represent the time
and memory consumed by the data translation system when
making the knowledge explicit over source and/or target on-
tologies. In this case, we are able to test if the reasoning
time of a data translation system depends on the number of
triples and/or the structure of the ontology.

3) Number of triples before and after reasoning: when
making the knowledge explicit, there is usually an increment
of triples. These measures compute the triples of the ontolo-
gies before and after reasoning; in this case, the number of
generated triples tests the expressivity of a system.

4) Time and memory consumed by query executing: they
represent the time and memory consumed by the data trans-
lation system when executing the set of SPARQL queries
over the source ontology to generate target data. In this
case, we are able to test how the number of triples of the
source ontology have influence over the execution time. Fur-
thermore, the structure of the ontology has also influence
over this time since a complex ontology structure entails a
large number of triple patterns in the SPARQL queries.

S. EVALUATION

In this section, we evaluate three data translation systems
based on our benchmark, which are the following: System
1 comprises Jena and Pellet, System 2 is formed by TDB
and Oracle, and System 3 comprises TDB and Pellet. Jena
and TDB are used to load/unload ontologies and to exe-
cute SPARQL queries. In these technologies, ontologies and
queries are stored and executed in main memory and the
file system, respectively. Furthermore, Pellet and Oracle
perform reasoning in main memory and a database schema,
respectively.

In the following, we use three tests over the previous data
translation systems and we describe evidences that arise
from the analysis of the results. In this evaluation, we exe-
cuted the experiments on a machine with a four core Intel
Xeon 3.00 GHz CPU and 16 GB RAM, running on Windows
Server 2008 (64-bits) and JRE 1.6.0. The execution times
on which we report are the result of averaging 25 actual ex-
ecutions, leaving out outliers on both the left and right 5%
tails of the distributions.

The first test evaluates the performance of data transla-
tion systems when scaling the structure of the source and/or
target ontologies in depth. Therefore, in this test, we fix
all structure and data parameters except L, which ranges
from 1 to 25 by 1. The rest of parameters are as follows:
{C=1,D=251=2500,Ir =5,Ip =5,Io = 5}.

The second test evaluates the performance of these sys-
tems when scaling the structure in width; so the parameters
are equal to the previous test except C, which ranges from
1 to 25 by 1, and L = 1. Finally, the third test evaluates
the performance of these systems when scaling the data of
ontologies. In this case, the parameters are fixed as in the
previous tests, except {L = 1,C = 1} and I, which ranges
from 500 to 5,050 by 175.

Note that the values of the parameters were selected to
generate non-trivial ontologies. In this context, the number
of triples in the ontologies of these tests ranges from 3, 500
triples to 80,000 triples, roughly. The results after perform-
ing the tests are shown in Figures 3, 4 and 5, which present
the time to perform the data translation task in the Y axis,
and the varying input parameter in the X axis.

From our experimental analysis we can draw the following
conclusions:

e Systems 1 and 3 perform similarly for all tested scenar-
ios. Consequently, as long as the ontologies involved fit
in memory, there does not seem to be any differences
between using Jena and TDB.

e Systems 1 and 3 seem to perform linearly in both L
and C.

e It seems that neither L nor C have an impact on the

500 —

« System 1 = - System 2 System3 500 T System 1 = - System 2 System3 — 500 T ...System1 - - System 2 System 3

w— = - 450 450

I — 400 400
P IR e —— 350 350
-) 0
2300 2300 = 2300
g - 8
80— 8250 8250
o e 2200 £200
= = =

150 150 150

100 100 100

50 50 50

0 0 0
12345678 910111213141516171819202122232425 12345678910111213141516171819202122232425 12345678 910111213141516171819202122232425
L L L
(a) Lift Properties (b) Extract Subclasses (c) Simplify Specialisation
Figure 3: Scaling in depth

500 - System 1 - - System 2 System 3 500 System 1 - - System 2 System 3 500 - System 1 - — System 2 System 3

450 450 450

400 400 400
350 350 350
0 = - 0
'§300 '§300 ———== '§300
§250 R e — 3250
2200 2200 15— 2200 === essms ===
= = [

150 150 150

100 - 100 100

50 50 50

0 0 0

123456789 10111218141516171819202122232425 123456789 10111216’5141516171819202122232425 123456789 1011121&5141516171819202122232425

(a) Extract Superclasses

(b) Extract Related Classes

(c) Simplify Specialisation

Figure 4: Scaling in width

performance of System 2, which seems almost invariant
to changes to these parameters.

e System 2 seems to outperform the others when L and
I vary. The result is similar when C' varies, the only
exception is the Simplify Specialisation pattern. The
reason is that Pellet outperforms Oracle when perform-
ing reasoning over these scenarios.

e Systems 1 and 3 seems to perform exponentially when
I varies. Meanwhile, System 2 seems to perform lin-
early in this case. The reason is that TDB and Or-
acle are optimised to work with large sets of triples.
Therefore, when these triples are increased from 8,000
to 16,000 (between I = 1000 and I = 2000), TDB and
Oracle manage resources that perform linearly beyond
this point.

6. RELATED WORK

In the bibliography, there exist benchmarks for data trans-
lation systems and semantic-web ontologies.

Regarding data translation benchmarks, Alexe et al. [1]
devised a benchmark that is used to test data translation
systems in the context of nested relational models. Unfor-
tunately, this benchmark is not suitable in our context since
semantic-web ontologies have a number of inherent differ-
ences with respect to nested relational models [11, 13].

Regarding benchmarks for semantic-web ontologies, Guo
et al. [9] presented LUBM, a benchmark to compare sys-
tems that support semantic-web ontologies, which is based
on the university domain. This benchmark provides a single
ontology, a data generator algorithm that allows to create
scalable synthetic data, and fourteen SPARQL queries of the

SELECT type. Note that this benchmark is similar to our
benchmark; however, it has a number of crucial differences:

e LUBM focuses on a single ontology. Contrarily, our
benchmark focuses on data translation problems that
comprise source and target ontologies, and a number
of queries to perform the data translation task.

e LUBM provides a data generator to populate an ontol-
ogy in the university context with synthetic data. On
the contrary, our benchmark is domain-independent
and it allows to tune the structure and data of source
and target ontologies for each pattern instantiation.

e LUBM provides fourteen SPARQL queries of the SE-
LECT type. Our benchmark provides a query genera-
tor that allows to automatically build synthetic queries
to perform the data translation task. Furthermore, our
SPARQL queries are of the CONSTRUCT type, which
are suitable to perform this task.

Furthermore, other benchmarks for semantic-web ontolo-
gies' focus on analysing the performance of the steps of the
data translation task in isolation, and they cannot be used
to test the data translation task as a whole.

Wu et al. [16] presented the experience of the authors
when implementing an inference engine for Oracle. This en-
gine implements the RDFS and OWL entailments, i.e., it
performs reasoning over RDFS and OWL ontologies. Fur-
thermore, they presented a performance study based on two
examples: LUBM, which data range from 6.7 to 133.7 mil-
lion triples, and UniProt, which comprises 5 million triples.

"http://esw.w3.org/RdfStoreBenchmarking

w
S
S

- System 1 = - System 2 System3 7

N
5
S
N
15
S

N
S
S

n
>
S

=)
S

=)
S

Time (seconds)
g

Time (seconds)
g

I3
S

o
S

Time (seconds)
g

o
o

500 1000 1375 1725 2075 2500 2950 3475 4000 4525 5050
|

500 1000 1375 1725 2075 2500 2950 3475 4000 4525 5050
|

0
500 1000 1375 1725 2075 2500 2950 3475 4000 4525 5050
|

(a) Sink Properties

(b) Extract Related Classes

(c) Simplify Related Classes

Figure 5: Data scaling

Bizer and Schultz [5] presented BSBM, a benchmark to
compare the performance of SPARQL queries using native
RDF stores and SPARQL-to-SQL query rewriters. Their
benchmark focuses on an e-commerce use case, and they
provide a data generator and a test driver: the former al-
lows to create large datasets and it offers RDF and relational
outputs to compare the approaches; the latter emulates a re-
alistic workload by simulating multiple clients that concur-
rently execute queries. The benchmark consists of twelve
SPARQL queries that are divided in ten SELECT queries,
one DESCRIBE query, and one CONSTRUCT query.

Schmidt et al. [14] presented SP?Bench, a benchmark to
test SPARQL query management systems, which is based
on DBLP and comprises both a data generator and a set
of benchmark queries in SPARQL. They study the DBLP
dataset to generate a realistic set of synthetic data by mea-
suring probability distributions for certain attributes, e.g.,
authors or cites in articles or papers. The benchmark com-
prises seventeen queries that are divided in fourteen SE-
LECT queries and three ASK queries.

7. CONCLUSIONS

In this paper, we present a benchmark to test data trans-
lation systems in the context of semantic-web ontologies. As
far as we know, this is the first benchmark in the bibliogra-
phy in such a context. Existing benchmarks are not suitable
to test these systems since they focus on nested relational
models, which are not applicable to semantic-web ontolo-
gies due to a number of inherent differences with nested
relational models; or they do not focus on data translation
problems, so they do not provide source and target ontolo-
gies and a number of queries to perform this task.

Our benchmark provides a catalogue of seven data trans-
lation patterns that represent common and relevant inte-
gration problems that should be supported by every data
translation system. Furthermore, our benchmark is able to
instantiate these patterns based on seven parameters that
allow to control the generation of both the structure and
data of ontologies. In this paper, we also evaluate three
data translation systems based on our benchmark.

Finally, the main benefit of this benchmark is that it pro-
vides a homogeneous framework that allows to compare em-
pirically data translation systems side by side, thus allevi-
ating the decision of software engineers on adopting these
systems to solve integration problems.

8. REFERENCES
[1] B. Alexe, W. C. Tan, and Y. Velegrakis.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

STBenchmark: towards a benchmark for mapping
systems. PVLDB, 1(1):230-244, 2008.

G. Antoniou and F. van Harmelen. A Semantic Web
Primer, 2nd Edition. The MIT Press, 2008.

P. A. Bernstein and L. M. Haas. Information
integration in the enterprise. Commun. ACM,
51(9):72-79, 2008.

P. A. Bernstein and S. Melnik. Model management
2.0: manipulating richer mappings. In SIGMOD,
pages 1-12, 2007.

C. Bizer and A. Schultz. The Berlin SPARQL
benchmark. Int. J. Semantic Web Inf. Syst., 2009.
C. Drumm, M. Schmitt, H. H. Do, and E. Rahm.
Quickmig: automatic schema matching for data
migration projects. In CIKM, pages 107-116, 2007.
R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89-124, 2005.

G. Flouris, D. Manakanatas, H. Kondylakis,

D. Plexousakis, and G. Antoniou. Ontology change:
classification and survey. Knowledge Eng. Review,
23(2):117-152, 2008.

Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. J. Web Sem.,
3(2-3):158-182, 2005.

L. M. Haas, M. A. Hernandez, H. Ho, L. Popa, and
M. Roth. Clio grows up: from research prototype to
industrial tool. In SIGMOD, pages 805-810, 2005.
B. Motik, I. Horrocks, and U. Sattler. Bridging the
gap between OWL and relational databases. J. Web
Sem., 7(2):74-89, 20009.

L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernéndez,
and R. Fagin. Translating web data. In VLDB, pages
598-609, 2002.

C. R. Rivero, I. Herndndez, D. Ruiz, and

R. Corchuelo. Generating SPARQL executable
mappings to integrate ontologies. In ER, 2011.

M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP?Bench: A SPARQL performance benchmark. In
ICDE, pages 222-233, 2009.

N. Shadbolt, T. Berners-Lee, and W. Hall. The
semantic web revisited. IEEE Intelligent Systems,
21(3):96-101, 2006.

Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski,
J. Srinivasan, and M. Annamalai. Implementing an
inference engine for RDFS/OWL constructs and
user-defined rules in oracle. In ICDFE, pages
1239-1248, 2008.

