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Abstract. Triclustering has shown to be a valuable tool for the analy-
sis of microarray data since its appearance as an improvement of clas-
sical clustering and biclustering techniques. Triclustering relaxes the
constraints for grouping and allows genes to be evaluated under a sub-
set of experimental conditions and a subset of time points simultane-
ously. The authors previously presented a genetic algorithm, TriGen,
that finds triclusters of gene expression dasta. They also defined three
different fitness functions for TriGen: MSR3D, LSL and MSL. In order
to asses the results obtained by application of TriGen, a validity mea-
sure needs to be defined. Therefore, we present TRIQ, a validity measure
which combines information from three different sources: (1) correlation
among genes, conditions and times, (2) graphic validation of the patterns
extracted and (3) functional annotations for the genes extracted.

Keywords: Triclustering · Validity measure · Genetic algorithms ·
Microarrays

1 Introduction

Data Mining has developed a vast amount of computational tools for the analysis
of bioinformatics data and allows us to find new knowledge which is hidden for
the human’s eyesight. One of the most useful and studied approaches is the
behavior pattern search in gene expression data from microarray experiments.
These genes, that exhibit high correlation among their expression levels, could be
involved in similar regulatory processes as relationship exists between correlation
and functionality.

We focus on one behavior pattern searching technique, clustering, which ana-
lyzes the microarray dimensional space grouping genes and taking into account
all experimental conditions. There are different approaches, having classic clus-
tering techniques, which group genes based on all conditions [19], biclustering,
which emerges as an evolution of clustering since it groups genes under some
particular experimental conditions, and finally we have triclustering, that goes
one step further by grouping genes under particular conditions and under partic-
ular time points [11], thus being capable of managing 3D data. Triclustering is
therefore suitable for microarray experiment where time points are considered,



which has great interest since it allows for a deep analysis of biological processes
where temporary development is important.

Both biclustering and triclustering attack NP-hard problems, and thus algo-
rithms based on heuristics are well suited for them. In [11] we presented the
TriGen algorithm, a triclustering-genetic algorithm based on an evolutionary
heuristic which finds patterns of similarity for genes on a three dimensional
space, thus taking into account the gene,conditions and time factors.

Definition of fitness functions for the genetic algorithm is an essential task. In
biclustering, a classic measure is the Mean Squared Residue (MSR) [6]. We have
defined a three dimensions adaptation of this measure, MSR3D [9]. Furthermore,
we have defined two other fitness functions improving the behavior of MSR3D.
Both are based on the similarity among the slopes of the angles. The first one,
Least Squared Lines (LSL) [12], measures the quality of a tricluster based on the
similarity among the slopes of the angles formed by the least squares lines from
each of the profiles formed by the genes, conditions and times of the tricluster.
The second one, Multi Slope Measure (MSL) [10], measures the quality of a
tricluster based on the similarity among the angles of the slopes formed by each
profile formed by the genes, conditions and times of the tricluster.

The results obtained by the three proposed fitness functions have been val-
idated in three different ways. First, by analyzing the correlation among the
genes, conditions and times in each tricluster using two different correlation
measures: Pearson [4] and Spearman [13]. Second, by a graphic validation of
the patterns extracted based on the graphic representation, and third we have
provided functional annotations for the genes extracted from the Gene Ontology
project (GO) [1]. These three validation measures have been chosen since they
are the standard ones for this topic as can be seen in [14,15,17,22,23].

However, we consider that providing a single evaluation measure capable of
combining the information from the three mentioned sources of validation will
be a great improvement. Therefore, in this work we propose TRIQ, a validation
measure which combines the three previously proposed validation mechanisms
(correlation, graphic validation and functional annotation of the genes).

2 Related Works

This section is to provide a general overview of triclustering published in lit-
erature. We particularly focus on the validation methods applied to assess the
quality of the triclusters obtained.

In 2005, Zhao and Zaki [23] introduced the triCluster algorithm to extract
patterns in 3D gene expression data. They presented a measure to assess triclus-
ters’s quality based on the symmetry property. They validated their triclusters
based on their graphical representation and Gene Ontology (GO) results.

g-triCluster, an extended and generalized version of Zhao and Zaki’s pro-
posal, was published one year later [15]. The authors claimed that the symmetry
property is not suitable for all patterns present in biological data and propose
the Spearman rank correlation [20] as a more appropriate tricluster evaluation
measure. The also showed validation results based on GO.



An evolutionary computation proposal was made in [16]. The fitness function
defined is a multi-objective measure which tries to optimize three conflicting
objectives: clusters size, homogeneity and gene-dimension variance of the 3D
cluster. The tricluster quality validation was based on GO.

LagMiner was introduced in [22] to find time-lagged 3D clusters, what allows
to find regulatory relationships among genes. It is based on a novel 3D cluster
model called S2D3 Cluster. They evaluated their triclusters on homogeneity,
regulation, minimum gene number, sample subspace size and time periods length.
Their validation was based on graphical representation and GO results.

Hu et al. presented an approach focusing on the concept of Low-Variance
3-Cluster [14], which obeys the constraint of a low-variance distribution of cell
values. This proposal uses a different functional enrichment tool called CLEAN
[8], which uses GO as one of their components.

The work in [17] was focused on finding Temporal Dependency Association
Rules, which relate patterns of behavior among genes. The rules obtained are to
represent regulated relations among genes. They also validated their triclusters
based on their graphical representation and GO results.

Summarizing, we see that the standard for validation of triclusters quality is
based on their graphical representation and GO functional annotations.

3 Methodology

This section describes a novel methodology to evaluate the performance of tri-
clustering algorithms on gene expression data. The goal is to introduce a single
measure that globally assesses the quality of the triclusters generated by any
triclustering algorithm. The new measure is called TRIcluster Quality (TRIQ).

This index takes into account three key aspects to assess the quality of tri-
clusters obtained from gene expression data:

1. The level of biological notoriety of the clustered genes.
2. The graphic quality of the patterns that forms the tricluster.
3. The level of correlation of the tricluster’s values.

Biological notoriety and graphical quality are standards in literature for tri-
cluster quality assessment as seen in Sect. 2. Correlation has been included since
it provides statistical information on the relation of dependence among the com-
ponents of the triclusters (gene, condition and time) [4,13].

These three aspects are reflected within the framework TRIQ in its four
terms of the general equation: Biological Quality (BIOQ) or biological quality of
triclusters, Graphical Quality (GRQ) or graphical quality of triclusters, Pearson
Quality (PEQ) or value for the Pearson correlation of triclusters and Spearman
Quality (SPQ) or values for the Spearman correlation.

The influence of each term is reflected in Eq. 1, where TRIQ is defined as
the weighted sum of each of the four aforementioned terms. Therefore, four
associated weights must be defined: the weight for (BIOQ), denoted as Wbio;



the weight for (GRQ), denoted as Wgr; the weight for (PEQ), denoted as Wpe;
and the weight for (SPQ), denoted as Wsp.

TRIQ(TRI) =
1

Wbio + Wgr + Wpe + Wsp
∗

[Wbio ∗ BIOQ(TRI) + Wgr ∗ GRQ(TRI)+
Wpe ∗ PEQ(TRI) + Wsp ∗ SPQ(TRI)]

(1)

3.1 BIOQ

The Gene Ontology Project (GO) [1] is a major bioinformatics initiative with
the aim of standardizing the representation of gene and gene product attributes
across species and databases. The biological quality of a tricluster is calculated
based on the GO analysis that identifies, for a set of genes in a tricluster, the
terms listed in each of the three available ontologies: biological processes, cellular
components and molecular functions.

The GO analysis used in the calculation of BIOQ is done with the software
Ontologizer [3]. This analysis, besides identifying the annotated terms, performs
the statistical analysis for the over-representation of those terms, also providing
their p-value. However, it is also important to take into account how deep in
the ontology the terms are annotated, with the deeper terms being more specific
than the superficial ones [18]. In order to represent that information in the
BIOQ measure, the biological quality of a tricluster TRI is defined in Eq. 2
as the normalization of the biological significance, SIGbio, of the set of genes
TRIG:

BIOQ(TRI) =
SIGbio(TRIG)

Sl|LV |
(2)

where Sl|LV | denotes the value of maximum possible score for the total exist-
ing levels set LV , as established in Table 1.

The scoring system, in which the index is based, must be designed prior to
the definition of SIGbio. An interval for a given level Interl is defined by a
weight value wl for the level, and by the lower and upper bounds (infl and supl,
respectively), being an open-closed p-values interval (Eq. 3a). The set of existing
LV consists of all levels with Infl smaller or equal to a minimum p-value, th.
For each interval of each level Interl, the weight value wl is the value of the
previous level plus the level difference factor d (Eq. 3c.); Infl is defined as the
division between the pitch factor interval s and the base interval b raised to the
power of l factor (Eq. 3d), and supl is set to the division between s and b raised
to the power of l minus 1 (Eq. 3e).



interl = 〈wl, (infl, supl]〉 (3a)

LV = ∀ l ∈ N : infl ≤ th (3b)

wl = [(l − 1) ∗ d] + 1 (3c)

infl =
s

bl
(3d)

supl =
s

b(l−1)
(3e)

All biological significance intervals for the configuration detailed in Eq. 4 are
shown in Table 1. For each row, weight (wl) and range (interl) for each level
(L) sorted in ascending order are shown. Each interval provides a set of p-values
where their significance is directly related to the corresponding level, that is, a
p-value is better the higher the level to which it belongs is (a p-value is better
the closer to zero it is).

th = 1.0 × 10−40

d = 10.0
b = 10.0
s = 1.0

LV = {1, . . . , 41}

(4)

The biological significance for all genes in TRIG is defined as the sum of the
score for each level in the GO analysis (Eq. 5c), by taking into account all levels
of l and predefined intervals interl.

Sl score for each level is defined as the multiplication of the concentration
level (Cl) by the weight wl and the level l, plus a function of maximum bonus
dependent with the maximum level lmax found for all analyzed genes TRIG
(Eq. 5c). Cl is defined as the number of terms located on this level Tel divided
by the total of terms, Te, from the GO analysis results (Eq. 5c).

The bonus feature fbonus is defined as the sum of the peak reached by TRIG
plus the bonus factor Vbonus (Eq. 5d).

SIGbio(TRIG) =
∑

l∈LV

Sl (5a)

Sl = [Cl ∗ wl ∗ l] + fbonus(lmax) (5b)

Cl =
Tel
Te

(5c)

fbonus(lmax) = lmax + Vbonus (5d)



Table 1. Biological significance.

Level (l) Weight (wl) Interval (interl)

41 401 (0.0E-00,1.0E-40]

40 391 (1.0E-40,1.0E-39]

39 381 (1.0E-39,1.0E-38]

38 371 (1.0E-38,1.0E-37]

37 361 (1.0E-37,1.0E-36]

36 351 (1.0E-36,1.0E-35]

35 341 (1.0E-35,1.0E-34]

34 331 (1.0E-34,1.0E-33]

33 321 (1.0E-33,1.0E-32]

32 311 (1.0E-32,1.0E-31]

31 301 (1.0E-31,1.0E-30]

30 291 (1.0E-30,1.0E-29]

29 281 (1.0E-29,1.0E-28]

28 271 (1.0E-28,1.0E-27]

27 261 (1.0E-27,1.0E-26]

26 251 (1.0E-26,1.0E-25]

25 241 (1.0E-25,1.0E-24]

24 231 (1.0E-24,1.0E-23]

23 221 (1.0E-23,1.0E-22]

22 211 (1.0E-22,1.0E-21]

21 201 (1.0E-21,1.0E-20]

20 191 (1.0E-20,1.0E-19]

19 181 (1.0E-19,1.0E-18]

18 171 (1.0E-18,1.0E-17]

17 161 (1.0E-17,1.0E-16]

16 151 (1.0E-16,1.0E-15]

15 141 (1.0E-15,1.0E-14]

14 131 (1.0E-14,1.0E-13]

13 121 (1.0E-13,1.0E-12]

12 111 (1.0E-12,1.0E-11]

11 101 (1.0E-11,1.0E-10]

10 91 (1.0E-10,1.0E-09]

9 81 (1.0E-09,1.0E-08]

8 71 (1.0E-08,1.0E-07]

7 61 (1.0E-07,1.0E-06]

6 51 (1.0E-06,1.0E-05]

5 41 (1.0E-05,1.0E-04]

4 31 (1.0E-04,1.0E-03]

3 21 (1.0E-03,1.0E-02]

2 11 (1.0E-02,1.0E-01]

1 1 (1.0E-01,1.0E-00]



3.2 GRQ

The graphic quality of a tricluster is a quantitative representation of a qualitative
measure: how homogeneous the members of the tricluster are. This is widely used
in literature for tricluster visual validation by means of graphically representing
the triclusters on their three components: genes, conditions and time points
[17,22,23].

We have quantified this information using the MSL measure [10], since it
provides a numerical value of the similarity among the angles of the slopes formed
by each profile for genes, conditions and times (see Fig. 1).
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Fig. 1. Representation of how the MSL measure is calculated.

We define GRQ in Eq. 6 as one minus the normalization of MSL. Thus, a
tricluster is graphically better the smaller the value of MSL is [10].

GRQ(TRI) = 1 − MSL(TRI)
2π

(6)

3.3 PEQ and SPQ

Pearson [4] and Spearman [13] correlations have been chosen since they are the
standard correlations measures and they are widely used in literature [15].

Random variables for a tricluster TRI are defined to calculate PEQ and
SPQ, based on its subset of genes (Eq. 7a), conditions (Eq. 7b) and time stamps
(Eq. 7c). Thus, every tricluster will have a set of random variables vars composed
of the combination of each gene and each experimental condition (Eq. 7d). Each
of these variables will have a expression level for each time stamp (Eq. 7e).

For example, for a tricluster consisting of four genes g1, g4, g8, g10, two con-
ditions c3, c7 and three time points t1, t3, t5, random variables for eight possible
combinations will be considered, each having three values (one per time stamp):
Vg1c3 , Vg1c7 , Vg4c3 , Vg4c7 , Vg8c3 , Vg8,c7 , Vg10c3 and Vg1c7 .



TRIG =< g0, g1, . . . , g|G| > (7a)

TRIC =< c0, c1, . . . , c|C| > (7b)

TRIT =< t0, t1, . . . , t|T | > (7c)

∀gi ∈ TRIG, cj ∈ TRIC vars = {Vg0c0 , Vg1c1 , . . . , Vg|G|c|C|} (7d)

Vgicj =< elgicjt0 , elgicjt1 , . . . , elgicjt|T | > ∀gi ∈ TRIG, cj ∈ TRIC , tk ∈ TRIT
(7e)

Given the set of variables vars, PEQ is defined as the sum of the absolute
value of the Pearson correlation coefficient for each combination of each pair of
variables in the set vars divided by the number of such combinations (Eq. 8).

PEQ(TRI) =

∑
Vgicj

,Vgkcl
∈ vars |PE(Vgicj , Vgkcl)|

[
(|G||C|)2−|G||C|

2

] (8)

Similarly, SPQ is defined as the sum of the absolute value of the Spearman
correlation coefficient for each combination of each pair of variables in the set
vars divided by the number of such combinations (Eq. 9).

SPQ(TRI) =

∑
Vgicj

,Vgkcl
∈ vars |SP (Vgicj , Vgkcl)|

[
(|G||C|)2−|G||C|

2

] (9)

4 Results

In this section we show the results obtained by application of TRIQ to the tri-
cluster solutions obtained using the three fitness function MSR3D, LSL and
MSL embedded in the TriGen algorithm. Three different datasets have been
used: the yeast cell cycle (Saccharomyces Cerevisiae) [21], in particular the elu-
triation experiment, an experiment with mice (Mus Musculus) called GDS4510
[7] and data from an experiments with humans (Homo Sapiens) called GDS4472
[5]. The last two datasets have been retrieved from Gene Expression Omnibus [2],
a repository of high throughput gene expression data. All experiments examine
the behavior of genes under conditions at certain times.

We show, for each of the datasets, the average values obtained upon execution
of TriGen with each of the fitness functions (MSR, LSL and MSL) for TRIQ
in the triclusters obtained, as well as the individual values obtained for each of
the measures involved in TRIQ: BIOQ, GRQ, PEQ and SPQ.

The weights for calculation of TRIQ (see Eq. 1) have been set to the values
shown in Eq. 10. Triclusters with greater biological and graphical quality are



preferred, since Pearson and Spearman correlations are not typically critical,
even if the information contained on them is greatly valuable.

Wbio = 0.5
Wgr = 0.4
Wpe = 0.05
Wsp = 0.05

(10)

The value for the bonus parameter for the BIOQ measure Vbonus is set to
the value shown in Eq. 11:

Vbonus = 0
Sl|LV | = [Cl|LV | ∗ wl|LV | ∗ l|LV |] + [l|LV | ∗ Vbonus]

= [1 ∗ 401 ∗ 41] + [41 + 0] = 16482

(11)

4.1 Yeast Cell Cycle Dataset

We have applied the TriGen algorithm to the yeast (Saccharomyces Cerevisiae)
cell cycle problem [21]. The yeast cell cycle analysis project’s goal is to identify
all genes whose mRNA levels are regulated by the cell cycle. The resources used
are public and available in http://genome-www.stanford.edu/cellcycle/. Here we
can find information relative to gene expression values obtained from different
experiments using microarrays. In particular, we have created a dataset Delu3D

from the elutriation experiment with 7744 genes, 13 experimental conditions
and 14 time points. Experimental conditions correspond to different statistical
measures of the Cy3 and Cy5 channels while time points represent different
moments of taking measures from 0 to 390 min.

Table 2. TRIQ results for the Yeast Cell Cycle experiment.

Fitness function TRIQ BIOQ GRQ PEQ SPQ

MSR3D 0,2905 0,0001 0,5790 0,5901 0,5870

LSL 0,4530 0,0001 0,9181 0,8655 0,8479

MSL 0,4947 0,0001 0,9995 0,9400 0,9571

We see that MSL obtains the best values for TRIQ in this experiment, as
well as for GRQ, PEQ, and SPQ. LSL has the second better set of results, while
the values for BIOQ are very similar for the three fitness functions (Table 2).

4.2 Mouse GDS4510 Dataset

This dataset was obtained from GEO [2] with accession code GDS4510 and title
rd1 model of retinal degeneration: time course [7]. In this experiment the degen-
eration of retinal cells in different individuals of home mouse (Mus musculus)

http://genome-www.stanford.edu/cellcycle/


is analyzed over 4 days just after birth, specifically on days 2, 4, 6 and 8. Our
input dataset DGDS45103D is composed of 22690 genes, 8 experimental condi-
tions (one for each individual involved in the biological experiment) and 4 time
points.

Table 3. TRIQ results for the Mouse GDS4510 experiment.

Fitness function TRIQ BIOQ GRQ PEQ SPQ

MSR3D 0,3601 0,0003 0,7412 0,6400 0,6289

LSL 0,4117 0,0006 0,8486 0,7094 0,7298

MSL 0,4693 0,0013 0,9767 0,7807 0,7780

We see that, again, MSL obtains the best values for TRIQ, as well as for
all separate measures involved. LSL has the second position (Table 3).

4.3 Human GDS4472 Dataset

This dataset has been obtained from GEO [2] under code GDS4472 titled Tran-
scription factor oncogene OTX2 silencing effect on D425 medulloblastoma cell
line: time course [5]. In this experiment we analyze the effect of doxycycline on
medulloblastoma cancerous cells at six times after induction: 0, 8, 16, 24, 48 and
96 h. Our input dataset DGSD44723D is composed by 54675 genes, 4 conditions
(one for each individual involved) and 6 time points (one per hour).

Table 4. TRIQ results for the Human GDS4472 experiment.

Fitness function TRIQ BIOQ GRQ PEQ SPQ

MSR3D 0,3128 0,0001 0,6215 0,6334 0,6490

LSL 0,4111 0,0050 0,8326 0,7779 0,7344

MSL 0,4422 0,0048 0,8983 0,7905 0,8182

We see how, for this dasatet also, MSL obtains the best values for TRIQ, as
well as for GRQ, PEQ, and SPQ. MSL and LSL have very similar values for
BIOQ, both improving MSR. LSL has the second better set of results (Table 4).

In a previous publication [10] we stated that MSL was the fitness function
capable of extracting best tricluster solutions in terms of the three validation
measures considered: correlation, graphic validation and functional annotations.
We see how TRIQ has successfully represented the three validation measures
yielding the same validation results as in [10].



5 Conclusions

In this work we have presented a tricluster validation measure, TRIQ capable to
combine information from three different sources: correlation among the genes,
conditions and times, graphic validation of the patterns extracted and functional
annotations for the genes extracted.

We have applied TRIQ to the triclusters obtained with three fitness functions
previously defined by the authors: MSR3D, LSL and MSL. The datasets used
are the yeast cell cycle (Saccharomyces Cerevisiae), in particular the elutriation
experiment, an experiment with mice (Mus Musculus) called GDS4510 and data
from an experiments with humans (Homo Sapiens) called GDS4472.

We have shown that TRIQ has successfully represented the three valida-
tion measures yielding the same validation results as in [10] where each of the
components of TRIQ (BIOQ, GRQ, PEQ, and SPQ) where applied separately.
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