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Abstract. Data translation is an integration task that aims at populat-
ing a target model with data of a source model by means of mappings.
Generating them automatically is appealing insofar it may reduce inte-
gration costs. Matching techniques automatically generate uninterpreted
mappings, a.k.a. correspondences, that must be interpreted to perform
the data translation task. Other techniques automatically generate ex-
ecutable mappings, which encode an interpretation of these correspon-
dences in a given query language. Unfortunately, current techniques to
automatically generate executable mappings are based on instance ex-
amples of the target model, which usually contains no data, or based on
nested relational models, which cannot be straightforwardly applied to
semantic-web ontologies. In this paper, we present a technique to auto-
matically generate SPARQL executable mappings between OWL ontolo-
gies. The original contributions of our technique are as follows: 1) it is not
based on instance examples but on restrictions and correspondences, 2)
we have devised an algorithm to make restrictions and correspondences
explicit over a number of language-independent executable mappings,
and 3) we have devised an algorithm to transform language-independent
into SPARQL executable mappings. Finally, we evaluate our technique
over ten scenarios and check that the interpretation of correspondences
that it assumes is coherent with the expected results.

Keywords: Information Integration, Data Translation, Semantic-web
Ontologies, SPARQL Executable Mappings

1 Introduction

Data in current databases are usually modelled using relational or nested rela-
tional models, which include relational and semi-structured schemata [4]. How-
ever, there is an increasing shift towards representing these data by means of
ontological models due to the popularity and maturity of the Semantic Web [35].
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In this paper, we focus on semantic-web ontologies that are represented using
RDF, RDF Schema and OWL ontology languages to model structure and data,
and their data are queried by means of the SPARQL query language [3,10,25].

Existing databases comprise a variety of models, created by different organ-
isations for different purposes, and there is a need to integrate them [4,19,22].
Mediators provide a well-known solution to the problem of integrating models
since they can help bridge the semantic gap amongst them [11,33]. A mediator
relates a source model, which contains the data of interest, to a target model,
which usually contains no data. Mediators can perform two tasks: data integra-
tion and data translation [19,22]. The former deals with answering queries posed
over the target model, which is virtual, using the source model only [15,19,37].
The latter, which is the focus of this paper, aims at populating a target model
with data of a source model [8,12,24,28,29].

Mappings, which are the cornerstone components of mediators, relate source
and target models in different ways [8,9,11,18,19]. Building and maintaining
mappings automatically is appealing insofar this relieves users from the burden
of writing them, checking whether they work as expected or not, making changes
if necessary, and restarting this cycle [4,27]. Mappings can be of various types
but, in this paper, we focus on two: correspondences and executable mappings.

On the one hand, correspondences may be handcrafted with the help of a
visual tool [1], or generated automatically using matching techniques [9,11,30].
They are hints that specify which elements from the source and target models
are related in some unspecified way [5]. Therefore, they must be interpreted
to perform the data translation task. However, this interpretation is far from
trivial since it is not unique, i.e., different approaches interpret correspondences
in different ways [2,5,28]. Consequently, it is mandatory to check whether the
resulting target data are coherent with the expected results.

On the other hand, executable mappings, a.k.a. operational mappings, en-
code an interpretation of correspondences in a given query language [14,28,29].
These mappings are executed by means of a query engine to perform the data
translation task. The main benefit of using these mappings is that the data
translation task is simplified, making it more efficient and flexible: thanks to
executable mappings, instead of relying on ad-hoc programs that are difficult to
create and maintain, the query engine is used as the transformation engine [14].
Furthermore, these engines incorporate a vast knowledge on query manipula-
tion, from which it is derived that the executable mappings are automatically
optimised for better performance of the data translation task.

In the bibliography, there are a number of techniques to automatically gener-
ate executable mappings. Unfortunately, none of them can be straightforwardly
applied to semantic-web ontologies in the context of the data translation task
due to the following reasons, namely (for further details, see Section 2):

– Some of them are based on instance examples of the target model [29], which
are suitable in scenarios in which the target model is already populated.
However, we focus on scenarios in which the target model has no instances
at all, which seems to be quite usual in practice [2,4,28].



– Others focus on nested relational models, which represent trees [13,20,28,36];
however, they cannot be straightforwardly applied to ontologies, which rep-
resent graphs, due to a number of differences between them [17,21,23,32].

In this paper, we present a technique to automatically generate SPARQL exe-
cutable mappings to perform the data translation task between OWL ontologies.
To illustrate it, we use an example that is contextualised in the domain of films
and reviews, using DBpedia and Revyu as data sources. The original contribu-
tions of our technique are that it is based on restrictions and correspondences,
instead of instance examples, which makes it appealing in many practical cases.
Furthermore, we have devised an algorithm to generate language-independent
executable mappings that makes restrictions and correspondences explicit. Fi-
nally, we have devised an algorithm to transform language-independent into
SPARQL executable mappings by creating triple patterns and linking variables
of these patterns.

This paper is organised as follows: Section 2 presents the related work; in Sec-
tion 3, we present the algorithms to automatically generate SPARQL executable
mappings; Section 4 presents the evaluation of our technique; and, finally, Sec-
tion 5 recaps on our conclusions.

2 Related work

In this section, we study the techniques to automatically generate executable
mappings in both the semantic-web and database research fields.

In the semantic-web research field, Qin et al. [29] devised a technique to gen-
erate executable mappings between ontologies in a semi-automatic way. Their
technique is divided into five modules. The first module deals with the automatic
discovering of correspondences. The second module determines whether two in-
stances in different ontologies represent the same real-world entity. The third
module deals with the clustering of correspondences that are related. The fourth
module takes a set of source and target instances as input and generates a set of
frequent queries of interest between them. Note that target instances have to be
provided by the user when the target is not populated. Finally, the fifth module
generates executable mappings based on frequent queries and correspondences.
This technique generates a set of executable mappings that can be specified in
Web-PDDL (an ontology language devised by the authors), Datalog or SWRL.

Regarding the database research field, Popa et al. [28] proposed a technique
to automatically generate executable mappings for performing the data trans-
lation task between nested relational models. A nested relational model defines
a tree that comprises nested nodes with attributes. The first step of their tech-
nique consists of computing primary paths, each of which is the unique path
from the tree root to a node. Furthermore, this step comprises the identification
of referential constraints that relate two primary paths by an equality expres-
sion between two attributes. The second step consists of applying an extension
of the relational chase algorithm to compute logical relations, each of which is an



enumeration of the logical joins specified by referential constraints. Therefore, a
logical relation comprises a number of primary paths that are related by referen-
tial constraints. This step is applied in both source and target models. The third
step computes the executable mappings by performing the Cartesian product
between source and target logical relations. For each pair, the technique analy-
ses the correspondences that relate source and target elements in this pair. Note
that this technique takes only one type of correspondence into account: source at-
tribute to target attribute. Finally, the fourth step deals with the transformation
of the previous executable mappings, which are represented in an intermediate
nested-relational query language, into XQuery or XSLT queries.

The technique devised by Popa et al. [28] was the starting point to a num-
ber of subsequent approaches: Fuxman et al. [13] proposed the use of nested
mappings that are generated by correlating Popa et al’s mappings, which are
called basic mappings. Basic and nested mappings can produce redundant tar-
get instances, which motivated the research on the generation of laconic/core
mappings that produce target instances with no redundancy [20,36]. Mappings
systems like Clio or Clip are also based on this technique [1,14].

Finally, ontology and schema matching approaches focus on the automatic
generation of correspondences. Choi et al. [9], Euzenat and Shvaiko [11], and
Rahm and Bernstein [30] are good surveys on the state of the art of schema and
ontology matching techniques. However, it is important to notice that, in this
paper, we assume that correspondences already exist, so we make no contribution
to the schema or ontology matching research fields.

As a conclusion, Qin et al. [29] is suitable to generate executable mappings in
scenarios in which the target model is already populated. In the rest of scenarios,
the user must provide an adequate set of instance examples to ensure that the
technique works properly, not only with the aforementioned examples, but also
with new instances. If the set of instance examples does not capture variability
well-enough, the technique may fail to cover some cases. Furthermore, the tech-
nique may suffer from overfitting, i.e., an overfitted technique works well with
training examples, but may not be able to generalise to adapt to new instances
from the real world.

Regarding the techniques based on nested relational models [13,20,28,36],
they cannot be straightforwardly applied to ontologies due to the following dif-
ferences:

– Structure: a nested relational model comprises a number of nodes, which
may be nested and have a number of attributes. This model represents a
tree in which there is a unique path from the root to any node or attribute.
Contrarily, an ontology comprises three types of nodes: classes, data proper-
ties and object properties. This ontology represents a graph in which there
may be zero, one or more paths connecting two arbitrary nodes. Note that
these graphs do not have a unique root and may contain cycles.

– Instances: an instance in a nested relational model has a unique type that
corresponds to an existing node. Contrarily, an instance in an ontology may
have multiple types that correspond to a number of existing classes, which



mo:hasReview <mo:Review>V9
dbp:birthName <xsd:string>

dbp:title <xsd:string>

rvu:text <xsd:string>

mo:Artist
mo:artistName <xsd:string>
mo:relatedTo <mo:Movie>

mo:Actor [mo:Artist]

mo:Director  [mo:Artist ]
mo:actsIn <mo:Movie> [mo:relatedTo]

mo:directs <mo:Movie> [mo:relatedTo]

mo:Movie
mo:movieTitle <xsd:string>

mo:Review
mo:revText <xsd:string>
mo:reviewer <xsd:string>foaf:nick <xsd:string>

dbp:starring <dbp:Person>
dbp:director <dbp:Person>

rvu:reviewer <rvu:Review>

R3

V1V2V3V4V5V6V7
V10V8

R1
rvu:reviews <dbp:Film>R2

dbp:Person

dbp:Film

rvu:Review

foaf:Person

Source Target
MoviesOnline

Fig. 1. Data translation scenario of our running example

need not be related by specialisation. Furthermore, in a nested relational
model, an instance of a nested node exists as long as there exists an instance
of the corresponding parent node. Contrarily, in an ontology, classes, data
properties and object properties can be instantiated independently from each
other by default.

– Queries: in the context of nested relational models, queries to perform the
data translation task are encoded using XQuery or XSLT, which depend on
the structure of the XML documents on which they are executed. Contrarily,
in an ontology, these queries must be encoded in a language that is indepen-
dent of the structure of XML documents, since the same ontology can be
represented by different XML documents.

3 Mapping Generation

In this section, we present our technique to automatically generate SPARQL
executable mappings based on restrictions and correspondences, which is divided
into two steps: Kernel Generation and SPARQL Transformation.

To illustrate it, we use a running example in the domain of movies and re-
views. Our running example builds on a fictitious video-on-demand service called
Movies Online. It provides information about the movies it broadcasts and re-
views of these movies. Movies Online have a number of knowledge engineers
in their staff, and they devised the target ontology of Figure 1, which models
movies and reviews. Instead of performing a handcrafted population of the on-
tology, Movies Online decided to translate information of movies and reviews
from DBpedia [7] and Revyu [16], which are the source ontologies. Note that the
Revyu ontology references the Friend of a Friend ontology, following the prin-
ciples of Linked Data [6]. Note also that, throughout this paper, ‘dbp’, ‘rvu’,



‘foaf’ and ‘mo’ are the prefixes of DBpedia, Revyu, FOAF and Movies Online,
respectively.

To represent ontologies, we use a tree-based notation in which classes are
represented as circles, data properties as squares and object properties as pen-
tagons. Furthermore, the domain of a data or object property is represented
by nesting the property into the domain class, e.g., dbp:birthName is a data
property whose domain is dbp:Person. The range of a data or object property is
represented by ‘<’ and ‘>’, e.g., dbp:starring is an object property whose range
is dbp:Person. Finally, class and property specialisations are represented by ‘[’
and ‘]’, e.g., mo:Actor is subclass of mo:Artist, and mo:actsIn is subproperty of
mo:relatedTo.

In the following subsections, we present the restrictions and correspondences
that our technique is able to process, and the algorithms to automatically gen-
erate SPARQL executable mappings.

3.1 Restrictions and correspondences

In this section, we present the restrictions and correspondences of our technique.
Regarding restrictions, we assume that source and target ontologies pre-exist, so
they contain a number of inherent restrictions, e.g., “foaf:Person is the domain
of foaf:nick”. Furthermore, it is possible to specify user-defined restrictions to
adapt existing source and target ontologies to the requirements of a specific
scenario, e.g., R1 restricts reviews to have, at least, one reviewer.

Our technique is able to process six types of restrictions, namely:

– Domain(x, y): data or object property x is domain of class y. For instance,
in Figure 1, Domain(foaf:nick, foaf:Person).

– Range(x, y): object property x is range of class y, e.g., R2 corresponds to
Range(rvu:reviews, dbp:Film).

– StrongDomain(x, y): class x is domain of data or object property y, whose
minimal cardinality is one, e.g., StrongDomain(foaf:Person, foaf:nick). Note
that this restriction is equivalent to a minimal cardinality of one over the
domain class.

– StrongRange(x, y): class x is the range of object property y, whose min-
imal cardinality is one, e.g., R1 corresponds to StrongRange(rvu:Review,
rvu:reviewer). Note that this restriction is equivalent to a minimal cardinal-
ity of one over the range class.

– Subclass(x, y): class x is subclass of class y, e.g., Subclass(mo:Director,
mo:Artist).

– Subproperty(x, y): data or object property x is subproperty of data or object
property y, e.g., Subproperty(mo:actsIn, mo:relatedTo).

We deal with three types of correspondences, namely:

– ClassCorrespondence(x, y): instances of the y target class are copied from
instances of the x source class, e.g., V1 that corresponds to ClassCorrespon-
dence(dbp:Person, mo:Artist).



dbp:birthName <xsd:string>

dbp:starring <dbp:Person>
dbp:director <dbp:Person>

dbp:Person

dbp:Film

«Class»
dbp:Person

«Class»
dbp :Film

«Data Property»
dbp :birthName
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xsd:string

«Object Property»
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RA: Domain(dbp:birthName, dbp:Person)
RB: Range(dbp:birthName, xsd:string)
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RD: Range(dbp:starring, dbp:Person)
RE: Domain(dbp:director , dbp:Film)
RF: Range(dbp:director , dbp:Person)

Restrictions

Fig. 2. An example of the restrictions of an ontology

– DataPropertyCorrespondence(x, y): instances of the y target data property
are copied from instances of the x source data property, e.g., V2 that corre-
sponds to DataPropertyCorrespondence(dbp:birthName, mo:artistName).

– ObjectPropertyCorrespondence(x, y): instances of the y target object prop-
erty are copied from instances of the x source object property, e.g., V5 that
corresponds to ObjectPropertyCorrespondence(dbp:starring, mo:actsIn).

Therefore, for a particular scenario, we have a number of source and target
restrictions, and a number of correspondences. Figure 2 presents a part of the
source ontology in our running example that is represented in our tree-based
notation, in a graph-based notation, and the restrictions that are associated to
this part of the ontology, respectively. Note that each of these restrictions models
a directed edge in the ontology graph that has a left and a right entities, e.g., the
left entity of RA in Figure 2 is dbp:birthName, and the right part is dbp:Person.

Finally, it is important to notice that correspondences in isolation are usually
not suitable enough to perform the data translation task. For instance, assume
that we use V5 in isolation to translate instances of dbp:starring into mo:actsIn.
In this context, we translate the domain and range of dbp:starring into the
domain and range of mo:actsIn, respectively. Unfortunately, by doing this, we
are translating dbp:Film into mo:Actor, and dbp:Person into mo:Movie, which
is obviously incorrect. This is the reason why we must take both restrictions and
correspondences into account to generate executable mappings.

3.2 Kernel Generation

In this section, we present the algorithm to automatically generate kernels. Intu-
itively, a kernel of a correspondence is a language-independent executable map-
ping that comprises those source restrictions, target restrictions and correspon-
dences that we must take into account to produce coherent target data. The
algorithm is shown in Figure 3(a) and it takes a set of correspondences C, and
a set of source and target restrictions as input, RS and RT , respectively. For
each correspondence, it creates a new kernel that is added to the output set K.
A kernel is a three-element tuple (R′S , R′T , C ′) that comprises a set of source
restrictions R′S , a set of target restrictions R′T , and a set of correspondences C ′.

To create each kernel, it first calls the Expand algorithm (cf. Figure 3(b)),
which is responsible for finding all restrictions that have to be explicit regarding



Generate Kernels
Input
C: Set of Correspondence
RS, RT: Set of Restriction

Output:
K: Set of Kernel

Variables :
eS, eT: Entity
R’S, R’T: Set of Restriction
C’: Set of Correspondence

K = ∅
For each (eS, eT) in C
R’S = Expand (eS, RS)
R’T = Expand (eT, RT)
C’ = FindCorrespondences (C, R’S, R’T)
K = K ∩ { (R’S, R’T, C’) }

End for

(a) Generate Kernels

Expand
Input
e: Entity
R: Set of Restriction

Output:
O: Set of Restriction

Variables :
E: Set of Entity
eL, eR: Entity

(O, E) = (∅, e)
Do until no new entity is added to E
For each (eL, eR) in R
If eL ∈ E ∧ (eL, eR) ∉ O
O = O ∩ { (eL, eR) }
E = E ∩ { eL, eR }

End if
End for

End do
(b) Expand

Find Correspondences
Input
C: Set of Correspondence
RS, RT: Set of Restriction

Output:
O: Set of Correspondence

Variables :
ES, ET: Set of Entity
eS, eT: Entity

O = ∅
(ES, ET)= (Entities (RS), Entities (RT))
For each (eS, eT) in C
If eS ∈ ES ∧ eR ∈ ER

O = O ∩ { (eS, eT) }
End if

End for

(c) Find Correspondences

Fig. 3. Algorithms to compute kernels

an entity. Recall that an entity may be a class, a data property or an object
property. This algorithm takes an entity and a set of restrictions as input, and it
finds all restrictions that are related to this input entity. First, this input entity
is added to the set of entities E. Then, for each restriction, it is added to the
output if it is not already present and the left entity of the restriction belongs to
E. Therefore, the Expand algorithm computes the maximal connected subsets
of restrictions out of all of the source or target restrictions. Note that it is called
two times to compute source and target restrictions, respectively.

Finally, the Find Correspondences algorithm finds all correspondences C ′

that relate the entities of source and target restrictions that were found by means
of algorithm Expand (cf. Figure 3(c)). This algorithm takes a set of correspon-
dences, and a set of source and target restrictions as input. First, it computes
all the entities contained in source and target restrictions by means of Entities
algorithm, which is not described because it is straightforward. Then, for each
correspondence, it is added to the output if the entities that are related by this
correspondence belong to source and target entities.

The Generate Kernels algorithm terminates in O(c(s2 + t2 + c)) time in
the worst case, where c is the total number of input correspondences, and s
and t are the total number of input source and target restrictions, respectively.
Furthermore, this algorithm generates a total number of c kernels. Note that the
proof of this analysis has been omitted due to space restrictions.

Figure 4 illustrates how this algorithm works. It takes correspondence V9 as
input (cf. Figure 4(a)), which is an object property correspondence that relates
rvu:reviews with mo:hasReview.

The first step (cf. Figure 4(b)) is to expand rvu:reviews using source re-
strictions. In this case, the domain of rvu:reviews is rvu:Review and the range



mo:hasReviewrvu:reviews V9
(a) Correspondence

mo:hasReview <mo:Review>
mo:Movie

mo:Review
rvu:reviewer <rvu:Review>

R3R1 rvu:Review

foaf:Person

rvu:reviews <dbp:Film>R2dbp:Film V9
(b) Expand source and target restrictions

mo:hasReview <mo:Review>
mo:Movie

mo:Review
rvu:reviewer <rvu:Review>

R3R1 rvu:Review

foaf:Person

rvu:reviews <dbp:Film>R2dbp:Film
V3V9V7

(c) Find related correspondences

Fig. 4. Example of the Generate Kernels algorithm

is dbp:Film, both restrictions are added. Then, rvu:Review has a minimal car-
dinality restriction with rvu:reviewer, so this restriction is added as well. Our
technique continues with the expansion until no new source restriction is added.

The second step (cf. Figure 4(b)) is to expand mo:hasReview using target re-
strictions, the domain of mo:hasReview is mo:Movie, and its range is mo:Review,
both restrictions are added. Furthermore, mo:Review has a minimal cardinality
restriction with mo:hasReview, this restriction is added too and, in this case, the
expansion is finished since no new target restriction is added.

Finally, our technique finds correspondences that relate the entities of both
source and target restrictions (cf. Figure 4(c)). In this case, correspondences V3
and V7 that relate dbp:Film with mo:Movie and rvu:Review with mo:Review,
respectively. Therefore, the final kernel of correspondence V9 is shown in Fig-
ure 4(c). Note that the kernel for correspondence V9 groups correspondences V3
and V7. However, the kernel for correspondence V3 does not group any other
correspondences, i.e., the correspondence itself is a kernel. Therefore, this is the
reason why our technique must process all input correspondences.

3.3 SPARQL Transformation

In this section, we present the algorithm to transform kernels into SPARQL
executable mappings. A key concept of the SPARQL language is the triple pat-
tern, which is a three-element tuple that comprises a subject, a predicate and
an object. A SPARQL executable mapping is a two-element tuple (TC , TW ) that
comprises a set of triple patterns of the source and target ontologies, TC (the
CONSTRUCT clause) and TW (the WHERE clause), respectively.



SPARQL Transformation
Input
K: Set of Kernel

Output:
M: Set of Ex. Mapping

Variables :
k: Kernel
m: Exec. Mapping

M = ∅
For each k in K
m = Initialise (k)
ComputeGraph(k, m)
ComputeVariables(m)
M = M ∩ {m}

End for
(a) Algorithm

rvu:reviewer

foaf:Personrdf:type

CONSTRUCT

dbp:Filmrdf:type

mo:hasReview

WHERE

mo:Reviewrdf:type
mo:Movierdf:type

rvu:reviews
rvu:Reviewrdf:type

(b) Initialisation

rvu:reviewer

foaf:Personrdf:type

CONSTRUCT

dbp:Filmrdf:type

mo:hasReview

WHERE

mo:Reviewrdf:type
mo:Movierdf:type

rvu:reviews
rvu:Reviewrdf:type

(c) Restriction Graph

rvu:reviewer

foaf:Personrdf:type

CONSTRUCT

dbp:Filmrdf:type

mo:hasReview

WHERE

mo:Reviewrdf:type
mo:Movierdf:type

rvu:reviews
rvu:Reviewrdf:type
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��
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(d) Variables

Fig. 5. Algorithm and example of SPARQL Transformation

The transformation algorithm is shown in Figure 5(a). Note that Initialise,
Compute Graph and Compute Variables algorithms are not described in detail
due to space limitations. However, we use an example to illustrate them. The
transformation algorithm takes a set of kernels K as input and it transforms
each kernel into a SPARQL executable mapping, which is added to the output
set M. To compute each SPARQL executable mapping, in the first step, the
algorithm initialises the source triple patterns and the target triple patterns by
means of Initialise algorithm. In this initialisation, for each class, it generates a
triple pattern with an empty node, e.g., mo:Review in Figure 5(b); and for each
data property or object property, it generates a triple pattern with two empty
nodes, e.g., mo:hasReview in Figure 5(b). These empty nodes are assigned with
variables in the following steps.

The second step computes the restriction graph that consists of relating the
empty nodes previously generated by means of source and target restrictions
and correspondences. This restriction graph is computed by the Compute Graph
algorithm. Note that m is an input/output parameter of this algorithm, i.e., m is
modified and returned by the Compute Graph algorithm. Finally, the third step
computes the variables of the CONSTRUCT and WHERE clauses by using
the same variable for nodes that are connected by an edge. These variables
are computed by the Compute Variables algorithm, which also has m as an
input/output parameter.

An example of the SPARQL Transformation algorithm is shown in Fig-
ures 5(b), 5(c), and 5(d). In this case, it transforms the kernel of Figure 4 into
a SPARQL executable mapping. The first step (cf. Figure 5(b)) is to create a
triple pattern for each entity that appears in the kernel, e.g., for foaf:Person, it
creates a triple pattern in the WHERE clause that specifies a subject node of
this type, but it does not assign a variable yet. Furthermore, for rvu:reviews, it
creates a triple pattern in which subject and object nodes have blank variables.
The final result of this step is a template of a SPARQL executable mapping



that comprises a set of empty nodes, which are assigned with variables in the
following steps.

The second step (cf. Figure 5(c)) consists of computing the restriction graph
for the triple patterns of the previous template. This step is achieved by specify-
ing an edge between two nodes of the triple patterns if there exists a restriction
or correspondence that relates those nodes. For example, since rvu:Review is the
domain of rvu:reviews, there exists an edge between the subject of the triple
pattern of rvu:Review and the subject of the triple pattern of rvu:reviews. Fur-
thermore, since V3 relates dbp:Film with mo:Movie, there is an edge between
the subjects of their triple patterns. Finally, the third step (cf. Figure 5(d)) as-
signs the same variable for nodes that are connected by edges, e.g., ?m is the
variable used for the subject of dbp:Film and the object of rvu:reviews triple pat-
terns. The final SPARQL executable mapping for correspondence V9 is shown
in Figure 5(d).

This algorithm terminates in O(k((e + 2)(s + t + c) + e2)) time in the worst
case, where k is the total number of input kernels, e is the total number of entities
in the source and target ontologies, c is the total number of correspondences,
and s and t are the total number of source and target restrictions, respectively.
Furthermore, this algorithm generates a total number of k executable mappings.
Note that the proof of this analysis has been omitted due to space restrictions.

4 Implementation and evaluation

In this section, we describe the implementation and evaluation of our technique.
We have implemented the algorithms described in Section 3 using Java 1.6 and
the Jena framework 2.6.3. In this evaluation, we compute the time taken by our
technique to automatically generate SPARQL executable mappings. Note that,
to compute these times, we ran the experiments on a PC with a single 2.66
GHz Core 2 Duo CPU and 4 GB RAM, running on Windows XP (SP3) and
JRE 1.6.0. Furthermore, to make these times more precise, we repeated each
experiment 25 times and computed the maximum value.

We have tested our technique with ten different scenarios and the results are
shown in Table 1. Note that we measure the number of classes, data properties
and object properties of both source and target ontologies, the number of cor-
respondences and source and target restrictions, the total number of generated
executable mappings, and the maximum time taken to generate them.

An important issue is whether the interpretation of the correspondences is
coherent with respect to the expected interpretation by experts. Regarding the
example presented in Section 3 (MO in Table 1), the resulting target instances
after performing the data translation task are as expected by experts. Further-
more, another scenario deals with the integration of semantic-web services with
successful results. Semantic-web services try to reduce the number of limitations
of (non-semantic) web services by enriching them with semantic annotations to
improve their discovery and composition. Therefore, each of these services is
related to one or more ontologies that describe it. In this context, we integrate



MO O2M C LP SP ERC ESB ESP SRC SS
Classes 9 72 728 728 728 365 365 365 365 365
Data Properties 8 41 100 100 100 100 100 100 100 100
Object Properties 8 90 726 0 0 363 0 0 363 0
Correspondences 10 11 777 414 414 414 51 51 51 51
Source restrictions 17 695 776 413 413 50 50 50 1502 413
Target restrictions 20 118 776 413 413 1502 170 463 50 50
Executable mappings 10 10 777 414 414 51 51 51 51 51
Time (seconds) 0.08 0.67 0.23 0.19 0.17 18.29 0.22 0.21 27.46 0.25

Table 1. Results of our evaluation

OWL-S as the source ontology and the Minimal Service Model (MSM) as the
target ontology [26] (O2M in Table 1). Thanks to our technique, we are able
to automatically populate iServe, which comprises a number of semantic-web
services represented using MSM, based on a number of semantic-web services
represented using OWL-S [26].

Finally, we have tested our technique with a benchmark that provides eight
data translation patterns, which are inspired by real-world data translation prob-
lems [34]. In this benchmark, the data translation task is performed by a set of
queries that are automatically instantiated from a number of query templates
that have been devised by experts. These patterns are the following:

– Copy (C): each class, data property and object property source instance is
copied into a class, data property or object property target instance.

– Lift Properties (LP): the data properties of a set of subclasses in the source
are moved to a common superclass in the target.

– Sink Properties (SP): the data properties of a superclass in the source are
moved to a number of subclasses in the target.

– Extract Related Classes (ERC): the data properties of a class in the source
are grouped into a number of new classes in the target, which are related to
the original one by a number of object properties.

– Extract Subclasses (ESB): a class in the source is split into several subclasses
in the target and data properties are distributed amongst them.

– Extract Superclasses (ESP): a class in the source is split into several super-
classes in the target, and data properties are distributed amongst them.

– Simplify Related Classes (SRC): source classes, which are related by a set of
object properties, are transformed into a target class that aggregates them.

– Simplify Specialisation (SS): a set of specialised classes in the source are
flattened into a single target class.

In all of these patterns, our technique generates the same target instances
as the benchmark. Therefore, we conclude that the interpretation of the corre-
spondences is coherent with the expected results by experts in these patterns.



5 Conclusions

In this paper, we present a technique to automatically generate SPARQL exe-
cutable mappings. Our technique has been devised for semantic-web ontologies
that are represented using the OWL ontology language. It is based on correspon-
dences and source and target restrictions, and it generates SPARQL executable
mappings in two steps: kernel generation and SPARQL transformation.

As a conclusion, we have devised a technique that, building on our experi-
ments, seems promising enough for real-world scenarios: we evaluate it over ten
scenarios and, in our evaluation results, executable mappings are generated in
less than thirty seconds in the worst case. Furthermore, we also test the inter-
pretation of correspondences that our algorithm assumes, and the result is that
it is coherent with the results expected by experts.

The original contributions of our technique are as follows: 1) Instead of re-
lying on instance examples of the target ontology, we automatically generate
executable mappings based on restrictions and correspondences, which makes
it appealing in many practical cases. 2) We have devised an algorithm to gen-
erate kernels, which are language-independent executable mappings that makes
restrictions and correspondences explicit. 3) We have devised an algorithm to
transform kernels into SPARQL executable mappings by linking the variables of
triple patterns in these mappings.
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