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Pablo José Gerlach Mena Lineability in sequence spaces



Lineability
Some Known Results

New Results

Previous Concepts

Definition

Let X be a topological vector space (t.v.s.) and A ⊂ X.

We say
that

A is lineable if ∃M ⊂ A ∪ {0} v.s. of infinite dimension.
A is spaceable if ∃M ⊂ A ∪ {0} closed v.s. of infinite
dimension.
A is dense-lineable if M can be chosen dense in X.
A is maximal-(dense)-lineable if dim(M) = dim(X ).
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Everywhere Surjective Functions

Recall that f : R −→ R is an everywhere surjective function if
f (I) = R for all interval I ⊂ R.

Example

Let {In}n∈N = {(an,bn)}n∈N where an,bn ∈ Q ∀n ∈ N.
I1 contents a Cantor type subset, denote it C1.

We construct {Cn}n∈N such that Cn ⊂ In\

(
n−1⋃
k=1

Ck

)
.

Take any bijection Φn : Cn −→ R.
Define f : R −→ R by

f (x) :=

{
Φn(x) if x ∈ Cn,

0 in other case.
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Everywhere Surjective Functions

Theorem (Araújo, Bernal, Muñoz, Prado and Seoane,
2017)

The set of measureable everywhere surjective functionsMES
is c-lineable.

Theorem (A, B, M, P and S, 2017)

The family of sequences (fn)n∈N of Lebesgue measurable
functions such that fn −→ 0 pointwise and fn ∈MES is
c-lineable.
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Measure versus Almost Convergence

Recall that fn −→ f in measure if ∀ ε > 0 we have

µ ({x ∈ X : |fn(x)− f (x)| ≥ ε}) −→ 0, (n→∞).

Theorem (Riesz)

fn −→ f in measure =⇒ ∃(fnk ) ⊂ (fn) such that fnk −→ f
pointwise a.e.

Theorem (A, B, M, P and S, 2017)

The family of sequences of functions (fn) ⊂ L0[0,1] such that
fn −→ 0 in measure
fn 6−→ 0 pointwise almost everywhere

is maximal-dense-lineable.
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Pointwise versus Uniformly Convergence
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The family of sequences of functions (fn) ⊂ L0[0,1] such that
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Pablo José Gerlach Mena Lineability in sequence spaces



Lineability
Some Known Results

New Results

Pointwise versus Uniformly Convergence

Theorem (Calderón, G.M. and Prado)

The family of sequences of functions (fn) ⊂ L0[0,1] such that
fn −→ 0 pointwise
fn 6−→ 0 uniformly

is maximal-dense-lineable.
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Pointwise versus Uniformly Convergence

Sketch of the Proof

Let fn(x) = χ[ 1
n+1 ,

1
n ](x).

Consider now

fn,t (x) = χ[ 1
n+1 ,

1
n ]

(
1
2

(x − t)
)

= χ[ 2
n+1+t , 2

n+t](x), t ∈ (−1,0).

Let M := span{(fn,t ) : t ∈ (−1,0)}. Then dim(M) = c , so
A is maximal-lineable.
Take X = LN

0 , B = L̃ := {Φ = (fn) ∈ LN
0 : ∃N = N(Φ) ∈

N | fn = 0 ∀n ≥ N} and A the family of sequences.
Thus, A is maximal-dense-lineable.
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Uniformly versus L1 Norm Convergence

Theorem (Calderón, G.M. and Prado)

The family of sequences of functions (fn) ⊂ L0[0,+∞) such that

fn −→ 0 uniformly
fn 6−→ 0 in ‖ · ‖L1 norm

is c-lineable.
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Uniformly versus L1 Norm Convergence

Sketch of the Proof

Let fn = 1
nχ[n,2n].

Consider now

fn(x−nt) =
1
n
χ[n,2n](x−nt) =

1
n
χ[n(t+1),n(t+2)](x), t ∈ [0,1).

Let M := span{(fn,t ) : t ∈ [0,1)}. Then dim(M) = c , so A
is c-lineable.
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Thank you very much for
your attention
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