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Abstract This paper presents a novel and low-cost methodology ftingeembedded Low
Noise Amplifiers (LNAS). It is based on the detection and gsialof the response envelope
of the Device Under Test (DUT) to a two-tone input signal. €heelope signal is processed
to obtain a digital signature sensitive to key specificatiofithe DUT. An optimized regres-
sion model based on ensemble learning is used to relatedftaldiignatures to the target
specifications. The proposed test procedure is studied &roanalytical point of view, and
a demonstrator has been developed to prove the feasibilityeoapproach. This demon-

strator features a.245GHz low-power LNA and a simple envelope detector, and has been
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developed in a 90 nm CMOS technology. Post-layout simulatare provided to verify the

functionality of the proposed test technique.

Keywords RF test RF BIST- Signature testEnsemble learning

1 Introduction

Nowadays complete and very complex systems are integrated®single die. By far the
largest portion of that is in the digital part of the systenhieh usually contains Multi-
core GHz Processors, multiple Mbytes of memory, Media Assntrollers (MAC) and
several dedicated Digital Signal Processors (DSP). Ex@enphn be found in consumer
applications like cellular phones, DVD players, multi-rieeglayers and so on. A general
conceptual scheme for the architectures of these presdrfuture systems can be that in
Figure 1, where any wireless-based application is conediptoovered. As shown in the
typical example of Figure 1, these systems usually contaghar multiple Analog Front-

Ends (AFE), Analog Back-Ends (ABE), as well as RF ReceiveEmadsmit functions.

From a test engineer point of view, testing RF subsystemsedddd in a complex,
tightly-integrated SoC represents a challenging task.diffieulty stems from the fact that
each RF block has a specific set of diverse specificationsithetlly require a custom test
strategy. It can be said that RF testing has inherited alldifficulties of analog testing,
but adding also the problem of handling high frequency dgnehis framework leads to
the same fundamental problem for analog and RF testinge thiesks are tested based on
the functional measurement of a set of specifications, whikdt-model-based test, very
successful in the digital test domain, are impossible tadsedize in the RF field, since

each circuit type demands its own custom fault model.
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Fig. 1 Generic SoC view

The diverse specifications and high operating frequencyFobRcks, as well as the
large impact of process variations in current deep subeanitgchnologies, make necessary
extensive tests that are complex and expensive to perfoeduéing RF test complexity
and cost is still an open research topic that has been aédr@ss number of different
approaches. Recent work in this area includes defect nmggetid failure diagnosis [1-4],

alternate test [4, 5], DfT and BIST techniques [6-14], etc.

In particular, BIST techniques have been identified as atisoluo mitigate RF test

drawbacks for several reasons [10]:

— The test cost of RF systems is dominated by expensive auttast equipment (ATE).
Thence it should be desirable to move some of the testingitnto the test board or
to the device under test (DUT) itself.

— There is a strong demand of known-good-die test solutioaisdiin be implemented at

wafer level, due mainly to the increasing packaging costs.



— BIST can be used to identify faulty blocks inside the systerayiding a valuable infor-

mation for yield enhancement and accelerating productidereent.

Direct approaches for testing and diagnosing an RF devebased on the application
of a high-frequency stimulus to the DUT, and the observatiits response. This requires
the use of high-speed external test equipment and, for edeldedF devices, the provision
of an adequate test access. However, the increase in a@pefegguency and integration
capabilities turns the latter two requirements quite difficTest access to internal nodes is
usually impossible, and even in the case these nodes afeat#acthere may be electrical
losses in the transport of the signals from the chip to therezt tester due to their inherent
high-frequency.

Some authors [5, 15] replicate traditional RF test equigreaoh as spectrum analyzers
on a load board. These approaches employ complex circuitiye¢s, frequency synthe-
sizer, etc.) for up- and down-conversion of the test stim@nd its response, respectively.
The need of RF testers is eliminated and multiple RF testifsgatoons can be extracted.
However, the load board circuitry is too complex for its dir8IST implementation, and

hence this approach is limited to the test of discrete RRuitgc

The approach in [1, 2] focuses on failure diagnosis of RFuiisc The work in [1] con-
siders the detection of catastrophic faults, while tha2jra[so attempts to isolate parametric
ones. Although behavioral simulations demonstrate high tmverage, they lack a general
fault model. Furthermore, it is necessary the use of stahBé&rtest equipment and tech-
nigues to enable failure diagnosis.

Loop-back test and diagnosis of transceivers have also websly explored [3, 4, 9—
11]. The main advantage is that only-digital signals arelwved as well as that both the

receiver and the transmitter are tested at once. Howevem-atip implementation is not



so simple since, in practice, some components need to beveghfior testing, namely the
band-pass filter, close to the antenna, and the power amptitiee transmission path [9], or
an attenuator block has to be implemented within the lodpbaonection to accommodate
the output of the transmitter to the input of the receivei [10

The use of test sensors embedded into the RF system has alspioposed [6-8, 10—
14]. Several built-in test schemes have been reported #eintegrated peak, root-mean-
square (RMS), power detectors and temperature sensorsshimg discrete RF modules
or complete transceivers. However, these sensors usugliyeda DC signal. To extract
the test specifications from the limited information of a D@gnitude, multiple detectors
and/or test configurations have to be used, thus increabmgdmplexity of the test as
well as the required area overhead. Likewise, the desighexfet detectors is not always
straightforward.

In this context, the approaches in [16—19] propose the uaesifiple envelope detector
for RF test purposes. The work in [16] demonstrates thatcsslespecifications can be
extracted from the envelope of the response of an RF block tmpéimized test stimulus.
The envelope signal is acquired with a conventional A/D eoter and processed to carry
out the demanded measurement. The work in [18] combinedap®extraction and other
sensors, such us Die-Level Process Monitors (DLPM [20]),dpdbes, and current sensors,
and analyzes how the combined outputs of these sensordaterte the specifications of
the RF DUT.

On the other hand, the work reported by the authors in [1@daklvantage of analytical
results to define a digital signature from the response epeedf the DUT to a two-tone at-
speed test stimulus. It is shown that this digital signatane be easily discriminated when
the circuit is performing within specifications. The latteethod has some benefits in terms

of simplicity. Thus, compared to [16], there is no need of pter stimulus optimization,



processing the envelope is greatly simplified, and the useanimplete A/D converter for
signal acquisition is avoided. Also, compared to [18] a Engnvelope detector is used
instead of multiple sensors, test access to internal notdgeedUT is not required, and
there is no transport of analog DC signals to the outsidedydrking the test output a
simple digital word. However, compared to [16] and [18]ereihce [19] has the important
disadvantage of not providing functional measurements.

The proposal to be described herein aims to extend our previea of a signature-
based test by a two-tone response envelope charactenizaticss work will demonstrate
how the information contained in the digital signaturesloareasily related to the functional
specifications of the DUT, while keeping the simplicity oethpproach reported in [19].
The paper is organized as follows. Section 2 recalls theytoal basis of [17, 19] and
presents the proposed test technique. Then, section 3dexits on-chip implementation
and presents the design of an integrated demonstrator. théig Section 4 provides some
relevant experimental results to validate the proposalalBi, Section 5 summarizes the

main contributions of this work.

2 Proposed approach

2.1 Theoretical basis

Figure 2-a shows a standard two-tone test set-up that igitreally used to characterize
RF systems. In this test scheme, two high-frequency closestare used as test stimuli
and fed to the DUT. The system response is then acquired anemiently processed to
characterize the DUT. Important performance parameteis as forward gain, third-order
intercept, inter-modulation products, 1dB compressiomtp@tc, can be measured using

this traditional set-up. However, the direct acquisition grocessing of the test response
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Fig. 2 a) Traditional two-tone test; b) Two-tone response enwelibgtection.

is a challenging task, since this response is a high-fregyusignal that has to be handled
by expensive RF test equipment. Our approach, represantédure 2-b, is in fact similar

to the traditional scheme, but in this case the DUT respasisigiving an envelope detec-
tor. The extracted envelope has relevant information attmutest response at much lower

frequencies, this information being easily extracted Ioymified processing.

Let us consider the typical two-tone test (see 2-a), in whicton-linear RF device is
driven by a signak(t) composed of two equal-magnitude tones at different, byt eterse,

frequencies, in the form,

x(t):Acos((ab—%)t)+A@cos((ab+%)t) Q)



whereA is the amplitude of each test tone, anglis the frequency difference between them
(awy << ay). In order to make an analytical study, a third-order nowdir model has been

assumed for the RF block. That is, the respoyiseof the system can be written as,

y(t) = aix(t) + oz (t) 2
Expanding (2), and discarding the out-of-band componéhésresponsg(t) can be

expressed as,

y(t) :Aolcos((wo — %) t> +A01cos((wo + %) t)

(-8 e (- 2)9

Using the Rice formulation [21], the envelo(t), of a real waveformy(t), can be

®)

expressed as,
R(t) = ||u(t) +iu ()] 4
where,i is the imaginary unit, and™ (t) is the Hilbert transform ofi(t). In our case, the

envelope of the response sigyél), can be thus computed as,

R(t) = ‘ZAolcos (%t) + 2A,3C0S <37wgt) ‘ 5)

SignalR(t) results to be a periodic function with peridgl= 211/ wy. Given thatwy <<
ay, then signaR(t) results to be a low frequency signal that still contain infation about
the magnitude of the spectral componems, and Aq3, of the high-frequency DUT re-
sponse. We take advantage of this information to define alsisignature that can be used

for testing purposes.

2.2 Signature definition and efficient implementation ofslgnature extractor

In order to extract a meaningful test signature from theoesp envelop&(t), some con-

siderations have to be made. The target signature has tatkeegormation about the DUT
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Fig. 3 Block diagram of the proposed signature extractor.

response contained in the envelope, that is, magnitAgieand Aqz, but also the computa-
tion of the signature itself has to be as simple as possihledoce the overhead due to the
signature extractor. In this line, we propose the compartadf the area under tHg(t) curve
as a simple test signature, that, as it will be shown, can ti@egftly computed on-chip
while keeping the desired information.

The area,], underM periods of the response enveldgg) can be easily computed as

the integral,

~ MTg B E _@
J—/O Rt =M <A01 : ) 6)

SignatureJ results to be a linear combination of the high-frequencpaese spectral
component®,1, andAgz. Consequently, it should be clear that signatiiie sensitive to
changes in gain and non-linearity specifications, so aniaten affecting those character-
istics would affect also its value.

A direct approach for computing signatufén the digital domain would require a pre-
cise A/D converter to acquire the response envelope, andtamatic DSP. Instead of that,
since the response envelope is a low-frequency periodiakithe computation of signature
J can be made using an alternative method; in our proposalsingwa simplification of
the efficient test core for periodic analog signal analysif2R]. Figure 3 shows the block

diagram of our proposed signature extractor. It takes adganof the noise-shaping char-
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acteristics of first-ordeZA-modulators to accurately compute the target signaturéen t
digital domain. SignaR(t) is directly fed to a first-ordeZA-modulator, which provides

a simple and robust A/D conversion without the need of a fulD Anterface. The output
bitstream of theXA modulator,d(n), can be expressed as a function of the input signal

samplesR(n), and the quantization error in the modulatfn), as,
d(n)=R(n—1)+e(n)—e(n—1) (7)

This output bit-streamd(n), is then integrated using a simple digital counter to get a
digital signaturel. This signature is given by,

MN-1

R N BMN,  Ag
an;d(n)— n;) R(n)+nZl{e(n) en—1)} = (Aol 3 )iz @8)

o

whereN is the oversampling ratio in the modulator definedN\as- Ty/Ts (Ts is the
sampling period in the modulator), the integration has lee¢ended td response envelope
periods, and magnitude®%,; andAy3 are in this case normalized with respect to the full-
scale range of th& A modulator. It is important to notice that the error tetii, due to the
quantization error in the modulator, does not scale withrihmber of evaluated samples
because this error is naturally compensated in the disitriegration.

Signature] is a digital measurement of the area under the envelopelsijirend the
resources needed to calculate it are reduced to a first-ardemodulator and a simple
digital counter.

In a first approximation, the analytical expression (8) ddaé used to directly compute
magnitude®\,; andAq3, and hence, provide a functional characterization of th@ IMbw-
ever, let us recall that this analysis has been performednihd assumption of a third-order
polynomial model for the RF block. Actual DUT behavior mayidge from this idealiza-

tion, and consequently the analysis becomes more compliémpossible to complete. In
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spite of that, the previous analysis is important becauséave demonstrated that there
is a relation between the proposed signature and perforri@gnaes. In this work we ex-
tract functional information about the DUT from the propgds&nature by building a blind

regression model, without assuming any analytical modehie DUT.

2.3 Ensemble Learning

Machine-learning, regression modeling, function appr@tion, data mining, all this termi-
nology belongs to the vast mathematical field of statisResearchers have been struggling
to develop the best modeling approach from more than a hdngr@s. Unfortunately, the
idea of best model is always relative to the application apiobdy has come out with the
definitive approach. Some models perform better on low-dsimn spaces, other require
few training samples, etc.

As a matter of fact most papers that apply machine-learniggrithms to circuit test-
ing do not explain the choice of their statistical tool. Fatgntial users, it is difficult to
assess if a given tool will perform well in another case. Adiy the task of model selection
has already been investigated (see Chapter 7 in [23]), andrder of criteria have been
developed to assess model quality, usually in terms of égdgurediction error. Anyhow,
managing these concepts is not an easy task to the profane.

From the end-user perspective, the concept of ensemblargas very appealing be-
cause it builds a mosaic model from a collection of statisticols. It implements a routine
that trains different models using cross-validation pptes to deduce the expected predic-
tion error. The final model is a weighted average of a subsal die trained models, being
the weights a function of the calculated prediction errtve Task of model selection is thus

handled by the top-level ensemble construction in an auioway.
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As pointed out in [24], diversity is the cornerstone of ensknapproaches. The idea is
that no perfect model exist but different models will likelgmmit errors at different places.

Uncorrelated model errors can thus be averaged out.

The practical implementation of ensemble learning is dysanplified by the ENTOOL
Matlab toolbox developed by Wichard and Merkwirth [25], eHniitself uses elements of
[26]. All the statistical data in this paper have been maddmethis toolbox without ad-hoc
corrections. The obtained results thus serve to validatese in the context of Alternate
Test. Let us briefly present the different model famiftehat are trained by the toolbox to

form the ensemble.

— Polynomials models that expand linear ones by introdudiegptroducts of input vari-
ables as new variables. Complexity is handled by limitting order of the polynomial
and the number of variables.

— Nearest-Neighbors models parametrized by different higiood sizes, different av-
eraging kernels or different distance definitions.

— Neural Networks of three different classes: Perceptromslid Basis Functions, and
Projection-based Radial Basis Function Nets (PRBFN, [@Hich can be seen as a
combination of ridge (perceptron) and RBF neurons.

— Multivariate Adaptive Regression Splines (MARS) propobgdrriedman [28] and suc-
cessfully applied in a large number of papers in the past fears/[29-31]. For high-
dimensional data, only low-order splines are considerngaically lower than three) in
order to limit the complexity of the model. The Adaptive Mudtriate part of the name

comes from the recursive partitioning of the input space.

1 Unfortunately, it is not possible to thoroughly describe ierformance of each model in a single journal

article. The interested reader can refer to [23] for a degysayht.
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Within these different model families, the toolbox can ganea wide variety of models
by selecting different parameters, like kernel types, hmags penalties, learning methods,
number of hidden layers... Diversity is thus ensured andehalting ensemble is likely to

outperform its constituting models.

3 Demonstrator design

3.1 Goal of the demonstrator.

In order to verify the feasibility of the previously discesktest procedure we use an LNA
design that complies with the IEEE 802.15.4 standard. Th@eémented demonstrator is
depicted in Fig. 4. The signature extractor in Fig. 3 is nohided in the prototype; instead,

it is emulated externally to provides flexibility in the \@dition.

3.2 Presentation of the CUT

LNA: The single-ended LNA with inductive source degeneratioddsigned in a 90nm
technology. Its specifications are: (i) a noise figure (NAPWeSdB, (ii) a third-order input
intercept point (IIP3) higher than -6dBm and (iii) both soeiand load impedances equal to
50Q and (iv) a power consumption less than 2mW for a supply veltafdl.2V.

TransistorM; of Fig. 4 is designed to be under moderate inversion in ormeeduce
power consumption, capacit@e: is used to adjust input impedance without spoiling the

NF andLg is chosen to obtain the highest gain available. The finabdesinsumes 1.44mwW

Envelope Detector: We have developed a simple current-mode envelope detestapited
from [32]. It comprises a voltage-to-current converter @Y ffollowed by an AC-coupled

half-wave current-mode rectifier with a passive output [mass filter. The selected VIC is a
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Fig. 4 Schematic of the designed LNA jointly with the envelope ditec

simple CMOS push-pull inverter with resistive source degation. Qualitatively, the half-
wave rectifier works as follows: when the VIC output curreoiM into the rectifier, the
diode-connected transistbts is turned on and/g is off, so no current is drawn by, and
Vorect iS zero. Oppositely, when the VIC output current leaves #uifier, Ms turns off
while Mg andMj, turn on, and this current is mirrored throulyh to theRC low pass filter.
\VoltageVpcrey IS Used to bias transisttMg in the subthreshold region. TIRE constant has
been adjusted to reject the high frequency carrier, so ttgubuoltageVore: follows the
envelope of the input signal.

To obtain the LNA specifications when the envelope detedtouit is enclosed, a co-
design is compulsory. In this particular design, a readjesit in the capacitances of the
output network was needed. All designed transistors aeslsiath minimum length to ob-
tain the best performance in high frequency. LNA bias cirésiinot shown in Fig.4 for
clarity.

The described envelope detector fulfills the following fianditions. Firstly, its input

impedance is high enough to discard modifications in theuwutgtching entailing losses
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Fig. 5 Layout of the LNA with the envelope detector.

in the output power. Secondly, its power consumption is kaptto minimize temperature
gradient that would adversely affect the characteristickNMA transistors, and to allow
the utilization of the BIT block under LNA normal operationtiout considerable current
overhead (only about 3Q@ARrvs When operating at 2.445 GHz). Also, the envelope detector
has an independent power supply to be turned off when testtiperformed. Finally, the

area overhead is very small.

The complete layout of the prototype is depicted in Fig. % Tdtal area without pads is
760um x 700um. The area of the envelope detector is L@ x130um. The area overhead
is 2.4%. However this area overhead can also be consideret@aszthe LNA, especially
because of its three inductors, has enough free and unusztbguermit the insertion of the

detector.



16

Table 1 LNA characteristics with and without envelope detector

Specification LNA without envelope detector  LNA with codgséd envelope detector
Gain (dB) 12.5 12.4

NF (dB) 3.66 3.66

1IP3 (dBm) -4.4 35

CP1dB (dBmy -15 -15.1

S11 (dB) -24.8 -25.2

S22 (dB) 9.8 -11.3

S12 (dB) -26.4 -26.5

Zin (Q) 46.6-13.2j 42.6-11.4

Zout (Q) 44.3+12.2 42.4+8.7]

3.3 Simulated results and analysis.

Table 1 lists the typical performance figures of post-laysinrtulation of the designed LNA
with and without the envelope detector. In both cases notantial differences exist be-
tween the LNA characteristics.

Fig. 6 presents two large-signal transfer curves of the lepeedetector obtained by
post-layout simulation. These transfer curves plot thermestage at the output of the
envelope detector when it is excited by a single tone botd@wHz and 5GHz (the limits
of its operating frequency range), as a function of the ntageiof this input tone. Voltages
are normalized to the full-scale range, which correspoirdghis case, to the rail-to-rail
range of the LNA. The input dynamic range is between [-45dBFS8IBFS] at 100MHz and
between [-30dBFS 0dBFS] at 5GHz.

Fig 7.a shows the output waveform of the envelope detectenvitis excited with two

50 mV tones at 2.4445 GHz and 2.4455 GHz (7.b). In these platsthe input and output

2 CP1dB: 1dB Compression point.
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Fig. 6 Transfer function of the envelope detector injecting amutripne at 100MHz and at 5GHz.

waveforms have been normalized to their respective maxiwvaloes. As it can be clearly
visualized, the output of the rectifier follows the envelapbéts input signal. The envelope

signal reaches a peak value of approximately 180 mV.

4 Experiment simulation

The demonstrator described in previous section has beand#dd and will be characterized
soon. Unfortunately, like most academic institutions, veendt have access to industrial
volumes. As a matter of fact only 100 samples were receivedaando not know if they
come from the same region of the wafer, the same wafer or tine $at. The closest to
experimentation was thus to perform Monte-Carlo simutatia the extracted layout view.
The J-signature defined in Section 2 is used to predict the pedana figures of the
LNA using the ensemble learning paradigm previously descti For this purpose, a set of

200 instances of the demonstrator was obtained by a posttidonte-Carlo simulation.
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Fig. 7 a) Normalized output of the envelope detector and b) nornthlizeut of the envelope detector.

Out of the 200 instances, 150 were used to train the ensembike 50 randomly chosen
instances were taken apart as test set to verify the accafdlog prediction. A set of differ-
ent signatureg ya Was extracted varying the magnitude of the input test tdnesddition,
given that the envelope detector in the demonstrator isstty) the same variation mecha-
nisms as the LNA, the test stimuli were bypassed to the epealetector and signaturég,
were evaluated from the resulting envelope signal. Sigaafd,, allow the ensemble model
to estimate and remove the contribution of the envelopectiteariations. Two different
two-tone test stimuli were used in our validation, corregpiog to magnitudegy = —26
dBm andA; = —23 dBm. Both test stimuli were centered fy= 2.445 GHz (the peak-gain

frequency of the LNA) and the frequency gap between the twedavas set tdy = 1 MHz.

Since the signature extractor was not included in this fisbfpof-concept prototype, a
realistic VerilogA model was used to compute the test sigrestfrom the obtained envelope

signals. The oversampling ratio and the number of evalnateriods were set thN = 144,
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andM = 1, respectively. This way, we obtain a set of four indepebhdamnatures to feed

the ensemble model, i.e. a pair(a, Jenv) is computed for each test stimulus.

4.1 Performance estimation

An ensemble model is trained for each of the following perfance specifications:

— gain
— 39 order Input-referred Intercept Point (11P3)
— Noise Figure (NF)

— S11, S12 andS1 parameters

In a production test environment, it is generally accepteat the model training phase
should be preceded by a defect filter [33]. The objective chsafilter is to eliminate the
circuits that do not correspond to process variations,fikénstance spot defects. For such
circuits, the model may not be able to find correlations betwa&gnatures and performance
and in any case, these correlations would not respond tathe statistics as the "nominal”
circuits. A defect filter can be built from density estimatimodels to isolate outliers. In this
work, all the samples are obtained through Monte-Carlo kitians of the extracted layout,
using the process statistics provided by the fab. We thuw laapriori that they correspond
to a unique multivariate statistic and the defect filter isstinnecessary.

Figure 8 gathers the obtained scatterplots of the estimatesiis the measured values.
Dot markers stand for the complete set of samples — bothrigaand test sets — and circle
markers highlight the independent samples of the test $et.standard deviation of the
estimation errors for the test set can be found in Table 2.

Presenting the performance of a regression model is noyalas easy task. The stan-

dard deviation of the estimation error is actually a goodrimgbut it cannot be interpreted
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Table 2 Model prediction error for the specifications

Specifications  Ogror On the testset  FOM
Gain 0.32dB 3.90
NF 0.097 dB 2.98
1IP3 0.90 dBm 2.17
S11 2.09dB 1.47
S22 0.96 dB 1.52
S12 0.31dB 1.13
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independently from the measurement. A voltage precisipsayf 3rV is either good or bad
depending on the problem at hand. The standard deviatiomeofelative estimation error
could be seen as a good alternative, but it is highly misteadf the metric under consider-
ation is close to zero in average (for instance an offsetjetaive error will be high, even
if the absolute precision is good. On the other extreme ofpeztrum, if the metric under
consideration is large in average (for instance, the DC giém amplifier) the relative error
will appear to be small, even is the estimation is not veryeate.
For this reason, the table also boasts the following Figur#eéxit (FOM) for model-

based test,

Niszi’\lzsl(Preal,i—P_reaJ)z

FOM = TN 5
£ Yic (Poredi — Pucii)

9)

whereNs is the number of samples in the test $Bjq; is the performance of circuit
predicted by the model, arffley ; is the real performance of circuiitIn our case, the real
performance comes from the MonteCarlo simulation datatH®isame definition holds for
experimental data. The Hat symbol stands for the mean vasugsual.

We propose this FOM as a way to capture and evaluate the sliahe scatterplot
(estimated vs measured). If the cloud of point is diffusdeady deviated from the diagonal,
the model has brought almost no information and the FOM shioeiclose to 1. On the other
hand, if the cloud of points shrinks to the diagonal line teéneation is almost perfect and
the FOM tends to the infinite.

It actually measures the improvement of the proposed maoaltbe information inher-
ently present in the data (in our case, the standard Montle-Gnulation). This inherent
information is the variation range of the data. If the sarsptethe training set are greater
thana and lower tharb, you can expect that all the circuits will respect these lisuif, for

whatever reason, the variation range of the data is smah awery good model will not
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improve much the prediction. One reason may be that theitigatata is not sufficiently
representative. For instance, if you have few silicon dileey may come from the same
region of the wafer and all give very similar results. Thipplation is not representative of
high volumes and the proposed FOM would remain close to tijirzdethat the problem is
ill-conditioned. Another reason may be that the DUT wasglesil with large guardbands
for a particular parameter. In such a case, the predictionbmaccurate but the merit is not
of the model.

One example of this effect is the caseSpp parameter in Figure 8. Roughly speaking,
the measure&,;, varies between-27dB and—26dB: that is less than a 4% variation. Actu-
ally, the model is not able to retrieve any strong relatigméetween the digital signatures
and theS;» parameter, so it outputs a value that is centered on the measured value.
While the relative precision of this estimate is still clasel%, the model actually brings no
new information and it can be seen in Table 2 that the FOM fisrghrameter is only.13.

For the remaining parameters, it appears clearly that therstrong correlation between
the digital signatures and some parameters, namely thetbainoise figure, and the input-
referred third-order intercept point. The estimates of $igand theSy, parameters are
also correlated to the real measurements but still not vesgige. This may be due to two
reasons: the four digital signatures may not be sufficieatlemjuately capture the underlying
variation mechanisms, or the2 quantization noise component on the signature (8) may
dominate the model precision.

In order to test the latter assumption, we add an extra Gausdiite noise on the four
digital signatures and re-train the models. As the mageitfdhe Gaussian noise (= 2)
has been made similar to the expected noise in the signétthie, model estimate is noise
limited, the estimation error should significantly increafs a matter of fact, assuming

independent Gaussian errors, the estimation error shaufduitiplied by+/2. The model
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result for the LNA gain with the additional noise gives antreation error ofge = 0.49
dB, which is clearly worse than the value quoted in Table 2\ close to the,/2 factor.

It thus seems that the prediction of the LNA gain is mainlyited by noise. On the other
hand, the estimation error fokP3 is only increased by a factor 1.24 (from 0.9 dBmto 1.12
dBm) clearly lower than/2. Similar results are obtained for the rest of parameterzari
thus be concluded that generating the signatures for arlatgaeber of evaluation periods
(which according to (8) reduces the relative error in theafgres at the cost of increasing

test time) would only improve the gain estimate.

4.2 Discussion on BIST approach

As said in the introduction, there have been several prdpasaising embedded sensors
to perform statistical regression. Obviously, the addgiaest circuitry is submitted to the
same process variations as the DUT. In [18, 20], authorsadkeantage of this fact, imple-
menting some replicas of the most sensitive parts of the DW&se replicas are expected
to vary in a similar way as the DUT, as far as global parametitations are concerned.
Measurements on these replicas thus offer some informatigerocess impact on the cir-
cuit behavior, but without loading the real functional ciitdn excess. This is an interesting
approach but is quite different from what is proposed heike In [5], we propose to build
a kind of on-chip instrument — in our case an envelope datethis embedded instrument
is submitted to process variations, and its performancktinils be correlated to the per-
formance of the DUT. While for circuit replicas this perfaante correlation is close to 1
(neglecting the effects of local mismatch), for an indeg@rtdnstrument it is not knowa-
priori. As a matter of fact, fault masking may occur. One approadirtmmvent this issue

would be to design an on-chip instrument insensitive to &€ssd/oltage and Temperature
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Table 3 Model improvement with sensor signature

Specifications  Oerror for all signatures  Oerror for Jna - FOM for all signatures FOM fod ya

Gain 0.32dB 0.43dB 3.90 2.78
NF 0.097 0.103 2.98 2.57
1IP3 0.9dBm 1.70dBm 2.17 1.20
S11 2.09dB 2.87dB 1.47 1.03
S22 0.96 dB 1.34dB 1.52 1.01
S12 0.31dB 0.37dB 1.13 1.01

(PVT) variations. Unfortunately, this is usually not anytask and would possibly lead to
a test circuitry larger and more complex than the DUT. Thatty we have proposed to
bypass the DUT and generate a signature directly from thelepe detector. In this way,
the information relative to the variation of the instrumand to the intrinsic variation of
the DUT may be separated by the model. In a sense, we are parfpea sort of implicit
calibration of the instrument.

In order to illustrate this effect, we trained another mddelthe same samples using
only the signatures from the LNAJ(ya), Table 3 compares the FOM obtained for nominal
model and the new one.

It appears that the FOM is much closer to 1 (i.e. much worsejly the LNA signa-
tures are considered. This is particularly truelfd®3 and the S parameters. The conclusion
from this section is thus the direct translation of an oldamn of defect-oriented BIST
approaches to the realm of alternate test: you must ensatréhihadditional circuitry is not
failing. In the case presented here, it can be said that thatiean of the sensor must be
measured independently in order to isolate the variatidhetircuit.

An intuitive way to further improve the regression model Wbhe to consider more

inputs. Any additional measurement is likely to add a bitddrmation that was not present
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in the original set. A brute force approach would be to comsas many measurements as
possible. As most statistical training methods involve edorm of overfitting limitation,
feature selection is handled implicitly. The model wouldgtselect the valuable measure-
ments alone. However, this approach is not feasible if thiitiadal measurements require
chip modifications. For instance, the temperature seng@rglose proposed in [14] are not
only sensitive to the average temperature but also to tfz toe and thus to the local power
dissipation. Such sensors would likely complement therinfion provided by the enve-
lope detector, but we cannot affirmatpriori. Though statistical tools are very powerful

they do not solve the test problem, creativity is still nekttepropose the best input space.

5 Conclusions

Alternate test is undoubtedly an interesting path to miéiglae ever increasing cost of testing
embedded RF blocks. In this paper, a LNA with an envelopectiatdnas been fully co-
designed and implemented in a 90nm technology and it has denstrated that the
parasitics introduced by the test circuitry do not signifibaaffect the performance. Using
simple low-frequency circuitry, digital signatures candenerated from the output of the
envelope detector (and thus easily routed through a hypoah&oC). A regression model
based on ensemble learning has been trained to relate ihgde digital signatures to the
main performance parameters of the LNA. The statistic t@d been shown to perform
adequately and is particularly suited for non-expert udarsrder to assess the relevance
of statistical regression, we have also proposed a new é&igLiMerit that measures the
amount of additional information that the regression masag extract from the original
data. The results show that the proposed approach effctiveasures some important

performance parameters, like the LNA gain, the Noise Figume the %¥-order Intercept
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Point, and roughly estimates the S-parameters. Finalljzave shown that it is necessary to

separate the variations due to the LNA itself from the varat of the embedded envelope

detector.
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