
The Intentional Relationship of

Representation between the Constructs of a

Language and Reality

José M. Cañete-Valdeón ∗, Francisco J. Galán, Miguel Toro

Dept. of Computer Languages and Systems, University of Sevilla, Spain

Abstract

Specifications of conceptualisations (ontologies) are often employed for represent-
ing reality, both in knowledge representation and software engineering. While lan-
guages offer sophisticated constructs and rigorous semantics for building concep-
tual entities, no attention is paid to the relationship between such entities and the
world they intend to represent. This paper studies such a relationship and provides
empirical evidences in favour of two main hypotheses: (1) conceptualisations are
insufficient to fully represent the specifics of reality; (2) languages (both represen-
tation and design-oriented) are general representations of (classes of) systems in
the world, and they can be characterised as scientific theories. The first hypoth-
esis establishes a problem for which we propose a solution based on the explicit
elaboration of statements claiming the similarity (in some respects and to certain
degrees of accuracy) between conceptual entities and real-world systems of interest.
The second hypothesis constitutes a new perspective for understanding languages,
whose advantages to representation and design are discussed in detail.

Key words: Language definition (19.1), Ontologies (26), Conceptual modelling
(7), Knowledge representation techniques.

1 Introduction

A commonly accepted use of ontologies is the representation of human knowl-
edge [6]. However several controversies remain open in this respect. One of

∗ Corresponding author. Tel.: (+34) 954 553 873. Postal address: Departamento
de Lenguajes y Sistemas Informáticos. Escuela Técnica Superior de Ingenieŕıa In-
formática. Avenida de la Reina Mercedes, S/N. 41012. Sevilla. Spain.

Email address: jmcv@us.es (José M. Cañete-Valdeón).

Preprint submitted to Data and Knowledge Engineering 1 September 2008

them concerns the kinds of knowledge that ontologies can suitably represent.
Another difficulty is related with the achievement of a precise definition: while
Gruber’s proposal 1 still holds, it has some rough edges, principally being that
there are no agreed-upon borders concerning what is in a specification [35].

In this paper we study the role of ontologies as mechanisms for representing
the real world instead of representing knowledge, thus avoiding complex ques-
tions from Epistemology such as whether beliefs can or cannot be regarded as
knowledge. Due to the fact that ontologies are mostly intended to represent
real-world elements, we feel justified in making this decision.

Our focus is on ontologies behind languages employed in software development.
We are considering languages intended for representing what exists as well as
those intended for designing new entities. Please note that we employ the term
“design” in a very general sense (as in [47]), not wishing to confine it to the
concrete activity following analysis in typical software life cycles.

Our first main hypothesis claims that an important gap exists between a
conceptualisation and a representation of the world. This can be stated as:

Hypothesis 1 Conceptualisations are insufficient to fully represent the specifics
of reality.

Let us introduce an example to illustrate and motivate our point.

Example 1 Consider the following fragment of an ontology intended to rep-
resent the circulation in the Spanish railway transport. The specification lan-
guage is OWL [46]. The names of classes and properties have been underlined
for clarity.

<Route rdf:ID="AVE09615-Sevilla-Madrid">
<train rdf:resource="#AVE09615"/>
<departureTime rdf:datatype="&xsd;time"> 07:00:00 </departureTime>
<arrivalTime rdf:datatype="&xsd;time"> 09:30:00 </arrivalTime>
<departureStation rdf:resource="#Sevilla-SantaJusta"/>
<arrivalStation rdf:resource="#Madrid-PuertaDeAtocha"/>
<circulationPeriod rdf:datatype="&xsd;string"> Current year
</circulationPeriod>

</Route>

Assuming that today is not December 31st, the following proposition can be
deduced from the ontology:

Tomorrow, train 09615 will depart “Sevilla-Santa Justa” station at 07:00:00
and will arrive at “Madrid-Puerta de Atocha” station at 09:30:00.

1 An ontology is an explicit specification of a conceptualisation [20].

2

This statement is intended to represent what will happen tomorrow. However
it is extremely likely that the prediction turns out to be false. Assuming we
have agreed on a reference clock, the proposition would be true if the train left
Sevilla station when the clock showed exactly 07:00:00, and arrived at Madrid
station exactly when the clock indicated 09:30:00. Only one second earlier or
later would make the proposition false.

In practice, passengers add a certain margin of uncertainty on predicates such
as this one. If tomorrow the train arrived at 09:32:00, most passengers would
probably still regard the prediction as “true” but certainly not if the train ar-
rived at 09:50:00. It seems that people complement the predicate above with
a margin of confidence to obtain a representation of what will happen tomor-
row. Now consider the point of view of the Spanish railway company, Renfe.
The company also complements the predicate with a margin of confidence.
Indeed Renfe relies on such a margin: since the beginning of high-speed trains
in Spain, the company committed itself to refund tickets of passengers whose
trains arrived 5 or more minutes late. The representation of the world (on
which Renfe relies) is not the simple assertion of the specification (ontology),
but the statement of a certain confidence between the conceptualisation and
what happens in the real world. But the underlying problem (and its con-
sequences) is deeper than the mere specification of error margins as we will
discuss throughout this paper.

Hypothesis 1 introduces an important problem: how can ontologies be em-
ployed for representing the world? In this paper we propose an answer from
a knowledge field which has traditionally faced the problems of representa-
tion: Philosophy of Science and, particularly, Constructive Realism [16]. We
regard ontologies, such as the one in Example 1 (at both the class and in-
stance levels), as linguistic entities which define conceptualisations. These are
not linguistic entities and therefore they do not make any claims about the
real world, i.e. they are not representations per se. Representing the world
requires an agent (e.g. a human being) with an intention, which may be mate-
rialised in the construction of an explicit predicate (a linguistic entity) linking
a chosen conceptualisation to some identified part of the world. Later we will
give some arguments in favour of characterising the relationship between a
conceptualisation and the world as one of similarity. Finally, a representation
of the world is a conceptualisation together with a predicate (or hypothesis)
with the following structure:

This conceptualisation is similar to this identified real-world system (or class
of systems) in such-and-such respects and to such-and-such degrees of accu-
racy.

Thus, the ontology of which Example 1 shows a fragment defines a conceptu-
alisation C; in particular, the conceptual train 09615 leaves conceptual Sevilla

3

exactly at 07:00:00 and arrives at conceptual Madrid exactly at 09:30:00, every
day of the current year. Representing the world requires building a hypothe-
sis, i.e. a predicate which relates a conceptualisation (e.g. C) with a real-world
entity (e.g. the railway system in Spain) in some respect (e.g. tomorrow’s de-
parting time of train 09615) and within a certain degree of accuracy. The
particular formulation of degrees will depend on each case. In this example,
a positive value (resp., a negative value) denotes a fixed delay (resp., a fixed
time early) and therefore it points out a fixed distance between the concep-
tualisation and the world in the claimed similarity. A zero value denotes no
delay at all and therefore it is equivalent to claim an “exactly equal” similar-
ity. Finally, an interval of values expresses uncertainty in the departing time
and hence it introduces uncertainty in the hypothesis. For example:

Conceptualisation C is similar to the railway system in Spain with respect
to “tomorrow’s departing time of train 09615” within a degree of accuracy
of [+1, +3] minutes.

With this hypothesis, we are claiming that tomorrow’s train 09615 will leave
Sevilla at some time between 07:01:00 and 07:03:00.

Our proposal highlights the intentional nature of representation. A conceptu-
alisation is not a representation of anything merely by itself: one must explic-
itly claim so, in some respects and to certain degrees, for some purpose.

We validate Hypothesis 1 with three additional examples. Further, we seek
the causes of such a hypothesis through the analysis of a sample of languages
commonly employed in software development activities and some of them also
in Artificial Intelligence: KAOS, i∗, Problem Frames, Statemate, Actors, and
C++. These case studies provide evidence for our other main hypothesis:

Hypothesis 2 Languages are general representations of certain classes of
systems in the world, and they can be characterised as scientific theories.

The hypothesis that languages can be regarded as representations of the world
is of paramount importance. As with scientific theories, languages could be
(empirically) validated, they could be chosen according to our current goals,
and they could compete among themselves for becoming the most adequate
representation for some goal.

The rest of this paper is organised as follows. The next section provides some
background on scientific representation from a constructive realist perspec-
tive. Section 3 provides additional examples to validate Hypothesis 1 and
proposes a rigorous formulation of similarity hypotheses. Section 4 identifies
constructed genres in languages. Sections 5 and 6 provide evidences for Hy-
pothesis 2 through the analysis of representation-oriented and design-oriented
languages, respectively. Finally we discuss the benefits of our approach in

4

Section 7. We close in Section 8 with a survey of related works.

2 Background on representation in Philosophy of Science

This section presents an introduction to the Constructive Realist account on
the structure of scientific theories. Two features make this account particularly
appropriate for the purposes of this paper: on the one hand, its basis on the
“model” concept and, on the other, the proposed relationship between models
and the real world. Constructive Realism is better understood by first study-
ing the view of scientific theories that was dominant in the Anglo-American
philosophy of science until about 1960: the logical empiricist account.

2.1 Logical Empiricism

Logical Empiricism understands a scientific theory as a linguistic entity (i.e.
a set of statements) about the real world. The account proposes a canonical
formulation to which any “genuine theory” can be rewritten — otherwise it is
not a theory. The canonical form consists of a system of axioms and a set of
correspondence rules. The axioms are statements formulated in a first-order
mathematical logic with identity, and they establish properties about the so-
called “theoretical terms”. Such non-logical terms are defined by employing
“observational terms,” which are directly interpreted as physical objects in
turn. The correspondence rules are the statements that contain such defini-
tions. For example, a rule may define the theoretical term “mass” as the result
of performing certain measurements M on some object under circumstances
S, where M and S are specified with observational terms [43].

We see that Logical Empiricism grants much importance to linguistic concerns;
for this reason it is also known as the “Syntactic View” of scientific theories.
And this is its main weakness: for example, as correspondence rules are part of
a theory, any simple changes to the definition of the theoretical terms would
constitute a new theory. We will explain a different argument against this
doctrine below. For a comprehensive criticism the reader may refer to [43].

2.2 Rejecting Logical Empiricism: the model-based view of scientific theories

Ronald Giere [17, p. 122] introduces the term “model-based view” to gener-
ically refer to the “semantic” accounts on scientific theories. This term aims
to reflect the common agreement among philosophers that predicates present

5

in texts about theories (i.e. linguistic entities such as “pendulum” in classical
mechanics) do not refer to anything in the real world. Note that this is radi-
cally opposite to Logical Empiricism. Instead, predicates refer to conceptual,
idealised entities called “models”. For example, the predicate “simple pendu-
lum” refers to a mass swinging from a massless string attached to a frictionless
pivot, subject to a uniform gravitational force, and in an environment with
no resistance. This is clearly an ideal object : no real pendulum exactly sat-
isfies any of these conditions. So no real pendulum is a simple pendulum as
characterised in classical mechanics. The same is true for more complex types:
damped pendulums, driven pendulums, and so on.

There exist different philosophical accounts, some of them opposite, that share
this idea of models as a common point. Next we present an introduction to a
major account of this category: Constructive Realism.

2.3 Constructive Realism

Constructive Realism is a doctrine on the structure of scientific theories devel-
oped by Giere [15–18]. The author provides evidence from diverse fields such
as classic mechanics, geology, and nuclear physics.

Giere proposes to regard the simple pendulum, the simple harmonic oscillator,
and the other kinds of classic mechanics systems as abstract entities having
all and only the properties ascribed to them in textbooks. For example, the
simple harmonic oscillator is viewed as an ideal system that perfectly satisfies
the statement F = −kx. According to the author all the objects referred to
in scientific texts are constructed entities, indeed socially constructed entities,
in the sense that they have no reality beyond that given to them by the
community of scientists. He calls such systems “theoretical models,” a term
commonly used by scientists themselves.

Equations and sentences are not the only linguistic resources employed in
science to define theoretical models: diagrams also play an important role [17,
ch. 7]. But the particular resources used to characterise models are of at most
secondary interest.

Models are employed by scientists to represent the world. A “theoretical hy-
pothesis” is a linguistic entity, namely a statement or proposition, asserting
some kind of relationship between a theoretical model and a designated real-
world system or class of systems. This gives us the complete picture: a scientific
theory is not a set of statements as in Logical Empiricism but an heterogeneous
entity consisting on: (1) a family of models, and (2) a collection of statements
(hypotheses) claiming some link between the models and the world.

6

Giere also analyses the relationship between theoretical models and systems
in the world. He proposes to characterise such a relationship in terms of simi-
larity, which avoids the epistemological problems associated with the concept
of “truth”. The author defends the notion by appealing to evidence from cog-
nitive sciences, which suggest that human cognition and perception operate
on the basis of some sort of similarity metric.

It follows that a theoretical hypothesis claims a certain similarity between a
model and some part of the world. But since anything is similar to anything
else in some respects and to some degree of accuracy, claims of similarity are
vacuous without specifying the relevant respects and degrees. Therefore the
general form of a theoretical hypothesis is [16, p. 81]:

Such-and-such identifiable real system is similar to a designated theoretical
model in the following indicated respects and degrees of accuracy.

For example: “the positions and velocities of the Earth and Moon in the
Earth-Moon system are very close to those of a two-particle Newtonian model
with an inverse square central force”. Here the respects are “position” and
“velocity,” while the degree is claimed to be “very close”. The identified part
of reality is the system constituted by the Earth and the Moon.

3 Theoretical models and similarity hypotheses

This section begins with additional empirical evidence for Hypothesis 1 es-
tablished at the Introduction. Next we propose a solution to the problem of
representation with ontologies, based on Constructive Realism. In this sense
we first establish a number of definitions, then we formalise some concepts,
and finally we apply our technique to the previous examples.

3.1 Validating Hypothesis 1 with empirical evidence

In Section 1 we introduced an example to illustrate our first main hypothesis,
which we reproduce for convenience:

Hypothesis 1 Conceptualisations are insufficient to fully represent the specifics
of reality.

Here we present three additional examples to further validate our claim.

Example 2 The following is a fragment of an OWL specification intended to
represent the customers of a bank:

7

<Customer rdf:ID="c05501">
<firstName rdf:datatype="&xsd;string"> José </firstName>
<lastName rdf:datatype="&xsd;string"> Pérez </lastName>
<address rdf:datatype="&xsd;string"> 3 Diamante St, Sevilla 41009,
Spain </address>

</Customer>

The bank interprets this specification as the following predicate:

Mr José Pérez lives at 3 Diamante St, Sevilla, Spain.

Can we state that this predicate constitutes a representation of the world? The
statement might easily be false. Perhaps the address corresponds to Mr Pérez
parents’ home, where he lived until he moved to his own home some months
ago but he has not communicated this event to the bank yet. Or perhaps Mr
Pérez has passed away. Or perhaps he lied when he indicated such information
to the bank.

Two questions arise from this example. On the one hand, what degree of
confidence has the bank about the ontology? The specification contains no
information about this. On the other hand, is this confidence of any interest
to the bank? It is reasonable to think so. If the customer lives at another
address, then the bank correspondence should be redirected. If the customer
has passed away, the bank must legally communicate the death to the National
Insurance under some circumstances. As in Example 1, the confidence in this
information is not specified, so one might assume anything. Therefore this is
not a representation of the world yet.

Example 3 Consider a software system which monitors the altitude of an air-
craft. The aircraft is equipped with two altimeters which continuously commu-
nicate the current altitude to the system. A Java object alt of class Altitude
gathers the current data from the altimeters. The following is a fragment of
the class definition:

public class Altitude {
private String aircraftId;
private int altitude1;
private int altitude2;
// Rest of the class definition.

}

Object alt is intended as a representation of the aircraft’s current altitude in
feet (Jackson [28] adequately calls such kind of object a model). However no
physical altimeter is perfect. Therefore the following predicate is false:

The aircraft altitude is exactly either alt.altitude1 or alt.altitude2.

8

Fig. 1. Theoretical model on business performance.

Does this matter? Absolutely. The operations in Reduced Vertical Separation
Minimum (RVSM) Airspace require the current altitude of the aircraft to
be known within a ± 80 feet margin [12]. Therefore what the representation
asserts must be a true hypothesis about the real aircraft.

Example 4 Majchrzak and Wang [31] present an analysis of several U.S.
electronics manufacturers. They study the strategies adopted by such com-
panies in order to focus their employees on processes that provide value to
their customers. The authors first propose a particular theory about the com-
panies they have considered as a sample. At the end of the paper Majchrzak
and Wang extrapolate their results to general businesses, thus formulating
a general theory. This example will be lengthier than the preceding ones as
our intent will be to reconstruct the two representations of the world (the
particular and the general theories) by employing the i∗ language [48,49].

Regarding the particular sample, the authors observe that a certain percent-
age of the companies followed the strategy of reengineering work in order to
focus employees on processes that clearly provide value to customers. The
overall objective is to achieve better performance, understood as lower costs,
shorter cycle times, and greater customer satisfaction. Reengineering work
consists of transforming functional departments into process-complete ones.
While the former focus on a certain function, the latter are able to perform
all the cross-functional tasks required to meet customers’ needs. However, the
authors claim, this strategy did not always succeed in the companies of the

9

sample. In fact the only process-complete departments that were observed to
have faster cycle times than the functional ones resulted to be those whose
managers had implemented methods to cultivate a collective sense of respon-
sibility among workers. Four of such methods were observed in the sample: to
structure jobs with overlapping responsibilities, to base rewards on group per-
formance, to lay out the work area so that people can see one another’s work,
and to design procedures so that employees with different jobs are better able
to collaborate.

Majchrzak and Wang’s representation is focused on strategies taken to achieve
enterprise objectives and on the actual effect achieved by each strategy. For
this reason we will centre on the portion of the i∗ language known as “the
Strategic Rationale”. The Strategic Rationale requires the designer to classify
the objectives of an organisation according to whether it is possible or not to
sharply define their criteria of success at the outset, i.e. before the objectives
are being pursued. In this sense two concepts are offered: “goal” and “softgoal,”
respectively. We note that this respect is not one of the topics of Majchrzak
and Wang’s theory, so we would have preferred not to specify it. Yet the family
of i∗ concepts is provided as-is, so we will have to make such a decision every
time we find an objective. 2

The global objective is to improve the overall performance of a company. In
our opinion, it is not possible to precisely define at the outset how far this
can be achieved, i.e. managers cannot construct this objective with accuracy.
Therefore we would classify it as a softgoal. We have reasoned in a similar way
for the remaining objectives, obtaining the subgoals depicted in Fig. 1 with
peanut-like shapes.

As we understand the paper, the strategy of reengineering work is an activity
(sequence of steps) to be done in order to achieve an objective. For this reason
we have employed the “task” concept to build an entity that has the same
meaning as the strategy. It is symbolised as an hexagon in Fig. 1. In contrast,
the strategy of cultivating a collective sense of responsibility among workers is
not a sequence of steps because we do not even know how to precisely define
“collective sense of responsibility”. In our opinion such a strategy is better
understood as a softgoal.

We have employed the i∗ concept of “means-end” to express Majchrzak and
Wang’s statements about the contributions of the two strategies to the objec-
tives. According to the authors, reengineering work contributed positively in
some cases to focus employees on processes that provide value to their cus-
tomers, but in other cases the strategy resulted in no contribution at all. In
contrast, the strategy of cultivating a collective sense of responsibility among

2 Later we will see how to avoid making claims about such a respect. In consequence,
the concrete category in which we classify each objective will be irrelevant.

10

workers is claimed to contribute positively to the objective. The “means-end”
claims are symbolised with arrows in Fig. 1.

Previously we have indicated that the authors report four methods employed
by the companies of the sample in order to favour the collective responsibil-
ity among workers. Three of them, namely to structure jobs with overlapping
responsibilities, to reward groups, and to redesign the work area, are activi-
ties to be carried out. For this reason we will employ the “task” concept in
the construction of the corresponding parts of the i∗ model. In contrast, the
fourth method (to design procedures so that employees with different jobs are
better able to collaborate) has not a clear criterion of success: what does it
mean to “collaborate better”? For this reason we will classify it as a softgoal.
The authors state that the four methods were successful ways to favour the
collective responsibility in the studied cases. We will express this statement
with the concept of “means-end” as four positive contributions (see Fig. 1).

Interestingly, Majchrzak and Wang’s representation does not end here. The
authors make a number of hypotheses about both the particular sample of
companies and the general case. We will label some of such statements for
future reference:

• (Particular sample) h1: All the departments which implemented the cited
strategies achieved the corresponding contributions.

• (General case) h2: Cultivating a collective sense of responsibility among
workers will always produce a positive contribution to the objective of fo-
cusing employees on processes that provide value to their customers [31, p.
95].

• (General case) h3: Regarding the four strategies to achieve a collective sense
of responsibility among workers, the authors claim that “no one approach
is appropriate for all process-complete departments” [31, p. 99].

Without hypotheses, Majchrzak and Wang’s paper would not be claiming
anything about the real world: there would be no representation at all.

We can identify the following representation problems from this example:

(1) The i∗ conceptualisation requires to represent a fixed number of respects,
independently of whether we are interested in them or not (in this ex-
ample we were not interested in the respect of whether it is possible to
sharply define the criteria of success for an objective at the outset).

(2) Majchrzak and Wang employ their model to represent a particular sample
first and the general case next, asserting different margins of confidence.
This separation between the model on the one hand and the real-world
subject of interest on the other does not exist in i∗.

(3) According to i∗ semantics, our model of Fig. 1 is interpreted as a direct
claim about the world. Yet Majchrzak and Wang are not asserting that

11

their model is exactly equal to reality: they state a number of degrees of
confidence which cannot be expressed using the i∗ conceptualisation.

3.2 Adopting a constructive realist view

The problem with Examples 1 to 4 has its roots in our interpretation of the
specifications, as propositions about reality. This is exactly the same view as
the one adopted by logical empiricists about scientific theories.

In order to avoid the mistakes of Logical Empiricism, we propose the adoption
of a constructive realist perspective. We regard the preceding specifications
(ontologies) as linguistic resources defining conceptual entities. Therefore such
entities satisfy their specifications in a trivial way (e.g. Example 2 defines a
conceptual customer who lives at a conceptual address). Next, an intention is
necessary to represent reality: this can be materialised as a statement claiming
the similarity between the conceptualisation and some identified real-world
system. As, according to Giere, anything can be similar to anything else in
countless respects and degrees of accuracy, a claim of similarity must include
the relevant respects and degrees. Next we provide precise definitions for these
concepts.

3.3 Definitions

Definition 1 (linguistic resource): a linguistic resource is an entity employed
for the purpose of description or definition.

Examples of linguistic resources are: equations, diagrams, ontologies, and pred-
icates.

Definition 2 (theoretical model): a theoretical model is a non-linguistic, con-
ceptual entity which is to be employed for representation.

Examples of theoretical models are: the conceptualisation about trains of Ex-
ample 1 and the conceptual customer of Example 2.

Definition 3 (similarity hypothesis): a similarity hypothesis is a predicate
which asserts the similarity between a theoretical model and an identified
real-world system (or class of real-world systems) in some respects and to
certain degrees of accuracy.

Examples of similarity hypotheses will be provided at the end of this section. In
some cases we will be interested in representing not only physical individuals

12

but also existing conceptual entities such as a computer program or a legal
contract. 3 Therefore, by “real-world system” we should understand anything
that exists, whether physical or conceptual.

Mathematical functions and equations can be used as linguistic resources for
expressing hypotheses in a formal way. Richter [36] surveys several alterna-
tive ways to represent similarity in Case-Based Reasoning (CBR) including a
function sim(x, y) : U2 → [0, 1] interpreted as the measure of the degree of
similarity between objects x and y in a universe U , and a binary predicate
SIM(x, y) ⊆ U2 interpreted as “x and y are similar”. We adopt some of the
measures reported by Richter and extend the CBR notion of similarity with
respects.

Let m denote some theoretical model in a conceptual universe (denoted as
U), let s denote an identified system (or class of systems) in the real world
(denoted as RW), let r ∈ RESP denote a respect of both m and s, and let
DEG denote a (possibly ordered) set of degrees of accuracy. The following
functions are alternatives for expressing similarities:

sim(m, s, r) : U ×RW ×RESP → DEG

sim(m, s, r) : U ×RW ×RESP → Interval(DEG)

sim(m, s, r) : U ×RW ×RESP → Set(DEG)

A similarity hypothesis can now be expressed in a more rigorous way as an
equation:

Equation 1 sim(m, s, r) = d

where d is a degree in DEG, Interval(DEG), Set(DEG), or some other
structure on DEG. Equation 1 is interpreted as the predicate: “theoretical
model m is similar to the identified real-world system s in respect r to degree
of accuracy d”. A hypothesis can express uncertainty by employing intervals
and sets of degrees. Claims about several respects can be combined in a single
hypothesis; for example:

sim(m, s, r1) = d1 ∧ sim(m, s, r2) = {d2, d4}

In cases where units of measurement are interesting for the expression of de-
grees, they can be made part of the formulation of DEG. Thus, the interval of
[+1, +3] minutes employed in Example 1 (page 4) can be expressed by taking
DEG to be Z× {min}, where min is a constant denoting minutes. Then, an

3 Both a program and a legal contract may have linguistic descriptions but their
nature is conceptual.

13

element in Interval(DEG) is [(+1,min), (+3,min)]. A shorthand notation is
[+1, +3] min.

In hypotheses about a class of real-world systems it may be interesting to
include how many of such systems are similar to the theoretical model (in
some respects and to certain degrees of accuracy). This can be expressed in
a quantitative way (e.g. a range or a percentage) or in a qualitative way
(e.g. labels such as all, most, almost none, and so on). Then the similarity
hypothesis can be formulated as the equation:

Equation 2 sim(m, s, r) = (f, d)

where f is a frequency in F . Examples of F are an interval of percentages
[0, 100] and a set of labels {ALL, ALMOST ALL, MOST, ...}.

3.4 Establishing similarity hypotheses on the examples

Equipped with the preceding set of definitions, we revisit the four examples in-
troduced so far to explicitly state their associated hypotheses, thus completing
the representations.

Example 1 Let m be the conceptualisation denoted by the OWL ontology.
In particular, m contains a conceptual train 09615 which leaves conceptual
Sevilla everyday exactly at 07:00:00 and arrives at conceptual Madrid exactly
at 09:30:00. Let s be the railway system in Spain and let r be the respect
“tomorrow’s departing time of train 09615”. Next let us take DEG to be
Z× {min} (see above). Then a possible representation of the part of the real
world s in respect r can be expressed as the following equation:

sim(m, s, r) = [(+1,min), (+3,min)] = [+1, +3] min

which is interpreted as the hypothesis: the conceptualisation described by
the OWL ontology is similar to the Spanish railway system in the respect
“tomorrow’s departing time of train 09615” to a degree of accuracy equal to
the interval between 1 and 3 minutes.

Example 2 We can distinguish several levels of confidence regarding the
address of a bank customer, according to how the bank actually obtained that
information. Typical possibilities include:

• A national identity card showed by the customer to the bank.
• A recent bill (of electricity, phone, etc) showed by the customer to the bank.
• A written statement signed by the customer to the bank.
• A verbal statement expressed by the customer to the bank.

14

If we associate a label to each possibility, we can obtain a simple set of degrees
of accuracy for our hypotheses: {NIC, BIL, WST, VST}.

Now let m be the theoretical model described by the ontology of the example;
in particular, the model contains a conceptual customer named José Pérez who
lives at 3 Diamante St in Sevilla. As we are describing a conceptual customer,
all we assert about him is trivially true. This conceptualisation is exactly what
we obtain when we interpret the specification (ontology). Let s be the real-
world bank customers, and let r be the respect “current José Pérez’s address”.
Now the bank is able to make a representation of the world as the following
hypothesis:

Model m is similar to the part of the world s in respect r to degree of accuracy
NIC.

Or, more formally:

sim(m, s, r) = NIC

Example 3 The altitude1 and altitude2 attributes of object alt are not
a theoretical model. To be precise, it is our interpretation of such attributes
the one which builds a conceptual entity: namely, a conceptual aircraft whose
altitude is exactly either alt.altitude1 or alt.altitude2. Let such a con-
ceptual aircraft be our theoretical model, m, let s be the real-world aircraft,
and let r be the respect “current altitude”.

Next let us take DEG to be Z× {ft}, where ft is a constant denoting feet.
Uncertainty in hypotheses about the altitude of the aircraft can be expressed
as intervals of DEG. For example, assume that the aircraft altimeters have
an error margin of ± 25 feet. Then we can make the following hypothesis:

The real-world aircraft, s, is similar to model m in respect r to degree of
accuracy [−25, +25] feet.

More formally:

sim(m, s, r) = [(−25, ft), (+25, ft)] = [−25, +25] ft

Example 4 The i∗ conceptualisation allows us to construct theoretical models
but the language lacks resources for expressing similarity hypotheses about the
relationship between the models and reality. In this case we propose to define
degrees of accuracy in a relative way, by contrasting the value of a given respect
r in a theoretical model and the value of r in a real-world system.

For example, let r be the respect “contribution to a softgoal”. In i∗ there
are several types of contributions to softgoals including makes, helps, positive,

15

Table 1
Spectrum of relative similarity degrees in the respect “contribution to a softgoal”

Model degree Real world
P+2←→ makes
P+1←→ helps

positive P0←→ positive
P−1←→ equal
P−2←→ negative
P−3←→ hurts
P−4←→ breaks

equals, negative, hurts, and breaks. Assume a model where a certain softgoal
receives a positive contribution and a real-world system where a softgoal re-
ceives a positive contribution too. This is an “exactly equal” similarity degree,
which we may denote as P0. Now assume that that the contribution to the
softgoal is positive in the model and neutral in the real world. This defines
another degree in the respect of interest. We may also agree that this degree
denotes a lower similarity than the preceding one, so we may denote it as P−1.

This way we introduce a new degree by contrasting a new pair of values (see
Table 1). The first letters of the contribution may be employed for the label
(e.g. N for “negative,” HE for “helps,” HU for “hurts”). As the effects of
contributions to softgoals can be ordered from makes to breaks, we use signed
subindexes to refer degrees in a relative manner.

Now we can rigorously state the hypothesis on the particular sample at page 11,
h1. Let m be the model denoted by the diagram of Fig. 1, let ss be the real-
world departments of the sample which implemented the strategies, and let r
be the respect “contributions to softgoals”. Consider a qualitative definition
of F = {ALL, ALMOST ALL, MOST, ...}. Hypothesis h1 can be stated as:

sim(m, ss, r) = (ALL, {P0, N0})

which is interpreted as the predicate: all the departments of the sample share
either a degree P0 or N0 with the model in the respect under consideration.
This hypothesis claims that if the model indicates that strategy S produces a
positive (respectively, neutral) contribution to softgoal G, then S produces a
positive (respectively, neutral) contribution to G in the sample of real depart-
ments.

Next let us formulate the two general hypotheses of Majchrzak and Wang’s
work labelled as h2 and h3 (page 11). Both refer to real-world businesses whose
departments are process-complete. We will denote such a class of real-world

16

systems as sb. Regarding hypothesis h2, let rm3 be the respect “contribution of
cultivating a collective sense of responsibility among workers to the objective
of focusing employees on processes that provide value to their customers”. In
the theoretical model such a respect corresponds to the contribution indicated
by means-end 3 (see Fig. 1). Hypothesis h2 can be stated as:

sim(m, sb, rm3) = (ALL,P0)

Now consider the other general hypothesis, h3. Regarding the four strategies
to achieve a collective sense of responsibility among workers, the authors claim
that “no one approach is appropriate for all process-complete departments”.
This means that none of the four strategies is universally P0 for all businesses
with process-complete departments, sb. Consider four respects, from rm4 to
rm7, denoting the contribution of each strategy to the softgoal (see Fig. 1).
Then hypothesis h3 can be restated as four simpler hypotheses:

∀i ∈ [4, 7] • sim(m, sb, rmi) 6= (ALL,P0)

4 Representation at the language level

So far we have investigated examples of representations employing instance-
level concepts such as a particular Route, a particular Customer, a Java object,
and a collection of softgoals and tasks. Our results have provided evidence in
favour of the fact that something more is necessary in order that a conceptu-
alisation can constitute a representation of reality. In this sense we have made
a proposal based on Constructive Realism which fills the representational gap.
However we are interested in going further and determine the cause of this
situation. For this reason we will be observing languages in the rest of this
paper.

In particular, this section analyses three case studies: KAOS, i∗, and Problem
Frames; the obtained results allow us to reject a syntactic or literal interpre-
tation of the terms and predicates included in texts defining languages, and
to embrace a semantic view.

4.1 Rejecting the syntactic view of languages

Languages employed in software development activities are intended for rep-
resentation, design, or both. Representation means to build an image of what
exists; design refers to create a new (conceptual) entity. The term “modelling”
is popularly employed for the activities of representing and designing.

17

In this section we focus on languages which include representation among
their purposes. The material for our study consists of the books, papers, and
specifications where such languages are described.

The language proposed as part of the KAOS project [10] is intended for the
“acquisition” of both functional and non-functional requirements of composite
systems. Requirements acquisition involves learning and negotiation [10, p. 6].
To this aim the language allows for the representation of requirements:

It is aimed at being sufficiently rich to allow both functional and non-functional
requirements for any kind of composite system to be captured in a precise and
natural way.

The i∗ framework is intended for “modelling and reasoning about organisa-
tional environments and their information systems” [48, p. 227]. It includes
a language which allows the building of two kinds of entities: the Strategic
Dependency model and the Strategic Rationale model. Both of them may be
used for representation of the existing organisation [48, p. 227]:

The Strategic Dependency (SD) model is used to describe the dependency rela-
tionships among various actors in an organizational context. The Strategic Ratio-
nale (SR) model is used to describe stakeholder interests and concerns, and how
they might be addressed by various configurations of systems and environments.

Problem Frames [28] is an approach for analysing and structuring software
development problems. It includes a language for building “context diagrams”
and “problem diagrams,” which allow to represent the physical elements of a
composite system-to-be, their relationships, and the overall requirement that
must be satisfied. According to Jackson [28, p. 48]:

A context diagram shows the parts of the world where your problem and its solu-
tion machine are located, and the interfaces by which those parts are connected.
But the problem itself — that is, the requirement — is not represented in the
context diagram. [...] The requirement is always about the problem domains, so
you need to show how it’s related to these domains, and what roles the domains
play in the problem. A diagram that shows these things is a problem diagram.

A common feature of all the texts which describe languages is that a number
of terms are introduced. Some from our three case studies are:

• KAOS: goal, agent, operationalization, responsibility.
• i∗: intentional actor, goal, belief, ability.
• Problem Frames: domain, phenomenon, interface, event.

One may reasonably argue that these terms must be interpreted as referring
to elements in the real world. Under this perspective, the interpretation of

18

syntactic terms in the world would constitute their semantics.

The problem with this view is that general propositions included in texts
and involving such terms must also be interpreted as claims about the world;
this makes such propositions empirically false. For example, our reference text
about KAOS claims that the behaviour of agents consists of discrete states,
and that agents are able to control their own state transitions [10, p. 18]. At
the same page the text identifies humans as examples of agents. But we cannot
find any human whose behaviour is discretized, so the statement is not true
with respect to the world.

In the i∗ approach, organizations are regarded as consisting of intentional
actors. These are claimed to be semi-autonomous units, whose behaviour is
regulated by social relationships within which they have freedom of action
[49, p. 127]. This proposition cannot be regarded as a general truth applicable
to the real world. The reason is that actors may represent humans [49], and
people violating social constraints have been observed in real organisations.

Regarding our third example, events in Problem Frames are claimed to be in-
stantaneous; this proposition is obviously false if we insist on regarding events
as real-world elements.

This analysis reveals that the preceding interpretation of the constructs of a
language has the same problems as the Syntactic View for understanding the
structure of scientific theories (Section 2).

4.2 Adopting a semantic view

A solution to the preceding problem is suggested from Philosophy of Science:
the “Semantic View”. Instead of regarding the propositions that characterise
the language terms in texts as claims about something that exists in the world,
we will consider them as referring to conceptual, idealised entities which satisfy
the propositions by definition. This way all the propositions are true, although
in a trivial way. Under this approach the language terms do not stand for
already-existing elements but for concepts, or genres of idealised entities, such
as “agent” in KAOS, “intentional actor” in i∗, and “event” in Problem Frames.

This proposal seems to fit well the view that authors themselves have of their
languages. For example, the text that describes KAOS refers to the language
concepts as “abstractions” [10, p. 46], and not as syntactic terms interpreted
as real-world things. “Abstraction” is also the word employed by Jackson for
referring to “phenomena” of Problem Frames [28, p. 35].

Users of a language employ its genres to build particular, conceptual entities.

19

It is customary to call such entities “models” if the language genres have an
associated diagrammatic notation. For example the term “goal model” [29] is
used to refer not to a box-and-arrow diagram, but to a conceptual entity built
with the KAOS genres “goal” and “refinement”.

Most statements in texts about languages depict a characterisation of the
introduced terms. Our semantic view regards such statements as definitions of
new genres and not as claims about the world. The collection of all features of
the introduced genres matches what Harel and Rumpe call a semantic domain
[24]. In fact, the language genres are the subject of semantic formalisations. Yet
texts contain a small percentage of statements that do not define any genres,
they are never formalised, but they do represent an important contribution to
the language. We will analyse them in the next section.

Summing up our conclusions so far, languages intended for representation
introduce a family of concepts. We propose the term “constructed genres” to
refer to them. Our reasons are, on the one hand, that such concepts are genres
or categories and not specific entities like, for example, a concrete, imaginary
house. On the other hand, the “constructed” adjective explicitly reminds us
that genres do not represent categories of real-world objects but they are
classes of idealised entities whose common features have been designed by
the authors of the language. We hope this denomination will help to avoid
thinking that genres of languages “really describe” how the world actually is.
A simple definition of “constructed genre” is:

Definition 4 (constructed genre): a constructed genre is a meta-level concept
in a conceptualisation.

5 Representation-oriented Languages as Scientific Theories

This section and the next one analyse several case studies including both rep-
resentation and design-oriented languages. The obtained results will provide
evidence for Hypothesis 2 stated at the Introduction, which we reproduce here
for convenience:

Hypothesis 2 Languages are general representations of certain classes of
systems in the world, and they can be characterised as scientific theories.

In the previous section we rejected the syntactic view of languages. Although
promising, understanding languages with the semantic view raises an impor-
tant difficulty: if constructed genres do not refer to anything in the real world,
how can we explain the fact that languages such as KAOS can be employed
for representing the world?

20

5.1 Representation requires intentionality

According to the semantic view of theories, scientists represent the real world
by building idealised entities called models, which are employed as conceptual
“images” of reality.

Giere argues that models appear in Science with varying degrees of specificity
[16]. Thus, an example of an abstract model is a conceptual entity charac-
terised only by three general statements called “Newton’s laws of motion”. A
more concrete model is a conceptual pendulum, which satisfies the mentioned
laws together with others. A still more concrete model is obtained by providing
values to the generic parameters of the conceptual pendulum.

As argued in the previous section, texts about languages describe a family
of genres which one can employ for building particular, conceptual entities.
This suggests to look for analogies between the way scientific models represent
reality and the way constructed genres do it. The latter can be matched with
an abstract, general model, while entities built from genres by users can be
regarded as specific models. However, can we defend that the family of con-
structed genres of a language is a general representation of the world, and,
in consequence, that the particular entities one can build constitute specific
representations of reality?

A possible answer comes from Constructive Realism. According to Giere [16]
models are not enough but representation also requires intentionality : some-
body (e.g. a scientist) must explicitly claim that some conceptual entity rep-
resents the world. Although in principle any entity can be used to represent
anything else, Giere states that none represents any other simply by itself.

According to Constructive Realism (see Section 2.3), propositions claiming
that a certain (conceptual) entity represents some identified object or class
of objects in the world are theoretical hypotheses : they are fallible, which can
be empirically validated. As with theoretical models, hypotheses can have a
variety of levels of specificity.

Therefore, though it is tempting to regard the constructed genres of a language
as a general, theoretical model of some part of the real world, we must first
be sure that explicit claims exist asserting such a relationship, i.e. to find
theoretical hypotheses. An empirical way of achieving such a validation is to
look for statements in texts about languages. This strategy is also the one
Giere followed for scientific theories.

21

5.2 General theoretical hypotheses in texts about languages

We find the following quotation in the text that we are using as a reference
for the language of the KAOS approach [10, p. 46]:

Some experience with real requirements documents has convinced the authors
that higher-level abstractions such as “goal,” “operationalization,” “ensuring ac-
tion,” “agent,” “responsibility,” or “alternative assignment” are found informally
and explicitly in the requirements of non-toy systems.

This paragraph is a proposition about the world: on the one hand, it contains
an identification of a bounded part of reality — the requirements documents of
non-toy software systems; on the other hand, the statement is a claim that the
proposed constructed genres (“abstractions”) can be found “informally and
explicitly” in such a reality, i.e., the genres are a general representation of real
requirements documents. Therefore the paragraph is a theoretical hypothesis
about the requirements of software problems.

Regarding i∗, the quotation reproduced at page 18 (Section 4.1) identifies a
part of the world, real organisations, and it points out several aspects of such
a reality: the dependencies among stakeholders, their particular interests and
concerns, as well as how such interests might be addressed. The paragraph
explicitly claims that such aspects can be “described” 4 with the proposed
models (SD and SR). This statement of intention is a general hypothesis about
the identified aspects of real organisations.

The aim of the “Problem Frames” approach is to analyse and to structure
software development problems. The quotation reproduced at page 18 (Sec-
tion 4.1) identifies the reality of interest: those parts of the world where the
problem and the solution machine are located. And it claims that such a reality
is “shown” in context and problem diagrams. Diagrams are linguistic entities
which symbolise or denote the conceptual entities that one builds from con-
structed genres, as we explained in Section 4.2. So stating that context and
problem diagrams show the parts of the world where the problem and the
machine are located is equivalent to claim that the corresponding constructed
genres represent such a reality: a theoretical hypothesis.

These evidences support our previous conjecture that the constructed genres
of representation-oriented languages play the same role as (general) theoreti-
cal models in the constructive realist view of scientific theories. Each family
of genres is explicitly claimed to represent some identified part of the world.

4 We prefer the term “to represent” over “to describe” to refer to the purpose of
constructed genres with respect to the world. The latter verb is misleading as it
may make us to think that genres are syntactic entities: terms or sentences.

22

Therefore we conclude that languages intended for representation can be re-
garded as scientific theories about some identified part of the real world. In
fact, the existence of an explicit claim on the family of genres allows that such
genres can be employed by the language users to build particular representa-
tions of concrete parts of the world.

According to this reasoning, representation in languages is based on the same
principles as scientific theories: somebody builds a conceptual entity using the
constructed genres, and then she formulates the explicit claim that the entity
represents some identified part of the world.

We explained in Section 2.3 that, according to Constructive Realism, claims
between theoretical models and the world can be understood in terms of sim-
ilarity. Giere argues that two entities can be similar in a number of respects
and to certain degrees of accuracy.

Giere’s arguments in favour of similarity are equally valid in the case of the
constructed genres of a language. For example, KAOS agents exhibit discrete
behaviour but this does not happen with real humans. However while perceiv-
ing other humans we build categories of typical behaviours: to move an arm,
to read, to stand up, to talk, and so on. Therefore KAOS agents and humans
can be claimed to be similar in the respect “behaviour,” although to a limited
degree. In the same respect, agents and computers can be claimed to share a
higher degree of similarity because the latter are designed to perform discrete
operations (e.g. to copy the contents of a register into memory, to add two
numbers, etc).

Our experience on this analysis shows that theoretical hypotheses contained
in texts about languages are stated with few details. Therefore it is generally
difficult to find respects and degrees in the statements about representation.
The most specific paragraph we have found in the references about KAOS is
the following one, which refers to the family of constructed genres [10, p. 6]:

It is aimed at being sufficiently rich to allow both functional and non-functional
requirements for any kind of composite system to be captured in a precise and
natural way.

The paragraph identifies a part of the world, composite systems, and one
respect of such systems: their requirements. Then it claims that such a respect
can be “captured” (i.e. represented) with precision. Under our characterisation,
this is a statement of the similarity between the family of constructed genres
and composite systems in the respect “requirements” to the degree of accuracy
“precise”. We have not been able to find any additional details about such a
representation in the reference texts.

23

The case studies of representation-oriented languages analysed in this section
are evidences in favour of Hypothesis 2: languages can be regarded as scientific
theories. But the case studies have also shown that texts defining languages
do not clearly describe the representation relationship between constructed
genres and reality, nor they provide any resources for users to build their own
theoretical hypotheses. This situation justifies the fact that users focus on
building entities (models) employing the language genres but they are unaware
of the need to make statements which relate their models with the modelled
reality.

6 Design-oriented Languages as Scientific Theories

This section continues the provision of evidence to support Hypothesis 2 with
a focus on languages whose primary purpose is that of designing. Two cases
are considered:

• High-level design, with the study of the Statemate [23] and Actors [2] mod-
elling languages.

• Low-level design, with the study of a programming language, C++ [11].

6.1 Case study: Statemate and Actors languages

Texts defining Statemate and Actors explicitly identify two classes of com-
puter systems: reactive systems and open distributed systems, respectively.
The latter is a subset of the former. Note that the existence of such systems
is independent of the existence of the languages. Indeed, texts usually char-
acterise the corresponding class at the outset, before presenting the language
constructs (see for example [23, pp. 3–4] in the case of Statemate and [4, p. 2]
and [5, p. 155] in the case of Actors).

The first question is whether the syntactic view is appropriate for understand-
ing these languages. Texts about Statemate introduce a number of terms (e.g.
“activity”) and they include many predicates about such terms. For example:
“the system is viewed as a collection of functional components or activities
[...] organized into a hierarchy” [23, p. 20]. If the introduced terms referred to
real-world entities, then the predicates would be true in the real world.

Currently there exist several repositories of source code that are open to pub-
lic access, such as SourceForge.net and Google Code. Assume that we regard
source code as a description of the functionality and behaviour respects of com-
puter systems. Searching on the repositories for systems which can be classi-

24

Fig. 2. Theories of reactive systems and open distributed systems.

fied as “reactive,” we find that the functionality of such systems is spread over
Java objects, C functions, Perl subroutines, etc. But none of these elements
has exactly the same features as Statemate activities, nor the functionality of
the software hosted in the repositories is exactly organised into a hierarchy.
In the case of Actors, texts ascribe a number of ideal properties to terms [4]
which obviously are not present in the real world. Therefore, the syntactic
interpretation of terms is not correct.

We propose to understand terms as standing for constructed genres, as in the
case of languages intended for representation. In consequence, entities that
Statemate and Actors users build with such genres are conceptual too. Such
entities are the ones software engineers call “models,” and they are often
symbolised with a notation that mixes diagrams and text. Summing up, the
propositions contained in texts about reactive systems and open distributed
systems do not literally refer to the world but they construct two classes of
conceptual entities with their own special features.

This semantic view fits well the conception that software engineers themselves
have of the “models” they design. The genres of a “modelling language” such
as Statemate and Actors are constructed to be more expressive than those of a
“programming language” and in consequence, designing an (expressive) entity
with the former requires less effort and the entity will be easier to understand
and to analyse. For these reasons designing models is a preceding task to
designing programs in software development approaches.

While most part of the texts about Statemate and Actors are concerned with
defining properties of the genres, we can also find some statements which
relate the constructed classes of conceptual entities with the real-world ones.
Therefore such statements can be understood as hypotheses about the classes
of reactive systems and open distributed systems. Next we present several
examples:

• Statemate activities are claimed to represent functional components such
as objects, processes, and functions [23, p. 20]. Such entities are the ones of
typical programming languages.

• Statemate defines “flow-lines” as communication channels between activi-
ties. Flow-lines are claimed to represent a variety of means for information

25

transfer, such as parameter passing to procedures or global variables in
programs and messages transferred along transmission lines in distributed
systems [23, p. 28].

• Statemate contains a sub-language named “Statecharts” for characterising
the behaviour of reactive activities. The language defines two kinds of re-
activity in relation to time, which are called “models of timing” or “time
schemes”: synchronous and asynchronous [22, p. 316]. The former is claimed
to fit systems that are highly synchronous and the latter is claimed to fit
most kinds of asynchronous systems [22, p. 317].

• The “actor model of computation” is claimed to be “a natural model to
use as a theory of open distributed computation” [4, p. 2]. In another cite,
the actor model is claimed to provide “an effective method for represent-
ing computation in real-world systems” [5, p. 157]. Agha et al. explicitly
state that the “actor theory [...] abstracts some fundamental aspects of open
systems” [5, p. 155]. They also qualify the representation relationship as a
“reasonable abstraction for open distributed systems” and as a “realistic
model for a number of practical implementations” [5, p. 155].

• The Actors language defines an “actor configuration”. Such a concept is
claimed to be a model of an open system component [4, p. 3]. An actor is
claimed to “provide a natural generalization for objects” [5, p. 155].

According to these evidences and the constructive realist characterisation of
scientific theories, we can regard Statemate and Actors as two theories of
reactive systems and open distributed systems, respectively. The theoretical
models are the conceptual classes defined by the languages, and the similarity
hypotheses are (more or less explicitly) included in the texts. Figure 2 shows
the representation relationship in a diagram. Each model and the associated
hypotheses constitute a theory. According to their scope, the Statemate theory
is more general than the Actors one, which is concerned with a specific kind
of reactive systems.

6.2 Case study: C++

Texts which describe the C++ language introduce a number of terms such
as “object,” “member function,” and “pointer”. The properties associated to
them are so “low level” that we might be tempted of thinking of such terms
as fancy names for hardware elements in real computers. For example, the
Reference Manual (RM) states that “an object is a region of storage” [11, p.
13]. Indeed, it might seem that this syntactic view fitted well for the common
use of the language; for example, C++ programmers use pointers to access
the “real” memory addresses of the computer. 5 However one can also find

5 Strictly speaking, what pointers can address is not the real memory but the
operating system’s own view of memory, which is a model of the physical memory

26

properties which do not literally apply to real computers. For example, a
C++ object must be associated with a class and this association determines
the functions which can legally be applied to the region of memory. Obviously
this statement is not true with respect to the real hardware.

As in previous cases, we adopt a constructive realist perspective. We regard
C++’s terms such as “object,” “member function,” and “pointer” as con-
structed genres which satisfy their stated properties by definition. They can
be employed as pieces for building conceptual entities called programs, which
have the property of being executable. Programs are described in linguistic
entities named “source code” using a (text-based) syntax.

If terms in C++ texts denoted constructed genres, there should be statements
(hypotheses) claiming the similarity between the language genres and the real
world. The RM contains only one statement of this kind: “C++ is a general
purpose programming language” [11, p. 1]. This statement indirectly estab-
lishes a relationship between the class of entities which can be potentially
constructed with C++ and the class of real-world computers: the respect is
“to be Turing complete” and the similarity degree is “exact”. The RM state-
ment represents the most explicit claim that current texts about languages
include about this respect because, as Mitchell indicates [33, p. 21]: “today
it is unlikely that a team of programming language designers would advertise
that their language is sufficient to define all partial recursive functions. Most
computer scientists nowadays [...] assume that most languages intended for
general programming are Turing complete”.

Additional hypotheses are found in texts explaining the design of the language
itself. For example, Stroustrup [42, p. 4] claims that the language operations
“directly reflect machine instructions”. Therefore they can be regarded as a
representation of the instruction set of a microprocessor. The degree of ac-
curacy of such a representation is claimed to be “direct”. This theoretical
hypothesis cannot be stated about every programming language (at least not
if we intend to say something that is true). For example, Perl provides the =∼
operator for checking whether a regular expression matches a given string.
This operator does not directly represent any machine instruction of current
microprocessors, so there is no similarity between Perl’s genres and real micro-
processors with such a degree in that respect. As another example, “message
expressions” in Smalltalk [19, p. 25], which allow to send a message to an
object, cannot be claimed to represent any machine instruction with degree
“direct”.

Technical texts about microprocessors (including datasheets and manuals)
provide a closer view of the world than C++’s. Several models can be found.

in turn — it typically includes the so-called “virtual addresses,” constituting a space
wider than the actual RAM size.

27

For example, the Intel 386SX Manual [25] offers a detailed view of the mi-
croprocessor structure and behaviour. A higher-level model of the Intel 32-bit
processors is described at the Intel Architecture Software Developer’s Manual
[26], the so-called “processor’s system-level architecture,” mainly intended for
developers of operating systems.

6.3 Knowledge in design-oriented languages

There are many factors driving the design of a design-oriented language. For
example, in his book about the design of C++, Stroustrup [41] surveys the
catalogue of 26 rules he followed. Design factors condition the constructed
genres and their properties, which in turn determine the kind of representation
the language is of the class of systems it is intended for.

We can find a nice parallelism with the scientific practice. According to Giere
[18, p. 747], scientists use models to represent aspects of the world for various
purposes. What the designer of a language develops is a representation of a
class of systems in the world for the purpose of obtaining a design tool for such
a class of systems. The specific design factors count as specialised purposes.

A design-oriented language contains design knowledge: sound principles for
the target class of systems are hopefully embedded in the language constructs
(see [41, p. 114] for the case of C++). Knowledge can also be found when one
regards the language as a characterisation of a class of systems: the necessary
theoretical hypotheses detail the scope and distance of such a characterisa-
tion. For example, both Statemate and Actors assume unbounded buffers in
communications: this is an embedded design decision intended to guarantee
delivery in reactive systems. A hypothesis is then necessary to claim some
distance with reality in the respect “buffering capabilities,” i.e. to express
something about real systems. Referring to Actors systems and real systems
in this respect, Agha [3, p. 8] asserts that “the reality is that we only have
asynchronous agents with no buffering capabilities”. While not explicitly, the
author is establishing a wide distance between Actors systems and real systems
in the cited respect.

7 Conclusions and discussion

This paper has provided evidence in favour of the claim that languages can be
regarded as scientific theories. This perspective offers a number of advantages:

(1) It makes explicit that languages are knowledge about a class of systems.

28

In particular, the constructive realist characterisation of scientific theories
introduces an explicit indication of the accuracy of such knowledge.

(2) Scientific theories can be empirically validated. Anyone can take real sys-
tems of the corresponding class and check whether the hypotheses of a
language hold. For example, we can take the requirements of any non-toy
system and check whether we can find elements such as goals, operational-
isations, and ensuring actions, as held by the KAOS hypothesis stated at
page 22. As another example, we can take any open distributed system
and check whether its topology can be dynamically reconfigured, as held
by the Actors hypothesis stated at [5, p. 157].

(3) Scientific theories targeted at the same class of systems can be compared.
A particular consequence of this fact is that the most adequate theory
can be chosen in each case depending on our concrete needs.

Theory comparison requires a previous identification of the class of systems
which a language is intended to represent and a rigorous formulation of the
theoretical hypotheses. Regrettably, our case studies show that theoretical
hypotheses in languages are usually either unstated or fairly loosely indicated.
When hypotheses are clearly stated, one can reason about which theory fits
better her or his needs. Consider the following two hypotheses:

• Regarding the respect “duration of a reaction to an external stimulus,”
Statemate systems are different from real-world reactive systems.

• Regarding the respect “duration of a reaction to an external stimulus,”
UML systems are equal to real-world reactive systems.

Studying the theoretical models, Statemate systems react instantaneously
while UML systems take some time [47]. If we consider this respect only
and our purpose is the ease of design, then the Statemate theory is a bet-
ter choice because it is simpler. But the hypothesis tell us in advance that the
obtained Statemate system will be far from the final system in the respect
under consideration.

The view of languages as scientific theories uncovers an important lack in
current representation-oriented languages: they do not provide any resources
for building theoretical hypotheses. This is a major problem because building
models or conceptualisations is not enough to represent anything: the person
who receives a model or a conceptualisation ignores what respects of reality
were intended to be represented as well as the degree of accuracy of the repre-
sentation. It is the existence of some explicitly specified similarities that makes
possible the use of the model to represent the real system [18]. This paper has
established a rigorous formulation of theoretical hypotheses and degrees of
accuracy. The general schema for a similarity hypothesis, sim(m, s, r) = d,
must be particularised for the specifics of each real-world domain that is to
be represented. On the one hand, respects must be selected in the domain

29

according to the modeller’s interests and purposes; on the other, catalogues of
degrees of accuracy must be defined — probably by consensus through a social
process in much the same way as an agreement must be reached when an on-
tology is been defined. We are currently working on an extension to OWL that
allows an individual to complement her ontologies with similarity hypotheses.
In particular, the supplementary language will permit to identify real-world
systems (or classes of systems) of interest, 6 list respects, define catalogues of
degrees of accuracy, and link a conceptualisation with a real-world system in
a similarity hypothesis.

Regarding languages as scientific theories has an important consequence for
designing. Language hypotheses claim one possible characterisation of an iden-
tified class of systems in the world to some degree of accuracy. Language genres
have been constructed according to a number of purposes, among which there
are design principles about the target class of systems. If we employ the lan-
guage for building a particular design, the theoretical hypotheses guarantee
that our design will be similar to the final system, at least in some general
respects and to certain degrees of accuracy. For example, there is a hypothesis
which asserts the full similarity between Actors systems and real open dis-
tributed systems in the property “dynamically reconfigurable topology” [5, p.
157]. Therefore, any design we develop with the Actors genres will have the
capability of being dynamically reconfigurable built into.

Finally, abstraction can be explained in terms of representation. What we read
in the manual of a microprocessor is a description of a theoretical model of a
physical device. Similarity has been shown to be an adequate characterisation
of the representational relationship. The model of manuals has such a high
degree of accuracy with the electronic devices that we take it as our ground
representation. The theoretical model of C++ has a lower similarity, but it
is enough for programmers to build efficient systems. The theoretical model
of Statemate is even less similar than C++’s, but simplicity is exactly what
developers need when they are designing at early stages.

8 Related works

Knowledge representation is an important topic in Artificial Intelligence and
it has long been studied. One of the pioneer approaches was the use of con-
ceptual graphs [38]: systems of concepts and relations intended to represent
what is known, thought of, or believed. The relationship between a conceptual
graph and reality was not regarded as important since it was simply assumed

6 It is noteworthy that this will be merely a syntactic identification, such as
Realworld train09615, since it is impossible to give a formal semantics to reality.

30

to be one of truth. For example, Sowa stated that schemata (a kind of con-
ceptual graphs) “are commonly true, but they may sometimes be wrong. To
handle those cases where a schema does not apply, a law must be asserted
that blocks the default” [38, p. 140]. Therefore we can observe an underlying
logical empiricist basis: when conceptual graphs are asserted (as propositions),
they are interpreted as direct claims about the world. However the assumed
relationship of truth soon revealed some problems. To solve them, conceptual
graphs were required to be asserted into some context, where a context is a
linguistic entity describing some physical or imaginary situation [39]. However
the problems [43] of Logical Empiricism persist since the relationship between
contexts and the world is regarded to be one of truth.

In spite of these difficulties, contexts have been revealed to be useful for other
purposes such as information packaging (e.g. in modelling information systems
[13]). In the field of corporate knowledge management, context modelling is
regarded a value: the context in which a piece of information is located can be
very useful to determine the relevance of the piece of information in a given,
new application context [1, p. 266]. In our approach, the context is simply
part of the reality under study, and the “relevance” is related to the expected
degree of accuracy. If model m is proposed for a real-world system of interest
s (e.g. a supplier) located at a real-world context c (e.g. a price negotiation),
then some respect r is under consideration (e.g. the supplier’s willingness to
negotiate) and some similarity is asserted: sim(m, s ∪ c, r) = d, where s ∪ c
denotes the real-world composite system of s and c. If the context changes to
c′ then we are identifying another part of the world (namely s∪ c′) and hence
the previous hypothesis may not hold for such a part of the world.

The notion of truth, which is assumed by the previously cited references to
link descriptions with the world, has been studied in classical logic from a
formal conception. In particular, Tarski’s view [44,45] is based on the idea
that the valuation of a formal sentence must be done via a “new” entity called
“model” which is located outside the formal (purely syntactical) language.
However, nothing more is said about the properties we can require for such
new entities. In fact, a model can be regarded as a mental construction or as
the result of describing a certain reality. In the second case, the relationship
between the model and the physical world is assumed to be one of “truth,” thus
in accordance with Logical Empiricism. In Constructive Realism, by contrast,
the relationship between the model and the world is a main concern. Such a
relationship is not one of truth but one of similarity.

Interestingly, logical empiricist postulates seem to have spread to the ontology
community as well. Burton-Jones et al. [7] develop a number of metrics for as-
sessing the quality of ontologies. Regarding the so-called “pragmatic quality,”
one of the proposed metrics addresses the information accuracy : the relation
between the number of false claims an ontology makes and the total number

31

of statements in the ontology. Therefore the authors regard the relationship
between an ontology and the world as one of truth/falsity. This conception
has the same problems as Suppe [43] identified for the logical empiricist view
of scientific theories.

The need for theoretical hypotheses for representation in software development
has not been admitted so far, and very few accounts characterise the link be-
tween models and reality. A major exception is [27]; here Jackson employs the
term “model” to refer to the structures often built in software systems (usu-
ally as databases) that are interpreted as information about something in the
real world (for example, about the employees of a company). In [28] Jackson
studies the relationship between such software structures and the real world,
identifying some “model concerns” [28, pp. 202–206]: model imperfection, in-
completeness, and time lag. The first two of these can be embedded in the
general similarity relationship introduced in this paper. The last one refers to
the time lag existing between the occurrence of an event in the real world and
the appearance of its counterpart in the software model.

Marcos and Marcos [32] analyse two types of entities commonly employed in
the database field: data models and conceptual schemata. They conclude that
they both serve two purposes: on the one hand, to be the basis for a design
(“model-as-original”), and, on the other hand, to be a representation of the
real world (“model-as-copy”). These two purposes take place at different levels:
more generic (in the case of data models) and more specific (in the case of
schemas).

Ludewig [30, p. 6] cites Stachowiak’s three criteria for determining if an entity
is a model [40]:

• Mapping criterion: there is an original object or phenomenon that is mapped to
the model. In the sequel, this original object or phenomenon is referred to as “the
original”.

• Reduction criterion: not all the properties of the original are mapped on to the
model, but the model is somehow reduced. On the other hand, the model must
mirror at least some properties of the original.

• Pragmatic criterion: the model can replace the original for some purpose, i.e. the
model is useful.

The “mapping criterion” is simply the identification phenomenon referred to
by Constructive Realism. The “reduction criterion” is covered by the respects
indicated in the similarity hypotheses. The “pragmatic criterion” agrees with
the existence of a purpose, as pointed out by Giere [18] and by Morgan and
Morrison [34].

Ludewig [30, p. 8] defends that theories are models. However we have argued
that theories contain models — together with theoretical hypotheses.

32

Seidewitz [37] focuses on entities that one can build with the so-called “mod-
elling languages”. He defines a model as “a set of statements about some
system under study” [37, p. 27] so he seems to obviate non-linguistic mat-
ters. He also defines “correctness” as: “we consider the model correct if all its
statements are true for the system under study” [37, p. 27]. Therefore he does
not distinguish the statements that define the model from the statements that
claim the relationship with the real world.

Regarding studies of languages, Harel and Rumpe [24] review the traditional
characterisation consisting of three elements: a syntax, a semantic domain,
and a mapping between both. The authors analyse each element with exam-
ples of modelling and non-modelling languages. In particular they express the
following about the semantic domain [24, p. 67]:

The semantic domain is not to be taken lightly: It specifies the very concepts that
exist in the universe of discourse. As such, it serves as an abstraction of reality,
capturing decisions about the kinds of things the language should express.

Therefore the authors seem to admit that the concepts of the semantic domain
are different from reality, thus agreeing with the model-based view of theories
(Section 2.2) and with the notion of “constructed genres”.

Guarino [21] elaborates on the formal notion of conceptualisation first in-
troduced by Genesereth and Nilsson in 1987 [14, ch. 2]. For the author, a
conceptualisation establishes a correspondence between possible situations in
the world (called “states of affairs” or “possible worlds”) and their charac-
terisations in terms of relevant relations, which are given a formal semantics.
Moreover, Guarino reflects on the linguistic nature of ontologies and the im-
possibility, in the general case, that an ontology can completely specify a
conceptualisation. According to the author, such coarse-grained, approximate
ontologies are not only unavoidable but they reveal very useful for many prac-
tical purposes (e.g. they may increase the quality of the analysis process in
the development of an information system).

Brewster and O’Hara [6] head an interesting collection of papers from diverse
authors who discuss several controversies related with knowledge representa-
tion with ontologies, focused on the actual range of knowledge an ontology
can successfully represent.

There is an extensive bibliography about similarity in the fields of databases
and Case-Based Reasoning (CBR), where many characterisations of the con-
cept and many measures have been proposed across a wide variety of domains.
Richter [36] offers a comprehensive overview of different characterisations of
the similarity concept, some of which have been adopted in this paper and
extended with respects.

33

The ideas presented in this paper have their roots in the seminal work pre-
sented in a PhD thesis [8] and in our earlier study on the role of ontologies in
software engineering [9].

Acknowledgements

The authors want to explicitly express their gratitude to the three anonymous
reviewers of this paper. Their thorough reading and useful comments have
greatly contributed to improve the clarity and quality of the work.

This work has been partially funded by the Spanish Ministry of Education
and Science through project HUM2007-66607-C04-04.

References

[1] A. Abecker, A. Bernardi, K. Hinkelmann, O. Kühn, M. Sintek, Context-
aware, proactive delivery of task-specific information: The KnowMore project,
Information Systems Frontiers 2 (3-4) (2000) 253–276.

[2] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, Mass., 1986.

[3] G. Agha, Supporting multiparadigm programming on actor architectures, in:
Proceedings of the Parallel Architectures and Languages Europe (PARLE’89),
Volume II: Parallel Languages, Springer-Verlag, 1989.

[4] G. Agha, I. A. Mason, S. F. Smith, C. L. Talcott, A foundation for actor
computation, Journal of Functional Programming 7 (1) (1997) 1–72.

[5] G. Agha, P. Thati, R. Ziaei, Actors: a model for reasoning about open
distributed systems, in: H. Bowman, J. Derrick (eds.), Formal methods for
distributed processing: a survey of object-oriented approaches, Cambridge
University Press, 2001.

[6] C. Brewster, K. O’Hara, Knowledge representation with ontologies: The present
and the future, IEEE Intelligent Systems 19 (1) (2004) 72–81.

[7] A. Burton-Jones, V. C. Storey, V. Sugumaran, P. Ahluwalia, A semiotic metrics
suite for assessing the quality of ontologies, Data and Knowledge Engineering
55 (1) (2005) 84–102.

[8] J. M. Cañete-Valdeón, A theory of languages and design methods in software
engineering, Ph.D. thesis, Universidad de Sevilla (2006).

[9] J. M. Cañete-Valdeón and F. J. Galán, Towards a theory on the role
of ontologies in Software Engineering problem solving. Conclusions from a
theoretical model of methodological works, in: M. Cerioli (ed.), Fundamental
Aspects on Software Engineering (FASE/ETAPS 2005), vol. 3442 of Lecture
Notes in Computer Science, Springer-Verlag, 2005.

34

[10] A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-directed requirements
acquisition, Science of Computer Programming 20 (1993) 3–50.

[11] M. A. Ellis, B. Stroustrup, The Annotated C++ Reference Manual, Addison-
Wesley, 1991.

[12] Federal Aviation Regulation, Appendix G to Part 91 - Operations in Reduced
Vertical Separation Minimum (RVSM) Airspace, Tech. rep., Federal Aviation
Administration.

[13] B. Garner, R. Raban, Context management in modeling information systems
(IS), Information and Software Technology 41 (1999) 957–961.

[14] M. R. Genesereth, N. J. Nilsson, Logical Foundations of Artificial Intelligence,
Morgan Kaufmann Publishers Inc., 1987.

[15] R. N. Giere, Constructive realism, in: P. Churchland, C. Hooker (eds.), Images
of Science, University of Chicago Press, 1985.

[16] R. N. Giere, Explaining Science: A Cognitive Approach, University of Chicago
Press, 1988.

[17] R. N. Giere, Science without Laws, University of Chicago Press, 1999.

[18] R. N. Giere, How models are used to represent reality, Philosophy of Science 71
(2004) 742–752.

[19] A. Goldberg, D. Robson, Smalltalk-80 : the language, Addison-Wesley, 1989.

[20] T. R. Gruber, A translation approach to portable ontology specifications,
Knowledge Acquisition 5 (2) (1993) 199–220.

[21] N. Guarino, Formal ontology and information systems, in: N. Guarino (ed.),
Proceedings of the 1st International Conference on Formal Ontologies in
Information Systems (FOIS’98), IOS Press, 1998.

[22] D. Harel, A. Naamad, The Statemate semantics of Statecharts, ACM
Transactions on Software Engineering and Methodology 5 (1996) 293–333.

[23] D. Harel, M. Politi, Modeling Reactive Systems with Statecharts: the Statemate
Approach, McGraw-Hill, 1998.

[24] D. Harel, B. Rumpe, Meaningful modeling: What’s the semantics of
“semantics”?, IEEE Computer 37 (10) (2004) 64–72.

[25] Intel 386 SX Microprocessor, Tech. rep., Intel (Jan. 1994).

[26] Intel architecture software developer’s manual – Volume 3: System
programming, Tech. rep., Intel (1999).

[27] M. Jackson, Software Requirements & Specifications: a Lexicon of Practice,
Principles, and Prejudices, Addison-Wesley, 1995.

[28] M. Jackson, Problem Frames. Analyzing and Structuring Software Development
Problems, Addison-Wesley, ACM Press, 2001.

35

[29] E. Letier, Reasoning about agents in goal-oriented requirements engineering,
Ph.D. thesis, Faculté des Sciences Appliquées, Université catholique de Louvain
(May 2001).

[30] J. Ludewig, Models in software engineering –an introduction, Software and
Systems Modelling 2 (2003) 5–14.

[31] A. Majchrzak, Q. Wang, Breaking the functional mind-set in process
organizations, Harvard Business Review (1996) 93–99.

[32] E. Marcos, A. Marcos, A philosophical approach to the concept of data model:
Is a data model, in fact, a model?, Information Systems Frontiers 3 (2) (2001)
267–274.

[33] J. C. Mitchell, Concepts in Programming Languages, Cambridge University
Press, 2001.

[34] M. Morgan, M. Morrison, Models as Mediators: Perspectives on Natural and
Social Science, Ideas in Context, Cambridge University Press, 1999.

[35] M. A. Musen, Ontologies: Necessary – indeed essential – but not sufficient,
IEEE Intelligent Systems 19 (1) (2004) 77–78.

[36] M. M. Richter, Similarity, in: P. Perner (ed.), Case-Based Reasoning on Images
and Signals (Studies in Computational Intelligence), Springer-Verlag Berlin
Heidelberg, 2008.

[37] E. Seidewitz, What models mean, IEEE Software 20 (5) (2003) 26–32.

[38] J. F. Sowa, Conceptual Structures, Addison-Wesley, 1984.

[39] J. F. Sowa, Peircean foundations for a theory of context, in: Conceptual
Structures: Fulfilling Peirce’s Dream, Springer Berlin / Heidelberg, 1997.

[40] H. Stachowiak, Allgemeine Modelltheorie, Springer-Verlag, 1973.

[41] B. Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994.

[42] B. Stroustrup, Abstraction and the C++ machine model, in: International
Conference on Embedded Software and Systems (ICESS’04), vol. 3605 of
Lecture Notes in Computer Science, Springer-Verlag, 2005.

[43] F. Suppe, The Structure of Scientific Theories, Urbana: University of Illinois
Press, 1974.

[44] A. Tarski, The semantic conception of truth and the foundations of semantics,
Philosophy and Phenomenological Research 4 (3) (1944) 341–376.

[45] A. Tarski, The concept of truth in formalized languages, in: Logic, Semantics,
Metamathematics, Clarendon Press, 1956.

[46] OWL Web Ontology Language guide, Tech. rep., World Wide Web Consortium
(W3C) (Feb. 2004).
URL http://www.w3.org/TR/2004/REC-owl-guide-20040210

36

[47] R. J. Wieringa, Design Methods for Reactive Systems: Yourdon, Statemate and
the UML, Morgan Kaufmann, 2003.

[48] E. Yu, Towards modelling and reasoning support for early-phase requirements
engineering, in: Proceedings of the 3rd IEEE Int. Symp. on Requirements
Engineering (RE’97), 1997.

[49] E. Yu, Strategic modelling for enterprise integration, in: Proceedings of the 14th
World Congress of International Federation of Automatic Control (IFAC’99),
Permagon, Elsevier Science, 1999.

37

