LINEABILITY IN SEQUENCE SPACES

Pablo José Gerlach Mena

Dpto. Análisis Matemático

10 de marzo de 2017

LINEABILITY Some Known Results New Results

Pablo José Gerlach Mena Lineability in sequence spaces

-

PREVIOUS CONCEPTS

DEFINITION

Let X be a topological vector space (t.v.s.) and $A \subset X$.

PABLO JOSÉ GERLACH MENA LINEABILITY IN SEQUENCE SPACES

PREVIOUS CONCEPTS

DEFINITION

Let X be a topological vector space (t.v.s.) and $A \subset X$. We say that

• A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.

PREVIOUS CONCEPTS

DEFINITION

Let X be a topological vector space (t.v.s.) and $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- A is spaceable if ∃M ⊂ A ∪ {0} closed v.s. of infinite dimension.

PREVIOUS CONCEPTS

DEFINITION

Let X be a topological vector space (t.v.s.) and $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- A is spaceable if ∃M ⊂ A ∪ {0} closed v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.

PREVIOUS CONCEPTS

Definition

Let X be a topological vector space (t.v.s.) and $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- A is spaceable if ∃M ⊂ A ∪ {0} closed v.s. of infinite dimension.
- A is dense-lineable if M can be chosen dense in X.
- A is maximal-(dense)-lineable if dim(M) = dim(X).

Recall that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

Recall that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

EXAMPLE

• Let $\{I_n\}_{n\in\mathbb{N}} = \{(a_n, b_n)\}_{n\in\mathbb{N}}$ where $a_n, b_n \in \mathbb{Q} \ \forall n \in \mathbb{N}$.

Recall that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

- Let $\{I_n\}_{n\in\mathbb{N}} = \{(a_n, b_n)\}_{n\in\mathbb{N}}$ where $a_n, b_n \in \mathbb{Q} \ \forall n \in \mathbb{N}$.
- I_1 contents a Cantor type subset, denote it C_1 .

Recall that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

- Let $\{I_n\}_{n\in\mathbb{N}} = \{(a_n, b_n)\}_{n\in\mathbb{N}}$ where $a_n, b_n \in \mathbb{Q} \ \forall n \in \mathbb{N}$.
- I_1 contents a Cantor type subset, denote it C_1 .
- We construct $\{C_n\}_{n\in\mathbb{N}}$ such that $C_n \subset I_n \setminus \left(\bigcup_{k=1}^{n-1} C_k\right)$.

Recall that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

- Let $\{I_n\}_{n\in\mathbb{N}} = \{(a_n, b_n)\}_{n\in\mathbb{N}}$ where $a_n, b_n \in \mathbb{Q} \ \forall n \in \mathbb{N}$.
- I_1 contents a Cantor type subset, denote it C_1 .
- We construct $\{C_n\}_{n\in\mathbb{N}}$ such that $C_n \subset I_n \setminus \left(\bigcup_{i=1}^{n-1} C_k\right)$.
- Take any bijection $\Phi_n : C_n \longrightarrow \mathbb{R}$.

Recall that $f : \mathbb{R} \longrightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

- Let $\{I_n\}_{n\in\mathbb{N}} = \{(a_n, b_n)\}_{n\in\mathbb{N}}$ where $a_n, b_n \in \mathbb{Q} \ \forall n \in \mathbb{N}$.
- I_1 contents a Cantor type subset, denote it C_1 .
- We construct $\{C_n\}_{n\in\mathbb{N}}$ such that $C_n \subset I_n \setminus \left(\bigcup_{k=1}^{n-1} C_k\right)$.
- Take any bijection $\Phi_n : C_n \longrightarrow \mathbb{R}$.
- Define $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $(\phi_{-}($

$$f(x) := \left\{ egin{array}{cc} \Phi_n(x) & ext{if } x \in C_n, \ 0 & ext{in other case} \end{array}
ight.$$

THEOREM (Araújo, Bernal, Muñoz, Prado and Seoane, 2017)

The set of measureable everywhere surjective functions \mathcal{MES} is c-lineable.

THEOREM (Araújo, Bernal, Muñoz, Prado and Seoane, 2017)

The set of measureable everywhere surjective functions \mathcal{MES} is c-lineable.

THEOREM (A, B, M, P and S, 2017)

The family of sequences $(f_n)_{n \in \mathbb{N}}$ of Lebesgue measurable functions such that $f_n \longrightarrow 0$ pointwise and $f_n \in \mathcal{MES}$ is \mathfrak{c} -lineable.

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\{x\in X : |f_n(x)-f(x)|\geq \varepsilon\}\right)\longrightarrow 0, \quad (n\to\infty).$$

크

• • • • • • • • •

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\{x\in X : |f_n(x)-f(x)|\geq \varepsilon\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (**Riesz**)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\{x\in X : |f_n(x)-f(x)|\geq \varepsilon\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (**Riesz**)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

THEOREM (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\{x\in X : |f_n(x)-f(x)|\geq \varepsilon\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (**Riesz**)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

THEOREM (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that

 $f_n \longrightarrow 0$ in measure

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\{x\in X : |f_n(x)-f(x)|\geq \varepsilon\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (**Riesz**)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

THEOREM (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that

 $f_n \longrightarrow 0$ in measure

 $f_n \not\longrightarrow 0$ pointwise almost everywhere

Recall that $f_n \longrightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu\left(\{x\in X : |f_n(x)-f(x)|\geq \varepsilon\}\right)\longrightarrow 0, \quad (n\to\infty).$$

THEOREM (**Riesz**)

 $f_n \longrightarrow f$ in measure $\Longrightarrow \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.

THEOREM (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that

 $f_n \longrightarrow 0$ in measure

 $f_n \not\longrightarrow 0$ pointwise almost everywhere

is maximal-dense-lineable.

LINEABILITY Some Known Results New Results

POINTWISE VERSUS UNIFORMLY CONVERGENCE

Pablo José Gerlach Mena Lineability in sequence spaces

POINTWISE VERSUS UNIFORMLY CONVERGENCE

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that

PABLO JOSÉ GERLACH MENA LINEABILITY IN SEQUENCE SPACES

POINTWISE VERSUS UNIFORMLY CONVERGENCE

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that $f_n \longrightarrow 0$ pointwise

PABLO JOSÉ GERLACH MENA LINEABILITY IN SEQUENCE SPACES

POINTWISE VERSUS UNIFORMLY CONVERGENCE

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that

- $f_n \longrightarrow 0$ pointwise
- $f_n \not\longrightarrow 0$ uniformly

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that

- $f_n \longrightarrow 0$ pointwise
- $f_n \not\longrightarrow 0$ uniformly

is maximal-dense-lineable.

LINEABILITY Some Known Results New Results

POINTWISE VERSUS UNIFORMLY CONVERGENCE

Sketch of the Proof

크

ъ

LINEABILITY Some Known Results New Results

POINTWISE VERSUS UNIFORMLY CONVERGENCE

Sketch of the Proof

• Let
$$f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$$
.

크

-

Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), \ t \in (-1,0).$$

ヨトィヨト

Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), \ t \in (-1,0).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}.$

Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), \ t \in (-1,0).$$

• Let $M := \operatorname{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then dim $(M) = \mathfrak{c}$

Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), \ t \in (-1,0).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), \ t \in (-1,0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.
- Take $X = L_0^{\mathbb{N}}$,

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), \ t \in (-1,0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.
- Take $X = L_0^{\mathbb{N}}$, $B = \widetilde{L} := \{\Phi = (f_n) \in L_0^{\mathbb{N}} : \exists N = N(\Phi) \in \mathbb{N} \mid f_n = 0 \ \forall n \ge N\}$

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), \ t \in (-1,0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.
- Take $X = L_0^{\mathbb{N}}$, $B = \widetilde{L} := \{\Phi = (f_n) \in L_0^{\mathbb{N}} : \exists N = N(\Phi) \in \mathbb{N} \mid f_n = 0 \forall n \ge N\}$ and A the family of sequences.

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1},\frac{1}{n}\right]}\left(\frac{1}{2}(x-t)\right) = \chi_{\left[\frac{2}{n+1}+t,\frac{2}{n}+t\right]}(x), \ t \in (-1,0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1,0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.
- Take $X = L_0^{\mathbb{N}}$, $B = \widetilde{L} := \{\Phi = (f_n) \in L_0^{\mathbb{N}} : \exists N = N(\Phi) \in \mathbb{N} \mid f_n = 0 \forall n \ge N\}$ and A the family of sequences.
- Thus, A is maximal-dense-lineable.

Uniformly versus L^1 Norm Convergence

Pablo José Gerlach Mena Lineability in sequence spaces

-

Uniformly versus L^1 Norm Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \subset L_0[0, +\infty)$ such that

Uniformly versus L^1 Norm Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \subset L_0[0, +\infty)$ such that

 $f_n \longrightarrow 0$ uniformly

Uniformly versus L^1 Norm Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \subset L_0[0, +\infty)$ such that

 $f_n \longrightarrow 0$ uniformly $f_n \not\longrightarrow 0$ in $\|\cdot\|_{L^1}$ norm

Uniformly versus L^1 Norm Convergence

THEOREM (Calderón, G.M. and Prado)

The family of sequences of functions $(f_n) \subset L_0[0, +\infty)$ such that

 $f_n \longrightarrow 0$ uniformly $f_n \not\longrightarrow 0$ in $\|\cdot\|_{L^1}$ norm is c-lineable.

Uniformly versus L^1 Norm Convergence

Sketch of the Proof

Pablo José Gerlach Mena Lineability in sequence spaces

Uniformly versus L^1 Norm Convergence

Sketch of the Proof

• Let
$$f_n = \frac{1}{n} \chi_{[n,2n]}$$
.

Uniformly versus L^1 Norm Convergence

Sketch of the Proof

- Let $f_n = \frac{1}{n} \chi_{[n,2n]}$.
- Consider now

$$f_n(x-nt) = \frac{1}{n}\chi_{[n,2n]}(x-nt) = \frac{1}{n}\chi_{[n(t+1),n(t+2)]}(x), t \in [0,1).$$

Uniformly versus L^1 Norm Convergence

Sketch of the Proof

- Let $f_n = \frac{1}{n}\chi_{[n,2n]}$.
- Consider now

$$f_n(x-nt) = \frac{1}{n}\chi_{[n,2n]}(x-nt) = \frac{1}{n}\chi_{[n(t+1),n(t+2)]}(x), t \in [0,1).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in [0,1)\}.$

Uniformly versus L^1 Norm Convergence

Sketch of the Proof

- Let $f_n = \frac{1}{n}\chi_{[n,2n]}$.
- Consider now

$$f_n(x-nt) = \frac{1}{n}\chi_{[n,2n]}(x-nt) = \frac{1}{n}\chi_{[n(t+1),n(t+2)]}(x), \ t \in [0,1).$$

• Let $M := \text{span}\{(f_{n,t}) : t \in [0,1)\}$. Then $\dim(M) = c$

Uniformly versus L^1 Norm Convergence

Sketch of the Proof

- Let $f_n = \frac{1}{n}\chi_{[n,2n]}$.
- Consider now

$$f_n(x-nt) = \frac{1}{n}\chi_{[n,2n]}(x-nt) = \frac{1}{n}\chi_{[n(t+1),n(t+2)]}(x), t \in [0,1).$$

Let *M* := span{(*f_{n,t}*) : *t* ∈ [0, 1)}. Then dim(*M*) = c , so *A* is c-lineable.

Thank you very much for your attention

PABLO JOSÉ GERLACH MENA LINEABILITY IN SEQUENCE SPACES