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ABBREVIATIONS 

Apaf-1 – Apoptosis protease-activating factor-1 

BiFC – Bimolecular fluorescence complementation 

Cc – Cytochrome c 

CED-4 – Cell-death abnormality-4 

CPT – Camptothecin 

CSP – Chemical shift perturbation 

DAPI – 4’, 6-diamidino-2-phenylindole 

Dark – Drosophila Apaf-1-related killer 

DMEM – Dulbecco’s modified Eagle’s medium 

EGFP – Enhanced green fluorescent protein 

ITC – Isothermal titration calorimetry 

NMR – Nuclear magnetic resonance 

PCD – Programmed cell death 

SPR – Surface plasmon resonance  

TS-4B – Thiol-Sepharose 4B 

YFP – Yellow fluorescent protein 
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SUMMARY 

Since the first description of apoptosis four decades ago, great efforts have 

been made to elucidate, both in vivo and in vitro, the molecular mechanisms 

involved in its regulation. Although the role of cytochrome c during apoptosis is 

well-established, relatively little is known about its participation in signaling 

pathways in vivo due to its essential role during respiration. To better 

understand the role of cytochrome c in the onset of apoptosis, a proteomic 

approach based on affinity chromatography with cytochrome c as bait was used 

in this study. In this approach, novel cytochrome c interaction partners were 

identified whose in vivo interaction, as well as cellular localization, were 

facilitated through bimolecular fluorescence complementation. Modeling of the 

complexes interface between cytochrome c and its counterparts indicated the 

involvement of the surface surrounding the heme crevice of cytochrome c, in 

agreement with the vast majority of known redox adducts of cytochrome c. 

However, in contrast to the high turnover rate of the mitochondrial cytochrome c 

redox adducts, those occurring under apoptosis lead to the formation of stable 

nucleo-cytoplasmic ensembles, as inferred mainly from surface plasmon 

resonance and nuclear magnetic resonance measurements, which have 

permitted us to corroborate the formation of such complexes in vitro. The results 

obtained suggest that human cytochrome c interacts with pro-survival, anti-

apoptotic proteins following its release into the cytoplasm. Thus, cytochrome c 

may interfere with cell survival pathways and unlock apoptosis in order to 

prevent the spatial and temporal co-existence of antagonist signals. 
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INTRODUCTION 

Apoptosis, an event that is both morphologically distinguishable from other 

types of cell death (e.g., senescence or necrosis) and tightly regulated from a 

genetic and biochemical point of view, controls tissue homeostasis and 

eliminates damaged cells in mammals [1]. The process is characterized by the 

co-occurrence of nuclear and cytoplasmic condensation, blebbing of 

cytoplasmic membranes and the emergence of apoptotic bodies as a 

consequence of cell fragmentation [2]. 

The main processes characterizing apoptosis are driven by a cascade of 

proteolytic events mediated by caspases (cysteine-dependent aspartate-

specific proteases), a subfamily of cysteine proteases [3]. Two different 

pathways – extrinsic, or death receptor-initiated [4], and intrinsic, or 

mitochondrial [5], pathways – are involved in the activation of these proteolytic 

events. DNA damage, oxidative stress and growth factor deprivation are well-

known apoptosis inducers that activate the intrinsic pathway [6], involving the 

permeabilization of the outer mitochondrial membrane. This event occurs prior 

to the release of pro-apoptotic factors (e.g., AIF, cytochrome c [Cc], 

Smac/DIABLO and HtrA2/Omi) from the mitochondrial intermembrane space 

into the cytoplasm. 

Cc is a well-known heme protein which plays an essential role in homeostasis 

and apoptosis. With regard to the former, Cc acts as an electron shuttle 

between complexes III and IV in mitochondrial respiration. In apoptosis, on the 

other hand, Cc is released from mitochondria into the cytoplasm. During this 

process, cytosolic Cc and dATP bind to apoptosis protease-activating factor-1 

(Apaf-1), forming the apoptosome – a macromolecular platform –, which, in 

turn, leads to the activation of initiator caspases [7,8].  

Under homeostatic conditions, Cc is kept in the mitochondrial space, where its 

concentration can reach 0.5-5 mM [9]. Notably, approximately 90 % of 

mitochondrial Cc content is sequestered within the cristae of the inner 

membrane and, therefore, is unavailable for electron transport [10]. Moreover, 

the interaction of Cc with Apaf-1, leading to apoptosome formation, is one of the 
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earliest events to occur at the onset of apoptosis, a process requiring small 

amounts of the heme protein due to the amplification of its effect by the 

proteolytic cascade. Cc concentration in the intermembrane space is, 

therefore,extremely high, leading one to wonder whether Cc is also regulating 

other processes during programmed cell death (PCD).  

Beyond the well-established in vitro role of Cc during apoptosis in mammals, 

newly-proposed putative functions of the heme protein in cell death signaling 

remain controversial. Some authors suggest that Cc exclusively induces 

apoptosome formation and caspase activation in the cytosol [11]. Others have 

recently proposed the existence of additional, not yet fully understood Cc 

functions in the pro-apoptotic response, both in the nucleus [12,13] and the 

endoplasmic reticulum [14,15,16]. 

Even though a function for cytosolic Cc during PCD has been defined only in 

mammals [8], the mitochondria-to-cytoplasm release of Cc is an evolutionarily 

conserved event found in yeast [17], plants [18], flies [19] and mammals [20].  

The specific role of Cc in apoptosis signaling has not been 

extensivelyinvestigated in vivo due to the difficulty of obtaining Cc knockout 

mutants. Recently, Vempati et al. [21] were able to produce a Cc knockout 

mutant in mice fibroblasts. Intriguingly, this mutant was resistant to pro-

apoptotic agents acting through both the intrinsic and extrinsic pathways. 

Meriting particular interest, apoptosis can normally be activated in mutants 

lacking Apaf-1, the only apoptotic partner of Cc described in vivo thus far 

[22,23].  

The different phenotypes of Cc and Apaf-1 knockouts and the high 

concentration of Cc in the mitochondrial intermembrane space cannot be 

explained if Cc is restrained from interacting with Apaf-1 during PCD. However, 

these can be easily harmonized if a broader, critical role for Cc in the regulation 

of life and death decisions is considered, as recently proposed by Hüttemann et 

al. [24].  
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To facilitate the identification of putative novel Cc interaction partners here, a 

proteomic approach was developed based on affinity chromatography coupled 

with MALDI-TOF/TOF. The use of bimolecular fluorescence complementation 

(BiFC) permitted the corroboration of not only the in vivo interaction, but also to 

determine the in cell localization of such novel Cc complexes. Moreover, Cc 

complexes involving ALDOA, ANP32B, eIF2, SET, STRAP and YWHAE were 

modeled in silico using docking algorithms. In vitro validation through surface 

plasmon resonance (SPR) was performed only for Cc complexes including 

protein interaction partners expressed in a soluble form, that is, eIF2, hnRNP 

C1/C2, HSPA5, SET and YWHAE. Furthermore, nuclear magnetic resonance 

(NMR) and isothermal titration calorimetry (ITC) measurements were performed 

to delve into the complex formation. The qualitative methodological approach 

herein proposed combines proteomic tools with other complementary 

techniques, namely BiFC, SPR, NMR and ITC to further corroborate the 

reliability of the novel Cc-involving protein interactions and to characterize the 

nature of such complexes from both the structural and functional point of view. 

Two major advantages should be highlighted. First, the synergy between all 

these techniques reduces the rate of false positives and avoids the need for 

proteomic replicas; and second, the BiFC experiments, combined with SPR, 

NMR and ITC approaches, provide extra information not only on the cellular 

compartment at which the protein-protein interactions take place but also on the 

specificity and lifetime of the Cc-involving complexes. 

In addition to the assembly of the apoptotic platform during apoptosis, the 

results obtained in this study might suggest that Cc is also involved in other 

signaling pathways, interfering with cell survival and unlocking apoptosis. 

Indeed, Cc appears to abolish the co-existence of pro-survival and pro-

apoptotic signals. The additional functions, besides apoptosome assembly, 

ascribed to Cc during apoptosis therefore suggest an evolutionarily conserved 

role for Cc during PCD and may explain its release from mitochondria in the 

majority of organisms.   
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EXPERIMENTAL PROCEDURES 

Expression and Purification of Cc E104C Mutant 

Plasmid pCytH [25], containing the coding region of human Cc, was used as a 

template to obtain the E104C Cc mutant, in which the glutamate at the C-

terminal end was replaced by a cysteine, through site-directed mutagenesis. 

The oligonucleotides employed to build the E104C species were 5’-

gcgaccaattgctgatgaattc-3’ and 3’-cgctggttaacgactacttaag-5’. The E104C Cc was 

expressed and further purified using ionic exchange chromatography, a process 

previously described by Rodríguez-Roldán et al. [25]. 

Jurkat T-Cell Cultures and Apoptosis Induction 

Jurkat human T-lymphoma cells were cultured in RPMI 1640 (PAA) 

supplemented with 10 % heat-inactivated fetal bovine serum (PAA), 2 mM L-

glutamine (Gibco), 100 U·mL-1 streptomycin (Gibco) and 100 μg·mL-1 penicillin 

(Gibco) at 37 C in a humidified atmosphere of 5% CO2 / 95% air. Cells were 

grown as exponentially growing confluent monolayer in 645 mL flasks (Nunc) 

with the medium refreshed every 48 h. 

Apoptosis was induced in Jurkat human T-lymphoma cells with 10 μM 

camptothecin (CPT; Calbiochem) for up to 6 h [26] in order to ensure the 

release of Cc from mitochondria into the cytosol [27]. 

DAPI Staining 

Non-treated or treated Jurkat T cells with 10 μM of CPT were harvested by 

centrifugation at 1,000 x g for 5 min, resuspended in PBS containing 500 

ng·mL-1 DAPI and incubated for 30 min at room temperature. Cells on glass 

slides were examined under a fluorescence microscope equipped with a DAPI 

filter and apoptotic cells were identified by the presence of densely stained 

granular nuclear apoptotic bodies. 
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Flow Cytometry Measurements 

Jurkat T cells, non-treated or treated with 10 μM of CPT, were harvested as 

described above, and fixed in ethanol 70 % for 1 h. Cells were resuspended in a 

propidium iodide (PI) solution as previously described [28], to be further 

incubated for 1 h at 37 C and analyzed by flow cytometry using a Becton-

Dickinson FACS Vantage flow cytometer. Cells with sub-G1 DNA content were 

considered to be apoptotic. 

DNA Fragmentation Assay 

Apoptosis was induced in Jurkat T cells with 10 μM CPT for 0, 6, 10 and 24 h 

and DNA fragmentation assay was carried out as previously described [29]. 

Briefly, cells were harvested by centrifugation at 1,000 x g for 5 min, washed 

twice in PBS, resuspended and incubated at 37 C overnight with 500 μL of 

buffer D (100 mM Tris-HCl [pH 8.5], 5 mM EDTA, 0.2 M NaCl, 0.2 % [w/v] SDS 

and 0.2 mg·mL-1 proteinase K). Then, 1.5 M NaCl was added and cellular 

debris was removed by centrifugation at 12,000 x g for 15 min. The DNA 

present in the supernatant was precipitated with an equal volume of 100 % (v/v) 

ethanol centrifuging at 12,000 x g for 10 min, washed with 70 % ethanol and 

incubated for 2 h at 37 C in buffer E (10 mM Tris-HCl [pH 7.5], 1 mM EDTA 

and 100 μg·mL-1 DNase-free RNase A). Then, DNA was loaded onto a 2 % 

agarose gel and electrophoresis was carried out at 50 V for 2 h in 0.5 x TBE 

buffer. 

Cellular Viability Assay 

Cell viability was measured using the trypan blue exclusion assay. Jurkat T cells 

treated with 10 μM CPT for different times (0, 3, 6, 10 and 24 hours) were 

collected by centrifugation at 1,000 x g for 5 min. Cells were resuspended in 

trypan blue solution and counted with a hemocytometer. The viability 

percentage of Jurkat T cells was obtained by dividing the number of viable cells 

by the total number of cells. 

Cell Extract Preparation  
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Cell extracts from 1.8 L of culture with either untreated or 10 μM CPT-treated 

Jurkat T cells were prepared for affinity chromatography purification. In both 

cases, cells were harvested by centrifugation at 1000 x g for 5 min, washed 

twice in PBS, pelleted again and resuspended to be further lysed by sonication 

in buffer I (50 mM Tris-HCl [pH 7.5], 50 mM NaCl, 0.25% Triton X-100) 

supplemented with 1 mM phenylmethylsulfonyl fluoride, 10 μg·mL-1 aprotinin, 10 

μg·mL-1 leupeptin and 10 μg·mL-1 of soybean trypsin inhibitor. Cellular debris 

was then removed through centrifugation at 20,000 x g for 30 min at 4 C. 

Protein aliquots were lyophilized and stored at -80 C. 

Purification by Affinity Chromatography 

As previously described in Azzi et al. [30], affinity chromatography was carried 

out on a column prepared by the covalent linkage of the Cc mutant E104C to 

the Thiol-Sepharose 4B (TS-4B) matrix (Pharmacia). For this preparation, 30 

mg of Cc E104C in 50 mM Tris-HCl (pH 7.5), previously treated with 1 mM DTT 

to prevent the formation of intermolecular disulfide bridges, was added to a 

suspension of 4 mL of TS-4B (1 g) resuspended in the same buffer. The 

suspension, following stirring at 4 C overnight, was then poured into a Poly-

Prep Chromatography Column (Bio-Rad) and washed with 5 mL of 1.5 mM 2-

mercaptoethanol / 50 mM Na-acetate (pH 4.5) in order to block unreacted thiol 

groups. To remove non-covalently bound Cc E104C, the matrix was washed 

extensively with 30 mL of 50 mM Tris-HCl (pH 7.5), 1 M NaCl and 1 % Triton X-

100. Finally, the column was equilibrated in 50 mM Tris-HCl (pH 7.5). As a 

control, a TS-4B matrix devoid of Cc (Blank TS-4B) was prepared following the 

steps above. 

Jurkat T cell extracts, both those untreated and treated with 10 μM of CPT, 

were loaded into the columns, both with and without Cc. The columns were then 

washed with 30 mL of buffer I and 30 mL of buffer II (50 mM Tris-HCl [pH 7.5], 

75 mM NaCl) to remove proteins nonspecifically bound. Proteins interacting 

with greater strength were then eluted with 30 mL of buffer III (50 mM Tris-HCl 

[pH 7.5], 300 mM NaCl), collected, lyophilized and stored at -80 C before being 

analyzed using 2D SDS-PAGE.  
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Four sets of samples were thus obtained: (1) untreated cell extracts loaded into 

the Blank TS-4B column, (2) untreated cell extracts loaded into the Cc TS-4B 

column, (3) apoptotic cell extracts treated with CPT and purified using the Blank 

TS-4B column and (4) apoptotic cell extracts treated with CPT and loaded into 

the Cc TS-4B column. 

2D SDS-PAGE 

The protein samples purified as described above were then analyzed using 2D 

SDS-PAGE. Isoelectrofocusing (IEF) was carried out with the PROTEAN IEF 

Cell (Bio-Rad) system using 7 cm ReadyStrip IPG Strips (Bio-Rad) with linear 

pH gradients (pH 3-10). Lyophilized proteins (150 μg) were resuspended in 125 

μL rehydration buffer (7 M urea, 2 M thiourea, 2 % CHAPS, 30 mM DTT, 0.5 % 

Bio-Lyte 3/10 ampholyte and traces of Bromophenol Blue [Bio-Rad]). The 

ReadyStrip IPG Strips were rehydrated along with the solution containing the 

protein mixture for 14 h at room temperature.  

Samples were later separated in the ReadyStrip IPG Strips for 16000 Vh. IEF 

gels were then incubated with two equilibration buffers – I (6 M urea, 0.375 M 

Tris-HCl [pH 8.8], 2 % SDS, 20 % glycerol, 2 % [w/v] DTT) and II (6 M urea, 

0.375 M Tris-HCl [pH 8.8], 2 % SDS, 20 % glycerol, 2,5 % [w/v] iodoacetamide) 

– for 15 min. Finally, the IEF gels were loaded onto a 12 % polyacrylamide gel 

(8 cm x 7 cm) which was run at 100 V for 2 h in a Mini-PROTEAN 3 Dodeca 

Cell (Bio-Rad). The 2D gels were stained using Blue Silver [31] and analyzed 

using the PDQuest 2D Analysis Software Version 8.0.1 (Bio-Rad). 

Protein Preparation for Mass Spectrometry 

Gel protein spots of interest were manually excised from micro-preparative gels 

using pipette tips. The selected proteins were reduced in-gel, alkylated and 

digested with trypsin as described by Sechi and Chait [32]. Briefly, spots were 

washed twice with water, shrunk for 15 min with 100 % acetonitrile and dried in 

a Savant SpeedVac for 30 min. Then, the samples were then reduced with 10 

mM DTT in 25 mM ammonium bicarbonate for 30 min at 56 ºC and 

subsequently alkylated with 55 mM iodoacetamide in 25 mM ammonium 
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bicarbonate for 15 min in the dark. Finally, samples were digested with 12.5 

ng·μL-1 sequencing grade trypsin (Roche Molecular Biochemicals) in 25 mM 

ammonium bicarbonate (pH 8.5) at 37 ºC overnight. 

After digestion, the supernatant was collected from which 1 μL was spotted onto 

a MALDI target plate and later air-dried at room temperature. Subsequently, 0.4 

μL of a 3 mg·mL-1 of -cyano-4-hydroxy-transcinnamic acid matrix (Sigma) in 

50 % acetonitrile was added to the dried peptide digest spots and then air-dried 

at room temperature. 

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass 

Spectrometry (MALDI-TOF MS) 

MALDI-TOF MS analyses were performed in a 4800 Proteomics Analyzer 

MALDI-TOF/TOF mass spectrometer (Applied Biosystems, Framingham, MA) 

at the Genomics and Proteomics Center, Complutense University of Madrid. 

Operated in positive reflector mode, with an accelerating voltage of 20000 V. All 

mass spectra were calibrated internally using peptides from the auto digestion 

of trypsin.  

The analysis by MALDI-TOF/TOF mass spectrometry yields peptide mass 

fingerprints, and the peptides observed with a S/N ratio greater than 10 can be 

collated and represented as a list of monoisotopic molecular weights. Proteins 

ambiguously identified by peptide mass fingerprinting were subjected to MS/MS 

sequencing analyses using the 4800 Proteomics Analyzer (Applied Biosystems, 

Framingham, MA). So, from the MS spectra suitable precursors were selected 

for MS/MS analyses with CID on (atmospheric gas was used) 1 Kv ion reflector 

mode and precursor mass Windows +/- 5 Da. The plate model and default 

calibration were optimized for the MS/MS spectra processing.  

For protein identification, the UniProtKB-SwissProt_160909 database v. 57.7 

(497293 sequences, 175274722 residues) restricted to human protein was 

searched using a local license of MASCOT 2.1 through the Global Protein 

Server v 3.6 from Applied Biosystems. Search parameters were: 
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 Carbamidomethyl Cystein as fixed modification and oxidized methionine 

as variable modification 

 Peptide mass tolerance 50 (PMF) -100 ppm (MSMS or Combined 

search) 

 Peptide charge state +1 

 1 missed trypsin cleavage site 

 MS-MS fragments tolerance 0.3 Da 

 

The parameters for the combined search (Peptide mass fingerprint and MS-MS 

spectra) were the same as above. 

In all protein identification, the probability scores were greater than the score 

fixed by mascot as significant with a p-value lower than 0.05. 

Bioinformatics 

For protein identification, the UniProtKB-SwissProt database v.57.7 restricted to 

human protein (20333 sequences) or NCBI database (10084244 sequences) 

were searched using a local license for MASCOT 2.1. Database search 

parameters used were the following: trypsin as enzyme; peptide tolerance, 50 

ppm for MS analyses and 80 ppm for MS/MS analyses; fragment ion tolerance, 

0.3 Da; missed cleavage sites, 1; fixed modification, carbamidomethyl cysteine 

and variable modifications, methionine oxidation. In all protein identification, 

probability scores were greater than the score established by MASCOT as 

significant, with a p-value less than 0.05. 

Design of Vectors for BiFC Assays 

cDNAs coding for Cc and the proteins identified as Cc potential targets were 

purchased (GeneService). The cDNAs were amplified and restriction sites 

required in each case for further cloning introduced by PCR with the 

oligonucleotides detailed in the Supplemental Data (see Figure S4 and Table 

S1). Whereas Cc cDNA was cloned into the cYFP vector, the cDNAs of the Cc 

targets were cloned into the nYFP vector.  
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As discussed by Hu et al. [33], pBiFC-bJunYN155 and pBiFC-bFosYC155 were 

employed as positive controls, while pBiFC-bJunYN155 and pBiFC-

bFosΔZipYC155 were used as negative controls. 

BiFC Assays: Human Cell Cultures, Cellular Transfection and 

Fluorescence Microscopy 

HEK293T cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; 

PAA) supplemented with 2 mM L-glutamine (Gibco), 100 U·mL-1 streptomycin 

(Gibco), 100 μg·mL-1 penicillin (Gibco) and 10 % heat-inactivated fetal bovine 

serum (PAA) at 37 C in a humidified atmosphere of 5% CO2 / 95% air. When 

used for fluorescence microscopy, the HEK293T cells were grown to 80 % 

confluence in 24-well plates with 500 μL of DMEM, containing 20 mm 

coverslips. Cells were transiently transfected with the BiFC vectors using the 

Lipofectamine 2000 Transfection Reagent (Invitrogen) following the 

manufacturer’s instructions. In this way, 0.5 μg of DNA per construct was diluted 

in 50 μL of Opti-MEM medium (Invitrogen), 2 μL of Lipofectamine was diluted in 

50 μL of Opti-MEM medium and the solutions were incubated separately. 

Following 5 min of incubation at room temperature, both solutions were mixed 

and incubated for 20 min at room temperature. Finally, 100 μL of the DNA-

Lipofectamine mixtures were added to the cells. To favor the protein expression 

of both constructs, the cells were incubated for 24 h at 37 C.   

Untreated and CPT-treated HEK293T cells on coverslips were mounted in PBS, 

supplemented with 75 % glycerol and observed under a Leica DM6000 B 

fluorescence microscope. 

Western Blot Analysis 

The HEK293T cells transfected with different cDNA vectors were harvested 48 

h after transfection through centrifugation at 1,500 rpm for 5 min. Total cell 

extracts were obtained through repeated freeze-thaw cycles. SDS-PAGE was 

performed using 12 % polyacrylamide gels. Proteins were transferred onto 

nitrocellulose membranes (Bio-Rad) using a Mini Trans-Blot (Bio-Rad) and 

immunoblotted with a rabbit anti-EGFP polyclonal antibody (1:1000; Biovision 
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Research Products). A horseradish-peroxidase (HRP)-conjugated goat anti-

rabbit IgG (1:12000, Sigma-Aldrich) was then used for detection. The 

immunoreactive bands were developed using ECL Plus Western Blotting 

Detection System (Amersham).  

Docking Protocol 

A soft docking algorithm implemented in the Biomolecular Complex Generation 

with Global Evaluation and Ranking (BiGGER) software package [34] was used 

to determine in silico a model of the complexes between Cc and some novel 

interaction partners named earlier. For each run, 5000 solutions were generated 

using a 15º angular step soft dock and a distance of 7 Å. The center of mass for 

50 structures with the best global scores was represented. All graphical images 

of complexes were generated using the UCSF Chimera package. 

Cloning, Expression and Purification of Human Proteins for SPR, ITC and 

NMR Measurements 

Wild-type human Cc cloned in the pBTR vector under lac promoter was 

expressed in the E. coli BL-21(DE3) strain [35]. For this, 25 mL of pre-cultures 

were grown overnight at 37 ºC in LB medium supplemented with 100 μg·mL-1 

ampicillin. 2.5 mL of pre-culture was used to inoculate 2.5 L of the same 

medium in a 5 L Erlenmeyer flask. The culture was shaken at 30 ºC for 24 h, 

after which the cells were harvested at 6,000 rpm for 10 min using a Beckman 

Coulter Avanti J-25 refrigerated centrifuge. Cells were then resuspended in 1.5 

mM borate buffer (pH 8.5), sonicated for 4 min and then centrifuged at 20,000 

rpm for 20 min. For NMR measurements, 15N-labeled Cc was produced in 

minimal media with 15NH4Cl as nitrogen source. Further purification of wild-type 

human Cc was carried out as indicated in Rodríguez-Roldán et al. [25].  

Proteins interacting with human Cc – ANP32B, eIF2, hnRNP C1/C2, HSPA5, 

SET and YWHAE – were cloned into the pET-28a vector under the T7 promoter 

using the NdeI-NotI restriction sites. DNA for cloning was obtained by a PCR 

reaction using the target cDNA sequences which had been purchased 

previously (GeneService). DNA inserts coding for Cc targets were ligated into 
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the pET-28a vector. Protein expressions were performed in the E. coli BL-21 

(DE3) RIL strain. 250 mL pre-cultures in LB medium supplemented with 50 

μg·mL-1 kanamycin were grown overnight and then used to inoculate 2.5 L 

cultures in 5 L flasks. Following the induction of cultures (1 mM IPTG) and 

growth at 30 ºC for 24 h, cells were harvested at 6,000 rpm for 10 min and 

resuspended in 40 mL of lysis buffer (20 mM Tris-HCl buffer [pH 8], 0.8 M NaCl, 

10 mM imidazole, 0.01 % phenylmethylsulphonyl fluoride [PMSF], 0.2 mg·mL-1 

lysozyme, 5 mM DTT and 0.02 mg·mL-1 DNase), sonicated for 4 min and then 

centrifuged at 20,000 rpm for 20 min. Cc counterparts were purified by affinity 

chromatography. The above lysate was loaded into an Ni-column (Ni 

Sepharose 6 Fast Flow; GE Healthcare) previously equilibrated with the above 

buffer and proteins were eluted by the application of an imidazole gradient from 

0 to 300 mM. Purity of Cc targets was checked by running SDS-PAGE. The 

fractions containing protein were pooled, concentrated by Amicon (10 kDa cut-

off membrane) until the protein concentration of 100 μM was reached and 

dialyzed against 10 mM HEPES buffer (pH 7.4) for SPR measurements, or 5 

mM sodium phosphate buffer (pH 6.5) for NMR experiments, or 10 mM sodium 

phosphate buffer (pH 7.4) for ITC measurements; in all cases, the buffer 

contained 0.01 % PMSF.  

SPR Measurements 

The formation of complexes between human Cc and its protein interaction 

partners was assayed with SPR using the BiaCore 3000 and CM4 Sensor 

Chips. An automated desorption procedure was performed prior to each 

experiment to ensure the cleanliness of the BiaCore tubing, channels and 

sample injection port. The initial electrostatic attraction of Cc to the CM4 Sensor 

Chip surface was assessed by taking into account its isoelectric point and was 

optimized to pH 5.8. Cc was then covalently attached to the matrix using 

standard amine-coupling chemistry, as previously described [36]. A reference 

flow cell was used as a control in which the chip surface was treated as 

described above, but without the injection of Cc. 
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The binding measurements were performed at 25 ºC using HBS-EP buffer 

containing 10 mM HEPES, 150 mM NaCl, 3 mM EDTA and 0.005 % surfactant 

P20 adjusted to pH 7.4. Interactions between Cc and its protein partners were 

analyzed by passing several concentrations of Cc-protein interaction partners 

(from 0.1 to 10 μM) over the Cc-modified surface at a flow rate of 10 μL·min-1. 

Each concentration was injected at least three times. In each sensorgram, the 

signals from the reference flow cell surface were subtracted. Between injection 

cycles, bound proteins were removed following the injection of 10 μL of 10 mM 

NaOH. In each case, after regeneration the SPR signal reached baseline by 

flushing with buffer.  

NMR Measurements 

All protein samples were concentrated in 5 mM sodium phosphate buffer (pH 

6.5) using Millipore 3K NMWL centricons and microcons. Cc-protein partner 

stock samples ranged in concentration from 200 to 800 µM, and were diluted at 

a final concentration of 50 µM each in the Shigemi tubes. Cc was likewise at 50 

µM final concentration and reduced upon addition of an aliquot of 0.1 M sodium 

ascorbate solution up to 4 mM. All NMR samples contained 10% D2O to adjust 

the lock signal.  

NMR experiments were performed in a Bruker Avance 700 MHz spectrometer 

at 25 ºC. The interaction of Cc with its protein partners was followed by 

acquiring two-dimensional 1H-15N HSQC spectra during titration of 50 µM 15N-

Cc solutions with an increasing amount of each protein partner up to reach a 

final Cc:partner molar ratio of 1:1. The pH value of the samples was verified 

after each titration step. All data processing was performed with Bruker TopSpin 

2.0.  NMR analyses of chemical-shift perturbations (CSP) were performed with 

the SPARKY program. 

ITC Measurements 

All ITC experiments were performed using an Auto-ITC200 instrument 

(Microcal, GE Healthcare) at 25 ºC by titrating each Cc protein target with Cc. 

The reference cell was filled with distilled water. The experiments consisted of 
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10 µL injections of 300 µM Cc in 10 mM sodium phosphate buffer (pH 7.4) into 

the sample cell, which initially contained 20 µM Cc protein partner solutions in 

the same buffer. All the solutions were degassed before the titrations were 

performed. Titrant was injected at appropriate time intervals to ensure the 

thermal power signal returned to the baseline prior to the next injection. To 

achieve homogeneous mixing in the cell, the stirring speed was kept constant at 

1000 rpm. The data, specifically the heat per injection normalized per mole of 

injectant vs. molar ratio, were analyzed with Origin 7 (Microcal). Calibration and 

performance tests of the calorimeter were carried out conducting CaCl2–EDTA 

titrations with solutions provided by the manufacturer.  

 

RESULTS 

Exploring Novel Cc Protein Interaction Partners Using a Proteomic 

Approach 

As explained earlier, the identification of novel Cc protein interaction partners 

could provide an important starting point for the elucidation of yet unexplored Cc 

functions during PCD. Thus, to achieve this goal, a proteomic approach 

combining affinity chromatography with mass spectrometry was used. A C-end 

cysteine-substituted Cc (E104C) was covalently bound to a thiol-sepharose 4B 

(TS-4B) column using a disulfide bridge. The other two Cc cysteines did not 

interfere, as they bind the heme group [37]. A TS-4B column devoid of Cc 

(Blank TS-4B) was used as a control.  

Jurkat T cell cultures grown in RPMI 1640 medium until reaching a final cell 

density of 0.15-1.5x106 cells·mL-1 were used to obtain homeostatic and 

apoptotic cell extracts. As previously indicated by Johnson et al. [26], 10 µM of 

CPT was used to induce apoptosis in the cultures. To ensure that the cultures 

were undergoing apoptosis, several characteristic hallmarks were tested. Figure 

S1.A shows the DNA ‘ladder’-shaped fragmentation following 10 h of CPT 

treatment [29]. This fragmentation is in accord with a positive 4’,6-diamidino-2-

phenylindole (DAPI) signal fluorescence for nuclei (Figure S1.B) and a lower 
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DNA content in apoptotic cells followed by flow cytometry (Figure S2). In fact, 

the population suffering apoptosis upon the addition of CPT was monitored by 

both flow cytometry and trypan blue dye exclusion (Figure S1.C). Both analyses 

indicate that the population of cells undergoing apoptosis increased 

substantially after 6 h of treatment with CPT. Moreover, they show that CPT-

treated Jurkat T cells were dying specifically as a result of apoptosis, rather 

than another type of PCD like necrosis. 

Cells were collected for preparation of extracts 6 h following apoptosis 

induction, the period when Cc is known to be released from mitochondria into 

the cytoplasm [38]. Since approximately only 30 % of apoptotic cells were 

detected by flow cytometry and trypan blue dye exclusion (Figures S1.C and 

S2), the data collected can be said to address only the early steps of apoptotic 

signaling. The extracts from both untreated and CPT-treated Jurkat T cells were 

loaded into the columns both with and without Cc attached (Figure 1, Left 

Panel). The putative Cc protein interaction partners were eluted from the Cc TS-

4B column by increasing ionic strength, whereas the proteins flowing from the 

Blank TS-4B column served as a control for non-specific binding. The resulting 

protein fractions were prepared for 2D SDS-PAGE (Figure 1, Left Panel).   

From affinity chromatography, four different protein samples were obtained 

reflecting different experimental conditions: proteins from (a) untreated and (b) 

CPT-treated cells purified using the blank TS-4B column, as well as proteins 

from (c) untreated and (d) CPT-treated cells purified with the E104C TS-4B 

column. The mixture of proteins present in each sample was resolved using 2D 

SDS-PAGE (Figure S3). PDQuest 2D Analysis Software version 8.0.1 (Bio-Rad) 

was then used to analyze the resulting 2D gels and the spots highlighted in the 

master gel image (Figure 1, Right Panel) were identified by MALDI-TOF/TOF 

and a database search. Table S2 comprehensively summarizes the putative 

novel Cc-interacting proteins, along with their cellular localization, identified only 

in CPT-treated cell extracts or in both untreated and CPT-treated extracts. 

Using this approach, a list of 21 novel putative Cc interaction partners have 

been identified in homeostatic and/or apoptotic Jurkat T cells that it is very likely 

to contain many false positives (Supplemental Data 1). 
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In vivo Verification of Cc-target Interactions: BiFC Assays  

In an attempt to reduce the rate of false positives and corroborate in vivo the 

interactions between Cc and its novel putative interaction partners identified in 

this work, BiFC was employed. This approach permits the analysis of protein-

protein interactions in their biological environment, as well as the localization of 

the protein complexes [39]. For this purpose, Cc was fused with the C-end 

fragment of the yellow fluorescent protein (cYFP), whereas its novel protein 

interaction partners, previously identified in vitro, were fused with the N-end 

fragment of the YFP (nYFP). In each case, coding cDNAs were cloned 

immediately before the corresponding YFP fragment. The HEK293T cells – 

rather than Jurkat T cells - were co-transfected due to their better efficiency of 

transient transfection and great adherence, so allowing one to monitor the 

changes in cell morphology and protein localization. The interaction of Cc with 

its counterparts was followed by fluorescence, due to the YFP reconstitution 

upon Cc-target binding (Figure 2).  

cDNA coding for human Cc and for 14 out of the 21 potential Cc interaction 

partners previously identified through the proteomic approach were purchased 

(Source BioScience). As shown in Table S1 and Figure S4, Cc and the cDNA of 

its targets were cloned into vectors containing the cYFP and nYFP, respectively 

[40].   

Among the 21 Cc targets, ATP5, CCT2, NAP1L4 and RPS7 were discarded 

since they have not been described as apoptosis-related proteins. In addition, 

cDNAs encoding hnRNP L and RBBP7 were not available at Source 

BioScience or the cDNA could not be amplified using PCR. Moreover, Hsp90B1 

was discarded since it has been described in the literature as an Apaf-1 target 

that does not make direct contact with Cc [41]. 

YFP fragments are known to complement each other with low efficiency, yet still 

be sufficiently efficient to yield fluorescent complexes even in the absence of a 

specific interaction [42]. To ensure that the interactions involving Cc were not 

the result of spontaneous YFP complementation, several precise controls were 
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designed based on the expression of two fusion proteins that, being expressed 

in the same cellular compartment, were unable to interact. These positive 

vectors, pBiFC-bJunYN155 and pBiFC-bFosYC155, and negative vectors, 

pBiFC-bJunYN155 and pBiFC-bFosΔZipYC155, were used as controls [33].  

Apo-Cc needs to be translocated from the cytosol to mitochondria, where the 

Cc hemelyase assembles the heme cofactor leading to the formation of the 

holoprotein. HEK293T cells transfected with both the Cc-cYFP vector and the 

empty nYFP vector (Figure 3A) showed a punctuate fluorescence pattern for 

the distribution of Cc under homeostatic conditions, thereby highlighting its 

mitochondrial localization [38]. On the other hand, following the treatment of 

cells with CPT, the fluorescence pattern became diffuse, consistent with the 

release of Cc from mitochondria into the cytoplasm (Figure 3B). The expression 

of the Cc-cYFP fusion protein was confirmed by Western blot using a rabbit 

anti-EGFP polyclonal antibody (Figure 3C). 

BiFC assays were carried out on 14 putative Cc-interacting proteins identified 

through the proteomic approach. With the exception of CSNKII, CORO1A, 

TUBB and MCM7 proteins, the interaction between Cc and the remaining 10 

targets were corroborated in vivo (Figure 2 and Table 1). Some of these 

interactions occur in the cytoplasm, such as those involving ALDOA, eIF2, 

MCM6, HSPA5 and YWHAE, while others, such as those involving hnRNP 

C1/C2 and SET whose YFP fluorescence overlaps with DAPI staining, take 

place inside the nucleus. Finally, the complexes ANP32B-Cc, NCL-Cc and 

STRAP-Cc display nucleo-cytoplasmic localization.  

The lack of interaction between Cc and CSNKII as demonstrated by the 

absence of YFP fluorescence is also shown in Figure 2. Intriguingly, CSNKII 

had been described as an in vitro Cc interaction partner as early as in the 1970s 

[43,44]. However, such interaction was not detected in vivo with BiFC.  

The transient expression of Cc targets fused to nYFP in the BiFC assays was 

checked through immunoblotting with a rabbit anti-EGFP polyclonal antibody. 
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As illustrated in Figure 2, all constructs yielded a band of the expected 

molecular mass for each target. 

To double-check that these protein partners are novel and specific of Cc, 

additional BiFC measurements were performed with Cc from Arabidopsis 

thaliana as human and plant Cc are well-conserved hemeproteins with similar 

electrostatic potential surfaces. As can be seen in Figure S5, all the proteins 

herein shown to interact with human Cc yield positive results with plant Cc too, 

and all of them interact at the same cell compartment with human and plant Cc. 

Altogether, these findings confirm the specificity of all these proteins for the Cc 

species.  

In Silico Modeling of the Cc Complexes 

To correlate structural data on the protein interaction partners with in vivo 

measurements and to determine the 3D structure of the Cc complexes, a set of 

theoretical computations based on docking algorithms were performed [45]. For 

this purpose, either known structures, as deposited in the PDB database, or 

homology models were used to set the initial coordinates. In fact, the complexes 

involving ALDOA (4ALD.pdb) [46], ANP32B (2RR6.pdb) [47], eIF2 (1Q8K.pdb) 

[48], SET (2E50.pdb) [49] and YWHAE (2BR9.pdb) [50] and Cc (1J3S.pdb) [51] 

were modeled using the PDB coordinates. The structure corresponding to 

STRAP was obtained by homology comparison using the MODELLER software 

[52]. In order to define the interface on Cc involved in the interaction with its 

above-mentioned targets, soft docking calculations were performed using 

BIGGER [34]. The Cc-complexes with the best global score values are shown in 

Figure 4. Interestingly, Cc uses the same surface surrounding the heme crevice 

(Figure 4) to interact with all novel interaction partners as earlier studies have 

shown it to do with its physiological redox partners, namely cytochrome c1 [53], 

cytochrome c peroxidase [54] and cytochrome c oxidase [55]. Figure 4 shows 

the distribution of mass centers for Cc with respect to the protein interaction 

partners. Notably, all of them preferably explore a well-defined area of Cc. 
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 In vitro Validation of Cc Adducts: SPR, NMR and ITC Measurements 

The interaction between Cc and its protein partners was measured by SPR, 

NMR and ITC experiments. For SPR spectroscopy, human Cc was immobilized 

on the sensor surface. Six Cc targets – ANP32B, eIF2, hnRNP C1/C2, 

HSPA5, SET and YWHAE – were overexpressed as soluble recombinant 

proteins. The SPR sensograms of Cc-binding to YWHAE, eIF2, hnRNP 

C1/C2, HSPA5 and SET are shown in Figure 5, in which the background 

response was subtracted from the sample sensogram to obtain the actual 

binding response. The background response was recorded by injecting the 

analyte through a control or reference flow cell which has no ligand immobilized 

on the sensor surface. The Cc-ANP32B interaction could not be detected by 

this technique.  

The interactions of Cc with a total of six soluble targets were further analyzed in 

solution by NMR and ITC. Figure 6 shows details of the 15N-HSQC spectra of 

Cc upon binding to eIF2, ANP32B, HSPA5, SET, YWHAE and hnRNP C1/C2. 

Noteworthy, significant CSPs in several Cc amide signals – in particular, in that 

corresponding to the residue glutamate 89 – were observed upon binding of Cc 

to its partners, what is indicative for complex formation in solution of Cc with all 

but one (hnRNP C1/C2) of the partners. Also, some Cc amide signals broaden 

beyond the detection limit, thereby suggesting the formation of a long-lived 

complex, with lifetimes substantially large (in the range of seconds), between 

Cc and its targets, as inferred from SPR measurements. Furthermore, the ITC 

thermograms and isotherms revealed that Cc binds to its nucleo/cytoplasmic 

targets herein reported (Figure 7) – except for hnRNP C1/C2 – with a higher 

affinity (dissociation constant ranging between 1 and 5 µM) than to its 

mitochondrial redox targets. Interestingly, ANP32B, whose binding to Cc was 

not detected by SPR, specifically interacted with Cc when analyzed by NMR 

and ITC (Table 1). Altogether these structural and functional data suggest that 

these complexes are highly specific and mainly involve the surface of Cc 

surrounding the heme cleft, except for the Cc-SET complex in which additional 

residues placed at the opposite face of the heme group are also perturbed 
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(Figure 8). In the latter complex, Cc might be localized in between the two 

subunits of the SET dimer so as to extend the Cc-interacting surface. Figure 8 

shows not only how relevant the electrostatic interactions are in bringing both 

proteins sufficiently close to each other but also how relevant the hydrophobic 

contacts are to stabilize a well-defined orientation. Moreover, Cc yields not only 

specific but also much more stable complexes with its new apoptotic targets as 

compared with those previously described for its well-known respiratory 

partners (i.e. cytochrome bc1 and cytochrome c oxidase of the mitochondrial 

electron transfer chain, with lifetimes of ca. 5 and 1 ms, respectively) [56,57]. 

Network of the Novel Cc-Partner Interactions 

In this study, human Cc has been identified as a promiscuous protein, able to 

interact with at least 8 confirmed protein targets (Table 1) following its release 

from mitochondria into the cytosol during apoptosis. Thus, Cc appears to be 

part of a complex regulatory network (Figure 9). 

Figure 9 organizes the main functions of these novel Cc interaction partners in a 

diagram divided into five main categories: 

1. DNA Repair 

The SET complex is constituted by SET, pp32, HMG-2, Ape1, NM23-H1 and 

TREX1 (Figure 9B) [58]. Under homeostatic conditions, this complex is 

associated with the endoplasmic reticulum (ER), but is mobilized in the nucleus 

in response to oxidative stress [59]. In fact, Ape1, and possibly TREX1 and 

NM23-H1, seem to be involved in the base excision repair mechanism for 

single-stranded DNA nicks [60] appearing with oxidative stress [61]. 

DNA double-strand breaks are generated by exogenous factors – 

topoisomerase inhibitors like CPT – and also during DNA replication. 

Mechanisms to detect DNA breaks and trigger DNA repair pathways as well as 

cell cycle checkpoints have evolved in cells [62,63]. hnRNP C1/C2 has been 

demonstrated to bind to chromatin in a DNA-damage-dependent manner, as 

well as to play a role in DNA repair and/or damage response (Figure 9) [64]. 
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2. Cell Survival Pathways 

14-3-3 proteins are involved in the regulation of a wide range of cellular 

processes, such as the inflammatory response, mitogenic and cell survival 

signaling, the cell cycle, transcriptional activity, DNA replication, DNA damage 

and apoptosis [65]. 14-3-3 epsilon (YWHAE), a cytoplasmic member of the 

family (Figure 9), has been involved in the regulation of multiple cell survival 

signaling pathways such as TNF-/NF-κ [65,66] and PI-3K/AKT [67]. 

STRAP (serine-threonine kinase receptor-associated protein) has been 

identified as a partner of PDK1 [68]. In this study, the co-expression of PDK1 

and STRAP suppresses apoptotic cell death. These results suggest that 

STRAP plays an important role in the modulation of the PDK1-mediated survival 

signaling pathway. Indeed, STRAP not only positively regulates PDK1, but also 

regulates the activity of PDK1 downstream targets, activating AKT and inhibiting 

Bad [69] and thereby promoting cell survival. 

While HSPA5 is mainly found in the endoplasmic reticulum (ER), it is also in the 

cytoplasm, the nucleus and on the cell surface [70,71,72]. During ER stress, 

HSPA5 is released from ER into the cytoplasm, interacting with the IKK 

complex [73] and promoting cell survival and cell proliferation through the NF-κ 

signaling pathway (Figure 9B). Furthermore, HSPA5 physically interacts with 

Raf-1, known to phosphorylate and inactivate Bad, which results in resistance to 

apoptosis [74], stabilizes the mitochondrial membrane permeability and inhibits 

ER stress-induced apoptosis [75]. 

Hsp70 (Heat shock protein 70) is known to protect cells from apoptosis induced 

by heat shock, tumor necrosis factor, growth factor withdrawal, oxidative stress 

and radiation [76,77]. Recently, NCL has been shown to act as a downstream 

effector of Hsp70 in protecting cells against oxidative stress-induced apoptosis 

[78]. 

3. Metabolic Pathways Blocked During Apoptosis 
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The inhibition of protein synthesis enhances apoptosis through different stimuli 

[79]. Under apoptotic conditions, eIF2 has been shown to be phosphorylated 

by PKR. Post-translational modified eIF2 seems to inhibit translation during 

apoptosis [80] and to be an essential step for autophagy initiation [81]. 

4. Caspase Inhibition 

ANP32B (Acidic leucine-rich Nuclear Phosphoprotein 32 B) is involved in gene 

regulation, acting as a histone chaperone [47] or modulating mRNA trafficking 

as a HuR ligand [82]. In addition, ANP32B can act as a caspase-3 inhibitor 

(Figure 9B) since the expression of endogenous ANP32B blocked by a specific 

siRNA enhances caspase-3 activation and promotes apoptosis [82]. On the 

other hand, ANP32B overexpression results in the rescue of Rat1 cells from 

induced apoptosis [83]. 

ALDOA (Aldolase A) is involved in the conversion of fructose-1, 6-bisphosphate 

to dihydroxyacetonephosphate and glyceraldehyde-3-phosphate [84]. The role 

of glyceraldehyde-3-phosphate as a reversible and non-competitive inhibitor of 

caspase-3 has been recently proposed (Figure 9B) [85]. 

The ER chaperone protein, GRP78 (HSPA5), is involved in the folding and 

assembly of proteins in the ER [86]. Its synthesis can be stimulated by stress 

conditions that perturb ER function and calcium homeostasis [87]. In fact, a 

subpopulation of HSPA5 exists as an ER transmembrane protein blocking 

caspase-7 activation (Figure 9B). Furthermore, HSPA5 forms an inhibitory 

complex along with caspase-12 (Figure 9B), preventing its release from the ER 

[88] and blocking apoptosis. 

5. Inhibition of Apoptotic Pathways 

Apart from the role of YWHAE and STRAP as positive regulators of cell survival 

pathways, both are involved in the inhibition of apoptotic signaling pathways 

through the sequestering of pro-apoptotic proteins (Figure 9B). Whereas 

YWHAE interacts with Bad [89,90], PKC [91] and Ask1 [92], STRAP synergizes 

with Smad7 in the inhibition of TGF- signaling, thus blocking apoptosis [93,94]. 
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Moreover, a novel inhibitory function for STRAP regarding Ask1-induced 

apoptosis has recently been proposed [95]. 

The three nucleases – Ape1, NM23-H1 and TREX1 – which form the SET 

complex are activated during PCD by the cleavage of the inhibitor protein SET 

by granzyme A or K, causing single-stranded DNA damage [61,96,97]. 

 
 
DISCUSSION 

In vivo functions displayed by known components of apoptotic signaling 

pathways such as Bcl-2 proteins, caspases and Apaf-1 have been defined by 

genetic analyses [2]. However, this approach has hardly been used in the case 

of Cc due to its essential requirement during mitochondrial respiration, with the 

exception of two reports leading to different conclusions [21,98]. In Li et al. [98], 

a Cc knockout cell line was obtained that showed resistance to inducers for the 

apoptotic intrinsic pathway, but an increased sensitivity to extrinsic ones. 

However, Vempati et al. [21] indicated that the Cc knockout cell line developed 

by Li’s group expressed a testis-specific Cc isoform. They then removed both 

Cc isoforms and observed that the cell line was resistant to both apoptotic 

intrinsic and extrinsic pathway inducers. 

Cell fate is known to be regulated by a fine-tuned balance between pro-

apoptotic and pro-survival signaling pathways. The data obtained in this study 

reveals the interaction of human Cc with eight novel partners, extensively 

considered as pro-survival, anti-apoptotic proteins (Figure 9). Some of the novel 

Cc interaction partners identified in the study are involved in DNA damage 

response/repair mechanisms, protein synthesis, survival signaling pathways 

and processes known to be essential during homeostatic cell growth. Other Cc 

targets block apoptosis by inhibiting caspases or impairing apoptotic signals. It 

is worth mentioning that some of these novel Cc counterparts – namely, SET, 

YWHAE, STRAP and HSPA5 – act either in cell survival or in apoptosis.  

Intriguingly, Cc offers the surface surrounding the heme pocket for interaction 

with all partners reported in this study, as inferred from the docking calculations. 
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In fact, the area matches that used by Cc to bind the vast majority of its known 

redox partners [53,54,99-102]. The in vitro interactions of some of these Cc 

complexes, namely those involving eIF2, hnRNP C1/C2, ANP32B, HSPA5, 

SET and YWHAE have been mostly corroborated by combining SPR, NMR and 

ITC approaches (Figures 5-8). These measurements reveal that the bimolecular 

complexes formed by Cc with all its novel nuclear or cytoplasmic targets are 

specific and rather stable, as is the well-known interaction of Cc with Apaf-1 to 

form the apoptosome (Figure 8). Interestingly, the surface used by Cc (mainly 

residues surrounding the heme cleft) to bind to Apaf-1 and to the novel 

counterparts herein reported is very similar, and resembles that reported for the 

well-known Cc-involving electron transfer complexes. Unlike such novel stable 

complexes, the redox interactions of mitochondrial Cc with cytochrome bc1 or 

cytochrome c oxidase are transient and highly dynamic, as the electron transfer 

reactions do demand. This finding suggests that the balance between cell life 

and death is closely related to transient and stable protein-protein interactions, 

respectively. 

The biointeractomic scaffold hovering around Cc occurs in different cellular 

compartments, as indicated by BiFC assays (Figure 2). Along with the intrinsic 

apoptotic route that leads to apoptosome formation and caspase activation, Cc 

interacts with other proteins located in the cytoplasm such as YWHAE, STRAP, 

ALDOA and eIF2, as well as with those translocated to the cytoplasm after an 

apoptotic stimulus such as HSPA5. Notably, some nuclear protein targets of Cc 

– namely hnRNP C1/C2, SET and ANP32B – have also been identified. All of 

these are involved in DNA damage response, DNA replication and 

transcriptional regulation. To the knowledge of the authors, the present study 

represents the first time that nuclear protein interaction partners of Cc have 

been proposed, explaining the nuclear localization of the heme protein, as 

observed previously [12,13,103]. 

These new Cc-interacting targets suggest additional functions for Cc beyond 

electron transfer reaction inside the mitochondria and apoptosome formation 

under cytosolic PCD stimuli. Cc might be key in a complex signaling network by 
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disrupting cell survival and unlocking apoptotic pathways. In support of this 

model, the Drosophila Cc distal knockout mutant displays a profound delay of 

apoptosis, even if the heme protein is not essential for the assembly of an 

apoptosome-like structure [19,104].   

Nevertheless, evidence for new targets and potential new functions ascribed to 

Cc during apoptosis allows one to understand the different phenotypes of Cc 

and Apaf-1 knockouts [21,22,23], which cannot be explained if Cc is restricted 

to bind Apaf-1 during apoptosis. In contrast, both phenotypes could be easily 

harmonized if Cc plays a broader and crucial role as a PCD signaler, unlocking 

apoptosis and inhibiting cell survival.  

In summary, the present study suggests a multifunctional action of Cc in 

response to PCD stimuli. The findings can open up new ways to understand the 

process in organisms which lack Apaf-1 or whose apoptosome is devoid of Cc. 

Given that Cc is highly concentrated in the mitochondrial intermembrane space 

and that its release into the cytoplasm is an evolutionarily well-conserved event, 

it is likely that Cc regulates other metabolic processes during PCD, as has been 

similarly corroborated in plants [105].   
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FIGURE LEGENDS 

Figure 1. Proteomic workflow and 2D SDS-PAGE. 

Left. Scheme of the proteomic workflow used to identify Cc-interacting proteins. 

Cc interaction partners were purified from untreated and CPT-treated Jurkat T 

cell extracts with affinity chromatography, using a column with the E104C 

mutant covalently bound to the thiol-sepharose matrix (Cc TS-4B). Samples 

were resolved by 2D SDS-PAGE, with the resulting spots later being identified 

by MALDI-TOF/TOF. As controls, untreated and CPT-treated cell extracts were 

loaded into a blank column containing the sepharose matrix devoid of E104C 

(Blank TS-4B). 

Right. Master gel calculated from the image analysis of gels run under different 

experimental conditions using the PDQuest software (see Supplemental Data). 

Red circles represent proteins identified under either apoptotic stimuli or 

homeostatic and apoptotic conditions. Such proteins are only retained in the Cc-

bounded TS-4B column, but not in the TS-4B column. Spot numbers are named 

in Table S2. 

 

Figure 2. BiFC assays and Western blots showing the in vivo interaction 

of Cc with its potential protein partners. 

HEK293T cells were transfected with the Cc-cYFP vector, along with another 

vector containing the N-terminal YFP fragment (nYFP) bound to each Cc 

protein interaction partner. Images were captured 24 h after transient 

transfection with Lipofectamine 2000 (Invitrogen) and after 6 h of treatment with 

10 μM CPT. Reconstruction of eYFP leads to the obtainment of fluorescence 

signal emission, indicative of interaction between Cc and its partners. Positive 

and negative controls were used, as described by Hu et al. [39]. Scale bar is 5 

µm. The expression of Cc interaction partners fused to the nYFP fragment was 

determined by immunoblotting with a rabbit anti-EGFP polyclonal antibody 

(BioVision). No bands were observed in the Western blots with non-transfected 

cells (data not shown).  
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Figure 3. Location of cYFP tagged Cc under normal and apoptotic conditions.  

(A) Homeostatic conditions. Punctuate fluorescence pattern showing the 

mitochondrial distribution of Cc into HEK293T cells co-transfected with the Cc-cYFP 

vector and the empty nYFP vector using Lipofectamine 2000 (Invitrogen).  

(B) Apoptotic conditions. Diffuse fluorescence pattern showing the cytoplasmic Cc 

localization of Cc in HEK293T cells transfected as in (A), but after 6 h of treatment 

with 10 μM CPT. 

(C) Expression of Cc-cYFP in HEK293T cells. Left panel, cells transfected with the 

Cc-cYFP vector. Right panel, non-transfected cells. The Cc-cYFP fusion protein was 

immunodetected by Western blot with an anti-EGFP antibody (BioVision).  

 

Figure 4. Molecular docking models of Cc complexes. 

A) CcxALDOA docking model with the best global score value (left) in the ratio 

1:1 and centers of mass distribution of 50 molecules of Cc with respect to 

ALDOA (right). Ribbon representation of Cc in magenta, with its heme group 

in white. The ribbon of ALDOA is colored in cyan. 

B) CcxANP32B docking model with the best global score values (left) and 

centers of mass distribution of 50 molecules of Cc with respect to ANP32B 

(right). Same color-coding as in (A). 

C) CcxeIF2 docking model with the best global score values (left) and centers 

of mass distribution of 50 molecules of Cc with respect to eIF2 (right). 

Same color-coding as in (A). 

D) CcxSET docking model with the best global score values (left) and centers 

of mass distribution of 50 molecules of Cc with respect to SET (right). Same 

color-coding as in (A). 
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E) CcxSTRAP docking model with the best global score values (left) and 

centers of mass distribution of 50 molecules of Cc with respect to STRAP 

(right). Same color-coding as in (A). 

F) CcxYWHAE docking model with the best global score values (left) and 

centers of mass distribution of 50 molecules of Cc with respect to YWHAE 

(right). Same color-coding as in (A). 

 

Figure 5. SPR measurements. 

A) Sensograms recorded for the binding of human Cc with eIF2α. Three 

replicate injections were performed for each protein concentration. In each 

sensogram, the signals from the control surface were subtracted. 

B) As in (A), but for human Cc-hnRNP C1/C2 complex. 

C) As in (A), but for human Cc-HSPA5 complex. 

D) As in (A), but for human Cc-SET complex. 

E) As in (A), but for human Cc-YWHAE complex. 

 

Figure 6. CSPs and line-width of the glutamate 89 amide signal in reduced 

Cc upon binding to its novel protein partners, as observed by NMR 

spectroscopy. 

Details of the superimposed 15N-HSQC spectra of 15N-labeled Cc, either free 

(blue) or upon binding to eiF2, ANP32B, HSPA5, SET, YWHAE and hnRNP 

C1/C2 (red). In all cases, the Cc:partner ratio was 1:1. The arrows indicate the 

direction and magnitude of CSPs. 

 

Figure 7. ITC titrations of reduced Cc with its protein partners. 
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The thermograms and binding isotherms (top and bottom, respectively) of Cc with 

eiF2, ANP32B, HSPA5, SET, YWHAE and hnRNP C1/C2 are shown. Standard 

errors are 5–10%. 

 

Figure 8. Mapping of Cc upon binding to its well-known and novel targets. 

Cc residues at the interface area within the corresponding complexes are colored 

as follows: polar and charged residues in blue, hydrophobic residues in orange. 

The heme group is marked in green and the non-interacting residues in gray. 

Two 180º-rotated surface representations (upper and lower) are depicted for 

each complex. The horizontal color bars represent the stability and lifetime of the 

complexes, from highly dynamic/transient (red) to more rigid/stable (blue). 

Surface representations were generated from the structure of human Cc (PDB 

entry 1J3S [51]). Cc interfacial residues in the complex with Apaf-1, cytochrome c 

oxidase and cytochrome bc1 were taken from references 7, 55 and 56, 

respectively. 

 

Figure 9. Main functions ascribed to the novel Cc protein partners and 

network of the resulting interactions. 

(A)  Diagram with the main functions of novel Cc protein interaction partners 

identified in vitro through proteomics and confirmed in vivo through BiFC. All 

targets have been grouped into five functional categories. Several functions 

can be shared by the same target.  

(B)  Mapping the interactions between Cc and its novel protein interaction 

partners, as well as of the latter with the proteins involved in cell death, 

proliferation and/or survival, as reported in the literature. Color-coding is the 

same as in (A). 
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Table 1. Human Cc novel confirmed protein targets validated by different orthogonal approaches. 

nd1: not-determined because they are not apoptosis-related proteins; nd2: not-determined because the interaction with Cc was previously discarded [41]; nd3: not-
determined because their cDNAs were not available; nd4: not-determined because they were not overexpressed as soluble recombinant proteins; nd5: not-
determined because their PDB coordinates were not available. Asterisk (*) stands for those Cc protein interactors validated in at least 3 out of 6 techniques. 

Protein Name 
Protein 

Abbreviation 

SDS-Page & 
MALDI-

TOF/TOF MS 
BiFC 

Molecular 
Docking 

SPR NMR ITC 

Casein kinase II subunit beta CSNKIIβ + -     
Chaperonin containing TCP1 subunit 2 CCT2 + nd1     

Coronin-like protein CORO1A + -     
Eukaryotic translation initiation factor 2 alpha* eiF2α + + + + + + 

Fructose 1,6-bisphosphate aldolase A* ALDOA + + + nd4 nd4 nd4 
Ribosomal protein S7 RPS7 + nd1     

Tubulin beta chain TUBB + -     
Tumor rejection antigen 1 Hsp90B1 + nd2     

14-3-3 epsilon* YWHAE + + + + + + 
Heterogeneus nuclear ribonucleoprotein C1/C2* hnRNP C1/C2 + + nd5 + - - 

Histone-binding protein RBBP7 RBBP7 + nd3 - nd3 nd3 nd3 
Minichromosome maintenance complex 6 MCM6 + + nd5 nd4 nd4 nd4 
Minichromosome maintenance complex 7 MCM7 + -     

SET nuclear oncogene* SET + + + + + + 
Acidic nuclear phosphoprotein 32B* ANP32B + + + - + + 

Heterogeneus nuclear ribonucleoprotein L hnRNP L + nd3     
Nucleolin NCL + + nd5 nd4 nd4 nd4 

Nucleosome assembly protein 1-like 4 NAP1L4 + nd1     
Ser/Thr kinase receptor associated protein* STRAP + + + nd4 nd4 nd4 

ATP synthase subunit beta ATP5β + nd1     
Heat shock 70 kDa protein* HSPA5 + + nd5 + + + 
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