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Nowadays, the Web of Data is in its earliest stages; it is currently organised into a variety of linked knowledge

bases that have been developed independently by different organisations. RDF is one of the most popular

languages to represent data in this context, which motivates the need to perform complex integration tasks

amongst RDF knowledge bases. These tasks are performed using schema mappings, which are declarative

specifications of the relationships amongst a source and a target knowledge base. Generating schema map-

pings automatically is appealing because this relieves users from the burden of handcrafting them. In the

literature, the vast majority of proposals are based on the data models of the knowledge bases to be inte-

grated, that is, on classes, properties, and constraints. In the Web of Data, there exist many data models that

comprise very few constraints or no constraints at all, which has motivated some researchers to work on

an alternate paradigm that does not rely on constraints. Unfortunately, the current proposals that fit this

paradigm are not completely automatic. In this article, we present our proposal to automatically generate

schema mappings amongst RDF knowledge bases. Its salient features are that it uses a single input exchange

sample and a set of input correspondences, but does not require any constraints to be available or any user

intervention; it has been validated and evaluated using many experiments that prove that it is effective and

efficient in practice; the schema mappings that it produces are GLAV. Other researchers can reproduce our

experiments since all of our implementations and repositories are publicly available.
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. Introduction

Currently, there is an increasing interest in publishing, sharing,

nd exposing data on the Web, so as to evolve it into a Web of Data

n which RDF is becoming pervasive [10,16,36]. There are thousands

f knowledge bases available, many of which share a common pur-

ose but have been developed by independent organisations in isola-

ion [15,16]. Government, life sciences, geography, media, education,

ibraries, or scholarly publications range amongst the most popular

urrent information domains [37]. There are many initiatives whose

oal is to link these knowledge bases, which is the first step to per-

orm complex integration processes [36].

Integration usually refers to several crucial tasks, such as data in-

egration [68], virtual integration [38], data warehousing [32], model

volution [29], model matching [26], record linkage [42,53], or data

xchange [28]. In this article, we focus on data exchange, whose goal

s to populate a target knowledge base using data that come from one

r more source knowledge bases. Data exchange has been paid much

ttention in the database context, i.e., relational, nested-relational, or
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ML [8,9,28,54]. Furthermore, the emergence of RDF is motivating

ome authors to work on data exchange in the context of the Web of

ata [11,51,62,63].

Data exchange is performed by means of schema mappings, which

re declarative specifications of the relationships amongst a source

nd a target knowledge bases [4,5]. A schema mapping can be of the

ollowing types [44]: (1) GAV (Global-As-View), which relates one

ingle target entity to many source entities; (2) LAV (Local-As-View),

hich relates one single source entity to many target entities; and

3) GLAV, which relates many source and target entities.

Generating schema mappings automatically is appealing because

his relieves users from the burden of handcrafting them, so re-

earchers have focused on helping users generate them [56]. In the

iterature, many proposals are based on the data models to be inte-

rated [35,47,48,54,57,61,62]. By data model, we refer to a set of en-

ities (that is, classes and properties) and a set of constraints that es-

ablish relationships between some entities (for instance, class A is a

pecialisation of class B, property P has class C as its domain, and so

n). In the Web of Data, there are many data models that comprise

ery few or no constraints at all, which typically results in data mod-

ls that merely specify a set of entities [21,36,37,43,66]. Therefore, re-

ying on data models with constraints to generate schema mappings

s not appealing in the general context of the Web of Data.

http://dx.doi.org/10.1016/j.knosys.2015.11.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.11.001&domain=pdf
mailto:crr@cs.rit.edu
mailto:inmahernandez@us.es
mailto:druiz@us.es
mailto:corchu@us.es
http://dx.doi.org/10.1016/j.knosys.2015.11.001


m

a

T

m

e

2

s

a

e

g

q

t

m

s

s

a

s

p

e

c

s

e

e

w

t

w

m

g

d

i

n

The literature provides a variety of techniques to generate schema

mappings that do not focus on data models. Unfortunately, some of

them rely on handcrafting the schema mappings [15,27,45,49–51,58],

which is not appealing at all; and a few others rely on exchange sam-

ples [1,2,4,56], which make them more appealing, but require user

intervention, or are hybrid and require constraints to be available.

In this article, we present a proposal to automatically generate

schema mappings between two RDF knowledge bases using a sin-

gle input exchange sample and a set of input n:m correspondences.

An exchange sample comprises a subset of source data and a subset

of target data that is the expected result of exchanging the source

data. Correspondences are hints that specify which entities in the

source and target knowledge bases correspond to each other, i.e., are

somewhat related [12,67,69]. These schema mappings can be easily

transformed into SPARQL queries. Our proposal does not rely on con-

straints of the source and target data models and does not require

any user intervention, not even to adapt the input exchange example

so that it is feasible to generate the schema mappings. We have vali-

dated our proposal using ten data exchange problems amongst vari-

ous knowledge bases. In our validation, the execution time never ex-

ceeded one second, and the data exchanged were as expected in every

case, which suggests that it is very efficient in practice and that the

generated schema mappings are appropriate. Additionally, we have

evaluated the performance of our proposal when data exchange prob-

lems scale. We used four synthetic data exchange patterns proposed

by MostoBM [63], a benchmark for testing data exchange proposals

in the context of the Web of Data. We instantiated the synthetic data

exchange patterns into 2 000 non-trivial data exchange problems that

we used to evaluate our proposal. Our evaluation results suggest that

our proposal works well as the data exchange problems scale. We also

prove that the schema mappings our proposal generates are GLAV.

Furthermore, we prove that the schema mappings output by our pro-

posal fit the input correspondences, i.e., they do not lose any infor-

mation and take all of the input correspondences into account. Our

proposal also uses a best-effort strategy that allows the user to freely

define the input exchange sample, so it is not mandatory that this ex-

change sample fits the output schema mappings. We implemented

a research prototype that is publicly available [60], together with our

repository of data exchange problems, the scripts to validate and eval-

uate the performance of our proposal, and our experimental results.

Our goal was twofold: on the one hand, this allows other researchers

to faithfully reproduce our experiments, which is crucial for the ad-

vance of science [30]; on the other hand, our implementation and our

repository can be extended to cope with future requirements.

Preliminary results were presented elsewhere [64]. We have im-

proved on them as follows: we present an overall picture to use our

proposal; we formalise a conceptual framework that accommodates

it; we describe our algorithms within the previous framework; we

analyse a number of desired properties, its theoretical complexity,

and make its limitations explicit; we have also validated it and eval-

uated how scalable it is. The rest of the article is organised as fol-

lows: in Section 2, we report on several related proposals and com-

pare them with ours; Section 3 presents a general overview to use our

proposal; Section 4 introduces our conceptual framework; Section 5

presents the algorithms of our proposal; Section 6 analyses some

desired properties of our proposal and its theoretical complexity;

Sections 7 and 8 present our validation and scalability evaluation;

and Section 9 recaps on our main conclusions. Finally, Appendix A

presents some ancillary propositions that we used to support our

theorems.

2. Related work

In this article, our focus is on GLAV schema mappings, so we re-

strict our attention to proposals that generate such mappings. Our

brief survey completes the picture that [65] presented elsewhere re-
garding proposals that generate GAV mappings. Unfortunately, we are

not aware of a similar survey regarding LAV proposals.

We have classified the proposals that generate GLAV schema

appings into three groups, namely: (1) handcraft-based propos-

ls, (2) constraint-based proposals, and (3) sample-based proposals.

he proposals in the first group require the user to handcraft schema

appings. In the following sections, we first survey the proposals in

ach group and then discuss on them.

.1. Handcraft-based proposals

There are a number of proposals that focus on handcrafting

chema mappings, which are expressed as queries but can be viewed

s implicitly generating schema mappings: in the proposal by Dou

t al. [27], queries are represented using Web-PDDL, an ad-hoc lan-

uage that was designed by the authors; then, a reasoner takes these

ueries as input to perform data exchange. This is similar in spirit

o the proposals by Bizer and Schultz [15], Parreiras et al. [51] and

Ressler et al. [58], the difference being the language used to repre-

sent the queries: Bizer and Schultz [15], and Ressler et al. [58] use

SPARQL, whereas Parreiras et al. [51] use an extension of the Object

Constraint Language (OCL) that supports RDF knowledge bases.

Mocan and Cimpian [49] presented a framework to describe

schema mappings in terms of first-order logic formulae that can be

mapped onto WSML rules very easily. Their proposal is similar in

spirit to the one by Omelayenko [50], whose focus was on B2B ap-

plications, and the one by Maedche et al. [45], whose focus was on

modelling schema mappings in a general-purpose setting.

2.2. Constraint-based proposals

These proposals focus on generating schema mappings building

on correspondences and constraints on the source and target data

odels. These proposals are able to compute subsets of data in the

ource knowledge base that need to be exchanged as a whole, and

ubsets of data in the target knowledge base that need to be created

s a whole [62]. To compute them, they rely on user-defined con-

traints and the inherent constraints of certain data models, such as

aths from the root to a leaf in a nested-relational data model, or hi-

rarchy relations amongst classes in an RDF data model. Then, several

ombinations of these subsets of data are used to generate the final

chema mappings [54].

Popa et al. [54] presented a seminar proposal regarding the gen-

ration of schema mappings amongst nested-relational data mod-

ls, which was later incorporated into IBM’s Clio [35]. This proposal

orks with 1:1 correspondences, i.e., they only relate one entity in

he source with one entity in the target, and was later extended to

ork with n:1 correspondences by Raffio et al. [57], who used a visual

apping language to represent complex correspondences, including

rouping functions, aggregation functions, or dependent correspon-

ences. Mecca et al. [47] extended the previous proposals by comput-

ng core schema mappings, a type of schema mapping that generates

on-redundant target data when performing data exchange.

In the context of RDF data models, Mergen and Heuser [48] de-

vised an automated proposal that works with a subset of taxonomies.

Their algorithm tries to find subsets of correspondences that are in-

volved in the taxonomies, and they are translated into executable

scripts that are represented in an ad-hoc script language. The pro-

posals by Rivero et al. [61,62] are able to work with RDF data mod-

els whose constraints are interpreted as graphs that are traversed to

compute source and target kernels, each of which comprises a sub-

set of the source data model that needs to be exchanged as a whole,

and a subset of the target data model that needs to be created as

a whole. Kernels are automatically translated into SPARQL queries.

Note that both the executable scripts by Mergen and Heuser [48], and
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he SPARQL queries by Rivero et al. [61,62] can be seen as representa-

ions of schema mappings in specific-purpose languages.

.3. Sample-based proposals

These proposals aim to generate schema mappings from a set

f exchange samples. In the relational or nested-relational contexts,

lexe et al. [1] devised a proposal that helps users understand and

aintain generated schema mappings by extracting exchange sam-

les from the source and target knowledge bases. This proposal uses

lio to generate schema mappings based on constraints of the data

odels, and it illustrates the following: (1) relationships in a specific

chema mapping, (2) sample source data that this schema mapping

ould extract when performing data exchange, and (3) the target

ata generated by those source data. Alexe et al. [2] presented Muse,

hich aims to help users generate and understand schema mappings

uilding on exchange samples. Muse assumes that source and tar-

et data models, together with their constraints, exist, and it is able

o infer grouping functions by analysing the answers to a number of

uestions it poses to the users.

Alexe et al. [4] devised a proposal to generate a number of schema

appings by means of a finite set of exchange samples. This pro-

osal is able to compute whether or not two input exchange sam-

les have incoherences from a structural point of view, i.e., whether

r not these two exchange samples generate schema mappings that

hall result in erroneous target data. If the input set of exchange sam-

les have not any incoherences, then it generates the schema map-

ings. These authors developed a conceptual framework to conduct

ystematic research on exchange samples in the database context [6].

urthermore, Qian et al. [56] presented a proposal that is based on

xchange samples of target data only. The users are responsible for

roviding the target data that they wish to be created; then, every

iece of data that appears in both source and target knowledge bases

epresents a correspondence between two entities. Finally, schema

appings are generated by means of these correspondences and the

onstraints of the source and target data models.

.4. Discussion

After surveying current proposals to generate schema map-

ings, we conclude that some of them focus on handcrafting them

15,27,45,49–51,58], which is not appealing since users have to write

hem, check whether they work as expected or not, make changes

f necessary, and restart this cycle [52]. Contrarily, our proposal au-

omatically generates schema mappings without the intervention of

he user, and it uses a single exchange sample and a number of corre-

pondences as input.

Regarding constraint-based proposals [35,47,48,54,57,61,62], they

re not so appealing in the general context of the Web of Data because

DF allows to represent data building solely on entities, i.e., without

ny constraints, which is very common in this context [21,36,37,43].

ontrarily to the constraint-based proposals, ours does not rely on

onstraints of the data models that are integrated to generate schema

appings, but on a single exchange sample and a set of correspon-

ences, which fits perfectly in the general context of the Web of Data.

Regarding sample-based proposals, some of them assume that

ource and target data models exist, together with their constraints

1,2,56]. Therefore, they rely on a hypothesis that, as was the case for

he constraint-based proposals, does not generally hold in the Web of

ata. The proposal by Alexe et al. [4] does not have the previous draw-

ack, but it requires the user to provide an exchange sample for each

chema mapping to be automatically generated. Furthermore, if this

roposal finds the input exchange samples inappropriate to generate

chema mappings, the user is responsible for adapting them. Con-

rarily, our proposal requires the user to provide a single exchange
ample and a set of correspondences and adapts it automatically, if

ecessary.

Finally, to the best of our knowledge, our proposal is the first one

hat is able to work with n: m correspondences that generalise 1:1

nd n:1 correspondences in other proposals.

. Overview

Fig. 1 presents a real-world data exchange problem that we use

o illustrate our proposal. In this problem, our goal is to generate a

umber of schema mappings to perform data exchange from a part of

Bpedia 3.8 [17] to a part of Freebase [19]. On one hand, DBpedia is a

ommunity effort to annotate and make the data stored at Wikipedia

ccessible by means of RDF technologies. On the other hand, Freebase

s a knowledge base that models general human knowledge in which

he data is collaboratively created and maintained.

The initial step of our proposal consists of specifying the input

ata, i.e., a single exchange sample and a set of correspondences.

he single exchange sample is expected to be an exact sample of the

ource and target data that the user wishes to exchange. For instance,

he exchange sample in Fig. 1 (see dEX in Step 0) comprises a set of

ource triples regarding Clint Eastwood and one of his marriages, and

set of target triples that specify how these data are structured ac-

ording to the target entities. For the sake of brevity, we have simpli-

ed Clint_Eastwood to CEastwood, Dina_Eastwood to DEastwood, and

lint Eastwood to Clint East . This exchange sample is represented us-

ng the N3 notation [13], which is a non-XML serialisation of RDF that

as been designed for aiding human-readability. We use the prefixes

n Table 1, in which the first row specifies the default URI.

Our proposal takes a number of n:m correspondences over the

ource and target entities as input. This set indicates the relationships

hat exist amongst the source and target entities in the data exchange

roblem that we wish to solve. It is expected that the user has to re-

ate the source entities that should be exchanged as a whole, and the

arget entities that need to be created as a whole. Note that it is pos-

ible to automatically discover these correspondences [12]; however,

nding them is orthogonal to the problem of generating schema map-

ings, which is the reason why we do not discuss this problem fur-

her. Fig. 1 (see the right side of Step 0) shows three correspondences,

amely: v1 indicates that there exists a relation between a person in

oth the DBpedia and Freebase knowledge bases; v2 states that the

ame of a person in DBpedia is related to the alias of a common topic

n Freebase; and v3 indicates that a person and her/his spouse in DB-

edia are related to a marriage in Freebase.

In the first step, our proposal automatically computes a number

f candidate exchange samples, each of which comprises a subset of

ource data that need to be exchanged as a whole, and a subset of

arget data that need to be created as a whole. To compute them, we

ombine all of the pieces of connected data that involve the entities in

very correspondence. For instance, Fig. 1 (see Steps 1 and 2) shows

ome of the candidate exchange samples that result from correspon-

ence v1, namely: d11, d12, and d13. Note that we group exchange sam-

les by correspondence. These candidate exchange samples are gen-

rated by performing the Cartesian product of the following data:

CEastwood rdf :type dp:Person,

DEastwood rdf :type dp:Person}
×

CEastwood rdf :type f p:person,

DEastwood rdf :type f p:person}
The second step consists of discarding candidate exchange sam-

les that are not useful to generate the final set of schema mappings.

e keep candidate exchange samples in which there is, at least, a

ubset of target data that can be generated using the source data, and



Fig. 1. A running example to illustrate our proposal.
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we minimise the target data that do not exist in the source. For in-

stance, in Fig. 1 (See Steps 1 and 2), we discard d11 because constant

DEastwood in the target triple does not appear in the source triples;

similarly, we discard d22 because constant “Clint East.” does not ap-

pear in any source triple. Note, however, that exchange samples d31

and d32 are kept, even though identifier fb:m.02kkj5 is not present in

any source triple; we do not require every identifier or literal in the

target to be present in the source because we can complete the ex-

change samples automatically, but require that at least a minimum

number of constants are present in both the source and the target so

that our procedure can work.
The third step consists of completing exchange samples, i.e., if the

same source data can lead to different data in different exchange

samples, it is then necessary to complete those exchange samples

by adding target data to them. Therefore, we identify the exchange

samples that have the same source data but differ in the target data,

and we complete them without the user intervention. For instance,

in Fig. 1 (see Steps 3 and 4), we complete d21 by adding CEast-

ood rdf:type fp:person. This is due to the fact that exchange sam-

le d13 indicates that CEastwood rdf:type Person can be exchanged as

Eastwood rdf:type fp:person. Unless otherwise stated, our proposal

nterprets that every constant can be generalised to a variable, which
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Summary of prefixes.
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eans that d13 is interpreted as every identifier of type Person can be

xchanged as an identifier of type fp:person.

In the fourth step, we prune redundant exchange samples, i.e.,

amples that shall generate the same schema mappings. For instance,

n Fig. 1 (see Steps 3 and 4), we prune d13 since it shall generate the

ame schema mapping as exchange sample d12. The same occurs with
′
31 and d′

32.

Finally, the fifth step transforms each exchange sample into a

chema mapping, which is built by substituting the source and tar-

et constants by variables or blank nodes to generate labelled nulls

28,46]. These schema mappings may be easily transformed into

PARQL queries to exchange data between the integrated knowledge

ases. For instance, in Fig. 1 (see Step 5), m12 is generated by means of

12, m21 results from d′
21

, and m31 results from d′
31

. Note that we have

lso used the N3 notation to represent both left and right components

f schema mappings.

. Conceptual framework

In this section, we present the conceptual framework that we

se to describe our proposal. We define its foundations, triples,

chema mappings, homomorphisms, exchange samples, correspon-

ences, and data exchange problems.

.1. Foundations

The data model of a knowledge base is composed of entities,

hich are denoted by means of URIs. Entities can be classified into

lasses and properties, which can be further classified into data and

bject properties. We denote the sets of classes, data properties, and

bject properties as follows:

Class, DataProperty, Ob jectProperty]

nd define the set of entities and properties as follows:

ntity == Class ∪ Property

roperty == DataProperty ∪ Ob jectProperty

Class, DataProperty, and ObjectProperty are pairwise disjoint sets,

hat is:

(Class ∩ DataProperty = ∅) ∧ (Class ∩ Ob jectProperty = ∅) ∧
(DataProperty ∩ Ob jectProperty = ∅)
In addition to a data model, a knowledge base also comprises a

et of constants to describe the data. A constant can be an identifier,

hich refers to a piece of data that can be modelled by means of a URI,

r a literal, which denotes a value of a simple data type. Furthermore,

t is possible to define blank nodes, which denote anonymous data.

e denote these sets as follows:

Identifier, Literal, BlankNode]

nd define the set of constants as follows:

onstant == Identi f ier ∪ Literal

Identifier, Literal, and BlankNode are pairwise disjoint sets [41], that

s:

(Identi f ier ∩ Literal = ∅) ∧ (Identi f ier ∩ BlankNode = ∅)

∧ (Literal ∩ BlankNode = ∅)

xample 1. Fig. 1 (see the left side of Step 0) shows that dp:Person is

class, foaf:name is a data property, dp:spouse is an object property,

nd they are represented by means of URIs. Furthermore, CEastwood

s an identifier, and “Clint East.” is a literal. _:X is an example of a blank

ode (see m31 in Step 5).

.2. Triples and schema mappings

A knowledge base comprises a set of triples, each of which is a

hree tuple in which the first element is called subject, the second

redicate, and the third object.

riple == Sub ject × Predicate × Ob ject

ub ject == Constant

redicate == Property ∪ {rdf :type}
b ject == Constant ∪ Class

In our framework, it is mandatory for all triples to be ground, i.e.,

o not comprise any blank nodes. This is not a shortcoming since

lank nodes in a knowledge base can be very easily preprocessed and

ransformed into regular identifiers.

Note that there is a contradiction between the RDF and the

PARQL recommendations. On the one hand, the RDF recommenda-

ion does not allow to use literals in the subject of a triple [41]; on the

ther hand, the SPARQL recommendation actually allows to use liter-

ls in the subject of a triple [55]. Since our goal is to generate schema
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mappings that may be easily transformed into SPARQL queries, we

decided to include literals in the subject of triples. Note, too, that a

predicate can be a property or rdf:type, which is a predefined RDF

construct that is not included in set Property.

In our proposal, schema mappings are conjunctive queries [44].

uch queries consist of a target part that specifies which triples need

o be constructed, and a source part that specifies which triples need

o be retrieved. These parts can then be represented as sets of triple

atterns that are implicitly connected by means of logical ANDs. A

riple pattern generalises the concept of triple by allowing the sub-

ect, and/or the object to be variables or blank nodes. In the rest of this

rticle, we refer to triple patterns as patterns for the sake of brevity.

e denote the set of all variables as follows:

[Variable]

and define the set of all patterns as follows:

Pattern == Subject
? × Predicate × Object

?

Subject
? == Subject ∪ Variable ∪ BlankNode

Object
? == Object ∪ Variable ∪ BlankNode

A schema mapping can thus be represented as a two tuple in

which the first part corresponds to the set of source patterns, and the

second part corresponds to the set of target patterns. We then define

the set of all schema mappings as the inner Cartesian product of the

power set of patterns, that is:

SchemaMapping == P Pattern × P Pattern

Note that these schema mappings may be easily transformed into

SPARQL queries. For the sake of convenience, we define an instance of

a class as a pattern of the form (s, rdf:type, c), in which s ∈ Sub ject?,

and c ∈ Class; and an instance of a property as a pattern of the form

(s, p, o), in which s ∈ Sub ject?, p ∈ Property, and o ∈ Ob ject?. Further-

more, we define the following projection functions:

sub ject : Pattern → Sub ject?

predicate : Pattern → Predicate

ob ject : Pattern → Ob ject?

------------------------------∀s : Sub ject?; p : Predicate; o : Ob ject?; t : Pattern | t = (s, p, o)•
sub ject(t) = s∧
predicate(t) = p∧
ob ject(t) = o

Note that Triple ⊆ Pattern, which implies that the previous projec-

tion functions can be applied to both triples and patterns. We also

define the following ancillary functions:

constants : P Pattern → PConstant
entities : P Pattern → P Entity
classes : P Pattern → PClass
properties : P Pattern → P Property

------------------------------∀T : P Pattern•
constants(T ) = {c : Constant | ∃t : Pattern | t ∈ T•
c = sub ject(t) ∨ c = ob ject(t)}∧
entities(T ) = {e : Entity | ∃t : Pattern | t ∈ T•
e = predicate(t) ∨ e = ob ject(t)}∧
classes(T ) = {c : Class | ∃t : Pattern | t ∈ T•
predicate(t) = rdf :type ⇒ c = ob ject(t)}∧
properties(T ) = {p : Property | ∃t : Pattern | t ∈ T•
predicate(t) �= rdf :type ⇒ p = predicate(t)}

Example 2. Fig. 1 (see the left side of Step 0) shows two sample sets

of triples. In the left set, triples assert that CEastwood and DEast-

wood are instances of the dp:Person class. Furthermore, they assert

that CEastwood has “Clint East.” and “Clint” as names by means of the

foaf:name property, and that CEastwood is married to DEastwood by

means of property dp:spouse.
Fig. 1 (see Step 5) shows three sample schema mappings in which

the left side stands for the set of source patterns and the right side

stands for the set of target patterns. Furthermore, ?p, ?p1, and ?p2

re variables, and _:X is a blank node. m12 reclassifies instances

of class dp:Person into instances of class fp:person; m21 exchanges

instances of class dp:Person together with their names (property

foaf:name) as instances of class fp:person and their names by means

of property ft:alias; finally, m31 translates property dp:spouse into a

ore complex structure that comprises properties fpp :spouse_s and

pm:spouse, and a new instance of the fp:marriage class that is gener-

ated using a blank node, since this information is not present in the

source.

4.3. Homomorphisms and exchange samples

A homomorphism maps the constants, variables, or blank nodes

f a set of patterns onto the constants, variables, or blank nodes of

nother set of patterns. We formally define a homomorphism as a

nite map from subjects or variables onto themselves, namely:

Homomorphisms specialise into replacements and substitutions.

n the one hand, a replacement is a finite map from constants onto

onstants; on the other hand, a substitution is a finite map from con-

tants onto variables or blank nodes. We formally define them as

ollows:

Generally speaking, a knowledge base is a set of triples. Regarding

ur proposal, we restrict our attention to the triples that are of the

orm (c, rdf:type, C), in which c is a constant and C is a class, or (c1, p,

c2), in which c1 and c2 are constants and p is a property. Therefore,

e define the set of knowledge bases as follows:

nowledgeBase == {T : P Triple |
∀t : Triple; c, c1, c2 : Constant;C : Class; p : Property | t ∈ T •
(t = (c, rdf :type,C) ⇒ c ∈ constants(T ) ∧ C ∈ classes(T )) ∨
(t = (c1, p, c2) ⇒ {c1, c2} ⊆ constants(T ) ∧ p ∈ properties(T ))

Note that the previous definition is not a shortcoming since we

re able to model the most common triples in the general context of

he Web of Data [31].

An exchange sample comprises a source knowledge base and a

arget knowledge base. We define the set of exchange samples as fol-

ows:

xchangeSample == KnowledgeBase × KnowledgeBase

For the sake of convenience, we define the following projection

unctions:

source : ExchangeSample → KnowledgeBase
target : ExchangeSample → KnowledgeBase

------------------------------∀d : ExchangeSample; TS, TT : KnowledgeBase | d = (TS, TT )•
source(d) = TS∧
target(d) = TT

xample 3. Fig. 1 (see the left side of Step 0) presents an exchange

ample that comprises a set of source triples and another set of target

riples. Furthermore, {CEastwood�→CEastwood, “Clint East.”�→“Clint”}

s a sample replacement that maps CEastwood to CEastwood, and

Clint East.” to “Clint”. Finally, {CEastwood�→?p, “Clint East.”�→?n} is a

ample substitution that maps CEastwood to ?p, and “Clint East. to ?n.

.4. Correspondences and data exchange problems

A correspondence is a hint that relates two sets of entities, i.e.,

hey are defined at the data model level of a knowledge base. Note



Fig. 2. Algorithm to generate schema mappings.
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hat this entails that the correspondences with which we can deal

re n:m correspondences. We define the set of correspondences as

ollows:

orrespondence == P Entity × P Entity

For the sake of convenience, we define the following projection

unctions:

source : Correspondence → P Entity
target : Correspondence → P Entity

------------------------------∀c : Correspondence; ES, ET : P Entity | c = (ES, ET )•
source(c) = ES∧
target(c) = ET

A data exchange problem comprises a single exchange sample and

number of correspondences that relate entities in this exchange

ample. We define the set of all data exchange problems as follows:

ataExchangeProblem == {d : ExchangeSample;V :

PCorrespondence | ∀v : Correspondence | v ∈ V •
source(v) ⊆ entities(source(d)) ∧
target(v) ⊆ entities(target(d))}

For the sake of convenience, we define the following projection

unctions:

sample : DataExchangeProblem → ExchangeSample

correspondences : DataExchangeProblem → PCorrespondence
------------------------------
∀d : ExchangeSample;V : PCorrespondence; p : DataExchangeProblem

| p = (d,V )•
sample(p) = d∧
correspondences(p) = V

xample 4. Fig. 1 (see the right side of Step 0) presents three sample

orrespondences that relate the entities that appear in the exchange

ample, namely: v1 relates a source entity with a target entity, v2 re-

ates two source entities with one target entity, and v3 relates two

ource entities with three target entities. Both the single exchange

ample and the correspondences form the data exchange problem

hat we use to illustrate our proposal (see Section 3).

. Generating schema mappings

Our proposal takes a data exchange problem as input and gener-

tes a number of schema mappings to solve that problem without

he intervention of a user. Fig. 2 presents the main algorithm of our

roposal, which comprises five steps. The first step takes a correspon-

ence and a single exchange sample as input, and it is responsible for
enerating a number of candidate exchange samples as output, each

f which comprises a subset of source data that need to be exchanged

s a whole and a subset of target data that need to be created as a

hole. In the second step, our proposal ensures that for every candi-

ate exchange sample there is, at least, a subset of target data that can

e generated using the source data, and it minimises the target data

hat do not exist in the source. The third step takes the previous set

f exchange samples as input and completes them, i.e., it ensures that

t is possible to generate schema mappings using them. To perform

his, our proposal adds new triples to the input exchange samples

o guarantee that the same target data is generated by means of the

ame source data. The fourth step prunes those exchange samples

hat are redundant and, therefore, it is expected that they generate

he same schema mappings. Finally, the fifth step takes the final set

f exchange samples as input, and it transforms them into schema

appings by substituting source and target constants by fresh vari-

bles and/or blank nodes.

.1. First step: create candidate exchange samples

Fig. 3 shows our algorithm to create candidate exchange samples

rom a given correspondence and a single exchange sample. Each can-

idate exchange sample comprises a subset of source data that need

o be exchanged as a whole, and a subset of target data that need to

e created as a whole. To compute them, for each correspondence,

e combine all connected triples that comprise the entities in the

orrespondence.

First, we compute the triples that are related to correspondence

for the single exchange sample d, i.e., those triples that comprise

he entities related by v. The results are stored in a set of knowledge

ases. Then, we compute the distributive Cartesian product over the

riples that are related to source(v), and over the triples that are re-

ated to target(v). This Cartesian product, which we denote as
∏

, com-

rises all of the possible combinations in the set of knowledge bases,

nd it results in another set of knowledge bases. For instance, for the

ollowing set of knowledge bases {{a, b, c}, {d, e}, {f}}, where a, b, c, d,

, and f denote triples, the distributive Cartesian product is {{a, d, f},

a, e, f}, {b, d, f}, {b, e, f}, {c, d, f}, {c, e, f}}.

We iterate over each set of source and target knowledge bases,

nd we transform them into exchange samples only if each knowl-

dge base comprises a single connected component, i.e., every triple

s related to every other triple, directly or indirectly.

We present the algorithm to compute the triples that are related

o a set of entities in Fig. 4. It works on an input set of entities E and

n input knowledge base T, and returns a set of knowledge bases that



Fig. 4. Algorithm to compute the triples that are related to a set of entities.

Fig. 5. Algorithm to compute the connected components of a knowledge base.

Fig. 6. Algorithm to discard candidate exchange samples.
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has all of the triples in T whose entities are in E. To perform this, we

iterate over E and, for each entity, we iterate over T and check whether

or not each triple is related to the current entity, i.e., if the entity is a

class, it must be the object of the triple, whereas if it is a property, it

must be the predicate of the triple. This set of triples is added to the

final set.

The algorithm to compute the connected components of a set of

triples is presented in Fig. 5. In the first part of the algorithm, we cre-

ate an undirected graph in which set N stores the vertices, and set A

stores the arcs of the graph. For each class instance, we add a vertex

with the subject of the triple, and for each property instance, we add

two vertices (the subject and the object), and an arc between them

both. In the end, we use the findConnectedComponents algorithm to

compute the connected components of this graph. We do not provide

any additional details on this algorithm since it is well-known in the

literature [40].

Example 5. To illustrate the generation of candidate exchange sam-

ples, we focus on correspondence v2 in our running example. Its

source entities are dp:Person and foaf:name. The triples that comprise

dp:Person are the following:

(t1) CEastwood rdf :type dp:Person
(t2) DEastwood rdf :type dp:Person

Furthermore, the triples that comprise foaf: name are the

following:

(t3) CEastwood f oa f :name “Clint East.”

(t4) CEastwood f oa f :name “Clint”

Algorithm computeRelatedTriples outputs the following set in this

ase: GS = {{t1, t2}, {t3, t4}}; the distributive Cartesian product of this

set is
∏

GS = {{t1, t3}, {t1, t4}, {t2, t3}, {t2, t4}}. The target entity of v2

s ft:alias, and the triples that comprise it are the following:

(t6) CEastwood f t:alias “Clint East.”

(t7) CEastwood f t:alias “Clint”

Note that GT = {{t6, t7}}, and
∏

GT = {{t6}, {t7}}. Additionally, in

ets {{t2, t3}, {t2, t4}} ⊆ ∏
GS, each set has two connected components,

ince there is no triple that does not have any triple in common with

t least another triple. Therefore, we discard these sets of triples.

Finally, candidate exchange samples are generated by combin-

ng the source triples in
∏

GS and the target triples in
∏

GT. Some of

hem are depicted in our running example, e.g., d21 = ({t1, t3}, {t6}),
r d22 = ({t1, t4}, {t6}).

.2. Second step: discard candidate exchange samples

Fig. 6 shows our algorithm to discard candidate exchange samples.

n exchange example is kept or discarded according to its number of

overed and uncovered constants. A constant in the target is said to

e covered if there is, at least, a triple in the source that involves that

onstant; otherwise, it is said to be uncovered. The algorithm first

omputes the minimum number of uncovered constants in the input

et of exchange samples; it then iterates over this set and discards

very exchange sample that does not have at least a covered constant

r has more uncovered constants than the minimum.

The intuition behind this step is that we keep only the exchange

amples that provide the maximum information to generate the tar-

et data, i.e., when these exchange samples are transformed into

chema mappings, they shall comprise as less blank nodes as pos-

ible. Furthermore, this step allows us to disambiguate schema map-

ings, i.e., if several schema mappings may be generated for the same

orrespondence, we only generate those schema mappings that give

s the maximum information to generate the target. Schema map-

ing disambiguation is a well-known issue when generating schema

appings [2], and we have devised the previously described simple,

et effective technique to solve it.



Fig. 7. Algorithm to compute the replacements between two knowledge bases.
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Fig. 8. Algorithm to compute the candidate equivalences between two knowledge

bases.
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xample 6. In our running example, we discard exchange sample d11,

hich results from correspondence v1, since it has zero covered con-

tants. Furthermore, the minimum number of uncovered constants

n the exchange samples of v2 is equal to zero, since every constant

n d21 is covered; therefore, we discard exchange sample d22 because

t has one uncovered constant: “Clint East.”. Furthermore, the mini-

um number of uncovered constants in the exchange samples that

esult from correspondence v3 is equal to one, since fb:m.02kklj5 is

ot present in the source of any exchange sample.

.3. Third step: complete exchange samples

This step consists of completing exchange samples, i.e., if the same

ource data generate different target data in different exchange sam-

les, it is necessary to complete those samples by adding target data.

herefore, we identify those exchange samples that have the same

ource data but differ in the target data, and we complete them.

Replacements lie at the heart of this step, so we present how

e compute replacements in Fig. 7. This algorithm takes knowledge

ases T1 and T2 as input and it first computes the candidate equiva-

ences between them. Each candidate equivalence stands for a con-

tant in T1 that is related to another constant in T2, and we formally

efine them as the following set of pairs:

quivalence == Constant × Constant

After computing these equivalences, we compute their distribu-

ive Cartesian product. If every candidate equivalence relates a given

onstant in T1 to the same constant in T2, we then transform the set of

andidate equivalences into a candidate replacement h. Finally, if the

riples that result from applying h to T1 are included in T2, we then

dd h to the output set, since this means that it is actually a replace-

ent from T1 to T2.

Fig. 8 shows the algorithm to compute the candidate equivalences

etween two input knowledge bases T1 and T2. We iterate over the

hole set of triples in T1 and, for each triple t1 in T1, we use two

ifferent sets: in the first set, ES, we store the candidate equivalences

hat relate the subject of t to another constant in T ; in the second
1 2
et, EO, we store those candidate equivalences that relate the object of

1 to another constant in T2. Then, for each triple t2 in T2 that has the

ame predicate as t1, we update both sets of candidate equivalences if

2 is a property instance, but only the first set if t2 is a class instance.

inally, we update the output set with one or both sets.

We apply a homomorphism to a knowledge base using the algo-

ithm in Fig. 9, in which, for every triple, we transform its subject if

t belongs to the domain of the homomorphism, we keep the predi-

ate as is, and we transform the object if it belongs to the domain of

he homomorphism. Note that this algorithm can be applied to both

eplacements and substitutions (see Section 4.3).

xample 7. To illustrate the computation of replacements, we

rst compute the candidate equivalences between source(d12)

nd source(d21) in our running example, which is the follow-

ng set: Q1 = {{(DEastwood,CEastwood)}}. Furthermore,
∏

Q1 =
{(DEastwood,CEastwood)}} is the resulting distributive Cartesian

roduct, which is automatically transformed into a candidate re-

lacement since it relates the same source constant to the same target

onstant. This candidate replacement is: {DEastwood�→CEastwood}.

To illustrate the application of replacements, we apply the pre-

ious candidate replacement to source(d12) in our running exam-

le, and we get the following triple: CEastwood rdf:type dp:Person,

hich is present in source(d21); therefore, we conclude that

DEastwood�→CEastwood} is a replacement between source(d12) and

ource(d21).

The algorithm in Fig. 10 takes a set of exchange samples as input

nd outputs a number of complete exchange samples. It computes if

he input set needs to be completed because the same source data



Fig. 9. Algorithm to apply a homomorphism to a knowledge base.

Fig. 10. Algorithm to complete exchange samples.

Fig. 11. Algorithm to prune exchange samples that are redundant.
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generates different target data. To perform this, we compute the re-

placements between the exchange samples that have the same source

data and, if they have some missing triples, we automatically add

them to complete the target data. In this case, restart indicates if new

triples have been added to the exchange samples, and we iterate un-

til no new triple is added. We extract two different exchange samples

d1 and d2 from the input set. We then compute the replacements be-

tween their source triples, and we apply each replacement to the tar-

get triples of d1; if the resulting triples are not present in the target

triples of d , we have to add them.
2
xample 8. To illustrate the completion process, we use exchange

amples d12 and d21 from our running example. The unique

replacement that exists between source(d12) and source(d21) is

DEastwood�→CEastwood} (see Example 7). Applying it to target(d12)

results in the following triple: CEastwood rdf:type fp:person, which is

not included in target(d21). Therefore, it is necessary to add this triple

o target(d21), and the exchange sample is completed as d′
21. The intu-

tion behind this is that we have mapped an instance of dp:Person as

p:person in exchange sample d12; however, in exchange sample d21,

e have an instance of dp: Person that is not mapped onto an instance

of fp:person.

5.4. Fourth step: prune redundant exchange samples

Fig. 11 shows our algorithm to prune exchange samples that are

edundant, i.e., they lead to the same schema mappings.

Replacements are used to detect if two exchange samples are re-

undant. Given two exchange samples d1 and d2, they are redundant

f there exists four replacements from the source triples of d1 to the

ource triples of d2, from the target triples of d1 to the target triples

of d2, from the source triples of d2 to the source triples of d1, and

from the target triples of d2 to the target triples of d1, respectively.

he algorithm depicted in Fig. 11 removes exchange samples that are

edundant using the previous idea.

xample 9. In our running example, we have two different cases in

hich we prune redundant exchange samples. The first case is d12

nd d13, which have two replacements from source(d12) to source(d13)

and viceversa, and other two replacements from target(d12) to

arget(d13) and viceversa. Therefore, we prune one of them randomly,

.g., d13. The same occurs with d′
31 and d′

32, and we prune one of them,

.g., d′
32

.

5.5. Fifth step: transform exchange samples into schema mappings

Fig. 12 shows our algorithm to transform each exchange sample

nto a schema mapping, which is built by substituting source and tar-

et data by variables or blank nodes, depending on whether the target

ata is known or not.

To perform this, for each exchange sample, we retrieve its source

nd target constants. Then, we compute a source and a target sub-

titution as follows: for every constant in the source, we add a fresh

ariable to both substitutions. For every constant in the target that is

ot in the source, we add a fresh blank node to the target substitution.



Fig. 12. Algorithm to create schema mappings from exchange samples.
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inally, we apply both substitutions to the source and target triples to

enerate the source and target patterns of the schema mapping.

Note that our proposal is able to generate more than one schema

apping for each input correspondence. These schema mappings

re complementary, i.e., they comprise several combinations of triple

atterns that generate valid target data when exchanging data, there-

ore, it is mandatory to take them all into account.

xample 10. To illustrate the transformation of exchange samples

nto schema mappings, in our running example, we transform ex-

hange sample d′
21

into schema mapping m21. Our proposal com-

utes the same source and target substitution, which is the follow-

ng: {CEastwood�→?p, “Clint East.”�→?n}. Note that this algorithm does

ot include any additional items to the target substitution in this case

ince all of the target constants are already present in the source sub-

titution; therefore, no blank nodes are generated.

We transform exchange sample d′
31

into schema mapping

31. Our proposal computes the following source substitution:

CEastwood�→?p1, “DEastwood”�→?p2}. Our proposal computes the

ollowing target substitution: {CEastwood �→ ?p1, “DEastwood” �→
p2, f b:m.02kkl j5 �→ _:X}, which comprises a blank node since con-

tant fb:m.02kklj5 is not present in the source.

. Analysis of our proposal

In this section, we analyse our proposal to prove that it has some

esired properties, namely: it outputs GLAV mappings and they fit

he input correspondences. We also characterise an upper-bound to

ts worst-case complexity. Finally, we discuss on some limitations

hat are interesting from a theoretical point of view, even though they

re not a serious shortcoming in practice. Refer to Appendix A for the

ncillary propositions.

.1. Generation of GLAV schema mappings

We first prove that the schema mappings that our proposal gen-

rates are GLAV, which is important insofar this guarantees that they
ead to universal solutions when they are used to perform data ex-

hange. Universal solutions are the most general solutions to a data

xchange problem.

heorem 1 (Generation of GLAV schema mappings). The schema

appings that the createSchemaMappings algorithm outputs are GLAV.

roof. According to Alexe et al. [6], Fagin et al. [28], and Lenzerini

44], a GLAV schema mapping is a mapping whose logical interpreta-

ion is a first-order logic formula of the following form:

α • ϕ(α) ⇒ ∃β • ψ(α,β)

here ϕ(α) is a conjunction of atoms over the source knowledge

ase, each variable in α occurs in at least one atom in ϕ(α), and ψ(α,

) is a conjunction of atoms over the target knowledge base with

ariables from both α and β . By atom over a knowledge base they

ean a formula γ (δ1, . . . , δm), where γ is a predicate of the knowl-

dge base, and δ1, . . . , δm are variables, not necessarily distinct.

The schema mappings that Algorithm createSchemaMappings pro-

uce are of the form (TS, TT), where TS and TT are sets of patterns.

ccording to Proposition 1, source patterns can be of the following

orms:

• ?x rdf:type C, where ?x denotes a variable, and C denotes a source

class.

• ?x p ?y, where ?x and ?y denote variables, and p denotes a source

property.

Furthermore, according to Proposition 2, target patterns can be of

he following forms:

• μ rdf:type C, where μ denotes a variable or a blank node, and C

denotes a source class.

• μ p ν , where μ and ν denote variables or blank nodes, and p de-

notes a source property.

Patterns are interpreted in first-order logic as follows:

• μ rdf:type C is interpreted as C(μ), that is, classes are unary rela-

tions.

• μ p ν is interpreted as p(μ, ν), that is, properties are binary rela-

tions.

Let T ′
S be the first-order logic interpretation of TS, which is a con-

unction of atoms over the source knowledge base. The variables that

ppear in T ′
S

are implicitly assumed to be universally quantified since

hey range over the source constants. Similarly, let T ′
T be the first-

rder logic interpretation of TT, which is a conjunction of atoms over

he target knowledge base.

Let α be the set of variables in T ′
S

and α′ the set of variables in
′

T . Then, α = α′ because every source constant that is present in the

arget is substituted by the same variable, as it can be seen in lines 15

nd 19 in Algorithm createSchemaMappings.

Let β be the set of blank nodes in T ′
T , which we can assume to

e existentially quantified because they represent anonymous target

ata. Each blank node is assigned a fresh labelled null when these

chema mappings are used to exchange data.

As a conclusion, our schema mappings can be represented as:

α • ϕ(α) ⇒ ∃β • ψ(α,β)

here ϕ(α) is T ′
S and ψ(α, β) is T ′

T . �

orollary 1 (Generation of universal solutions). The schema mappings

utput by the createSchemaMappings algorithm produce universal solu-

ions when they are used to exchange data.

roof. The proof follows very straightforwardly from the results by

agin et al. [28]. According to them, if T ′
S

denotes the first-order logic

nterpretation of a source knowledge base TS and M′ the first-order

ogic interpretation of a GLAV schema mapping M, then a naive ap-

lication of the Chase procedure generates a universal solution for
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TS with respect to M. Using the logical first-order interpretation that

we propose in Theorem 1, it easily follows that the schema mappings

output by Algorithm createSchemaMappings produce universal solu-

tions when they are used to exchange data. �

6.2. Fitting correspondences

We prove that the schema mappings our proposal generates fit

the input correspondences, which is important insofar this guaran-

tees that they do not lose any information, i.e., they have all of the in-

put correspondences into account [4]. A schema mapping m fits a cor-

respondence v if it has a single connected component in the source,

another single connected component in the target, for every entity

es in source(v), there is a triple pattern ts in source(m) such that es

belongs to entities({ts}), and for every entity et in target(v), there is a

triple pattern tt in target(m) such that et belongs to entities({tt}).

Theorem 2 (Fitting correspondences). The schema mappings output

by Algorithm generateSchemaMappings fit the input correspondences.

Proof. Let p be a data exchange problem and M be a set of

schema mappings output by generateSchemaMappings(p). According

to Propositions 3 and 4, each of the schema mappings in M com-

prises a unique connected component in the source and in the target.

Furthermore, for every schema mapping m ∈ M there is a correspon-

dence v ∈ correspondences(p) such that m fits correspondences(p) since

Algorithm createCandidateExchangeSamples extracts all of the possi-

ble combinations of those triples in the input exchange sample that

belong to the entities of v. Finally, Algorithm createSchemaMappings

transforms these triples into triple patterns. �

6.3. Analysis of complexity

In the following theorem and propositions, we characterise an

upper-bound to the worst-case complexity of our proposal. The worst

case is a data exchange problem in which each source triple of the in-

put exchange sample introduces a new entity, and each target triple

of the input exchange sample introduces a new entity.

In our proofs, we assume that simple set operations like invoking

a projection function, checking for membership, merging two sets, or

constructing a tuple can be implemented in O(1) time with regard to

the other operations. We also implicitly assume that data exchange

problems must be finite, i.e., the sets of triples, entities, and corre-

spondences involved are finite.

Theorem 3 (Generate schema mappings, see Fig. 2). Let p be a

data exchange problem. An upper bound to the time a call to gener-

ateSchemaMappings(p) requires to terminate is O(2ts+tt tts
s t

tt
t ), where

ts and tt denote the number of source and target triples in p, respectively.

Furthermore, 2ts+tt tts
s t

tt
t is an upper bound to the number of schema

mappings that it outputs.

Proof. Algorithm generateSchemaMappings iterates over the whole

set of input correspondences. In each iteration, it calls Algorithms

createCandidateExchangeSamples and discardCandidateExchangeSam-

ples which, according to Propositions 5 and 8, require O(es ts + et tt +
es
s + tes

s t
et
t ) time and O(d) time, respectively, where es and et de-

note the number of entities of the input correspondences in p, ts and

tt denote the number of source and target triples in p, and d de-

notes the number of exchange samples output by Algorithm create-

CandidateExchangeSamples. After this loop, it calls Algorithms com-

pleteExchangeSamples, pruneExchangeSamples, and createSchemaMap-

pings in sequence, which, according to Propositions 12, 13, and 14

require O(d4 (2ts)ts (t4
s + tt )) time, O(d2 (t4

s (2ts)ts + t4
t (2tt )

tt )) time,

and O(d (ts + tt )) time, respectively.

The following formula is an upper bound to the worst-case time

omplexity of Algorithm generateSchemaMappings: O(v (es ts + et tt +
es
s + tes

s t
et
t + d) + d4 (2ts)ts (t4

s + tt ) + d2 (t4
s (2ts)ts + t4

t (2tt )
tt ) +

d (ts + tt )).

In the worst case, es = ts and et = tt , which entails that every

ource and target triple comprises a different entity. Additionally,

= v tts
s t

tt
t , since Algorithm createCandidateExchangeSamples gener-

ates tts
s t

tt
t exchange samples for each correspondence, in the worst

case. Furthermore, v = 2ts+tt − 2ts − 2tt − 1 since the worst case is a

ase in which the correspondences relate every possible combina-

ions of source and target entities; it is easy to check that v < 2ts+tt .

As a conclusion, the previous upper bound can be simplified as

ollows: O(2ts+tt tts
s t

tt
t ). Additionally, an upper bound to the num-

ber of schema mappings that this algorithm outputs is equal to

2ts+tt tts
s t

tt
t . �

.4. Limitations

Despite the fact that we deal with n:m correspondences, our pro-

posal cannot deal with more than one instance of the same class, e.g.,

an Employee that is related to another Employee by the boss property.

A similar problem occurs when the same property has to be used

more than once in the same schema mapping. These limitations are

due to the fact that correspondences do not state if an entity should

appear one or more times in each schema mapping. However, in the

real-world data exchange problems that we have evaluated, we have

not found this to be a practical limitation.

Another limitation of our proposal is that it does not generate

schema mappings that include patterns with regular expressions [7].

This implies that we are not able to deal with RDF collections, such

as bags, lists, or sequences. However, this limitation must not hin-

der the applicability of our proposal in practice since these con-

structs are not recommended when publishing RDF data as Linked

Data [39]. Furthermore, according to Glimm et al. [31], RDF collec-

tions do not range amongst the most used constructs in the Web of

Data.

Another limitation is that, in its current form, our proposal is

not able to incorporate literals in the schema mappings, which are

mandatory for certain data exchange problems. For instance, if we

wish to exchange people that was born in Spain, then it is neces-

sary to include Spain as a literal in the schema mappings. Algorithm

createSchemaMappings transforms every source literal into a variable

(see Fig. 12), therefore, to deal with this issue, this algorithm can be

modified to take a list of immutable literals as input, which are not

transformed into variables.

In the literature, some approaches generate schema mappings

only if they fit the input exchange samples [4]. This entails that,

when we exchange the source data of the exchange samples using

these schema mappings, the generated target data is equivalent to

the target data of the exchange samples. If the input exchange sam-

ples are not appropriate, the user has to modify them to generate

schema mappings. In our proposal, we allow the user to freely de-

fine the input exchange sample, so it is not mandatory that this ex-

change sample fits the output schema mappings. Our proposal imple-

ments a best-effort strategy; if the resulting schema mappings do not

fit the input exchange sample, then the implementation warns the

user, who has to decide whether the input must be modified or not.

This warning is triggered when the input exchange sample comprises

several source triples for the same property that are not present in

the target. For instance, assume that we remove the following target

triple of the input exchange sample in our running example: CEast-

wood ft:alias “Clint”. Our proposal generates exactly the same schema

mappings, which entails that every source triple that comprises prop-

erty foaf:name has to be exchanged as a target triple that comprises

property ft:alias. Note that this behaviour is not explicitly specified

in the input exchange sample, but our proposal assumes that it is the

user intention.
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. Validity evaluation

To validate our proposal, we used some data exchange problems

or which we handcrafted schema mappings in previous projects. We

un our proposal on them and then compared the subsets of source

nd target triples that were exchanged by our previous handcrafted

chema mappings and the ones output by our proposal. We ensure

he reproducibility of our experimental results by making our RDF

umps, the script to preprocess them, our repository, the implemen-

ation of our algorithms, the scripts to perform the evaluation pro-

ess, and a user manual publicly available [60]. Thanks to this, our

esults can be reproduced and tested by third parties, which is cru-

ial for the advance of science [30]. Furthermore, other researchers

an extend our results to cope with future requirements.

.1. Repository

To the best of our knowledge, little effort has been paid to devis-

ng repositories to validate the automatic generation of schema map-

ings. Alexe et al. [3] devised a benchmark that provides eleven data

xchange patterns, each of which can be instantiated into a number

f data exchange problems using a number of parameters. Unfortu-

ately, their focus was on nested-relational data models, which ren-

ers them not appropriate for our context. In the RDF context, Rivero

t al. [62] used a repository that comprises four real-world data ex-

hange problems and 3 780 synthetic data exchange problems that

ere generated using MostoBM [63]. Unfortunately, these problems

ocus on the automatic generation of schema mappings based on

ource and target data models, therefore, the authors did not provide

ny exchange examples.

To address this issue, we have setup a repository of ten real-world

ata exchange problems on which we worked in the past. For each

ata exchange problem, our repository provides a set of handcrafted

chema mappings that are expected to perform data exchange appro-

riately and source data to perform data exchange. The knowledge

ases that we use in our repository are the following:

• Freebase [19]: In our repository, we use a dump provided by the

authors [33]. Its structure is very rich, for instance, to model that

a person is married to another person, property f pp:spouse_s

relates an instance of class fp:person with an instance of class

fp:marriage, which contains the data of a marriage, such as the

spouses, the date of the ceremony, the type of the union (e.g., mar-

riage or domestic partnership), or the location of the ceremony.

The consequence of this rich structure when exchanging data is

that it is necessary to perform a deep navigation to have access

to the desired data. Another consequence is that, when Freebase

is the target in a data exchange problem, if the source knowledge

base does not have such a rich structure, then it is necessary to

generate blank nodes.

Furthermore, Freebase uses a large number of properties to

model data that are very little reused. For instance, proper-

ties f pp:place_of _birth and f ll:people_born_here model the same

data, but the first property relates an instance of class fp:person

with an instance of class fl:location, and the second property mod-

els the inverse. The consequence of this large number of proper-

ties when exchanging data is that we have to define several corre-

spondences to generate schema mappings.

• DBpedia [17]: It comprises a number of different versions due to

a number of changes in its conceptualisation. In our repository,

we use the dump of DBpedia 3.8 that comprises Ontology Infobox

Types and Ontology Infobox Properties [25]. The structure of DB-

pedia is not as rich as the structure of Freebase. For instance, prop-

erty dp:spouse is used to state that a person is married to another

person. The consequence of this structure when exchanging data
is that it is not necessary to perform a deep navigation to have

access to the desired data.

Additionally, DBpedia has several domain and/or range classes for

each property. This entails that the same property may relate in-

stances of very different classes. For instance, property dp:author

relates instances of class dp:Person with instances of class dp:Book,

which stands for “a person is the author of a book”; the same

property is also used to relate instances of class dp:Software with

instances of class dp:Organisation, which means that “an organisa-

tion has developed a piece of software”. Note that both examples

convey the idea of “authorship”, but they are used in quite dif-

ferent contexts. The consequence of several domain and/or range

classes when exchanging data is that it is necessary to consider

the classes of the related instances when dealing with properties.

• GovWILD [18]: It is a public RDF knowledge base that intercon-

nects government data and provides a web-based application that

enables exploring them. GovWILD comprises economic data from

the USA and other European governments. In our repository, we

use the dump provided by the authors [34].

The structure of GovWILD is not as rich as the structure of Free-

base, which entails that it is not necessary to perform deep navi-

gation to have access to the desired data when performing data

exchange. There is only one exception: date objects are mod-

elled as individual instances that have several properties, such as

gw:day, gw:month, and gw:year. Therefore, GovWILD comprises a

date instance for each date that is present in its data. The conse-

quence of this when exchanging data is that it is necessary to use

blank nodes to create these dates when GovWILD is used as the

target.

The data exchange problems that our repository comprise are the

ollowing:

• DF-P, FD-P: They stand for “DBpedia to Freebase (People)” and

“Freebase to DBpedia (People)”. The goal is to exchange data that

are related to people, such as their names, children, birth dates,

birth places, nationalities, marriages, or death causes.

• DF-TS, FD-TS: They stand for “DBpedia to Freebase (Television

Shows)” and “Freebase to DBpedia (Television Shows)”. The goal

is to exchange data that are related to television shows, such as

episodes, stations, networks, directors, actors, producers, writers,

seasons, or fictional characters.

• DF-F, FD-F: They stand for “DBpedia to Freebase (Films)” and

“Freebase to DBpedia (Films)”. The goal is to exchange data that

are related to films, such as film music composers, producers, di-

rectors, actors, producers, writers, film budgets, editors, film run-

times, or fictional characters.

• DF-U, FD-U: They stand for “DBpedia to Freebase (Universities)”

and “Freebase to DBpedia (Universities)”. The goal is to exchange

data that are related to universities, such as sport teams, univer-

sity colours, mascots, students, faculty people, staff people, cities,

or endowments.

• DG, GD: They stand for “DBpedia to GovWILD” and “GovWILD to

DBpedia”. The goal is to exchange data that are related to politi-

cians, such as their names, nationalities, political parties, educa-

tion, or religion.

It is important to notice that we do not use the whole dump of

ach knowledge base as source data, but only a part of the dump

hat comprises the classes and properties involved in the correspon-

ences. Furthermore, without an exception, the knowledge bases in

his context comprise a number of errors, e.g., DBpedia and Free-

ase reference web pages whose URLs are “<None>”, which are mal-

ormed URLs. Therefore, for each data exchange problem, we prepro-

ess the source knowledge base by cleaning the data, and extracting

nly the triples that contain the classes and properties that are in-

olved in that problem. We have implemented a script to preprocess



Fig. 13. Process to validate our proposal.

Fig. 14. Sample SPARQL query.
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DBpedia, Freebase, and GovWILD RDF dumps using Java 1.6, Sesame

2.6.10 [20], and OWLIM Lite 4.2 [14].

7.2. Evaluation process

Fig. 13 presents the evaluation process of our validation, which

comprises four steps, namely:

1. We use our proposal to automatically generate a set of schema

mappings based on the single exchange sample and the set

of correspondences of a specific data exchange problem. We

implemented a research prototype, to which we refer to as

MostoDEx, using Java 1.6 and Jena 2.7.3 [23]. Furthermore, we

used Guava 13.0.1 to implement ancillary set operations, and

JGraphT 0.8.3 to compute the connected components of a set

of patterns.

2. We transform each schema mapping into a query mapping in

SPARQL. This step is mandatory since our goal is to use a query

engine to perform data exchange. Fig. 14 shows a sample trans-

formation from schema mapping m31 in our running example

into a SPARQL query, in which we use the target patterns of

the schema mapping as the CONSTRUCT clause, and the source

patterns as the WHERE clause.

3. We exchange the source data by means of both automatically-

generated and handcrafted queries. Exchanging data between

RDF knowledge bases comprises five steps [63], namely:

(1) a mandatory step that consists of loading the source knowl-

edge base from persistent storage into the appropriate internal

data structures; (2) an optional step that consists of making the

knowledge explicit in the source knowledge base; (3) a manda-

tory step that consists of executing the queries over the source

knowledge base to produce a target knowledge base; (4) an

optional step that consists of making the knowledge explicit in

the target knowledge base; (5) a mandatory step that consists

of saving the target knowledge base to a persistent storage. In

this article, we omit steps (2) and (4) since we deal with plain
RDF, without taking RDFS or OWL entailments into account.

Furthermore, steps (1) and (5) largely depend on the technol-

ogy being used, and our goal in this article is the generation of

schema mappings; therefore, we focus only on step (3).

4. We validate whether or not both the target data output by the

automatically-generated and handcrafted schema mappings

are equivalent, i.e., if every triple in the first set of target data

is present in the second set of target data, and vice versa. Note

that anonymous data are implemented as blank nodes in the

context of SPARQL. Since both target data are stored in differ-

ent files, blank nodes cannot be compared because they are

local to the corresponding files [22]. To address this problem,

there are approaches in the literature that use graph isomor-

phisms to check if two RDF knowledge bases with blank nodes

are equal. The Jena framework has an efficient implementation

of one such approach [22], therefore, we used Jena TDB 0.9.3,

which supports large scale storage and uses the file system to

store RDF knowledge bases.

We have implemented the evaluation process of our validation

n a script that uses Java 1.6, Jena TDB 0.9.3, Sesame 2.6.10, and

WLIM Lite 4.2. This process was run on a virtual computer that was

quipped with a four-threaded Intel Xeon 3.00 GHz CPU and 16GB

AM, running on Windows Server 2008 (64-bits).

.3. Evaluation results

Table 2 summarises our experimental results. The columns rep-

esent the data exchange problems of our repository, and the rows a

umber of measures; the first group of measures provides an over-

ll idea of the size of each data exchange problem, i.e., the number

f source and target triples of the initial examples, the correspon-

ences between the entities, and the number of classes and proper-

ies involved in the correspondences. The second group of measures

rovides information about the schema mappings, i.e., the number

f automatically-generated schema mappings, and the time that our

roposal took to generate them in seconds. Finally, the third group

f measures provides an overall idea about the exchange of data by

eans of these schema mappings, i.e., the number of source triples in

illions, the number of target triples generated in millions, and the

ime the automatically-generated schema mappings took to perform

he data exchange in minutes.

The target data generated by the automatically-generated schema

appings were the same as the target data generated by handcrafted

chema mappings in every data exchange problem. This reveals that

he schema mappings that our proposal generates agree with the

chema mappings that we handcrafted in the past to solve these

ata exchange problems. The time our proposal took to generate the



Table 2

Experimental results of our proposal.
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chema mappings was less than one second in every case; since tim-

ngs are imprecise in nature, we repeated each experiment 25 times

nd selected the maximum value within the results.

We also measured the time that automatically-generated schema

appings took to exchange data. Although these timings depend

argely on the technology being used, i.e., the RDF technologies used

o persist triples and the SPARQL query engine used to exchange data,

e think that presenting them is appealing insofar they suggest that

he queries can be executed on reasonably-large knowledge bases in

sensible time. Recall that we only focus on the time to execute the

ueries and not on the loading, reasoning, or unloading time since

hey are not related to the focus of our proposal.

. Scalability evaluation

This section analyses the scalability of our proposal. In Section 6.3,

e have characterised an upper bound to its complexity, according to

hich it is computationally complex. In this section, we prove that

his does not hinder its applicability in practice. We ensure the re-

roducibility of our experimental results by making our repository,

he scripts to perform the evaluation process, our experimental re-

ults, and a user manual publicly available [60]. Thanks to this, our

calability results can be reproduced and tested by third parties.

.1. Repository

To the best of our knowledge, little effort has been paid to evalu-

ting the scalability of schema mapping proposals in the context of

DF. On the one hand, LODIB [59] is a benchmark to evaluate the

erformance of exchanging data in the context of Linked Data. Un-

ortunately, it provides three data exchange problems whose entities

nd correspondences cannot be scaled, only the data they comprise.
n the other hand, MostoBM [63] provides seven data exchange pat-

erns that are instantiated into a number of data exchange problems

sing some parameters, and we decided to use them to evaluate our

roposal.

The data exchange patterns that MostoBM provides are the follow-

ng: Lift Properties, Sink Properties, Extract Subclasses, Extract Super-

lasses, Extract Related Classes, Simplify Specialisation, and Simplify

elated Classes. Extract Related Classes and Simplify Related Classes

annot be used to perform our evaluation since they use n:m corre-

pondences that use transformations functions, which are not sup-

orted by our proposal. Furthermore, the goal of Simplify Speciali-

ation is to test the performance of making the knowledge explicit

n the source and target knowledge bases, which is not supported in

ur proposal. The rest of the data exchange patterns are described as

ollows:

• Lift Properties: The data properties of a set of subclasses are

moved to a common superclass.

• Sink Properties: The data properties of a superclass are moved to

a number of subclasses.

• Extract Subclasses: A source class is split into several subclasses

and the domain of the target data properties is selected amongst

the subclasses.

• Extract Superclasses: A class is split into several superclasses, and

data properties are distributed amongst them.

Data exchange patterns are instantiated into data exchange prob-

ems using seven parameters that allow to scale both the entities and

he data of a knowledge base. Since our intention is to evaluate the

ehaviour of our proposal when entities and correspondences scale,

e only focus on a subset, namely:

• Levels of classes (L): Number of relationships (specialisations or

object properties) amongst one class and the rest of the classes in



Fig. 15. Process to evaluate the scalability of our proposal.

Fig. 16. Scalability results of two data exchange patterns.
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the source or target knowledge bases. L allows to scale the struc-

ture of these knowledge bases in depth.

• Number of related classes (C): Number of classes related to each

class by specialisation or object properties. C allows to scale the

structure of these knowledge bases in breadth.

• Number of data properties (D) of the source and target knowledge

bases.

In our experiments, we used the following values for the

revious parameters to instantiate our data exchange prob-

ems: L = {1, 2, 3, 4, 5}, C = {1, 2, 3, 4, 5}, and D = {250, 500, 750,

1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 3000, 3250, 3500,

3750, 4000, 4250, 4500, 4750, 5000}. We set the rest of the param-

eters that deal with the scaling of the data to the following values:

I = 5000, IT = 5, ID = 5, and IO = 5. As a conclusion, we instantiated

500 data exchange problems for each data exchange pattern. Each of

these data exchange problems comprise a number of schema map-

pings to perform data exchange, a number of correspondences, and

a populated source knowledge base with synthetic data. Therefore,

we added a new functionality to MostoBM to generate a source and a

target exchange sample to evaluate our proposal. To perform this, we

generate the source exchange sample by generating a single instance

for each source entity and, using the schema mappings generated

by MostoBM, we get the target exchange sample by exchanging the

source data.

To provide an overall idea of the size of these data exchange prob-

lems, the number of source and target classes ranges between 3 and

7812, the number of source and target data properties ranges be-

tween 250 and 5000, and the number of source and target object

properties ranges between 2 and 7811. The conclusion is that these

problems are synthetic but not trivial in general.

8.2. Evaluation process

Fig. 15 presents the evaluation process of the scalability of our pro-

posal, which comprises three steps, namely:
1. We use MostoBM to generate the repository of data exchange

problems, which results from instantiating a set of data ex-

change patterns with several values of the input parameters.

2. After generating the repository, it is necessary to run the data

exchange problems that it comprises. Running a single data

exchange problem may take hours or even days to complete,

since it is executed 25 times (see below). This makes it nec-

essary to use the Monte Carlo method to select a subset of

data exchange problems to execute randomly. The issue that

remains is to determine the size of this subset. To provide a

precise figure on the number of data exchange problems to

run, we rely on Cochran’s formula [24], which is based on the

variance of the performance variable, i.e., the time that our

proposal takes to output schema mappings. In the worst case,

when the variance being studied is very high, this number is

equal to |P|/2, in which |P| is the total number of data exchange

problems for a given data exchange pattern. Therefore, we ex-

ecute 250 = 500/2 problems for each data exchange pattern.

3. Finally, we perform the evaluation process of our validation to

actually run the data exchange problems (see Section 7.2).

We have implemented this evaluation process in a script that uses

ava 1.6, and Jena TDB 0.9.3, which is documented by means of a user

anual. Our experiments were run on a virtual computer that was

quipped with a four-threaded Intel Xeon 3.00 GHz CPU and 16GB

AM, running on Windows Server 2008 (64-bits).

.3. Evaluation results

Figs. 16 and 17 present our evaluation results, in which we com-

are the time our proposal took to generate the schema mappings

n the data exchange problems to the number of correspondences in

ach data exchange problem. Note that, in these problems, the num-

er of source and target triples of the single exchange sample are

qual to the number of source and target entities, and they are also

qual to the number of correspondences, which are the variables in



Fig. 17. Scalability results of two data exchange patterns.
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ur theoretical complexity study (see Section 6.3). Since the num-

er is the same, we only focus on correspondences in this evaluation.

ote also that the scaling of correspondences is not linear since the

orrespondences in the data exchange problems that MostoBM gen-

rates are not linear regarding the parameters.

Since timings are imprecise in nature, we repeated each exper-

ment 25 times and averaged the results after discarding roughly

.01% outliers using the well-known Chevischev’s inequality. For each

ata exchange problem, we checked that the target data that re-

ult from exchanging data using the schema mappings of MostoBM

ere equivalent to exchanging data with our automatically generated

chema mappings.

From our experimental results we can draw the following conclu-

ions:

• The behaviour of Lift Properties and Sink Properties is similar, as it

was also the case for Extract Subclasses and Extract Superclasses.

• We also computed the minimum squared error tendency line, that

is, the one that maximises the R2 coefficient, and found out that

the behaviour is nearly quadratic in every case.

. Conclusions

In the literature, there are a number of proposals to generate

chema mappings that rely on data models that must provide enti-

ies and constraints. They are not appealing in the general context

f the Web of Data because some of them rely on handcrafting the

appings; some others rely on exploiting the constraints in the data

odels and the usual knowledge bases in this context have a few or

o constraints at all; and a few others rely on exchange samples but

equire user intervention, or are hybrid and require constraints to be

vailable.

In this article, we present a proposal to automatically generate

chema mappings amongst RDF knowledge bases using a single ex-

hange sample and a set of n: m correspondences. It does not rely

n constraints of the source and target data models and does not re-

uire any user intervention. We have validated our proposal using ten

ata exchange problems amongst the DBpedia, Freebase, and Gov-

ILD knowledge bases. The time to execute this validation never ex-

eeded one second, and the data exchanged were as expected in ev-

ry case, which suggest that it is very efficient in practice and that

he generated schema mappings are appropriate. We have also eval-

ated the performance of our proposal when data exchange problems

cale. To perform this, we have used four synthetic data exchange pat-

erns proposed by MostoBM, a benchmark for testing data exchange

roposals in the context of the Web of Data. Synthetic data exchange

atterns are instantiated into 2 000 data exchange problems that we
ave used to evaluate our proposal. Our evaluation results suggest

hat it works quite well as the data exchange problems it faces scale.

We have proved that the schema mappings we produce are GLAV.

urthermore, we have proved that the schema mappings output by

ur proposal fit the input correspondences. We have implemented a

esearch prototype that is publicly available, together with our repos-

tory of data exchange problems, the scripts to validate and evaluate

he scalability of our proposal, and all of the experimental data re-

arding the validation and the performance presented in this arti-

le. Our goal is twofold: on the one hand, it allows other researchers

o faithfully reproduce our experiments, which is crucial for the ad-

ance of science; on the other hand, our implementation, repository,

nd experimental data can be extended to cope with future require-

ents.
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ppendix A. Ancillary propositions

In this section we present some ancillary propositions that we

sed to support our theorems.

1. Generation of GLAV schema mappings

roposition 1 (Types of source patterns). A source pattern output by

lgorithm createSchemaMappings can only be of the following forms:

• ?x rdf:type C, where ?x denotes a variable, and C denotes a source

class.

• ?x p ?y, where ?x and ?y denote variables, and p denotes a source

property.

roof. Lines 15 and 19 in Algorithm createSchemaMappings create a

ubstitution for each constant in the source input triples that trans-

orms it into a fresh variable. Then, in line 24, this substitution is ap-

lied to the source triples. Our proposal only works with two types of

riples (see Section 4.3), which are the following:

• c rdf:type C, where c denotes a constant, and C denotes a source

class. This triple is substituted by ?x rdf:type C, where ?x denotes a

variable.

http://dx.doi.org/10.13039/501100000780
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• c1 p c2, where c1 and c2 denote constants, and p denotes a source

property. This triple is substituted by ?x p ?y, where ?x and ?y de-

note variables. �

Proposition 2 (Types of target patterns). A target pattern output by

Algorithm createSchemaMappings can only be of the following forms:

• μ rdf:type C, where μ denotes a variable or a blank node, and C de-

notes a source class.

• μ p ν , where μ and ν denote variables or blank nodes, and p denotes

a source property.

Proof. Lines 15 and 19 in Algorithm createSchemaMappings create a

substitution for constants that are shared by the source and target

triples, which are substituted by the same fresh variables. Further-

more, lines 20 and 22 create a substitution for target constants that

are not present in the source, which are substituted by the same

blank nodes. Our proposal only works with two types of triples (see

Section 4.3), which are the following:

• c rdf:type C, where c denotes a constant, and C denotes a source

class. This triple is substituted by μ rdf:type C, where μ denotes a

variable if c is present in the source, or a blank node if it is not

present.

• c1 p c2, where c1 and c2 denote constants, and p denotes a source

property. This triple is substituted by μ p ν , where μ and ν denote

variables if c1 and c2 are present in the source, or blank nodes if

they are not present. �

A2. Fitting correspondences

Proposition 3 (Source connected components). A schema mapping

output by Algorithm generateSchemaMappings comprises a unique con-

nected component in the source.

Proof. Algorithm createCandidateExchangeSamples generates a num-

ber of exchange samples, each of which comprises a unique con-

nected component in the source, which is guaranteed by enforcing

this condition (see Line 14). �

Proposition 4 (Target connected components). A schema mapping

output by Algorithm generateSchemaMappings comprises a unique con-

nected component in the target.

Proof. Algorithm createCandidateExchangeSamples generates a num-

ber of exchange samples, each of which comprises a unique con-

nected component in the target, which is guaranteed by enforcing

this condition (see Line 16). �

A3. Analysis of complexity

Proposition 5 (Create candidate exchange samples, see Fig. 3). Let

and d be a correspondence and an exchange sample, respectively. An

pper bound to the time a call to createCandidateExchangeSamples(v, d)

equires to terminate is O(es ts + et tt + tes
s + tes

s t
et
t ), where ts denotes

the number of source triples in d, tt denotes the number of target triples

in d, es denotes the number of source entities in v, and et denotes the

number of target entities in v. In the worst case, the number of exchange

samples that this algorithm computes is equal to tes
s t

et
t .

Proof. Algorithm createCandidateExchangeSamples performs two

calls to Algorithm computeRelatedTriples, which, according to

Proposition 6, terminates in O(e t) time, where e denotes the num-

ber of entities and t denotes the number of triples. Therefore, these

two calls terminate in O(es ts + et tt ) time. Then, it iterates tes
s times

over the distributive Cartesian product of GS. In each iteration, we

check if the set of triples has a single connected component, which,

according to Proposition 7, terminates in O(ts) time. Additionally,
his algorithm iterates over the distributive Cartesian product of GT

nd, in each iteration, it checks if the set of triples has a single con-

ected component. As a conclusion, O(es ts + et tt + tes
s (ts + t

et
t tt )) =

O(es ts + et tt + tes
s + tes

s t
et
t ) is an upper bound to the time a call to this

lgorithm requires to terminate.

In the worst case, we add a new exchange sample in each iteration

f the two loops, therefore, we add tes
s t

et
t exchange samples to the

utput set. �

roposition 6 (Compute related triples, see Fig. 4). Let E be a set of

ntities, and T be a knowledge base. A call to computeRelatedTriples(E,

) terminates in O(e t) time, where e denotes the number of entities in E,

nd t denotes the number of triples in T. In the worst case, this algorithm

utputs a set of knowledge bases in which the principal set contains e

ets, and the internal knowledge bases contain t triples each.

roof. Algorithm computeRelatedTriples iterates over the whole set

of entities and, for each entity, it iterates over the triples of the input

knowledge base. As a conclusion, it terminates in O(e t) time.

In the worst case, for each entity in E, it adds a new knowledge

base to the final set. Additionally, in the worst case, every triple in T is

related to each entity in E, which adds every triple in T to the internal

knowledge base. Therefore, the principal set that Algorithm comput-

eRelatedTriples outputs contains e sets, and the internal knowledge

bases contain t triples in the worst case. �

Proposition 7 (Compute connected components, see Fig. 5). Let T be

a knowledge base. O(t), where t denotes the number of triples in T, is

an upper bound to the time a call to computeConnectedComponents(T)

requires to terminate.

Proof. Algorithm computeConnectedComponents iterates over the

whole set of input triples, and it creates a graph in which, in the worst

case, the number of vertices is equal to 2t, and the number of arcs

is equal to t. According to Hopcroft and Tarjan [40], Algorithm find-

ConnectedComponents terminates in O(max{n, a}) time, where n and

a are the number of nodes and arcs of the input graph, respectively.

In our case, a is equal to 2t and n is equal to t; therefore, Algorithm

findConnectedComponents terminates in O(2t) time. As a conclusion,

(t + 2t) = O(t) is an upper bound to the time a call to computeCon-

nectedComponents requires to terminate. �

Proposition 8 (Discard candidate exchange samples, see Fig. 6). Let D

be a set of exchange samples. Algorithm discardCandidateExchangeSam-

ples(D) terminates in O(d) time, where d denotes the number of exchange

samples in D.

Proof. Algorithm discardCandidateExchangeSamples iterates two

times over the whole input set of exchange samples, and the opera-

tions performed can be safely assumed to terminate in O(1) time. As

a conclusion, it terminates in O(d) time. �

Proposition 9 (Compute replacements, see Fig. 7). Let T1 and T2 be

wo knowledge bases. O(t4
1
(2t2)t1 ) is an upper bound to the time a call

to computeReplacements(T1, T2) requires to terminate, where t1 and t2

enote the number of triples in T1 and T2, respectively. In the worst case,

this algorithm outputs (2t2)2t1 replacements.

roof. The computeReplacements algorithm performs a unique call

to Algorithm computeCandidateEquivalences for which, according to

Proposition 10, O(t1 t2) is an upper bound of its worst-case complex-

ty. It iterates over the distributive Cartesian product of the set out-

ut by Algorithm computeCandidateEquivalences, in which, according

to Proposition 10, the principal set contains 2t1 sets, and the internal

nowledge bases contain 2t2 equivalences; therefore, an upper bound

o the number of iterations is (2t2)2t1 . Additionally, in each iteration,

it iterates four times over the equivalences in the internal knowledge

bases to check if every candidate equivalence relates a given constant

in T to the same constant in T (see lines 12–14); note that each set in
1 2
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G has 2t1 elements, therefore, lines 12–14 require (2t1)4 iterations.

he second iteration (see lines 18–20) iterates a maximum of (2t1)2

imes.

Finally, this Algorithm calls Algorithm applyHomomorphism once,

hich, according to Proposition 11, terminates in O(t1) time. We get

he following expression: O(t1 t2 + (2t2)2t1 ((2t1)4 + (2t1)2 + t1)),

hich can be simplified as follows: O(t4
1
(2t2)t1 ).

Furthermore, if every candidate replacement is transformed into a

eplacement, we add one replacement in every iteration of the main

oop, which generates (2t2)2t1 replacements in the worst case. �

roposition 10 (Compute candidate equivalences, see Fig. 8). Let T1

nd T2 be two knowledge bases. O(t1 t2) is an upper bound to the time

call to computeCandidateEquivalences(T1, T2) requires to terminate,

here t1 and t2 denotes the number of triples in T1 and T2, respec-

ively. In the worst case, this algorithm outputs a set of equivalences in

hich the principal set contains 2t1 sets, and the internal sets contain

t2 equivalences.

roof. Algorithm computeCandidateEquivalences has to iterate over

nowledge base T1. In the worst case, the predicates in the triples

f T1 are the same as the predicates in the triples of T2, which entails

hat it is necessary to iterate over the whole knowledge base T2. As a

onclusion, O(t1t2) is an upper bound to the time a call to compute-

andidateEquivalences requires to terminate.

In the worst case, for each triple in T1, we add two sets to the

nal set. Furthermore, in the worst case, every triple in T1 has the

ame predicate as every triple in T2, which adds two equivalences to

he internal set. Therefore, the set that Algorithm computeCandida-

eEquivalences outputs contains 2t1 sets, and the internal sets contain

t2 equivalences in the worst case. �

roposition 11 (Applying homomorphisms, see Fig. 9). Let h be a

omomorphism, and T a knowledge base. Algorithm applyHomomor-

hism(h, T) terminates in O(t) time, where t denotes the number of triples

n T.

roof. Algorithm applyHomomorphism has to iterate through the

hole set of triples T. As a conclusion, Algorithm applyHomomor-

hism(h, T) terminates in O(t) time. �

roposition 12 (Complete exchange samples, see Fig. 10). Let D be a

et of exchange samples. O(d4 (2ts)
ts (t4

s + tt )) is an upper bound to the

ime a call to Algorithm completeExchangeSamples(D) requires to ter-

inate, where d denotes the number of exchange samples in D, and ts

nd tt denote the maximum number of source and target triples in the

xchange samples of D, respectively.

roof. Algorithm completeExchangeSamples iterates over the whole

et of input exchange samples (see lines 12–30). Then, in the worst

ase, in which we have to compare every input exchange sample, it

terates again over the exchange samples except for one (see lines

4–29). The while loop, in the worst case, iterates the same num-

er of times, so the first three loops iterate (d(d − 1))2 < d4 times

n the worst case. According to Proposition 9, O(t4
1
(2t2)t1 ) is an up-

er bound to the time a call to Algorithm computeReplacements re-

uires to terminate, where t1 and t2 denotes the number of triples

n the input knowledge bases. Assume that ts and tt denote the max-

mum number of source and target triples in the exchange samples

f D; so this call to computeReplacements terminates in O(t4
s (2ts)ts ).

ccording to Proposition 9, Algorithm computeReplacements outputs

(2t2)2t1 replacements in the worst case; therefore, this call gener-

tes (2ts)2ts replacements through which the next loop has to iter-

te (see lines 18–28). In each iteration, we call Algorithm applyHomo-

orphism, which terminates in O(tt) time according to Proposition 11.

s a conclusion, O(d4 (t4
s (2ts)ts + (2ts)2ts tt )) = O(d4 (2ts)ts (t4

s + tt ))

s an upper bound to the time a call to this algorithm requires to

erminate. �
roposition 13 (Prune exchange samples, see Fig. 11). Let D be a set of

xchange samples. An upper bound to the time a call to pruneExchange-

amples(D) requires to terminate is O(d2 (t4
s (2ts)ts + t4

t (2tt )
tt )), where

denotes the number of input exchange samples, and ts and tt denote the

aximum number of source and target triples in the exchange samples

f D, respectively.

roof. Algorithm pruneExchangeSamples iterates over the whole set

f input exchange samples. Then, it iterates again to filter some of

hem out. In each iteration, in the worst case, we call Algorithm com-

uteReplacements four times, which terminates in O(t4
1
(2t2)t1 ) time

n the worst case according to Proposition 9, where t1 and t2 de-

ote the number of triples in the input knowledge bases. Assume

hat ts and tt denote the maximum number of source and target

riples in the exchange samples of D, therefore, these four calls termi-

ates in O(2t4
s (2ts)

ts + 2t4
t (2tt )

tt ). As a conclusion, O(d2 (t4
s (2ts)

ts +
4
t (2tt )

tt )) is an upper bound to the time a call to this algorithm re-

uires to terminate. �

roposition 14 (Create schema mappings, see Fig. 12). Let D be a

et of exchange samples. O(d (ts + tt )) is an upper bound to the time a

all to createSchemaMappings(D) requires to terminate, where d denotes

he number of input exchange samples, and ts and tt denote the maxi-

um number of source and target triples in the exchange samples of D,

espectively.

roof. Algorithm createSchemaMappings iterates over the whole set

f input exchange samples. Then, it iterates over the whole set of

ource constants, which is, in the worst case, double the maximum

umber of source triples in the input exchange samples, i.e., ev-

ry triple comprises two constants. Additionally, it iterates over the

hole set of target constants that are not present in the source,

hich is, in the worst case, double the maximum number of tar-

et triples in the input exchange samples, i.e., every triple comprises

wo constants that are not present in the source. Finally, the source

nd target substitutions that this algorithm computes are applied to

enerate the final schema mappings. According to Proposition 11,

pplying a substitution terminates in O(t) time. As a conclusion,

(d (3ts + 3tt )) = O(d (ts + tt )) is an upper bound to the time a call

o createSchemaMappings requires to terminate. �
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