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 16 

Summary 17 

Heterocyst-forming cyanobacteria are multicellular organisms that grow as 18 

filaments that can be hundreds of cells long. Septal junction complexes, of which 19 

SepJ is a possible component, appear to join the cells in the filament. SepJ is a 20 

cytoplasmic membrane protein that contains a long predicted periplasmic section 21 

and localizes to the cell poles in the intercellular septa, but also to a position 22 

similar to a Z ring when cell division starts suggesting a relation with the divisome. 23 

Here we created a mutant of Anabaena sp. strain PCC 7120 in which the essential 24 

divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose 25 

activity depends on the nitrogen source. In the presence of ammonium, low levels 26 

of FtsZ were produced and the subcellular localization of SepJ, which was 27 

investigated by immunofluorescence, was impaired. Possible interactions of SepJ 28 

with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated 29 

using the bacterial two-hybrid system. We found SepJ self-interaction and a 30 

specific interaction with FtsQ, confirmed by co-purification and involving parts of 31 

the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers and, 32 

in Anabaena, the divisome has a role beyond cell division, localizing a septal 33 

protein essential for multicellularity. 34 

 35 

Introduction 36 

Although bacteria are widely considered as unicellular organisms, there are some cases 37 

of true multicellularity. Multicellular bacteria have mechanisms to keep cells together 38 

and distinctively exhibit the formation of cells specialized in different functions 39 

(Claessen et al., 2014). The heterocyst-forming cyanobacteria are true multicellular 40 A
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bacteria, and Anabaena sp. strain PCC 7120 (hereafter Anabaena) is becoming a model 41 

to study multicellularity (Flores and Herrero, 2010). Anabaena grows as chains of cells 42 

(known as filaments or trichomes) that can be hundreds of cells long (Rippka et al., 43 

1979). When Anabaena is grown in the absence of combined nitrogen, some 44 

photosynthetic vegetative cells in the filament differentiate into N2-fixing heterocysts 45 

(Kumar et al., 2010). In the developed diazotrophic filament vegetative cells and 46 

heterocysts exchange nutrients including sugars and amino acids (Wolk et al., 1994; 47 

Haselkorn, 2007; Burnat et al., 2014). Heterocyst differentiation requires the global N-48 

control transcription factor NtcA that, under nitrogen deprivation, activates transcription 49 

of many genes and represses some others (Herrero et al., 2013). NtcA binds to DNA at 50 

sites with consensus sequence GTAN8TAC, which are found in different contexts in 51 

regulated promoters. In Class II NtcA-activated promoters, an NtcA-binding site is 52 

located about 22 nucleotides upstream from a -10 promoter box in the form TAN3T 53 

(Herrero et al., 2001; Picossi et al., 2014). In Anabaena, ntcA expression is low when 54 

ammonium is present in the growth medium, increases when nitrate is the nitrogen 55 

source, and is highest in the absence of combined nitrogen (Muro-Pastor et al., 2002). 56 

The cyanobacteria are diderm bacteria bearing an outer membrane outside of the 57 

cytoplasmic membrane and peptidoglycan layers, and in heterocyst-forming 58 

cyanobacteria the outer membrane is continuous along the filament, not entering the 59 

septa between adjacent cells (Wolk, 1996; Flores et al., 2006; Wilk et al., 2011). Hence, 60 

all cells in the filament share a common periplasm (Mariscal et al., 2007). Cell-cell 61 

joining structures termed septal junctions (previously known as microplasmodesmata or 62 

septosomes) can be observed by transmission electron microscopy and by electron 63 

tomography in the intercellular septa (Lang and Fay, 1971; Giddings and Staehelin, 64 

1978; Wilk et al., 2011). These structures appear to be proteinaceous in nature (Wilk et 65 A
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al., 2011). Some genes whose mutation results in filament fragmentation have been 66 

identified in Anabaena, including the genes in the fraCDE operon and sepJ, which 67 

encode integral membrane proteins that are important for filament integrity mainly 68 

under nitrogen deprivation (Bauer et al., 1995; Nayar et al., 2007; Flores et al., 2007; 69 

Merino-Puerto et al., 2010). GFP fusions have shown that FraC, FraD and SepJ are 70 

located at the intercellular septa, with SepJ being particularly focused in the center of 71 

the septum, and that both FraC and FraD are needed for a correct localization of SepJ 72 

(Flores et al., 2007; Merino-Puerto et al., 2010). As evidenced by experiments 73 

performed with fluorescent tracers, all these proteins influence intercellular molecular 74 

exchange in the cyanobacterial filament (Mullineaux et al., 2008; Merino-Puerto et al., 75 

2011).  76 

SepJ, encoded by ORF alr2338 of the Anabaena genome (Kaneko et al., 2001), 77 

consists of 751 amino-acid residues and has three well differentiated domains: (i) an N-78 

terminal coiled-coil domain (amino acid residues 28 to 207), which could be involved in 79 

protein-protein interactions and is required for proper localization of SepJ at the 80 

intercellular septa, filament integrity and diazotrophic growth; (ii) a linker domain rich 81 

in Pro and Ser residues (amino acid residues 208 to 410) whose deletion hardly affects 82 

SepJ subcellular localization but impairs intercellular transfer of the fluorescent tracer 83 

calcein; and (iii) a C-terminal permease (amino acid residues 411 to 751) similar to 84 

proteins of the Drug/Metabolite Transporter (DMT) superfamily (Transporter 85 

classification database number 2.A.7; http://www.tcdb.org) that appears to be necessary 86 

for physiological intercellular molecular exchange (Flores et al., 2007; Mariscal et al., 87 

2011). The coiled-coil and linker domains of SepJ have been predicted to be 88 

periplasmic (Flores et al., 2007). In addition to being detected at the cell poles in the 89 

intercellular septa as mentioned above, SepJ-GFP is localized to a position similar to 90 A
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that of a Z ring when cell division starts (Flores et al., 2007; Mariscal and Flores, 2010). 91 

The so-called Z ring is made up of the essential tubulin homolog FtsZ at the future site 92 

of division in bacteria (Huang et al., 2013). 93 

The divisome is the multiprotein complex responsible for cell division in 94 

bacteria (Lutkenhaus et al., 2012; Egan and Vollmer, 2013; Natale et al., 2013). 95 

Cyanobacterial cell division genes have been studied by comparative and mutational 96 

analyses, which have shown that these organisms contain some cell division genes 97 

previously identified in Gram-negative bacteria, some in Gram-positive bacteria, and 98 

still some others that are more specific to cyanobacteria (Miyagishima et al., 2005; 99 

reviewed in Cassier-Chauvat and Chauvat, 2014). In Anabaena, putative divisome 100 

genes include ftsZ encoding the key Z ring protein (Doherty and Adams, 1995; Zhang et 101 

al., 1995), zipN (ftn2) encoding a possible tether of FtsZ to the cytoplasmic membrane 102 

(Koksharova and Wolk, 2002; Marbouty et al., 2009a, 2009b), and ftsQ and ftsW 103 

encoding downstream cytokinetic factors (Vicente et al., 2006). Localization of 104 

Anabaena FtsZ has been studied using GFP fusions and immunogold labeling, which 105 

showed that this protein can form a ring in the middle of dividing cells (Sakr et al., 106 

2006; Klint et al., 2007). FtsZ appears to be at low levels or absent from heterocysts 107 

(Kuhn et al., 2000; Klint et al., 2007), but further details on its regulation are unknown.  108 

Similarity between SepJ and FtsZ localization in dividing cells, together with the 109 

final localization of SepJ at the cell poles, suggests that SepJ might be recruited to the 110 

division ring and interact with proteins of the divisome. In this work, we addressed the 111 

localization of SepJ in a conditional ftsZ mutant of Anabaena, which expresses different 112 

levels of FtsZ depending on the nitrogen source. We found that SepJ localization is 113 

impaired when ftsZ expression is down regulated resulting in low cellular levels of the 114 

FtsZ protein. Moreover, using the bacterial two-hybrid system, we found evidence for 115 A
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SepJ self-interactions and an interaction between SepJ and Anabaena FtsQ, a protein 116 

that is known to recruit several downstream divisome elements. This interaction could 117 

be confirmed by co-purification of both proteins expressed in Escherichia coli. Our data 118 

suggest the formation of SepJ multimers and identify a role of the divisome beyond cell 119 

division, contributing to the assembly of the supracellular structure of a bacterial 120 

pluricellular filament.  121 

 122 

Results 123 

Construction of a strain with NtcA-dependent expression of ftsZ  124 

The ftsZ gene is located 1,191 bp downstream of ftsQ in the Anabaena chromosome 125 

(Kaneko et al., 2001). There is no evidence for co-transcription of the two genes, and 126 

ftsZ is expressed at higher levels than ftsQ (Flaherty et al., 2011). To create a 127 

conditional mutant of the essential ftsZ gene in Anabaena, we designed a construct in 128 

which ftsZ was expressed from a synthetic NtcA-dependent promoter, which we will 129 

denote PND. This promoter was designed based on known features of Class II NtcA-130 

activated promoters (Herrero et al., 2001) and contains a consensus NtcA-binding site 131 

located 23 bp upstream from a -10 promoter box (Fig. 1A). The PND promoter, together 132 

with the C.S3 gene cassette, was inserted in the Anabaena chromosome 5’ of nucleotide 133 

52 upstream of the ftsZ start codon (see Fig. 1A and Experimental procedures for 134 

details). An Anabaena clone containing only chromosomes bearing the C.S3-PND 135 

construct was named strain CSFR18 (Fig. S1).  136 

 Because NtcA-dependent promoters are most active when the cells are incubated 137 

in the absence of a source of combined nitrogen and least active in the presence of 138 

ammonium, strain CSFR18 was expected to grow well diazotrophically and, as a 139 

consequence of insufficient ftsZ expression, poorly in the presence of ammonium. Tests 140 A
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of growth on solid medium showed poorer growth in the presence of ammonium than 141 

fixing N2 or in the presence of nitrate (Fig. 1B). Strain CSFR18 was therefore routinely 142 

maintained on solid BG11 (nitrate-containing) medium. When CSFR18 cells grown on 143 

BG11 medium were inoculated in liquid medium, growth was observed for about 5 days 144 

independently of the nitrogen source. Although the growth rates were somewhat slower 145 

than those of the wild type, exponential growth was not much affected (Fig. S2). 146 

Microscopic inspection of the cultures showed, however, an altered morphology, mainly 147 

in ammonium-containing media, in which the mutant cells were significantly larger than 148 

the wild-type cells (Fig. 1C). In contrast to many bacteria in which lack of FtsZ results 149 

in cell elongation (Margolin, 2009), the cylindrical Anabaena cells got enlarged, being 150 

longer and wider than the control cells, in response to decreased expression of ftsZ. In 151 

the presence of nitrate the cells of the mutant were also larger than the wild-type cells, 152 

but in the diazotrophic cultures mutant and wild-type cells were similar in size (cellular 153 

areas are summarized in the legend to Fig. 1). The final appearance of the cultures was 154 

very different as observed after 7 days of incubation under the different nitrogen 155 

regimes (Fig. 1D). The culture of the mutant containing nitrate as the nitrogen source 156 

was yellowish, which is indicative of an altered physiology, the culture with ammonium 157 

was largely lysed (hence the lack of turbidity and the blue color reflecting the release of 158 

phycobiliproteins from the cells), and only the diazotrophic culture was similar to the 159 

corresponding wild-type culture.  160 

 The observations described above are consistent with NtcA-dependent 161 

expression of ftsZ in strain CSFR18, with a limited expression mainly in ammonium-162 

containing cultures. Transcript levels of ftsZ were determined after two days of 163 

incubation in liquid medium with the different nitrogen sources. Levels of ftsZ 164 

transcript were about 23%, 60% and 89% in the mutant as compared to the wild type in 165 A
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media containing ammonium, nitrate or no combined nitrogen, respectively (Fig. 2A). 166 

The low level of ftsZ expression in cells of CSFR18 incubated in the presence of 167 

ammonium corroborates that the PND promoter substitutes for the natural ftsZ promoter 168 

in this strain. Our results also show that in the wild type, ftsZ expression is about 2-fold 169 

higher in the diazotrophic cultures than in cultures containing combined nitrogen. 170 

Western blot analysis performed with an antibody raised against the FtsZ protein of 171 

Anabaena expressed in E. coli confirmed that the FtsZ levels in strain CSFR18 were 172 

higher in diazotrophic than in nitrate-containing cultures, and lowest in ammonium-173 

containing cultures, with the levels in the absence of combined nitrogen being similar in 174 

the mutant and the wild type (Fig. 2B).  175 

Subcellular localization of FtsZ in the wild type and strain CSFR18 was 176 

addressed by immunofluorescence with the Anabaena FtsZ antibodies. In the wild type, 177 

localization of FtsZ in a ring at the middle of the cells could be readily observed in 178 

vegetative cells, but not in heterocysts (Fig. 3). (We repeatedly found poor labeling in 179 

ammonium-grown wild-type cells, but the reason for this is unknown.) In strain 180 

CSFR18, FtsZ ring labeling was readily observed in diazotrophic filaments, in which a 181 

number of vegetative cells, but not heterocysts, were labeled (Fig. 3). In this strain, an 182 

FtsZ ring was observed with difficulty in some cells of the filaments incubated with 183 

nitrate, but it was not observed in the big cells produced after incubation in the presence 184 

of ammonium. These results are consistent with the different levels of FtsZ observed by 185 

western blot analysis in the cells of CSFR18 incubated with different nitrogen sources.  186 

 187 

SepJ localization in strain CSFR18 188 

Once a strain with regulated expression of ftsZ was available and conditions leading to 189 

production of low FtsZ cellular levels were established, we addressed the localization of 190 A
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SepJ under those conditions. Localization of SepJ has previously been investigated 191 

using a SepJ-GFP fusion (Flores et al., 2007; Mariscal et al., 2011). For this work, 192 

however, we set up a protocol to study the subcellular localization of the native SepJ 193 

protein by immunofluorescence, using antibodies raised against the coiled-coil domain 194 

of SepJ (anti SepJ-CC antibodies; Mariscal et al., 2011). These antibodies localized 195 

SepJ at the cell poles in filaments grown with nitrate as the nitrogen source (Fig. 4). 196 

Additionally, SepJ was observed, less focused, in the middle of enlarged cells that were 197 

apparently dividing (see N2-grown cells in Fig. 4).  198 

In strain CSFR18, specific localization of SepJ at the cell poles was only 199 

observed in filaments that had been incubated without combined nitrogen (Fig. 4). In 200 

filaments incubated for 2 days in ammonium-containing medium, the SepJ signal, seen 201 

as spots, was delocalized. In filaments incubated with nitrate, SepJ could be observed 202 

localized in the cell poles, but also some SepJ signal was observed disperse (Fig. 4 and 203 

not shown). Because of the low levels of FtsZ protein present in the cells incubated with 204 

ammonium, these observations suggest that the correct localization of SepJ at the cell 205 

poles needs the presence of FtsZ in the cells at normal, or close to normal, levels.  206 

 207 

Treatment with berberine 208 

Berberine is a plant alkaloid that has been shown to interfere with the assembly of the 209 

FtsZ ring (Domadia et al., 2008; Boberek et al., 2010). To assess in a different way the 210 

possible role of FtsZ in the localization of SepJ, we treated Anabaena cells with 211 

berberine and performed immunofluorescence tests with the anti FtsZ and anti SepJ-CC 212 

antibodies. Incubation of cells grown using nitrate as the nitrogen source with 0.1 mM 213 

berberine for 24 h hampered the formation of the FtsZ ring (Fig. 5). Longer incubations 214 

(≥ 48 h) or incubation with higher berberine concentrations (≥ 0.2 mM) resulted in cell 215 A
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lysis. The filaments with cells lacking an FtsZ ring showed SepJ labeling more spaced 216 

than the non-treated filaments (Fig. 5). Mean distance between SepJ spots was 3.0 ± 0.7 217 

μm (number of intervals counted, n = 76) in untreated filaments and 5.1 ± 2.5 μm (n = 218 

74) in berberine-treated filaments (the significance of the difference between untreated 219 

and treated filaments was assessed by the Student’s t test; P < 10
-10

). Whereas spots 220 

observed with the anti SepJ-CC antibodies may correspond to SepJ proteins placed at 221 

the intercellular septa before the treatment with berberine, implying a remarkable 222 

stability of SepJ, elongated cells in which no SepJ signal is evident may result from lack 223 

of SepJ localization related to lack of FtsZ assembly. Although indirect effects of 224 

berberine cannot be ruled out, these results are consistent with a dependence of SepJ 225 

localization on the FtsZ ring as deduced above with the CSFR18 mutant. 226 

 227 

Protein-protein interactions tested with the bacterial two-hybrid system 228 

The dependence of SepJ subcellular localization on FtsZ could result from a direct 229 

interaction between these two proteins or from an interaction of SepJ with other 230 

protein(s) of the divisome that require FtsZ for proper localization. To identify possible 231 

direct interactions of SepJ with FtsZ or some other divisome proteins, we used the 232 

bacterial two-hybrid system (BACTH), which permits a visual screening for interactions 233 

on X-gal-containing plates and an estimation of the strength of those interactions by 234 

quantitative determination of -galactosidase activity (Karimova et al., 1998). Fusions 235 

of SepJ and divisome proteins FtsZ, FtsQ and FtsW, all of them from Anabaena, to the 236 

two complementary fragments (T18 and T25) of the catalytic domain of adenylate 237 

cyclase were prepared and cloned together in different combinations. The predicted 238 

topology of the protein fusions used is schematized in Fig. 6, and -galactosidase 239 

activities are presented in Table 1. 240 A
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We first checked whether SepJ interacts with itself by cloning SepJ fused to the 241 

N-termini of T25 (SepJ-T25) and T18 (SepJ-T18). Whereas appropriate control 242 

combinations with empty T18 or T25 plasmids were negative, a strong interaction was 243 

detected for the SepJ-T25/SepJ-T18 pair (Table 1). This result shows that SepJ can be 244 

involved in protein-protein interactions when fused to either T18 or T25. As described 245 

in the Introduction, Anabaena SepJ bears three well-defined domains: a coiled-coil 246 

domain and a linker domain that likely reside in the periplasm and an integral 247 

membrane (permease) domain (schematically depicted in Fig. 6). To test a possible role 248 

of specific protein domains in the interaction, we prepared truncated versions of SepJ 249 

lacking (i) a substantial part (amino acid residues 463 to 748, leaving only one putative 250 

transmembrane segment) of the permease domain, denoted SepJ(∆TM), (ii) most of the 251 

predicted periplasmic section, including both the coiled-coil and linker domains (amino 252 

acid residues 40 to 410), denoted SepJ(∆pp), (iii) the linker domain (amino acid 253 

residues 223 to 410), denoted SepJ(∆linker), and (iv) most of the coiled-coil domain 254 

(amino acid residues 40 to 201), denoted SepJ(∆CC). These proteins were fused to the 255 

N-termini of T25 and T18, and appropriate controls of interaction with empty T18 and 256 

T25, respectively, were negative (Table 1). SepJ(∆TM) did not show self-interaction or 257 

interaction with the whole SepJ, and SepJ(∆pp) showed a very low self-interaction and 258 

no interaction with the whole SepJ (Table 1). In contrast, SepJ(∆linker) and SepJ(∆CC) 259 

showed weak and strong self-interactions, respectively, and appreciable interactions 260 

with the whole SepJ in both cases. Because SepJ is a cytoplasmic membrane protein, it 261 

is possible that the truncated SepJ(∆TM) protein is not properly incorporated into the 262 

membrane making any interaction not possible. In contrast, interactions observed with 263 

SepJ(∆linker) and SepJ(∆CC) indicate that these proteins were properly produced to 264 A
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work appreciably. These results show an important role of the linker domain in SepJ 265 

self-interactions. 266 

The SepJ-T18 plasmid (or the T18 plasmid as a control) was then tested with 267 

FtsZ-T25 (FtsZ fused to the N-terminus of T25), T25-FtsW (FtsW fused to the C-268 

terminus of T25), and T25-FtsQ (FtsQ fused to the C-terminus of T25) (see schemes in 269 

Fig. 6). Whereas all controls with empty T18 were negative, in the SepJ-divisome 270 

protein pairs tested no interaction was detected with FtsZ, a weak interaction of 271 

uncertain statistical significance was detected with FtsW, and a strong interaction was 272 

detected with FtsQ (Table 1). Whereas the negative result with FtsZ does not provide 273 

evidence for interaction and the result with FtsW leaves the possibility of an interaction 274 

open, the positive result with FtsQ suggests interaction of this protein with SepJ. 275 

 FtsQ from E. coli has one transmembrane segment and a periplasmic section 276 

consisting of two domains,  and , that mediate interactions with other proteins (Chen 277 

et al., 1999; van den Ent et al., 2008; Villanelo et al., 2011), and Anabaena FtsQ is 278 

predicted to have similar domains (Fig. S3). To investigate possible domain-specific 279 

interactions of SepJ with FtsQ, the SepJ truncated proteins were tested. Whereas 280 

SepJ(∆TM) and SepJ(∆linker) did not interact, and SepJ(∆pp) showed a very weak 281 

interaction with FtsQ, SepJ(∆CC) showed a strong interaction (Table 1). Whereas, as 282 

noted above, lack of proper integration of SepJ(∆TM) into the cytoplasmic membrane 283 

cannot be ruled out, these results suggest a role of the SepJ linker domain in interaction 284 

with FtsQ. 285 

 To test whether one or the two of the FtsQ periplasmic domains have a role in 286 

interaction with SepJ, we prepared truncated versions of FtsQ, FtsQ() and FtsQ() 287 

(Fig. S3), fused to the C-terminus of T25. Whereas control tests with T18 were 288 

negative, tests with SepJ-T18 showed a very weak interaction with FtsQ() and a very 289 A
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strong interaction with FtsQ(), suggesting that the  domain, but not the  domain is 290 

needed for the FtsQ-SepJ interaction. 291 

 292 

Co-purification of SepJ and FtsQ 293 

To corroborate the interaction of SepJ and FtsQ, an E. coli strain carrying compatible 294 

plasmids expressing SepJ-GFP and His6-FtsQ, respectively, was prepared. Because a 295 

part of the predicted periplasmic section of SepJ appears necessary for the interaction, a 296 

plasmid expressing a SepJ-GFP fusion protein without most of this section (pp-SepJ-297 

GFP) was also used.  As controls, E. coli strains with a plasmid expressing one of the 298 

proteins (SepJ-GFP, pp-SepJ-GFP or His6-FtsQ) and the second plasmid without an 299 

insert were constructed. Cell-free extracts were prepared by breaking down the cells in a 300 

French pressure cell (see Experimental procedures), incubated with anti GFP antibodies 301 

(anti-GFP MicroBeads) and passed through a magnetic-activated cell sorting (MACS) 302 

column, and the material retained was eluted and subjected to SDS-PAGE. It should be 303 

noted that the material retained in the column should consist of inside-out membrane 304 

micro-vesicles (normally produced by French pressure cell breakage; see e.g., Altendorf 305 

and Staehelin, 1974), in which the cytoplasmic-exposed GFP is available for interaction 306 

with the antibodies. As shown in Fig. 7A, His6-FtsQ, detected with anti His-tag 307 

antibodies, was retained in the case of extracts containing also SepJ-GFP, but much less 308 

in those containing pp-SepJ-GFP or not in the case of control extracts lacking SepJ. 309 

The presence of SepJ-GFP or pp-SepJ-GFP in the corresponding preparations was 310 

corroborated with anti-GFP antibodies (Fig. 7B). These results indicate that FtsQ was 311 

recovered at substantial levels only in micro-vesicles containing the whole SepJ protein, 312 

thus corroborating an interaction of SepJ with FtsQ that requires the predicted 313 

periplasmic section of SepJ to take place.  314 A
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 315 

Discussion 316 

SepJ is a key protein in Anabaena multicellularity, since mutants lacking SepJ show a 317 

strong filament fragmentation phenotype (Nayar et al., 2007; Flores et al., 2007) and are 318 

impaired in the intercellular transfer of a fluorescent tracer (Mullineaux et al., 2008; 319 

Mariscal et al., 2011). SepJ-GFP fusions have been shown to localize to the cell poles at 320 

the intercellular septa in the filaments of Anabaena (Flores et al., 2007; Mariscal et al., 321 

2011), and immunofluorescence analysis performed in this work with an antibody 322 

raised against the coiled-coil domain of Anabaena SepJ has confirmed the same 323 

localization for native SepJ (Fig. 4). This same approach has recently permitted the 324 

localization of SepJ in the complex intercellular septa of the true-branching, heterocyst-325 

forming filamentous cyanobacterium Mastigocladus laminosus (Nürenberg et al., 326 

2014), indicating that localization of SepJ at the intercellular septa may be a universal 327 

feature in heterocyst-forming cyanobacteria.  328 

In contrast to SepJ-GFP, which is observed as a single fluorescence spot in the 329 

septa between adjacent vegetative cells (Flores et al., 2007), two spots, one in each of 330 

the adjacent cells, are frequently observed in the immunofluorescence analysis (Fig. 4) 331 

indicating that SepJ localizes to both poles in each cell. Two spots have also been 332 

observed in immunofluorescence analysis with anti-GFP antibodies in a strain 333 

producing SepJ-GFP (Mariscal and Flores, 2010). (The two foci at the intercellular 334 

septa likely result from shrinking of the cells during preparation for 335 

immunofluorescence that involves a dehydration step.) Therefore, to produce a single 336 

fluorescence spot from the SepJ-GFP fusion, in which the GFP is predicted to reside 337 

next to the cytoplasmic face of the cytoplasmic membrane (Flores et al., 2007), SepJ 338 

from adjacent cells must be very close to each other. On the other hand, our BACTH 339 A
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analysis has unraveled a strong self-interaction of SepJ, for which the linker domain 340 

appears to be very important, indicating that SepJ can form multimers in the cells 341 

producing it. All these observations are consistent with the idea that SepJ is part of a 342 

septal junction complex in which SepJ multimers from adjacent cells interact, 343 

presumably through the SepJ coiled-coil domains that, as described previously 344 

(Mariscal et al., 2011), are required to keep SepJ at the cell poles.  345 

 SepJ-GFP is also seen to localize in a ring, similar to a Z ring, when cell division 346 

starts (Flores et al., 2007; Mariscal and Flores, 2010), and a related location has also 347 

been confirmed here for native SepJ by immunofluorescence (Fig. 4). Localization in a 348 

Z ring and progressive focusing to the new cell poles as the septum is synthesized 349 

during cell division suggested a relation with the divisome. Because ftsZ is an essential 350 

gene in most bacteria including Anabaena (Zhang et al., 1995), we constructed strain 351 

CSFR18 in which, based on expression from a synthetic NtcA-dependent promoter, the 352 

FtsZ levels depend on the provided nitrogen source. This strain produces very low 353 

levels of FtsZ after incubation for a few days in the presence of ammonium, resulting in 354 

malformed cells that eventually lyse. However CSFR18 can be maintained in the 355 

presence of nitrate, although the highest levels of FtsZ, similar to the wild-type levels 356 

and readily seen to form a Z ring, are observed in the vegetative cells of diazotrophic 357 

filaments. Thus, we could study the localization of SepJ, tested by immunofluorescence, 358 

as a function of FtsZ abundance in filaments of strain CSFR18 grown with nitrate and 359 

incubated for a few days in medium with nitrate, ammonium or lacking a source of 360 

combined nitrogen. Our results show that the correct localization of SepJ requires the 361 

presence of close to normal FtsZ levels, which are best attained in the diazotrophic 362 

filaments of strain CSFR18 (Fig. 4). In a complementary approach, we observed that 363 

treatment of Anabaena cells with berberine impedes FtsZ ring formation, as previously 364 A
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shown for E. coli (Domadia et al., 2008; Boberek et al., 2010), and affects the correct 365 

localization of SepJ. All these results together suggest that FtsZ has a role in the 366 

subcellular localization of SepJ. 367 

 Dependence of SepJ localization on FtsZ can be indirect, since FtsZ has a 368 

scaffolding role for the divisome. We therefore addressed, using BACTH, the possible 369 

direct interaction of SepJ with FtsZ and two downstream divisome proteins, FtsQ and 370 

FtsW, all of them from Anabaena. A strong interaction was observed only between 371 

SepJ and FtsQ, consistent with FtsQ recruiting SepJ to the divisome, which is 372 

reminiscent of the FtsQ role in E. coli at recruitment of downstream cell division 373 

proteins (Chen et al., 2002). The interaction between SepJ and FtsQ could be confirmed 374 

by co-purification of the two proteins expressed in E. coli (Fig. 7), which also showed a 375 

role of the predicted periplasmic section of SepJ in this interaction. This is consistent 376 

with the results of BACTH analysis, which suggest a role of the linker domain of SepJ 377 

in a specific interaction with the periplasmic  domain of FtsQ. This domain exhibits 378 

high similarity to polypeptide transport-associated (POTRA) domains (van den Ent et 379 

al., 2008). Although we cannot rule out that interactions between the transmembrane 380 

segments of these proteins occur, our results support a specific interaction between parts 381 

of the long extra-membrane section of SepJ and the periplasmic section of FtsQ. A 382 

corollary of this observation is that the section of SepJ containing the coiled-coil and 383 

linker domains is periplasmic, as predicted previously (Flores et al., 2007). We 384 

therefore suggest that SepJ localization at the cell poles in the intercellular septa 385 

depends on the divisome, involving an interaction with FtsQ. Nonetheless, interactions 386 

of SepJ with other divisome proteins may also take place, some of which may be 387 

functionally redundant as is not uncommon in interactions between divisome proteins 388 

(Lutkenhaus et al., 2012). A more ample analysis of interactions between SepJ and 389 A
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divisome proteins will need however an increased knowledge of the Anabaena 390 

divisome. Localization of SepJ at the cell poles may additionally be stabilized by the 391 

above-discussed interactions between the coiled-coil domains of SepJ proteins from 392 

adjacent cells.  393 

 In filamentous cyanobacteria, when cell division is completed, the peptidoglycan 394 

layers of the two adjacent cells remain fused in a substantial number of the filament’s 395 

septa allowing the isolation of murein sacculi corresponding to several cell units 396 

(Lehner et al., 2011), and the outer membrane does not enter into the septum between 397 

adjacent cells (Wolk, 1996; Flores et al., 2006; Wilk et al., 2011). Thus, the divisome of 398 

this type of cyanobacteria must differ in composition and/or regulation of its activity 399 

from the divisome of unicellular bacteria, including unicellular cyanobacteria, which 400 

performs splitting of septal peptidoglycan and invagination of the outer membrane to 401 

complete cell division. Because SepJ or a SepJ-like protein is found in most filamentous 402 

cyanobacteria (Mariscal et al., 2011; Nürenberg et al., 2014), an interaction of SepJ 403 

with the divisome might contribute to the characteristic cell division of these organisms. 404 

Besides SepJ, the fraCDE operon is often conserved in filamentous cyanobacteria 405 

(Merino-Puerto et al., 2013), and products of this operon have also been observed in the 406 

place of the Z ring (FraC, observed with a FraC-GFP fusion; Merino-Puerto et al., 407 

2010) or in the growing intercellular septa (FraD, observed by means of immunogold 408 

labeling; Merino-Puerto et al., 2011), making it possible that these proteins interact with 409 

the divisome as well. Specific late events during cell division may be at the basis of the 410 

multicellular character of these bacteria, in which the divisome appears to have a role 411 

localizing proteins essential for multicellularity. 412 

 413 
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 415 

Experimental procedures 416 

Strains and growth conditions 417 

Anabaena sp. strain PCC 7120 (also known as Nostoc sp. strain PCC 7120) and strain 418 

CSFR18 were grown in BG11 (containing NaNO3), BG110 (free of combined nitrogen) 419 

or BG110 + ammonium (BG110 containing 4 mM NH4Cl and 8 mM TES-NaOH buffer, 420 

pH 7.5) media at 30ºC in the light (25 μE m
-2

 s
-1

 from fluorescent lamps), in shaken (80-421 

90 rpm) liquid cultures or in medium solidified with 1% Difco agar. The BG11-based 422 

medium contained ferric citrate instead of the ferric ammonium citrate used in the 423 

original recipe (Rippka et al., 1979). Media for strain CSFR18 was supplemented with 5 424 

g ml
-1

 streptomycin sulfate (Sm) and 5 g ml
-1 

spectinomycin dihydrochloride 425 

pentahydrate (Sp).  426 

Escherichia coli DH5α and XL1-Blue (Stratagene) were used for plasmid 427 

constructions. Strains HB101 and ED8654 were used for conjugation with Anabaena. 428 

Strain BTH101 (cya-99) was used for BACTH analysis. Strain BL21-lacIq was used for 429 

production of Anabaena FtsZ and co-purification assays. All E. coli strains were grown 430 

in LB medium, supplemented when appropriate with antibiotics at standard 431 

concentrations (Ausubel et al., 2014; Karimova et al., 2005).  432 

 433 

Plasmid construction and genetic procedures 434 

DNA was isolated from Anabaena sp. by the method of Cai and Wolk (1990). Plasmid 435 

pCSFR15, carrying ftsZ (ORF alr3858) under the control of the synthetic NtcA-436 

regulatable promoter, PND, was prepared by PCR and standard cloning procedures. 437 

pCSFR15 is a pMBL-based plasmid that contains a fragment upstream of alr3858 438 

(Anabaena chromosome coordinates 4,655,349 to 4,655,844), amplified by PCR using 439 

primers alr3858-3 and alr3858-4 (all oligodeoxynucleotide primers are described in 440 
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Table S1) and cloned between ApaI and SalI sites; the C.S3 cassette (Elhai and Wolk, 441 

1988; C.S3 is derived from the  cassette described by Prentki and Krisch, 1984) 442 

cloned into BamHI; a synthetic NtcA-regulated promoter generated by PCR using Pro-443 

sNtcA-1 and Pro-sNtcA-2 overlapping primers and cloned into SpeI and EcoRV sites; 444 

and the 5’ region of alr3858 (coordinates 4,655,850 to 4,656,703), amplified by PCR 445 

using primers alr3858-1 and alr3858-2 and cloned between SacI and XhoI sites. The 446 

insert of pCSFR15 was corroborated by sequencing and digested with PvuII, and the 447 

fragment containing the C.S3-PND construct was transferred to pRL278 previously 448 

digested with XhoI and treated with the Klenow fragment producing pCSFR18. This 449 

plasmid was transferred by conjugation, performed as described (Elhai et al., 1997), to 450 

Anabaena sp. strain PCC 7120 with selection for resistance to Sm and Sp. Cultures of 451 

exconjugants obtained were used to select for clones resistant to 5% sucrose (Cai and 452 

Wolk, 1990), and individual Suc
R
 colonies were checked by PCR. Clones in which the 453 

C.S3-PND construct was inserted into ftsZ upstream region were isolated, and a clone 454 

homozygous for the chromosomes bearing this construct was selected for further 455 

analysis and named strain CSFR18.  456 

For bacterial two-hybrid (BACTH) analysis, all genes were amplified using 457 

Anabaena DNA as template. The following primers were used: all0154-9 and all0154-458 

10 to amplify ftsW (ORF all0154); alr3857-7 and alr3857-8 to amplify ftsQ (ORF 459 

alr3857); and alr3858-13 and alr3858-14 to amplify ftsZ. The PCR products 460 

corresponding to alr0154 and alr3857 were cloned in pKT25 using PstI and BamHI, 461 

and that corresponding to alr3858 was cloned in pKNT25 using the same enzymes. For 462 

the sepJ gene (ORF alr2338), a PCR product amplified using alr2338-13 and alr2338-463 

35 primers was cloned in pCSVM97 (bearing the complete sepJ gene with the stop 464 

codon substituted by a XhoI restriction site; unpublished) using PstI and XbaI, 465 A
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generating plasmid pCSE216. The pCSE216 insert was then transferred to pUT18 and 466 

pKNT25 using PstI and SmaI. In addition, primers alr2338-35 and alr2338-36 were 467 

used to amplify sepJ-truncated versions using genomic DNA from Anabaena strains 468 

CSVM25, CSVM26, CSVM85 (Mariscal et al., 2011) and CSVM90 (bearing a sepJ 469 

gene encoding a SepJ protein lacking amino acid residues 463 to 748; unpublished). 470 

The resulting PCR products were cloned in pUT18 and pKNT25 using PstI and SmaI 471 

and sequenced. As a result, the following plasmids were generated: pCSFR30 472 

(producing T25-FtsQ), pCSFR31 (producing T25-FtsW), pCSFR32 (producing FtsZ-473 

T25), pCSE221 (producing SepJ-T18), pCSE222 (producing SepJ-T25), pCSE226 474 

(producing SepJ_CSVM25-T18), pCSE227 (producing SepJ_CSVM26-T18), pCSE228 475 

(producing SepJ_CSVM90-T18), pCSE231 (producing SepJ_CSVM25-T25), pCSE236 476 

(producing SepJ_CSVM90-T25), pCSE237 (producing SepJ_CSVM26-T25), pCSE239 477 

(producing SepJ_CSVM85-T18) and pCSE240 (producing SepJ_CSVM85-T25). For 478 

simplicity, SepJ_CSVM25 is denoted SepJ(∆CC), SepJ_CSVM26 is denoted 479 

SepJ(∆pp), SepJ_CSVM85 is denoted SepJ(∆linker), and SepJ_CSVM90 is denoted 480 

SepJ(∆TM). 481 

Also for BACTH analysis, to produce a version of Anabaena FtsQ with the  482 

domain deleted, two DNA fragments, one encoding amino acid residues 1 to 59 and the 483 

other one residues 128 to 281, were amplified by PCR using primer pairs alr3857-484 

7/alr3857-10 and alr3857-11/alr3857-8 respectively. Both DNA fragments were used as 485 

template in an overlapping PCR using primers alr3857-7 and alr3857-8. The fragment 486 

obtained was digested with PstI and BamHI and inserted into pKT25 with the same 487 

enzymes producing pCSFR45, which encodes FtsQ() fused to the C terminus of the 488 

T25 subunit. To produce a version of Anabaena FtsQ lacking the  domain (lacking 489 

amino acid residues 128 to 281) and fused to the C-terminus of the T25 subunit, a DNA 490 A
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fragment obtained by PCR using primers alr3857-7 and alr3857-9 (which includes a 491 

termination codon) was cloned in pKT25 using PstI and BamHI. This plasmid was 492 

called pCSFR46.  493 

To produce Anabaena FtsZ protein and obtain an antibody against it, the ftsZ 494 

gene was amplified using Anabaena DNA as template and primers alr3858-7 and 495 

alr3858-8, and the PCR product was cloned in vector pCOLADuet-1 (Novagen) using 496 

BamHI and XhoI, producing plasmid pCSFR22.  497 

For co-purification assays, plasmids bearing genes encoding GFP-tagged SepJ 498 

(or GFP-tagged SepJ without most of its predicted periplasmic section, denoted pp-499 

SepJ-GFP) and His-tagged FtsQ were constructed. The Anabaena ftsQ gene was 500 

amplified using primers alr3857-13 and alr3857-14, and the PCR product was digested 501 

with BamHI and XhoI and cloned in pACYCDuet (Novagen) using the same enzymes, 502 

producing plasmid pCSFR50 (six histidine residues added to the N terminus of FtsQ). 503 

To produce SepJ-GFP and pp-SepJ-GFP a SacI-EcoRI fragment from pCSAL33 504 

(bearing the gfp-mut2 gene; A. López-Lozano and A. Herrero) was cloned in pCSE221 505 

or in pCSE227, producing pCSFR51 and pCSFR52 respectively.  506 

 507 

Expression and purification of Anabaena FtsZ 508 

Plasmid pCSFR22, which contains the Anabaena ftsZ gene fused to a sequence 509 

encoding a His6 tag under an IPTG-inducible promoter, was transferred to E. coli BL21-510 

lacIq. A pre-inoculum of this strain grown overnight in LB medium supplemented with 511 

50 μg of kanamycin sulfate (Km) ml
-1

 and 2% glucose was washed with LB medium 512 

and used to inoculate 1 L of LB medium + Km. The culture was incubated at 37ºC up to 513 

an OD600 of 0.6. Protein expression was induced by addition of 1 mM isopropyl-β-D-1-514 

thiogalactopyranoside (IPTG). After 3 h at 37ºC, cells were collected and resuspended 515 A
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in a buffer containing 50 mM Tris-HCl (pH 8.0), 200 mM NaCl and 10% glycerol (5 516 

ml/g of cells). DNaseI and protease inhibitor cocktail complete Mini EDTA-free (Roche) 517 

were added just before breakage of the cells by passage twice through a French pressure 518 

cell at 20,000 psi. After centrifugation at 15,000 g (10 min, 4ºC), the His6-FtsZ protein 519 

was purified from the supernatant by chromatography through a 5-ml His-Select column 520 

from Sigma, using imidazole to elute the retained proteins. Samples obtained after 521 

purification were subjected to SDS-PAGE, excised from the gel, electro-eluted and 522 

concentrated (Stirred Ultrafiltration Cell, Millipore). An amount of 1.4 mg of purified 523 

protein was used in subcutaneous injection of a rabbit to produce antibodies in the 524 

‘Centro de Producción y Experimientación Animal’, Universidad de Sevilla (Seville, 525 

Spain). Antiserum was recovered 90 days after the first injection and stored at -80ºC 526 

until used.  527 

 528 

Protein sample preparation and western blots 529 

Samples containing 5 μg of chlorophyll a were taken from cultures of Anabaena strains 530 

incubated in the presence of different nitrogen sources for 48 h. Total proteins were 531 

precipitated by incubating samples in 10% trichloroacetic acid at 4ºC for at least 30 532 

min, subsequent centrifugation at 13,200 g (4ºC, 30 min) and finally washed with cold 533 

acetone. The protein pellet was dried for 15 min and then resuspended in a buffer 534 

containing 50 mM Tris-HCl (pH 7.5), 50 mM NaCl and 10% glycerol. After that, 535 

samples were mixed with 1 volume of 2x sample buffer, incubated at 95ºC for 15 min, 536 

run in a 10% Laemmli SDS-PAGE system, and transferred to PVDF membrane filters 537 

as previously reported (Mariscal et al., 2011). For detection of Anabaena FtsZ, the 538 

filters were incubated overnight in blocking buffer containing 10 mM Tris-HCl (pH 539 

7.5), 150 mM NaCl, 5% non-fat milk powder and 0.05% Tween-20. Afterwards, 540 A
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primary anti-FtsZ serum (diluted 1:1000 in blocking buffer) was added, incubated at 541 

30ºC for 1 h and washed three times with TBS. Secondary antibody (anti-rabbit IgG 542 

conjugated to peroxidase from Sigma) was then added at a dilution 1:10,000 in blocking 543 

buffer, incubated 1 h at 30ºC and washed three times with TBS. Detection was 544 

performed with a chemiluminiscence kit (WesternBright
TM

 ECL, Advansta) and 545 

exposure to hyperfilm (GE Healthcare).  546 

For co-purification assays, E. coli strains expressing Anabaena FtsQ fused to a 547 

His6 tag and SepJ or pp-SepJ fused to GFP, or control plasmid vectors, were induced 548 

with IPTG as described above. After 4 h at 37ºC, cells were collected and resuspended 549 

in 5 mL of PBS containing 140 mM NaCl, 1.5 mM KH2PO4, 2.7 mM KCl (pH 7.4) and 550 

one tablet of protease inhibitor cocktail complete Mini EDTA-free (Roche). Cells were 551 

disrupted by passage twice through a French pressure cell at 20,000 psi. After 552 

centrifugation at 15,000 g (10 min, 4ºC), cell extracts were incubated with MACS 553 

Anti-GFP MicroBeads (Miltenyi Biotec) for 1 h. Afterwards, the mixture was loaded 554 

into a MACS column (Miltenyi Biotec) and the column was washed with 3 mL of PBS 555 

buffer. Elution of the GFP-tagged protein (SepJ or pp-SepJ) and its interacting 556 

protein(s) was accomplished with buffer containing 50 mM Tris-HCl (pH 6.8), 50 mM 557 

DTT, 1% SDS, 1 mM EDTA, 0.005% bromphenol blue and 10% glycerol. The eluate 558 

was subjected to electrophoresis in a 10% Laemmli SDS-PAGE system. SepJ-GFP and 559 

pp-SepJ-GFP were detected by western blot as described above using an anti-GFP 560 

antibody (A6455 from Invitrogen) diluted 1:2,000. His6-tagged FtsQ was detected using 561 

anti-His HRP-conjugated antibody (Qiagen) following the instructions from the 562 

supplier.  563 

 564 

Growth rates 565 A
cc

ep
te

d 
A

rti
cl

e



This article is protected by copyright. All rights reserved. 24 

The growth rate, μ, which corresponds to ln2/td, where td is the doubling time, was 566 

calculated from the increase of protein concentration determined by a modified Lowry 567 

procedure (Markwell et al., 1978) in 0.2-ml samples from shaken cultures. The growth 568 

rate was followed for a period of 5 days, between cellular densities corresponding to 5 569 

to about 100 μg of protein (0.2-4 μg of chlorophyll a) per ml. Chlorophyll a content of 570 

cultures was determined by the method of Mackinney (1941).  571 

 572 

Analysis of ftsZ expression by RT-qPCR 573 

RNA was isolated as described previously (Mohamed and Jansson, 1989) from cultures 574 

of Anabaena strains incubated in the presence of different nitrogen sources. RNA (100 575 

ng) was used for retrotranscription using Quantitect Reverse Transcription Kit (Qiagen). 576 

cDNA obtained was used to carry out real time PCR using iCycler iQ Real Time PCR 577 

Detection System equipped with the iCycler iQ v 3.0 software from BioRad. PCR 578 

amplification was carried out using SensiFAST
TM

 SYBR & Fluorescein Kit (BioLine) 579 

following the instructions from the supplier. The amplification protocol was as follows: 580 

1 cycle at 95ºC for 2 min, 30 cycles of: 95ºC for 15 s, 67ºC for 20 s and 72ºC for 30 s. 581 

After this protocol was ended, a melting point calculation protocol was done in order to 582 

check that only the correct product was amplified in each tube. The expression of 583 

alr0599 and all5167 (Flaherty et al., 2011) was used as internal standards to normalize 584 

the values obtained for alr3858 (ftsZ). To study expression of these genes, the following 585 

primer pairs were used: alr0599-1/alr0599-2, all5167-1/all5167-2, and alr3858-586 

9/alr3858-10, respectively.  587 

The mathematical treatment of data to calculate relative gene expression was 588 

performed according to Pfaffl (2001) using the formula: Relative gene expression = 589 

2
-ΔΔCt

. Where ΔΔCt corresponds to the increase in the threshold cycle of the problem 590 A
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gene with respect to the increase in the threshold cycle of the housekeeping genes 591 

(alr0599 and all5167). The final quantification value for each condition indicates the 592 

relative change of gene expression in strain CSFR18 and the wild type with respect to 593 

the wild-type strain grown with nitrate as nitrogen source. 594 

 595 

Immunolocalization and fluorescence microscopy 596 

For immunolocalization of SepJ or FtsZ, cells from 1.5 ml of liquid cultures were 597 

collected by centrifugation, placed atop a poly-L-lysine pre-coated microscope slide and 598 

covered with a 45-μm pore-size Millipore filter. Afterwards, the filter was removed and 599 

the slide was let to dry at room temperature and, then, immersed in 70% ethanol 600 

at -20ºC for 30 min and dried 15 min at room temperature. The cells were washed twice 601 

(2 min each time, room temperature) by covering the slide with PBS-T (PBS 602 

supplemented with 0.05% Tween-20). Subsequently, the slides were treated with a 603 

blocking buffer (5% milk powder in PBS-T) for 15 min. Cells on the slides were then 604 

incubated with a primary antibody (anti-SepJ-CC [Mariscal et al., 2011], diluted in 605 

blocking buffer 1:250, or anti-FtsZ serum, diluted 1:100) for 90 min, washed three 606 

times with PBS-T, incubated 45 min in the dark with secondary anti-rabbit antibody 607 

conjugated to fluorescein isithiocyanate (FITC) (Sigma, 1:500 dilution in PBS-T) and 608 

washed three times with PBS-T. After dried, several drops of FluorSave (Calbiochem) 609 

were added atop, covered with a coverslip and sealed with nail lack. Fluorescence was 610 

imaged using a Leica DM6000B fluorescence microscope and an ORCA-ER camera 611 

(Hamamatsu). Fluorescence was monitored using a FITC L5 filter (excitation, band-612 

pass (BP) 480/40 filter; emission, BP 527/30 filter). Images were analyzed using the 613 

ImageJ software (http://imagej.nih.gov/ij).  614 
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Treatment with berberine  616 

Cultures of wild-type Anabaena grown in BG11 medium and containing about 1 g 617 

chlorophyll a ml
-1

 were incubated in the presence of 0.1 to 1 mM berberine 618 

hemisulphate (Sigma) at 30ºC for 24 to 72 h. After incubation, cells were harvested by 619 

centrifugation and the localization of FtsZ and SepJ was studied by 620 

immunofluorescence as described above.  621 

 622 

BACTH complementation assays 623 

Plasmids used for BACTH assays (Karimova et al., 2005) were co-transformed into 624 

BTH101 (cya-99). The transformants were plated onto LB medium containing selective 625 

antibiotics, 40 μg ml
-1

 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) and 626 

0.5 mM IPTG and, then, incubated at 30ºC for 24 to 36 h. Efficiencies of interactions 627 

between different hybrid proteins were quantified by measuring β-galactosidase activity 628 

in liquid cultures. Bacteria were grown in LB medium in the presence of 0.5 mM IPTG 629 

and appropriate antibiotics at 30ºC for 16 h. Before the assays, the cultures were diluted 630 

1:5 into buffer Z (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl and 1 mM MgSO4). 631 

To permeabilize cells, 30 μl of toluene and 35 μl of a 0.1% SDS solution were added to 632 

2.5 ml of bacterial suspension. The tubes were vortexed for 10 s and incubated with 633 

agitation at 37ºC for 45 min for evaporation of toluene. For the enzymatic reaction, 875 634 

μl of permeabilized cells were added to buffer Z supplemented with β-mercaptoethanol 635 

(25 mM final concentration), to a final volume of 3.375 ml. The tubes were incubated at 636 

30ºC in a water bath for at least 5 min. The reaction was started by adding 875 μl of 0.4 637 

mg ml
-1

 o-nitrophenol-β-galactoside (ONPG) in buffer Z without β-mercaptoethanol. 1-638 

ml samples, taken at times up to 10 min, were added to 0.5 ml of 1 M Na2CO3 to stop 639 

the reaction. A420 nm was recorded, and the amount of o-nitrophenol produced was 640 A
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calculated using an extinction coefficient ε420 nm = 4.5 mM
-1

 cm
-1

 and referred to the 641 

amount of total protein, determined by a modified Lowry procedure (Markwell et al., 642 

1978). The o-nitrophenol produced per mg of protein versus time was represented, and 643 

-galactosidase activity was deduced from the slope of the linear function.  644 
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 838 

Figure legends 839 

 840 

Fig. 1. Genomic structure and phenotype of Anabaena sp. strain CSFR18 (C.S3-PND-841 

ftsZ). (A) Schematic (not to scale) of the ftsQ-ftsZ genomic region in strain CSFR18, 842 

including, shown in blue color, the sequence of the DNA fragment bearing the 843 

introduced synthetic NtcA-dependent promoter: blue bracket, NtcA-binding site; red 844 

bracket, -10 promoter hexamer; black arrow, predicted transcription start site. Sequence 845 

in red corresponds to the end of C.S3 and sequence in green to the ftsZ 5’ and upstream 846 

region (the three first codons of the gene are underlined). C.S3 includes the  cassette 847 

that encodes resistance to Sm and Sp (gene orientation indicated by the white arrow) 848 

and bears transcriptional terminators in both ends, indicated by white exes (Elhai and 849 

Wolk, 1988). (B) Test of growth on solid media. Samples from BG11-grown filaments 850 

of strains PCC 7120 (wild type) and CSFR18 were spotted at different dilutions in solid 851 

media with the indicated nitrogen source, incubated under growth conditions and 852 

photographed after 7 days. (C, D) Cultures of BG11-grown filaments of the indicated 853 

strains were incubated under growth conditions in liquid media with the indicated 854 

nitrogen sources and visualized by light microscopy after 5 days (C) or photographed 855 

after 7 days (D). Size bars in C, 3 µm. The area of the cells was determined in the 856 

different liquid cultures with the following results: nitrate-containing cultures, 12.51 ± 857 

0.53 µm
2
 for the wild type and 22.9 ± 1.14 µm

2
 for the mutant; ammonium-containing 858 

cultures, 13.36 ± 0.68 µm
2
 for the wild type and 45.37 ± 3.61 µm

2
 for the mutant; 859 

cultures without combined nitrogen, 12.18 ± 0.33 µm
2
 for the wild type and 10.9 ± 0.50 860 

µm
2
 for the mutant (37 cells for each strain and growth condition were measured). 861 

Student’s t test indicated that the differences between the mutant and the wild type were 862 

significant in the cultures containing nitrate (P < 10
-11

) or ammonium (P < 10
-12

). 863 
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 864 

Fig. 2. Expression of ftsZ in Anabaena strains PCC 7120 (wild type) and CSFR18 865 

(C.S3-PND-ftsZ). (A) Levels of ftsZ transcript in strains CSFR18 and PCC 7120, relative 866 

to those in nitrate-grown PCC 7120 (wild type) cells. RNA was isolated from BG11-867 

grown filaments incubated for 48 hours under culture conditions with the indicated 868 

nitrogen source, and RT-qPCR was performed as described in Experimental procedures. 869 

(B) Western blot analysis of FtsZ. BG11-grown filaments of the indicated strain were 870 

incubated for 48 hours under culture conditions with the indicated nitrogen source, and 871 

extracts were prepared, loaded into SDS-PAGE gels (60 µg protein per lane), 872 

electrophoresed and probed with antibodies raised against the Anabaena FtsZ protein as 873 

described in Experimental procedures.  874 

 875 

Fig. 3. Immunofluorescence localization of FtsZ in Anabaena strains PCC 7120 (wild 876 

type) and CSFR18 (C.S3-PND-ftsZ). BG11-grown filaments of the indicated strain were 877 

incubated for 48 hours under culture conditions with the indicated nitrogen source, 878 

prepared for immunofluorescence analysis with anti Anabaena FtsZ protein antibodies, 879 

and visualized by fluorescence microscopy as described in Experimental procedures. 880 

Arrows point to heterocysts. Size bar, 3 µm; magnification was the same for all 881 

micrographs. Merged bright-field and fluorescence images are shown. 882 

 883 

Fig. 4. Immunofluorescence localization of SepJ in Anabaena strains PCC 7120 (wild 884 

type) and CSFR18 (C.S3-PND-ftsZ). BG11-grown filaments of the indicated strain were 885 

incubated for 48 h under culture conditions with the indicated nitrogen source, prepared 886 

for immunofluorescence analysis with antibodies raised against the coiled-coil domain 887 

of the Anabaena SepJ protein, and visualized by fluorescence microscopy as described 888 A
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in Experimental procedures. Size bars, 3 µm. Arrowheads point to places, in dividing 889 

cells, where the immunofluorescence signal is in a position similar to that of a Z ring. 890 

Bright-field, fluorescence (SepJ) and merged images are shown. 891 

 892 

Fig. 5. FtsZ and SepJ localization in berberine-treated Anabaena filaments. Filaments 893 

grown in BG11 medium were treated (+) or not (-) with 0.1 mM berberine for 24 h and 894 

subjected to immunofluorescence analysis with anti FtsZ and anti SepJ-CC antibodies 895 

as described in Experimental procedures. Size bar, 3 µm; magnification was the same 896 

for the four micrographs. Merged bright-field and fluorescence images are shown 897 

 898 

Fig. 6. Schematic of the protein fusions used in BACTH analysis. The T25 and T18 899 

fragments of the catalytic subunit of adenylate cyclase are represented as block arrows 900 

indicating the orientation (N-terminal to C-terminal) of the polypeptide. The SepJ 901 

protein (751 amino acid residues; blue) consists of three domains: N-terminal coiled-902 

coil domain (CC), linker and C-terminal permease (likely containing 9 or 11 903 

transmembrane segments). Anabaena FtsQ (281 amino acid residues; green) is 904 

predicted to contain the same domains as E. coli FtsQ: an N-terminal transmembrane 905 

segment and periplasmic  (POTRA) and  domains (van den Ent et al., 2008). 906 

Anabaena FtsZ (428 amino acid residues; yellowish) is a predicted soluble protein. 907 

Anabaena FtsW (396 amino acid residues; red) is predicted to have 8 transmembrane 908 

segments with its N- and C-termini in the cytoplasmic side of the cytoplasmic 909 

membrane. N denotes the N-terminus in each fusion protein. 910 

 911 
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Fig. 7. Joint extraction from E. coli of SepJ-GFP and His6-tagged Anabaena FtsQ. Total 913 

extracts from cells of E. coli expressing SepJ-GFP or pp-SepJ-GFP and/or His6-tagged 914 

Anabaena FtsQ were allowed to interact with anti-GFP MicroBeads and loaded into a 915 

MACS column, and the retained material was then eluted and subject to SDS-PAGE. 916 

Tagged Anabaena FtsQ (about 33 kDa) was identified using an anti-pentahistidine 917 

antibody (A), and tagged SepJ was identified using an anti-GFP antibody (B). For each 918 

lane the proteins expressed in the corresponding E. coli strain are shown: SepJ refers to 919 

SepJ-GFP; pp, SepJ-GFP without most of the predicted SepJ periplasmic section; 920 

FtsQ, His6-tagged Anabaena FtsQ. ϕ, plasmid vector without insert. White triangles 921 

point to signals corresponding to the SepJ-GFP fusion protein (about 108 kDa) and 922 

black triangles point to pp-SepJ-GFP (about 68 kDa). The SepJ protein generates 923 

forms moving to different extents in SDS-PAGE gels (Mariscal et al., 2011). Some 924 

degradation of the SepJ-GFP fusion proteins releasing at least two forms of GFP (about 925 

27 kDa) and, in the case of the complete protein, possibly also a protein lacking the 926 

predicted periplasmic section appears to have taken place. 927 

 928 
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 930 

T18 fusion T25 fusion -Galactosidase activity 

(nmol ONP [mg protein]
-1

 min
-1

) 

Student’s t 
test 

  Mean ± SD (n) P 

Negative control 

T18 T25 9.70 ± 2.06 (8)  

SepJ self-interactions 

T18 SepJ-T25 9.35 ± 1.38 (8) 0.6969 

SepJ-T18 T25 10.04 ± 2.45 (8) 0.7705 

SepJ-T18 SepJ-T25 199.47 ± 57.95 (7) 4 E-07 (*) 

T18 SepJ(TM)-T25 10.76 ± 0.63 (4) 0.3489 

T18 SepJ(pp)-T25 12.05 ± 1.81 (4) 0.0829 

T18 SepJ(linker)-T25 9.76 ± 1.10 (4) 0.9589 

T18 SepJ(CC)-T25 12.44 ± 1.65 (4) 0.0443 

SepJ(TM)-T18 T25 10.18 ± 4.17 (6) 0.7791 

SepJ(pp)-T18 T25 9.32 ± 2.09 (6) 0.7395 

SepJ(linker)-T18 T25 10.51 ± 4.25 (6) 0.6431 

CC)-T18 T25 11.47 ± 3.74 (6) 0.2791 

SepJ(TM)-T18 SepJ(TM)-T25 14.33 ± 4.34 (4)  0.0278 

SepJ(TM)-T18 SepJ-T25 11.85 ± 1.89 (4)   0.1110 

SepJ-T18 SepJ(TM)-T25 15.16 ± 5.36 (4) 0.0256 

SepJ(pp)-T18 SepJ(pp)-T25 16.69 ± 1.81 (4)   0.0002 (*) 

SepJ(pp)-T18 SepJ-T25 11.48 ± 1.41 (4) 0.1548 

SepJ-T18 SepJ(pp)-T25 11.27 ± 2.02 (4)  0.2399 

SepJ(linker)-T18 SepJ(linker)-T25 25.50 ± 3.39 (4)  1 E-06 (*) 

SepJ(linker)-T18 SepJ-T25 45.16 ± 9.31 (4) 8 E-07 (*) 

SepJ-T18 SepJ(linker)-T25 73.83 ± 14.08 (3) 2 E-07 (*) 

SepJ(CC)-T18 SepJ(CC)-T25 154.65 ± 30.36 (3) 1 E-07 (*) 

SepJ(CC)-T18 SepJ-T25 69.36 ± 16.90 (3) 3 E-06 (*) 

SepJ-T18 SepJ(CC)-T25 74.01 ± 17.07 (4)  6 E-07 (*) 

SepJ-divisome protein interactions 

T18 FtsZ-T25 8.51 ± 1.70 (4) 0.3451 

T18 T25-FtsW 9.30 ± 1.19 (4)   0.7298 

T18 T25-FtsQ 8.69 ± 2.32 (6)  0.4053 

SepJ-T18 FtsZ-T25 7.50 ± 1.53 (4) 0.0903 

SepJ-T18 T25-FtsW 28.68 ± 23.14 (4) 0.0359 

SepJ-T18 T25-FtsQ 207.50 ± 118.67 (5)  0.0005 (*) 

SepJ(TM)-T18 T25-FtsQ 10.34 ± 1.86 (4)   0.6161 

SepJ(pp)-T18 T25-FtsQ 15.64 ± 5.42 (4)  0.0181 

SepJ(linker)-T18 T25-FtsQ 10.18 ± 4.00 (3) 0.7930 

SepJ(CC)-T18 T25-FtsQ 161.87 ± 50.86 (4)   5 E-06 (*) 

T18 T25-FtsQ() 5.72 ± 4,01 (2) 0,0680 

T18 T25-FtsQ(β) 7.14 ± 4.49 (2)  0.2298 

SepJ-T18 T25-FtsQ() 15.10 ± 8.48 (4)   0.1057 

SepJ-T18 T25-FtsQ(β) 302.06 ± 121.31 (3) 4 E-05 (*) 
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 931 
 932 

Table 1. Quantification of SepJ self-interactions and interactions between SepJ and some 

divisome proteins assessed by BACTH.  
  

The interactions of the proteins fused to the T18 and T25 vectors cloned in E. coli were measured as -

galactosidase activity in liquid cultures as described in Experimental procedures. The protein fused to the N- or 

the C-terminus of T18 or T25 is indicated in each case (N-terminus, protein-T18 or protein-T25; C-terminus, 

T18-protein or T25-protein). Non-fused T18/T25 plasmid pair was used as negative control. A T18-zip/T25-zip 

positive control produced an activity of about 600 nmol ONP (mg protein)
-1

 min
-1

. The mean and standard 

deviation of the results from the number of experiments indicated (n) is presented. The difference between each 

plasmid combination and the T18/T25 plasmid pair was assessed by the Student’s t test (P indicated in each 

case); an asterisk (*) highlights differences significant at P ≤0.0005. 
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