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Abstract—The increasing popularity of the Web of Data is motivating the need to integrate semantic-web ontologies. Data exchange 
is one integration approach that aims to populate a target ontology using data that come from one or more source ontologies. 
Currently, there exist a variety of systems that are suitable to perform data exchange among these ontologies; unfortunately, they have 
uneven performance, which makes it appealing assessing and ranking them from an empirical point of view. In the bibliography, there 
exist a number of benchmarks, but they cannot be applied to this context because they are not suitable for testing semantic-web 
ontologies or they do not focus on data exchange problems. In this paper, we present MostoBM, a benchmark for testing data 
exchange systems in the context of such ontologies. It provides a catalogue of three real-world and seven synthetic data exchange 
patterns, which can be instantiated into a variety of scenarios using some parameters. These scenarios help to analyze how the 
performance of data exchange systems evolves as the exchanging ontologies are scaled in structured and/or data. Finally, we provide 
an evaluation methodology to compare data exchange systems side by side and to make informed and statistically sound decisions 
regarding: 1) which data exchange system performs better; and 2) how the performance of a system is influenced by the parameters of 
our benchmark.
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1 INTRODUCTION

THE goal of the semantic Web is to endow the current Web

with metadata, i.e., to evolve it into a Web of Data [27].
Currently, there is an increasing popularity of semantic-web

ontologies, chiefly in the context of Linked Open Data, and

they focus on a variety of domains, such as government, life

sciences, geographic, media, or publications [17]. Semantic-

web ontologies build on the so-called semantic-web

technologies, i.e., RDF, RDFS, and OWL ontology languages

for modeling structure and data, and the SPARQL query

language to query them [3]. For the sake of brevity, we refer
to semantic-web ontologies as ontologies.

Ideally, ontologies are shared data models that are
developed with the consensus of one or more communities;
unfortunately, reaching an agreement in a community is not
a trivial task [4], [16]. Furthermore, new ontologies try to
reuse existing ontologies as much as possible since it is
considered a good practice; unfortunately, it is usual that
existing ontologies cannot be completely reused, but require
to be adapted [17]. Due to these facts, there exists a variety
of heterogenous ontologies to publish data on the Web, and
there is a need to integrate them [17].

In the bibliography, there are different approaches to
address this problem, such as data exchange, data integra-
tion, model matching, or model evolution [6]. In this paper,
we focus on data exchange [10], which aims to populate a
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target ontology using data that come from one or more 
source ontologies. In the bibliography, there are proposals 
that use ad hoc techniques, reasoners, or SPARQL query 
engines for performing data exchange. When using ad hoc 
techniques, data exchange is based on handcrafted pieces of 
software that transform source data into target data. When 
using reasoners, data exchange consists of reclassifying 
source instances into target instances by means of rules. 
Finally, when using SPARQL queries, data exchange is 
performed by executing a number of CONSTRUCT queries 
that extract data from the source ontologies, transform 
them, and load the results into the target ontology.

Currently, there exists a variety of systems that imple-
ment semantic-web technologies and are, thus, suitable to 
perform data exchange, for example, Sesame, OWLIM, Jena, 
TDB, Oracle, or Pellet to mention a few. Unfortunately, they 
have uneven performance [7], [14], [33], [36], which makes it 
appealing assessing and ranking them from an empirical 
point of view, since this helps make informed decisions 
about which the best system for a particular integration 
problem is.

A data exchange system is a piece of software that allows 
to exchange data. In our context, such a system comprises 
an RDF store, a reasoner, and a query engine. The systems 
that implement semantic-web technologies provide differ-
ent services, for example, Pellet is a reasoner, ARQ is a 
query engine, Jena provides an RDF store and a reasoner, 
and Oracle or OWLIM provide an RDF store, a reasoner, 
and a query engine.

In the bibliography, there is a benchmark that focuses on 
data exchange systems for nested relational models [2]; 
however, it cannot be applied to our context due to a number 
of inherent differences between ontologies and nested 
relational models [25], [29]. In addition, there are several 
enchmarks to test systems that implement semantic-web 



technologies [7], [12], [14], [24], [31], [33], [36]. Unfortunately,
these benchmarks have one or more of the following
drawbacks: 1) they do not focus on data exchange problems,
i.e., they do not provide source and target ontologies and
mechanisms to exchange data; 2) they are domain-specific,
i.e., they provide ontologies with a fixed structure in a
particular domain, i.e., they only allow to tune the construc-
tion of synthetic data but not their structure; and 3) they
focus on SELECT queries instead of the CONSTRUCT
queries that are required to exchange data.

In this paper, we present MostoBM, a benchmark for
testing data exchange systems in the context of ontologies
and query engines. Our benchmark provides a catalogue of
three real-world and seven synthetic data exchange
patterns; seven parameters to construct scenarios that are
instantiations of the patterns; and a publicly available tool1

that facilitates the instantiation of the patterns and the
gathering of data about the performance of systems. In
addition, we provide an evaluation methodology that
allows to compare data exchange systems side by side. To
the best of our knowledge, this is the first such benchmark
and evaluation methodology in the bibliography.

Regarding the catalogue, the three real-world patterns
are relevant data exchange problems in the context of
Linked Open Data, whereas the seven synthetic patterns are
common integration problems that are based on current
approaches in the ontology evolution context, and our
experience regarding real-world information integration
problems. This catalogue is not meant to be exhaustive: the
patterns described in this paper are the starting point to a
community effort that is expected to extend them.

Regarding the parameters, a benchmark should be
scalable and the results that it produces should be
deterministic and reproducible [15]. To fulfil these proper-
ties, our benchmark provides a number of parameters to
construct scenarios, each of which is a three-element tuple
ðS; T ;QÞ, where S is the source ontology, T is the target
ontology, and Q is a set of SPARQL queries to perform data
exchange. Our benchmark is based on SPARQL 1.1 and
quite a complete subset of the OWL 2 Lite profile that
leaves out only subproperty, zero-cardinality, general
property, and intersection restrictions. The set of SPARQL
queries of each scenario allows to exchange data with a
100 percent of effectiveness.

The parameters allow to scale the data of the source
ontology for the real-world patterns, and to scale the
structure of source and target ontologies, the data of the
source ontology, and the SPARQL queries to perform data
exchange for the synthetic patterns. Thanks to them, we can
automatically construct the structure of a source and a
target ontology with, for instance, a thousand classes,
a dozen specialization levels, or the data of a source
ontology with a million triples. The scaling of the patterns
helps to analyze the performance of data exchange systems
in future, when it is assumed that data exchange problems
are going to increase their scale in structure and/or data.

Our evaluation methodology helps software engineers
make informed and statistically sound decisions based on
rankings that focus on: 1) which data exchange system

performs better; and 2) how the performance of a system is
influenced by the parameters of our benchmark.

We presented a preliminary version of our benchmark in
[28]; in this version, we extend our initial proposal with
real-world patterns (see Section 3), with an evaluation
methodology (see Section 6.1), and illustrate how to use it to
make informed and statistically sound decisions (see
Sections 6.2 and 6.3). An extended technical report that
illustrates our benchmark and methodology extensively is
also available at [30].

The remainder of the paper is organized as follows:
Section 2 reports on preliminaries regarding semantic-web
technologies and data exchange. In Sections 3 and 4, we
present our catalogue of real-world and synthetic data
exchange patterns, respectively. Section 5 describes the
parameters of our benchmark. In Section 6, we describe our
evaluation methodology and illustrate how to make
informed and statistically sound decisions regarding a
number of systems. In Section 7, we present the related
work. Finally, Section 8 recaps on our main conclusions.

2 PRELIMINARIES

The OWL ontology language allows to model both the
structure and the data of an ontology. Regarding modeling
structure, an OWL ontology comprises a set of entities
identified by URIs, each of these entities may be a class, a data
property, or an object property. Fig. 1a shows the structure of
a sample ontology using a tree notation. In the figure,
sch:Author is a class that models an author, and we denote it
as a circle. It is important to notice that, in this example, we
use namespace sch: as a prefix. A class can be specialized into
other classes, for example, sch:Author is a subclass of
sch:Person, and we denote it as sch:Author ½sch:Person�.
An example of a data property is sch:name, which models the
name of a person, and we denote it as a square. Data
properties have a set of classes as domain and a basic XSD
data type as range, for example, the domain of sch:name is
fsch:Persong, and we denote it by nesting sch:name into1. http://www.tdg-seville.info/carlosrivero/MostoBM.

Fig. 1. Examples of the structure and data of an ontology, and two
SPARQL queries.



sch:Person. The range of sch:name is xsd:string, and we
denote it as sch:name <xsd:string>. An example of an object
property is sch:writes, which models “an author writes a
paper,” and we denote it as a pentagon. Object properties
have a set of classes as domain and range, for example, the
domain of sch:writes is fsch:Authorg and the range is
fsch:Paperg.

Regarding data modeling, a class instance is identified by
its own URI, and it may have a number of types (see Fig. 1b).
We denote a class instance as a diamond, for example,
sch:CRRivero is a class instance of type sch:Author.
sch:CRRivero is also, implicitly, an instance of sch:Person,
since sch:Author is a subclass of sch:Person; reasoners are
used to make this knowledge explicit [21]. In addition, it is
possible to have class instances of types that are not related
by specialization, for example, assume that sch:CRRivero is
the URL of a web page that provides the biography of a
person, therefore, sch:CRRivero might have both types
sch:Person and sch:Document.

A data property instance relates a class instance with a
literal, and we denote it as a square, for example, sch:name
relates sch:CRRivero with “Carlos Rivero.” An object
property instance relates two class instances, for example,
sch:writes relates sch:CRRivero and sch:CIKMPaper. By
default, data and object property instances have a minimal
cardinality of zero, for example, there is no data property
instance of sch:year relating sch:ERPaper and a year;
however, there is a data property instance of sch:year
relating sch:CIKMPaper and “2011”. By default, data
and object property instances may be multiple, for
example, sch:CRRivero is related to “Carlos R: Rivero”
and “Carlos R: Osuna” by data property sch:alias.

RDF, which is based on triples, is used to represent both
the structure and data of an OWL ontology. A triple
comprises three elements: a subject, a predicate, and an
object. Sample triples are the following:

ðsch:Person; rdf :type; owl:ClassÞ
ðsch:Author; rdf :type; owl:ClassÞ
ðsch:Author; rdfs:subClassOf; sch:PersonÞ
ðsch:CIKMPaper; rdf :type; sch:DocumentÞ
ðsch:CIKMPaper; rdf :type; sch:PaperÞ
ðsch:CIKMPaper; sch:year; ‘‘2011’’Þ

SPARQL queries are used to retrieve and construct
triples from RDF stores. SPARQL provides four types
of queries, namely: SELECT, CONSTRUCT, ASK, and
DESCRIBE. They are based on triple patterns that are
similar to triples, but allow to specify variables in the
subject, predicate, and/or object, which are prefixed with
a “?”. In this paper, we focus on the CONSTRUCT type,
since this type of queries allows to both retrieve and
construct RDF data, which is required to perform data
exchange by means of queries. Fig. 1c shows two
examples of SPARQL queries: Q1 retrieves instances of
sch:Author (the WHERE clause) and reclassifies them as
sch:Person (the CONSTRUCT clause); Q2 is similar to Q1

but also transforms the value of sch:alias into sch:name by
means of a toName function using a BIND clause, which
assigns the value to variable ?n.

Performing data exchange between OWL ontologies

using a SPARQL query engine comprises five steps (see
Fig. 2), namely:

1. Loading. This step consists of loading the source and
target ontologies and the set of SPARQL queries
from a persistent storage into the appropriate
internal data structures.

2. Reasoning over source. This step is optional and deals
with making it explicit the knowledge in the source.
This step is not required if the knowledge is already
explicit in the source ontology, but it is a must in
many cases since SPARQL does not deal with RDFS
or OWL entailments.

3. Query execution. This step consists of executing a set
of SPARQL queries over the source ontology to
produce instances of the target ontology. The result
of this step must be the same regardless of the order
in which queries are executed.

4. Reasoning over target. This step is also optional and it
deals with making it explicit the knowledge in the
target ontology.

5. Unloading. This step deals with saving the target
ontology to a persistent storage.

3 REAL-WORLD PATTERNS

Our benchmark provides three real-world data exchange

patterns, each of which is instantiated into a variety of

scenarios using a number of parameters (see Section 5).
These patterns are illustrated in Fig. 3 and presented below.

The source ontology is on the left side and the target is on

the right side; the arrows represent correspondences
between the entities of the ontologies. These correspon-

dences are visual hints to help readers understand each
real-world pattern [2]. We selected these three patterns to be

part of our benchmark because they represent integration

problems that are common in practice in the context of
Linked Open Data. We use some prefixes to denote

different ontologies, such as dbp32:, dbp36:, srv:, or po:.
Evolution of an ontology. Usually, ontologies change in

response to a certain need [11], including that the domain of
interest has changed, the perspective under which the

domain is viewed needs to be changed, or due to design

flaws in the original ontology. In this context, the source
ontology is the ontology before changes are applied and the

target ontology is the ontology after changes are applied.

Fig. 2. Steps of data exchange.



This pattern focuses on DBpedia [8], which is a

community effort to annotate and make the data stored at

Wikipedia accessible by means of an ontology. DBpedia

comprises a number of different versions due to a number

of changes in its conceptualization. When a new version of

DBpedia is devised, the new ontology may be populated by

performing data exchange from a previous version to the

new one. In this pattern, we perform data exchange from a

part of DBpedia 3.2 that focuses on artists, actors, directors,

and films to DBpedia 3.6 (see Fig. 3a).
Vocabulary adaptation. It is not uncommon that two

ontologies offer the same data structured according to

different vocabularies. In this context, it is necessary to

adapt the vocabulary of a source ontology to the vocabulary

of a target ontology.
This pattern focuses on the BBC Programmes and

DBpedia ontologies. The BBC [20] provides ontologies that

adhere to the Linked Open Data principles to publicize the

music and programmes they broadcast on both radio and

television. In this pattern, which is shown in Fig. 3b, we

perform data exchange from the Programmes Ontology
2009, which describes programmes including brands, series
(seasons), and episodes, to a part of DBpedia 3.7 that
models television shows and episodes.

Publication of Linked Open Data. Many existing ontologies
do not adhere to the principles of the Linked Open Data
initiative, and there is usually a need to transform them to
comply with such principles.

This pattern focuses on publishing semantic-web ser-
vices as Linked Open Data. OWL-S [19] is one of the main
approaches for describing semantic-web services that
defines an upper ontology in OWL. Minimal service model
(MSM) [26] is a web service ontology that allows to publish
web services as Linked Open Data. In this pattern, which is
shown in Fig. 3c, we publish OWL-S 1.1 services as Linked
Open Data by means of MSM 1.0.

4 SYNTHETIC PATTERNS

A synthetic data exchange pattern represents a common
and relevant integration problem. Our benchmark pro-
vides a catalogue of seven synthetic data exchange
patterns; to design them, we have leveraged our experi-
ence on current approaches in the ontology evolution
context (see Section 7), and our experience regarding real-
world information integration problems. Each pattern
represents an intention of change [11], i.e., each pattern
represents a number of atomic changes that are applied to
an ontology in response to certain needs. In addition, each
synthetic pattern is instantiated into a variety of scenarios
using a number of parameters (see Section 5). Below, we
present our synthetic patterns, which are illustrated in
Fig. 4. Note that src: and tgt: prefixes are used for the
source and target ontologies, respectively.

Lift properties. The intention of change is that the user
wishes to extract common properties to a superclass in a
hierarchy. Therefore, the data properties of a set of
subclasses are moved to a common superclass. In the
example, the src:name and src:birth data properties are
lifted to tgt:name and tgt:birth, respectively.

Sink properties. The intention of change is that the user
wishes to narrow the domain of a number of properties.
Therefore, the data properties of a superclass are moved to
a number of subclasses. In the example, the src:name and
src:birth data properties are sunk to tgt:name and
tgt:birth, respectively.

Extract subclasses. The intention of change is that the user
wishes to specialize a class. Therefore, a source class is split
into several subclasses and the domain of the target data
properties is selected among the subclasses. In the example,
every instance of src:Person is transformed into an instance
of tgt:Person.

Extract superclasses. The intention of change is that the
user wishes to generalize a class. So, a class is split into
several superclasses, and data properties are distributed
among them. After exchanging data in this example, all
target instances are of type tgt:Author, which are implicitly
instances of tgt:Person, too.

Extract related classes. The intention of change is that the
user wishes to extract a number of classes building on a
single class. Therefore, the data properties that have this

Fig. 3. Real-world patterns of our benchmark.



single class as domain change their domains by the new
classes, which are related to the original one by a number of
object properties. In the example, the source class src:Paper
is split into two target classes called tgt:Paper and tgt:Author
that are related by object property tgt:writtenBy. Instances of
tgt:Author are constructed by applying a user-defined
function f to the instances of src:Paper.

Simplify specialization. The intention of change is that the
user wishes to flat a hierarchy of classes. Thus, a set of
specialized classes are flattened into a single class. In the
example, src:Person and src:Author, which specializes
src:Person, are simplified to tgt:Person.

Simplify related classes. The intention of change is that the
user wishes to join a set of classes that are related by object

properties. Therefore, several source classes are transformed

into one class that aggregates them all. In the example, for

every two instances of src:Author and src:Paper related by

src:writes, a new instance of tgt:Publication is constructed.

5 PARAMETERS

Our benchmark takes a number of input parameters that

allow to tune the data of the source ontology in the real-

world patterns, and both structure and data of the source

and/or the target ontologies in the synthetic patterns.

Thanks to them, a user can instantiate multiple scenarios

per pattern.
The structure parameters are the following:

. Levels of classes (L 2 IN): number of relationships
(specializations or object properties) among one class
and the rest of the classes in the source or target
ontologies. L allows to scale the structure of
ontologies in depth.

. Number of related classes (C 2 IN): number of classes
related to each class by specialization or object
properties. C allows to scale the structure of
ontologies in breadth.

. Number of data properties (D 2 IN): of the source and
target ontologies.

L and C may be applied to both source and target

ontologies, which is the case of the lift properties and sink

properties patterns; to the target ontology only, i.e., the

extract subclasses, extract superclasses, and extract related

classes patterns; or to the source ontology only, i.e., the

simplify specialization and simplify related classes patterns.
Fig. 5a shows a sample instantiation of the sink proper-

ties pattern in which L ¼ 1, C ¼ 3, and D ¼ 3. Structure

parameters can be tuned to construct realistic ontologies, for

example, ontologies in the context of life sciences usually

comprise a large set of classes that form a wide and/or deep

taxonomy. For instance, the gene ontology [5], which

represents gene and gene product attributes, comprises

Fig. 4. Synthetic patterns of our benchmark.

Fig. 5. Sample scenario.



roughly 32,000 classes with a dozen specialization levels.
Therefore, to construct ontologies that resemble the gene
ontology, we need to specify the following parameters
L ¼ 14, C ¼ 2. The total number of classes an ontology
comprises is computed by the following formula:

PL
i¼0 C

i.
Structure parameters also have an effect on the SPARQL

queries constructed by our benchmark, since they vary
depending on the structure of the source and target
ontologies. Fig. 5b shows two sample queries for the
example scenario of the sink properties pattern: Q1 is
responsible for reclassifying A0 in the source as A1 in the
target, and Q2 is responsible for both reclassifying A0 as A1

in the target, and exchanging the value of src:d0 into tgt:d0.
Data parameters are used to scale the instances of the

source ontology, which are the following:

. Number of individuals ðI 2 INnf0gÞ: number of in-
stances of owl:Thing in the source ontology.

. Number of types ðIT 2 INÞ: number of types that each
individual shall have.

. Number of data properties ðID 2 INÞ: number of data
property instances for which a given individual is
the subject.

. Number of object properties ðIO 2 INÞ: number of object
property instances for which a given individual is
the subject.

The actual types and instances may be randomly selected
from the whole set of classes, data properties and object
properties of the ontology to be populated. In our tool, we
provide 44 statistical distributions to randomly select them,
including uniform, normal, exponential, Zipf, Pareto, and
empirical distributions, to mention a few. As a result, it is
possible to use statistical distributions that model real-
world ontologies.

Fig. 5c shows an example of the data constructed (left
side) to populate the source ontology in Fig. 5a, in which the
data parameters are the following: I ¼ 4, IT ¼ 1, ID ¼ 1,
and IO ¼ 0. Furthermore, this figure shows the target
instances (right side) that result from performing data
exchange with the SPARQL queries in Fig. 5b. We may
compute the number of data triples that a populated
ontology comprises by means of the following formula:
Ið1þ IT þ ID þ IOÞ.

Data parameters can be tuned to populate ontologies
that resemble realistic ones, for example, the SwetoDBLP
[1] ontology models computer science publications. It
comprises roughly 2 million triples of individuals of a
single type, 4 million triples of data property instances,
and 7 million triples of object property instances. To
simulate this ontology, we have to set the following
values: I ¼ 2 106, IT ¼ 1 (the individuals are of a single
type), ID ¼ 2 (4 million triples of data property instances
divided by 2 million triples of individuals), and IO ¼ 4
(7 million triples of object properties divided by 2 million
triples of individuals).

6 EVALUATION METHODOLOGY

Having a catalogue of data exchange patterns is not enough
to evaluate a data exchange system in practice. It is necessary
to rely on a disciplined evaluation methodology if we

wish to make informed and statistically sound decisions.

We have devised such a methodology and present its

workflow in Fig. 6.
We refer to performing data exchange over a scenario as

executing that scenario. In the initial setup step, the user is

responsible for selecting the data exchange systems to test,

the patterns to test these systems, the values of parameters,

and a variable to measure the performance of these

systems. The scenario execution step consists of executing

scenarios of each pattern using each system. After execut-

ing the scenarios, the results are used to compute which

system performs better (performance analysis step) and to

analyze the influence of parameters in their performance

(sensitivity analysis step). Finally, in the decision making

step, the user is responsible for making decisions based on

the previous analysis.
We describe the details of the methodology in Section 6.1,

and illustrate it in Sections 6.2 and 6.3.

6.1 Steps

6.1.1 Initial Setup

First, we need to select the study we are going to conduct. In

this initial setup we are responsible for selecting the data

exchange systems to test: IM ¼ fm1; . . . ;mag, a � 2; the data

exchange patterns: IP ¼ fp1; . . . ; pbg, b � 1; the set of values

for the parameters, and a performance variable. Our

methodology is devised to focus only on real-world or

synthetic patterns, but not both at the same time, since they

entail the study of different sets of parameters: in the real-

world patterns, we only study data parameters since the

structure of the source and target ontologies is fixed; in the

synthetic patterns, we study both the structure and data

parameters. Regarding structure parameters, we refer to

their sets as PL, PC , and PD; regarding the data parameters,

we refer to their sets as PI , PIT , PID, and PIO; in both cases,

the subindex refers to the corresponding parameter.
A configuration is a tuple that comprises a value for each

parameter; we denote the set of all possible configurations

as CC. When dealing with real-world patterns, CC ¼ PI �
PIT � PID � PIO; when dealing with synthetic patterns,

CC ¼ PL � PC � PD � PI � PIT � PID � PIO. The combina-

tion of a pattern and a configuration forms a scenario, we

denote the set of all possible scenarios as XX ¼ IP� CC. In

addition, a setting is a combination of a system and a

pattern, we denote the set of all possible settings as

SS ¼ IM� IP. Consequently, the total number of scenarios

for each pattern is jCCj.

Fig. 6. Workflow of the evaluation methodology.



Regarding the performance variable, there are two types
of variables that we can select to measure the performance
of systems: context-sensitive or context-insensitive. On the
one hand, context-sensitive variables are affected by other
processes that are executed in parallel in the computer, such
as antiviruses, automatic updates, or backup tasks. So it is
mandatory to execute the scenarios a number of times,
usually 25-30 times, and compute the average of the
performance variable, removing possible outliers. Some
examples are the following: user time, I/O time, or memory
faults. On the other hand, context-insensitive variables are
not (notoriously) affected by other processes, so it is not
needed to execute the scenarios more than once; some
examples are the following: CPU time, number of target
triples, or memory used.

6.1.2 Scenario Execution

For each system m 2 IM and each pattern p 2 IP, we need to
execute the scenarios related to p using m, so we need to
execute the scenarios of all possible settings. Typical setups
may involve the execution of a large number of scenarios,
each of which may take hours or even days to complete;
this makes it necessary to use the Monte Carlo method to
select a subset of scenarios to execute randomly. The
problem that remains is to determine which the size of this
subset must be.

Our evaluation methodology comprises a sensitivity
analysis for which we use a regression method. This
imposes an additional constraint on the number of scenar-
ios to execute, since it is known that the ratio of scenarios to
parameters must be at least 10 [22]. As a conclusion, when
dealing with real-world patterns, we should execute at least
40 scenarios, since they involve four data parameters, and
when dealing with synthetic patterns, we should execute at
least 70 scenarios, since they involve three structure and
four data parameters. To provide a more precise figure on
the number of scenarios to execute, we use an iterative
method that relies on Cochran’s formula [9], which is based
on the variance of the performance variable.

In this iterative method, we introduce a threshold to limit
the total number of scenarios to execute: � 2 IR; 0 < � � 1,
since, in the worst case, this number is equal to jCCj, which
means that the variance being studied is so high that it is
not possible to calculate an average at confidence level
95 percent with an estimated error less than 3 percent (the
standard values of Cochran’s formula). The same occurs
with the number of iterations of this method, i.e., a large
number of iterations of this method means that the variance
being studied is high; therefore, we introduce another
threshold regarding the number of iterations: � 2 IN; � > 0.
We describe the iterative method below:

1. For each setting si, we select 40 or 70 scenarios to
execute using the Monte Carlo method.

2. We execute the selected scenarios.
3. We use Cochran’s formula to compute the new

number of scenarios to execute using the variance of
the performance variable, which is computed from
the scenarios previously executed.

4. Let e be the new number of scenarios to be executed,
let k be the current number of iterations, and w the

number of scenarios already executed; there are
several alternatives: a) e � w and � � k: we stop
executing more scenarios and continue with the next
step of the methodology; b) � jCCj � e > w and � � k:
we select e� w scenarios using the Monte Carlo
method and return to the second step of this method;
c) e > � jCCj or � > k: we discard si since it is not
possible to make informed and statistically sound
decisions about this setting.

At the end of this step, we have results of the

performance variable for each setting, i.e., a set of tuples

of the form ðs; c; vÞ, where s is a setting, c is a configuration,

and v the corresponding value of the performance variable.

6.1.3 Performance and Sensitivity Analyses

Performance analysis. To compute which system performs

better, we need a method to compare the values of the

performance variable we gathered in the previous step. We

can consider them as samples of an unknown random

variable, which implies that we need to rely on statistical

inference.
We apply Kruskal-Wallis’s H test [18] to the results of

each pattern in isolation, and to all of the results. The goal of

this test is to determine if there are statistically significant

differences among the performance variable for the systems

under test. If the result is that there is no difference among

the systems, it means that they all behave statistically

identically with respect to the performance variable.
Otherwise, we use Wilcoxon’s signed rank [18] test; if

more than two systems are compared then we use

Bonferroni’s correction [23]. According to the correction,

the p-value must not be compared with �, the confidence

level, usually 0.05, but �=a, where a denotes the number of

systems to be tested. In other words, given ten systems to

test, if we compare m1 and m2 using Wilcoxon’s signed

rank test and it returns a p-value less than �=10, then the

conclusion is that there is not enough evidence to reject the

hypothesis that m1 performs better than m2.
As a conclusion, the results of this step are a number of

rankings of systems and patterns, i.e., a set of tuples of the

form ðP; rÞ, in which P � IP is a subset of patterns and r is a

ranking of systems.
Sensitivity analysis. In this step, we need a method to

analyze the influence of the parameters in the performance

of the systems. For each setting s, we use ReliefF to rank the

influence of the parameters on the performance variable

[32]. ReliefF is a general parameter estimator that is based

on regression, which detects conditional dependences

among parameters and the performance variable. As a

result, it outputs a number of numerical coefficients for each

parameter; the lower a coefficient, the less influence of the

corresponding parameter.
Before using ReliefF, we need to normalize the values of

the performance variable that we have measured in our

scenarios, since ReliefF coefficients would not be compar-

able otherwise. To perform this normalization, we take the

minimum and maximum values of the performance

variable in the execution of scenarios for each setting, vm
and vM , respectively, and we use the following formula:



v0i ¼ ðvi � vmÞ=vM , where vi is the value of the performance
variable in each scenario and v0i is the normalized value.

After applying ReliefF to our results, we obtain a ranking
of the influence of parameters on the performance variable
for each setting. Then, it is possible to rank the influence of
parameters by clustering systems and/or patterns. Both
types of rankings are computed by means of the majoritar-
ian compromise method [34], which clusters individual
rankings into a single global ranking. To rank the influence
by system, we take the individual rankings of each system
and use the majoritarian compromise method to compute
the global ranking. Similarly, to rank the influence by
pattern, we compute the global ranking taking the
individual rankings of each pattern into account.

This step outputs a number of rankings on the influence
of parameters for each setting, for each system and every
pattern, and for each pattern and every system, i.e., tuples
of the form ðm; p; rxÞ, ðm;P; ryÞ, and ðM;p; rzÞ, respectively,
where m denotes a system, p denotes a pattern, P � IP
denotes a subset of patterns, M � IM denotes a subset of
systems, and rx, ry, and rz denote rankings on the influence
of parameters.

6.1.4 Decision Making

In this step, the user use the previous rankings to make
informed and statistically sound decisions on which the
best system is regarding the patterns and the analysed
performance variable.

6.2 Example with Real-World Patterns

To perform this example of our evaluation methodology,
we used a tool implemented using Java that allows to
execute the scenarios on several data exchange systems
[30]. The tool was run on a virtual computer that was
equipped with a four-threaded Intel Xeon 3.00-GHz
CPU and 16-GB RAM, running on Windows Server 2008
(64-bits), JRE 1.6.0, Oracle 11.2.0.1.0, Jena 2.6.4, ARQ 2.8.7,
TDB 0.8.7, Pellet 2.2.2, and OWLIM 4.2. Regarding the
execution of scenarios, we forced our benchmark to wait for
10 seconds every two scenario execution to ensure that the
Java garbage collector had finished collecting old objects
from memory. Furthermore, we dropped and created the
Oracle’s tablespace in which we stored the ontologies in
each scenario execution.

Note that, other benchmarks perform warm-ups of the
systems under test before running their experiments, since
they focus on query response or reasoning time, which may
be improved by these warm-ups [7]. However, in our
benchmark, we are interested in real-world data exchange
problems, in which the exchange of data is performed
offline, so we avoid warm-ups to fill caches since it is not
the usual behavior in real-world problems.

6.2.1 Initial Setup

For this example, we selected 10 data exchange systems to
test (recall that a system comprises an RDF store, a reasoner,
and a query engine). The selected systems were the
following: m1 ¼ Jena & ARQ & Jena Reasoner; m2 ¼ Jena
& ARQ & Pellet; m3 ¼ Jena & ARQ & Oracle Reasoner;
m4 ¼ Jena & ARQ & OWLIM Reasoner; m5 ¼ TDB & ARQ
& Pellet; m6 ¼ TDB & ARQ & Oracle Reasoner; m7 ¼ TDB
& ARQ & OWLIM Reasoner; m8 ¼ Oracle & Oracle &

Pellet; m9 ¼ Oracle & Oracle & Oracle Reasoner; m10 ¼
Oracle & Oracle & OWLIM Reasoner. Furthermore, we
selected all real-world patterns to test: p1 ¼ Evolution of an
ontology; p2 ¼ Vocabulary adaptation; p3 ¼ Publication of
Linked Open Data. We also selected the following values:
PI ¼ f1;250; 500; 750; 1;000; 1;250; 1;500; 1;750; 2;000; 2;250g;
PIT ¼ PID ¼ PIO ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g, which amounts
to 10;000 scenarios for each pattern. Finally, we selected
CPU time as the performance variable.

6.2.2 Scenario Execution

We used our iterative method to execute the scenarios for
each system and pattern using thresholds � ¼ 0:20, � ¼ 5; in
other words, we discarded a system if the ratio of scenarios
to be executed was greater than 20 percent or the iterations
of the method were greater than five. Table 1a shows our
results for each system and pattern; the first column shows
the ratio between the scenarios that we should execute and
the total number of scenarios according to Cochran’s
formula, the second column indicates the number of
iterations using our method, and the third column indicates
our decision, i.e., if we accept or discard a system. We
discarded six systems for patterns fp1; p3g, and seven
systems for pattern p2. (Please, recall that this means that

TABLE 1
Results of the Analysis of Sample Real-World Patterns



the variance of the performance variable is very high, which
makes it impossible to draw statistically sound conclu-
sions.) In Table 1a, the ratio between executed scenarios and
parameters for the remaining systems does not fall below
ten, i.e., all of them are greater than 40.

6.2.3 Performance and Sensitivity Analyses

Performance analysis. We took the timings of the previous
step, and we first used Kruskal-Wallis’s H test to compute if
there were significant differences among the systems
regarding the selected patterns. Kruskal-Wallis’s H test
outputted the following p-values: for pattern p1: p-value
¼ 4:27 10�114 < �=4; for pattern p2: p-value ¼ 7:23 10�98 <
�=3; for pattern p3: p-value ¼ 4:82 10�194 < �=4; and for
patterns for pattern fp1; p2; p3g: p-value ¼ 0:00 < �=2. All of
these p-values are less than �=n (Bonferroni’s correction), in
which n is the number of accepted systems; this guarantees
that there are significant differences among the systems.
Then, we used Wilcoxon’s signed rank test to compute pair
ranks among the data exchange systems and we combined
the results, which are shown in Table 1b. For instance, m4

performs better than m7 and m9 for pattern p2; similarly, m4

performs better than m7 for patterns fp1; p2; p3g.
Sensitivity analysis. We first normalized the times of the

previous step. Then, we used ReliefF to compute a ranking

of parameters by setting, and the majoritarian compromise

method to combine these rankings. The results are shown in

Table 1c. For instance, I influences more than the rest of

parameters regarding system m6 and pattern p1; similarly,

IT influences more than the rest of parameters regarding

system m3 and pattern p3.

6.2.4 Decision Making

The following are examples of informed and statistically

sound decisions we can make on account of the previous

results:

. It is appealing to use m4 since it spent the shortest
CPU time in performing data exchange in the
selected real-world patterns.

. It is not appealing to use m7 since it spent the longest
CPU time in performing data exchange.

. If we expect data exchange problems similar to p1

and I is going to scale, all systems will be much
affected by the scaling of I.

6.3 Example with Synthetic Patterns

In this example, we used the same tool, virtual computer
and software as in Section 6.2.

6.3.1 Initial Setup

For this example, we selected the same ten data exchange
systems to test as in Section 6.2. Furthermore, we selected
all synthetic patterns to test: p4 ¼ Lift Properties; p5 ¼ Sink
Properties; p6 ¼ Extract Subclasses; p7 ¼ Extract Super-
classes; p8 ¼ Extract Related Classes; p9 ¼ Simplify Specia-
lization; and p10 ¼ Simplify Related Classes. We also
selected the following values: PL ¼ PC ¼ PIT ¼ PID ¼
PIO ¼ f1; 2; 3; 4; 5g; PD ¼ f25; 50; 75; 100; 125g; PI ¼ f1;250;
500; 750; 1;000g, which amounts to 15;625 scenarios for
patterns fp4; p5; p6; p7; p8; p9g, in which IO is not used since
these patterns have no object properties in the source.
Furthermore, the number amounts to 28;125 scenarios for
pattern p10. Finally, we selected CPU time as the perfor-
mance variable.

6.3.2 Scenario Execution

We used our iterative method to execute the scenarios for
each system and pattern using thresholds � ¼ 0:20, � ¼ 5; in
other words, we discarded a system if the ratio of scenarios
to be executed was greater than 20 percent or the iterations
of the method were greater than five. Table 2 shows our
results. We discarded five systems for pattern p9,
six systems for patterns fp4; p5; p6g, seven systems for
pattern p7, nine systems for pattern p8, and every system
for pattern p10. The last case entails that the variability of the
performance variable is too high, which prevents us from
making informed and statistically sound decisions using the
previous thresholds. In Table 2, the ratios between executed
scenarios and parameters for the remaining systems does
not fall below 10, i.e., they are greater than 70.

6.3.3 Performance and Sensitivity Analyses

Performance analysis. We used Kruskal-Wallis’s H test to
compute if there were significant differences among the
systems regarding the selected patterns. Kruskal-Wallis’s
H test outputted the following p-values: for pattern p4:
p-value ¼ 7:16 10�287 < �=4; for pattern p5: p-value ¼
2:38 10�275 < �=4; for pattern p6: p-value ¼ 5:07 10�172 <
�=4; for pattern p7: p-value ¼ 8:24 10�95 < �=3; for pattern
p9: p-value ¼ 3:93 10�142 < �=5; and for patterns fp4; p5; p6;
p7; p9g: p-value ¼ 0:00 < �=2. Note that all of these p-values

TABLE 2
Sample Size Analysis (Sample Synthetic Patterns)



are less than �=n (Bonferroni’s correction), in which n is the
number of accepted systems; this guarantees that there are
significant differences among the systems. Then, we used
Wilcoxon’s signed rank test to compute pair ranks among
the systems, and then we combined the results. The final
results are shown in Table 3a, in which it can be seen that
m3 outperforms the rest of the systems for pattern p6;
similarly, m4 performs better than m7 for patterns
fp4; p5; p6; p7; p9g.

Sensitivity analysis. We normalized the previous times
and used ReliefF to compute a ranking of parameters by
setting, and the majoritarian compromise method to
combine these rankings by systems and patterns. The final
results are shown in Table 3b. For instance, L influences

more than the rest of parameters regarding system m6 and
pattern p5; similarly, I influences more than the rest of
parameters regarding systems fm4;m7g and patterns
fp4; p5; p6; p7; p9g.

6.3.4 Decision Making

The following are examples of informed and statistically
sound decisions we can make on account of the previous
results:

. It is appealing to use m3 since it spent the shortest
CPU time in performing data exchange in four out of
seven selected patterns.

. It is not appealing to use m7 since it spent the longest
CPU time in performing data exchange in three out
of seven selected patterns.

. If we expect data exchange problems similar to p5

and the number of individuals (I) is going to scale, it
is better to use systems m3 or m6 since they are not
much affected by the scaling of I.

. If we expect data exchange problems similar to p9

and the number of individuals (I) is going to scale,
the CPU time will be affected since all systems are
much affected by the scaling of I.

7 RELATED WORK

On the one hand, our benchmark provides a catalogue of
seven synthetic data exchange patterns, so we compare
them with other patterns described by different authors (see
Section 7.1). On the other hand, we compare our benchmark
with other existing benchmarks in the bibliography
(see Section 7.2).

7.1 Data Exchange Patterns

Stojanovic et al. [35] and Noy and Klein [25] worked on
ontology evolution, which can be seen as a data exchange
problem in which the source is the original ontology, and
the target is an evolution of the source ontology. Stojanovic
et al. [35] identified 16 atomic changes an ontology may
undergo, for example, adding or removing classes, sub-
classes, properties, subproperties, property domains, or
property ranges. These changes can be seen as the simplest
operations building on which the evolution of an ontology
may be specified. Some combinations of changes are very
frequent in practice, which motivated the authors to devise
a catalogue of 12 common composite changes. Noy and
Klein [25] extended the catalogue of atomic changes to
twenty two, accounting for, for example, the reclassification
of an instance as a class or viceversa, the declaration of two
classes to be disjoint, moving properties to a subclass or
superclass, or moving classes among a subclass hierarchy.

Unfortunately, the specification of the evolution of an
ontology does not take how data are exchanged into
account. Our catalogue of synthetic patterns summarizes
common changes we have found in real-world information
integration problems: not only specify they how the
structure of the source ontology evolves, but also how
source data must be exchanged by means of SPARQL
queries of the CONSTRUCT type. Our synthetic patterns
are instantiated by tuning a number of structure parameters

TABLE 3
Results of the Performance and Sensitivity

Analysis of Sample Synthetic Patterns



that allow to construct scenarios that range from simple
atomic changes to complex composite changes.

Table 4 summarizes the changes that our synthetic
patterns involve regarding the composite changes devised
by Stojanovic et al. [35], and the atomic changes identified
by Noy and Klein [25]. Our patterns are related to eleven
composite changes identified by Stojanovic et al. [35]. The
unique composite change that is not related to our patterns
is the Deep property copy, since we do not deal with
specializations of properties in the synthetic patterns. We
do not deal with these specializations since they are not so
common in the Web of Data [13]. Furthermore, our patterns
are related to 16 atomic changes that were identified by Noy
and Klein [25], since our patterns describe intentions of
change in a more coarse-grain than these atomic changes, a
single pattern is related to more than one atomic change.
The atomic changes that are not related to the synthetic
patterns deal with the reclassification of instances as classes,
declaring disjoint classes or transitive properties, and
sinking or lifting classes within a hierarchy. We do not
deal with these atomic changes since they can be dealt with
by means of a reasoner [21].

Alexe et al. [2] devised a benchmark that provides
11 data exchange patterns in the information integration
context. Their focus was on nested relational models, which
makes it difficult to extrapolate it to our context due to a
number of differences between these models and ontologies
[25], [29], namely:

. A nested relational model defines a tree that
comprises a number of nodes, which may be nested
and have an arbitrary number of attributes, and it is
also possible to specify referential constraints to
relate attributes; contrarily, an ontology is not a tree,
but a graph in which there is not a root node and it
can have cycles.

. An instance in a nested relational model has a
unique type that corresponds to an existing node;
contrarily, an ontology instance may have multiple
types, i.e., multiple classes that need not be related
by specialization.

. In nested relational models, queries to exchange data
are encoded using XQuery or XSLT, which build on
the structure of the XML documents on which they
are executed; contrarily, in an ontology, these queries

must be encoded in a language that is independent
from the structure of the documents used to
represent an ontology, since the same ontology may
be serialized to multiple languages, for example,
XML, N3, or Turtle.

7.2 Benchmarks

The most-related benchmark is LODIB [31], which was
devised to test the performance of data exchange systems
in the context of Linked Data. LODIB focuses on three e-
commerce data exchange patterns, each of which comprises
a different source ontology and the same target ontology.
This benchmark allows to automatically populate and scale
the data of the source ontologies. Unfortunately, LODIB
uses four fixed ontologies (three sources and one target), so
it is not possible to test the performance of data exchange
systems when the structure of the ontologies scale.

Guo et al. [14] presented LUBM, a benchmark to compare
systems that support ontologies. This benchmark provides a
single university ontology, a data constructor algorithm that
allows to create scalable synthetic data, and 14 SPARQL
queries of the SELECT type. This benchmark is similar to
ours; however, it has a number of crucial differences:

. LUBM focuses on a single ontology. Contrarily,
our benchmark focuses on data exchange problems
that comprise source and target ontologies and a
set of queries.

. LUBM provides a data constructor to populate an
ontology in the university context with synthetic
data. On the contrary, our benchmark allows to tune
the structure and/or data of source and target
ontologies for each pattern instantiation.

. LUBM provides 14 SPARQL queries of the SELECT
type. Our benchmark provides a query constructor
that allows to automatically construct SPARQL
queries of the CONSTRUCT type to perform data
exchange for the synthetic patterns.

Wu et al. [36] presented the conclusions regarding an
implementation of an inference engine for Oracle, which
implements the RDFS and OWL entailments, i.e., it performs
reasoning over OWL and RDFS ontologies. They described a
performance study based on two examples: LUBM, which
comprises data that range from 6.7 to 133.7 million triples,
and UniProt, which comprises roughly 5 million triples.

TABLE 4
Changes Involved in Our Synthetic Patterns



Bizer and Schultz [7] presented BSBM, a benchmark to
compare the performance of SPARQL queries using native
RDF stores and SPARQL-to-SQL query rewriters. It focuses
on an e-commerce pattern, and they provide a data
constructor and a test driver: the former allows to create
large ontologies and offers RDF and relational outputs to
compare the approaches; the latter emulates a realistic
workload by simulating multiple clients that concurrently
execute queries. The benchmark consists of 12 SPARQL
queries that are divided into 10 SELECT queries, one
DESCRIBE query, and one CONSTRUCT query.

Schmidt et al. [33] presented a benchmark to test
SPARQL query engines that is based on DBLP, and
comprises both a data constructor and a set of benchmark
queries in SPARQL. They study the DBLP data set to
construct a realistic set of synthetic data by measuring
probability distributions for certain properties, for example,
authors or cites in papers. The benchmark comprises
seventeen queries that are divided into fourteen SELECT
queries and three ASK queries.

Garcia-Castro and Gómez-Pérez [12] described a bench-
mark to test the interoperability among different systems
that implement semantic-web technologies, which repre-
sent ontologies in different ontology languages, such as
RDFS or OWL. They claim that it is necessary to be aware of
these interoperability problems when combining such
systems. Morsey et al. [24] presented DBPSB, a benchmark
to test the performance of RDF stores and SPARQL query
engines using RDF data that do not resemble a relational
schema. It automatically generates RDF data of multiple
sizes by duplicating the original data and changing their
namespaces. The authors selected 25 representative
SPARQL queries of the SELECT type that were extracted
by analyzing real-world queries issued to the official
DBpedia SPARQL endpoint.

Finally, Alexe et al. [2] devised a benchmark that is used
to test data exchange systems in the context of nested
relational models. Unfortunately, this benchmark is not
suitable in our context since ontologies have a number of
inherent differences with respect to nested relational
models (see Section 7.1).

8 CONCLUSIONS

In this paper, we present a benchmark to test data exchange
systems in the context of ontologies that build on SPARQL
query engines. Existing benchmarks in the bibliography are
not suitable to test such systems since:

1. they focus on nested relational models, which are
not applicable to ontologies due to a number of
inherent differences between them;

2. they do not focus on data exchange problems, which
implies that they do not provide source and target
ontologies and queries to exchange data;

3. they provide ontologies with a fixed structure in a
particular domain and do not allow to tune their
structure; or

4. they focus on SELECT queries instead of CON-
STRUCT queries that are required to exchange data.

Our benchmark provides a catalogue of three real-world

and seven synthetic data exchange patterns. The former are

relevant data exchange problems in the context of Linked

Open Data. The latter are common integration problems

based on current approaches in the context of ontology

evolution, and on our experience in information integration.

This catalogue of patterns is not meant to be exhaustive: we

expect a community effort to extend them.
These patterns can be instantiated into synthetic scenar-

ios by means of seven parameters that allow to control the

construction of both the structure and/or data of ontologies.

The scaling of the patterns helps analyze the performance of

systems when data exchange problems increase their scale

in structure and/or data. Finally, our benchmark provides

an evaluation methodology that allows to compare systems

side by side, and to make informed and statistically sound

decisions about their performance. It is applied to a number

of patterns and systems, and allows to rank which system

performs better or how the performance of a system is

influenced by the parameters.
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