
Implementing Multiparty Interactions on a Network Computer

Rafael Corchuelo, David Ruiz, Miguel Toro and Antonio Ruiz
Dpto. de Lenguajes y Sistemas Inform´aticos, Universidad de Sevilla

Avda. de la Reina Mercedes s/n, Sevilla 41.012, Spain
fcorchu, druiz, mtoro, aruizg@lsi.us.es

Abstract

Classical client/server interaction primitives such as re-
mote procedure call orrendez–vousare not adequate when
we need to describe the behaviour of three or more pro-
cesses that need to collaborate simultaneously in order to
solve a problem. Multiparty interactions are the key to de-
scribe these problems, and there are several languages that
use them for the description of reactive systems. In this pa-
per, we show and compare two different fair implementa-
tions of this mechanism and also outline the research we
are carrying out in an effort to improve them.

1. Introduction

One of the most popular models for describing and im-
plementing distributed systems is the client/servel model,
which emphasises two entities exchanging messages, and,
thus, communication. Nevertheless, this approach is not
adequate when we need to describe a system where sev-
eral processes need to collaborate simultaneously in order
to solve a problem. A classical example is the leader elec-
tion problem, where a number of processes need to agree so
that only one of them performs a certain task in a system.
It is obvious that this problem can be described in terms
of client/server primitives, but the key here is coordination
among a number of processes, not binary communication.
In other words, solving this problem requires the achieve-
ment of an agreement among multiple parties.

Multiparty interaction is a way to describe coordination
among several processes, and there are several languages
that incorporate it. Among them, IP [7] stands out because it
is equipped with sound semantics that turn it into a language
amenable to formal reasoning, but it is also a viable imple-
mentation tool one can use to express abstract solutions that
can be compiled and animated. Several algorithms for im-

plementing the multiparty interaction statements IP incor-
porates have been described in the literature [3, 8, 9], but
they are closely related to the underlying network architec-
ture and they cannot be easily adapted to other networks.
This is problematical because it makes them difficult to port,
and incorporating the notion of fairness into them is usually
quite tricky. Fairness is an important property that ensures
that every interaction is given a chance to be executed. In
general, several interactions may be ready for execution at
the same time, but IP semantics states that only one can be
executed at each synchronisation point. Thus, when a con-
flict occurs, one interaction is executed to the detriment of
the rest. Fairness enforces that no interaction is neglected
forever, but incorporating it into the algorithms we have
cited is rather difficult. As a result, few IP implementations
are available. The one described in [1] is the state–of–the–
art compiler, but it is not in wide spread use because it runs
on a transputer and it is only intended for terminating pro-
grams.

This paper aims to describe and compare two different
implementations of the multiparty interaction mechanism
IP incorporates that are easily portable and allow for easy
incorporation of fairness. It is organised as follows: section
2 recalls the notion of multiparty interaction by means of
well–known problems, and presents some changes we have
made in IP syntax; section 3 describes two different imple-
mentations as well as the algorithm we have implemented to
deal with fair selection of conflicting interactions; section 4
glances at other authors’ work, and, finally, section 5 shows
our conclusions and the work we are planning on doing.

2. Multiparty interactions in a nutshell

In this section, we introduce multiparty interaction in the
context of IP. We use the dining philosophers problem in or-
der to illustrate how multiparty synchronisation works, and
the leader election problem in order to illustrate communic-
ation. We also criticise IP communication mechanism and

propose a slight modification that turns it into a more robust
mechanism.

2.1. Preliminaries

We assume that the reader is familiar with IP [7], so
we only recall the main concepts. In IP, systems are un-
derstood as collections of cooperating sequential processes
whose relationships are based on multiparty interactions.
An interaction statement is a statement of the forma[x:=e],
wherea is referred to as the name of the interaction and
x:=e is a sequence of parallel assignments usually referred
to as the communication part. IP also provides guarded
non–deterministic choice statements[[]ni=1Gi ! Si] and
guarded non–deterministic loops�[[]ni=1Gi ! Si]. Guards
are of the formB&a[x:=e], whereB is a boolean expres-
sion and the rest is an usual interaction statement. They
are passable, i.e., their corresponding statements can be ex-
ecuted, as long as the boolean expression holds and all of
the processes which can eventually execute an interaction
statement involvinga have arrived at a point where execut-
ing that statement is one of their possible continuations.
When a process has arrived at such a point, we say that it is
readying that interaction, and when an interaction is readied
by all of its participants, we say that it is enabled. A pro-
cess is said to be a participant of interactiona if it has an
interaction statement involvinga in its body.

2.2. Synchronisation

We illustrate synchronisation by means of the dining
philosophers problem, which is a classic multi-process syn-
chronisation problem. It consists of five philosophers sit-
ting at a table who do nothing but think and eat. There is a
single fork between each philosopher, and they need to pick
both forks up in order to eat. In addition, each philosopher
should be able to eat as much as the rest, i.e., the whole pro-
cess should be fair. This problem is the core of a large class
of problems where a process needs to acquire a set of re-
sources in mutual exclusion. This situation can be the case
of a debit card system where there is a set of point–of–sales
terminals, several computers that hold customer accounts
and a number of computers that hold merchant accounts.
When a clerk inserts a debit card into a terminal, a three–
party interaction needs to be carried out in order to transfer
funds from a customer’s account to a merchant’s account.

The obvious solution to this problem, using two–party
interactions, consists of picking up forks in sequence. Nev-
ertheless, a problem arises if each philosopher grabs the
fork on his/her right, and then waits for the fork on his/her

left to be released. In this case, a deadlock has occurred, and
all philosophers shall starve. If we used multiparty interac-
tions, each philosopher would pick up his/her two forks at
the same time so that no deadlock could arise. Figure 1
shows a solution to this problem in IP. The philosophers are
represented by processesPhilosopheri, and the forks by
Forki (i = 1; 2; : : : ; n). Philosopheri eternally tries to get
his/hers associated forks by interacting in the three–party
interactionget forksi together withForki andForki�1
(we assume that index arithmetic is cyclic, i.e.,1 � 1 = n

andn + 1 = 1). Thus, acquiring a resource is specified as
synchronising with the corresponding processes in an inter-
action. AfterPhilosopheri has picked his/her forks up, he
or she eats, releases the forks and spends some more time
thinking.

DIN PHIL :: [kni=1 Philosopheri k kni=1 Forki], where

Philosopheri ::
*[get forki[] �! eat; releaseforki[]; think]

Forki ::
*[

get forki[] �! releaseforki[]
[]

get forki+1[] �! releaseforki+1[]
].

Figure 1. A solution to the dining philosoph-
ers problem in IP.

Note that interactionsget forki andget forki+1 are al-
ways in conflict when they are both enabled, but only one
can be executed. The only way to guarantee that each in-
teraction that is enabled sufficiently often shall eventually
be selected for execution consists of assuming that the un-
derlying conflict resolution mechanism is fair. This topic is
dealt with in section 3.4.

2.3. Communication

We illustrate the notion of multiparty communication by
means of the leader election problem. It has been paid much
attention because it is the core of a large class of problems
where there are a number of processes able to execute an
algorithm, but there is no a priori candidate to run it. There-
fore, an election under the processes needs to be held. This
situation can be the case of an initialisation procedure that
must be executed initially or a recovery procedure that must
be executed after a crash of a system. It is not possible
to assign a process to the role of leader because the set of
active processes might not be known in advance. The cri-
terion processes use to select a leader is quite simple: each
of them is supposed to have a different natural weightwi

in the system (its net address, for instance), and the leader
is the processPi satisfying thatwi = max

1�j�n
fwjg. Notice

that this is a clear example where a number of processes
need to collaborate simultaneously in ann–party interac-
tion because there is absolutely no way to select a leader if
a process does not have information about the weights of
the whole set of processes.

An immediate solution to this problem is shown in fig-
ure 2. The multiparty interactionElect synchronises all of
the processes, allowing them to exchange information and
decide which one has to be assigned to the role of leader.
When several processes synchronise and interact, a tem-
porary global combined state is formed so that each pro-
cess can read information in the state of other participants
of that interaction. Processes need to know which variable
has the information they need and exchange information by
means of a parallel assignment where the variables on the
left are local to the process executing the interaction state-
ment, whereas the expressions on the right have access to
variables in the global combined state. This way, each pro-
cess computes the maximum in parallel, compares it to its
own weight and stores the result of this comparison in its
local variableleaderi. After interaction, the one that finds
itself having the maximum value executes the appropriate
algorithm.

Thus, this is a symmetric inter–process communication
construct involving an arbitrary number of participants, and
it is a different view of communication, which is more tra-
ditionally broken into sending and receiving information.

2.4. Communication robustness

Unfortunately, IP uses a global naming scheme, thus
avoiding two different processes from having local vari-

LEADER :: [kni=1 Pi], where

Pi ::
fwi: natural; leaderi: booleang
wi := a weight;
Elect[leaderi := (wi = max

1�j�n
fwjg)];

[leaderi ! execute algorithm].

Elect[leader
i
:=(w

i
= max{w

1
, w

2
, ..., w

n
})]

Combined state

Elect

P
1 w

1

leader
1

P
2 w

2

leader
2

P
n w

n

leader
n

w
1

leader
1

w
2

leader
2

...

w
n

leader
n...

Figure 2. A solution to the leader election
problem in IP.

ables with the same names. We think that this scheme
is not well–engineered because it does not ensure that the
processes participating in an interaction have initialised the
variables other processes need, and we cannot use local
names. Therefore, we have decided to change IP syntax
so that a process can own a local, private state with local,
private names.

Figure 3 shows our changes: first of all, interactions have
to be explicitly declared, and each one owns a local state
which is equivalent to IP global, combined state (notice
that there is no need for indexed variables now); secondly,
each interaction is given a set of participating processes syn-
chronising on it; thirdly, each process is responsible for ini-
tialising a part of the interaction state; finally, communica-
tion parts in interaction statements have been decomposed
into two parts separated by an “&”: the first one initialises
the interaction state, and the second one allows synchron-
ised processes to exchange information. These modifica-
tions allow us for easy implementation, and the compiler
can catch many errors that would not be caught otherwise.

3. Implementing multiparty interactions

The bulk of implementing distributed multiparty interac-
tions consists of the so-called pre–synchronisation, commu-
nication and post–synchronisation problems. The former
problem consists of detecting which interactions are en-
abled and selecting among them which one should be ex-
ecuted. The communication problem consists of transmit-

LEADER :: [kni=1 Pi], through

Elect[h: array(1..n) of natural]
amongPi writes h(i) (i = 1; 2; : : : ; n),

where

Pi ::
fw: natural; leader: booleang
w := a weight;
Elect[h(i) := w & leader := (w =max

1�j�n
fh(j)g)];

[leader! execute algorithm].

Figure 3. Changes in IP syntax.

ting the piece of information each process needs so that net-
work load is minimum. Finally, the post–synchronisation
problem consists of stopping all of the processes particip-
ating in an interaction until the others have completed their
communication parts.

We have implemented an IP compiler, and the target
language we selected was SR [2], a well–known, widely–
available language for writing concurrent programs that is
based on resources and operations. Resources encapsu-
late processes and data, and operations provide the primary
mechanism for client/server interaction. It supports local
and remote procedure calls,rendez–vous, message passing,
dynamic process creation, semaphores, and makes distribu-
tion of processes and data extremely easy. It is suitable for
writing parallel, distributed programs for both shared– and
distributed–memory machines, including DEC, HP, IBM,
NeXT, Silicon Graphics, Sequent Symmetry or Sun.

Our prototype runs on a network of workstations and per-
sonal computers running Solaris, AIX and Linux, the plat-
forms we have in our laboratories. It is not bound up with
the underlying network architecture, so it is very portable
and can be compiled on virtually any UNIX–like system.
We use network computers composed of several virtual ma-
chines, a term that comes from SR and describes a collec-
tion of resources located on a physical machine. Several
virtual machines can be hosted by the same physical ma-
chine, but the way they communicate is transparent, thus
allowing for easy distribution on a heterogeneous network
while preserving effectiveness.

3.1. Our centralised solution

Our basic compiler produces code that implements a
centralised solution where each process runs on a differ-

ent virtual machine, and there is an interaction scheduler
which solves the pre– and post–synchronisation problems
and several interaction managers which solve the commu-
nication problem. Figure 4 depicts our solution in the case
of an election under two IP processes1, and figure 5 shows
a detailed message trace.

Processes do local computations and, when they arrive
at a point where they are readying an interaction, they send
messages to the interaction scheduler to inform it about the
set of interactions they are readying. These messages are
of the formReadies(P; I), beingP the name of a process
andI the set of interactions it is readying. Upon reception
of these messages, the interaction scheduler detects enabled
interactions, selects one of them fairly and sends messages
to the processes to inform them about which interaction has
been selected for execution. This message is of the form
Selected(I?), whereI? is the name of the selected interac-
tion.

Elect

Manager

Interaction

Scheduler

Pre-synchronisation (1)

Post-synchronisation (3)

Pre-synchronisation (1)

Post-synchronisation (3)
P

1
P

2

Communication (2)Communication (2)

Figure 4. A centralised leader election.

After synchronisation, communication takes place. The
changes we have made in IP original syntax and the new
syntactic structure of interaction statements have been de-
signed so that it is rather easy to determine data communic-
ation requirements. Thus, we have implemented a simple
solution where, after informing a process which interaction
has been selected, it sends the data it is responsible for to the
corresponding interaction manager by means of messages
of the formWrite(x; v), beingx the name of a slot andv
its value. When every slot has been initialised, the interac-
tion manager sends a message to the processes connected to
it and they, in turn, use messages of the formRead(x) to
read the slots they need.

According to IP semantics, no participant in an interac-
tion can continue until they all have completed their com-
munication parts. We have implemented the simplest solu-
tion to ensure this: we use a commit protocol in which every
participant sends a message of the formFinished(P) in-
dicating it is finished to the scheduler, which waits until the
last participant is done and sends then messages of the form
Continue() to let them know they can continue.

1We distinguish between IP processes and compiler-generated pro-
cesses such as schedulers or managers.

Readies(P
2
, {Elect})

Selected(Elect)
Selected(Elect)

Readies(P
1
, {Elect})

Write(h(1), w)
Write(h(2), w)

Initialised()Initialised()

Read(h(1))

Read(h(1))
Read(h(2))

Read(h(2))

Finished(P
1
)

Finished(P
2
)

Continue()
Continue()

Interaction

Scheduler

Elect

Manager

Interaction

Scheduler

leader :=

max(h(1), h(2))

P
1

leader :=

max(h(1), h(2))

P
2

Commu-

nication

Post-synchronisation.

Initial-

isation

Reading

Pre-synchronisation

Figure 5. Message trace in a leader election.

3.2. Our distributed solution

Our centralised solution works quite well, but the inter-
action scheduler does a lot of work and uses complex data
structures in order to store information about the whole set
of interactions and their participants. This work can be dis-
tributed among interaction managers so that they do not
only care about communication but also about detecting en-
ablement. This way, detecting enablement is quite easy, be-
cause each interaction manager does only need to care about
the set of processes participating in the interaction it man-
ages. Notice that several interactions might be enabled at
the same time, so managers need to agree so that only one
interaction is executed at the same time. In other words, an
election under the managers should be held, but we obvi-
ously cannot use multiparty interactions because SR does
only provide client/server primitives. The solution we have
implemented is simple: we use a central interaction sched-
uler which is sent information about enablement or disable-
ment of interactions and selects which one should be ex-
ecuted so that no–one is neglected forever and the whole
process is fair.

Figure 6 depicts our solution in the case of three philo-
sophers who are trying to pick up their forks. Each process
is connected to the managers of the interactions it particip-
ates in, and they send messages to these managers in order
to inform them whether they are readying an interaction or
not. When a manager detects enablement or disablement, it
sends its result to the interaction scheduler which, in turn,
selects one interaction fairly.

Figure 6. A distributed philosopher’s dinner.

In general, distributing the pre–synchronisation problem
among a set of managers makes this solution more efficient
because the algorithm and the data each process has to man-
age is simpler than in our centralised solution. Our experi-
mental results in section 3.5 support this conclusion.

3.3. Optimising communication

Communication should be as inexpensive as possible.
Beyond the simple scheme we have just shown, many op-
timisations are possible. In this context, the simplest con-
sists of determining what expressions can be locally calcu-
lated in an interaction manager so that it can send its result
instead of the values needed to calculate it.

To illustrate this optimisation, we consider again the
problem in figure 3 and the statement:

Elect[h(i) := w & leader := (w =max
1�j�n

fh(j)g)]

In the message trace shown in figure 5, it is clear that
four messages are needed to sendP1 andP2 the information
they need. Nevertheless, there is no need for four messages
and two processes wasting time calculating exactly the same
result. If the interaction manager calculated the result of the
expressionmax

1�j�n
fh(j)g locally, network load would have

been reduced significantly to only two messages. In gen-
eral, in a system composed ofn processes, it can be reduced
fromn2 to n messages.

We can also optimise the reading phase. Notice that two
messages are needed to read a slot in the scheme we have
presented: a message requesting it, and another to transmit
its value. Nonetheless, the same result can be achieved with
only one message if the interaction manager knows what
slot each process needs and sends them after the last slot
has been initialised.

3.4. Fairness

Fairness is an important class of liveliness properties
that requires that every element of a non–deterministic pro-
gram that is enabled sufficiently often, shall eventually pro-
gress. For instance, consider the following multi–choice
statement:

[true! skip [] true! x := x + 1]

It states that it does not matter whetherx is increased
or not, and an implementation that does not take into ac-
count the second choice is, in principle, as correct as an-
other which selects options arbitrarily. Nevertheless, if we
incorporate this small fragment into the following loop, as-
suming fair selection of enabled choices is the only way to
guarantee termination.

*[x � 10! [true! skip [] true! x := x + 1]]

In the context of IP, fair selection of enabled interactions
is the only way to ensure liveliness, termination or eventual
response to an event. Consider, for instance, the following
fragment where we define a set of client processesPi and a
semaphore–like processSEM clients use to ensure mutual
exclusion when they enter their critical regions.

SEM :: *[[]ni=1 Enteri[] ! Exiti[]]
Pi=1;2;:::;n :: *[Enteri[] ! critical region; Exiti[]]

Notice that processSEM is initially ready to particip-
ate in any interaction, the difference being that ifEnteri
is selected processPi enters its critical region whereas the
other processes block untilPi exits it and the top level is
reached again. Unless a fairness assumption is taken into
account, an implementation that tests interactions from 1 up
to n would fulfil IP semantics but would neglect processes
other thanP1 from entering their critical regions.

In general, a fairness assumption guarantees that every
interaction which is enabled “sufficiently often” shall even-
tually be selected for execution. According to the mean-
ing of “sufficiently often” we have the following two main
levels of fairness: weak, if every element continuously en-
abled is selected infinitely often, and strong, if every ele-
ment that is infinitely often enabled is infinitely often selec-
ted.

We have implemented strong fairness by associating a
priority variablepa with each interactiona, as suggested in
[6]. These variables are initially assigned random values,
and the scheduler selects among the set of conflicting inter-
actions that whose counter has the minimum value (max-
imum priority). If more than one variable is minimum over
the set of priority variables, one of them is uniformly selec-

ted. Upon termination of the selected interaction, its asso-
ciated priority variable is reset to an arbitrary random value
while the counters associated with those interactions which
were neglected are decreased by 1. This algorithm has been
proved correct in [6], but, unfortunately, we have proved
that it loses completeness if counters are finite, i.e., there are
fair executions that cannot be generated by this algorithm2.

3.5. Experimental results

In this section, we report the results of some empirical
tests we have carried out in order to find out how our two
implementations perform. The tests were run on an inex-
pensive i486 machine running at 120 MHz that is equipped
with 32 Mb of memory, Linux 2.0, and SR 2.3.1.

The test consisted of executing the program in figure 7,
which consists ofn+1 processes and an interaction having
a natural slot which is randomly initialised by processR.
The other processes just synchronise and read this slot. We
executed this test 15 times givingn values from 1 up to 14,
i.e., we increased the number of participants inint from 2
up to 15.

TEST :: [Rk kni=1 Pi], though

int[x: natural]amongR writes x, Pi (i=1, 2, . . . , n)

where
R ::
f count: naturalg
count := 0;
*[count< 5000! int[x := random() &];

count := count + 1]
Pi ::
f count: natural; y: naturalg
count := 0;
*[count< 5000! int[& y := x]; count := count + 1]

Figure 7. Our test program.

Figure 8 shows the time the test took to complete (E) and
number of interactions per second (I) that were executed in
each case.I obviously, decreases as the number of par-
ticipants increases, but it is clear that the speed achieved
by our distributed solution is always greater than the speed
of our centralised solution. We have also carried out a re-
gression analysis that points out that these magnitudes can
be accurately approximated by means of the expressions in
table 1. This study was done at a 95% confidence level,

2Contact the authors if you are interested in this theoretical result.

and shows that the number of interactions per second, for
instance, decreases at approximately the same rate of re-
duction in both versions, the difference being that the ex-
pected value is about 44 greater in our distributed version.
This approximation is quite accurate as the coefficient of
determinationR2 shows. This coefficient ranges in value
from 0 to 1, and the higher its value is, the more accurate
the approximation is. This analysis also points out that the
user time (U) our centralised implementation consumes in-
creases 4.39 times as fast as the distributed solution does.
This is because the amount of work the central scheduler
needs to do increases as the number of processes particip-
ating in an interaction increases. Nevertheless, system time
(S) is very similar and small in both cases, so its influence
is not significant.

Elapsed Time

0

20

40

60

80

100

120

140

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Participants

S

e

c

o

n

d

s

Centralised Distributed Difference

Interactions per Second

-100

0

100

200

300

400

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Participants

S

e

c

o

n

d

s

Centralised Distributed Difference

Figure 8. Experimental results.

Centralised Version
Prediction R

2

I = �19:28N + 263:85 0.85
E = 8:78N � 2:14 0.98
U = 8:78N � 2:13 0.98
S = 0:10N � 0:04 0.95

Distributed Version
Prediction R

2

I = �19:66N + 307:73 0.88
E = 4:39N + 6:79 0.99
U = 4:39N + 6:80 0.99
S = 0:09N � 0:02 0.96

Table 1. Regression analysis.

4. Related work

Recently, the problem of multiparty interactions has be-
come of great interest, and one of the most outstanding res-
ults is the algorithm by Bagrodia [3]. In this algorithm,
there are interaction managers associated with each interac-
tion, and they are similar to those in our distributed solution
because they are sent messages when processes are ready
to interact and detect enablements. When one of them de-
tects an enabled interaction, a mutual exclusion algorithm
is run in order to prevent two different interactions from be-
ing executed at the same time. The problem here is that
Bagrodia’s algorithm assumes that the underlying commu-
nication network has only those links connecting the pro-
cesses that participate in an interaction. The significance
of this is problematical because it is not always possible to
place processes at adequate nodes in a real network.

Several more algorithms have been developed for dif-
ferent network architectures [8, 9], but, in general, those
solutions also focus on architectural aspects we are not in-
terested in. Instead of making our solution dependent on
the underlying network, we have decided to rely on SR for
efficient distribution. This makes our algorithms portable,
and incorporating strong fairness into them has been very
easy, whereas incorporating this notion in the algorithms we
have mentioned is rather difficult. At present, the research
is centred on implementing stronger fairness assumptions
than those provided by the underlying network.

As far as we know, IP has been implemented in the labor-
atory by Adir [1], and runs on a transputer–based computer.
Unfortunately, the compiler is only intended for terminat-
ing IP programs. Our compiler can be run on virtually any
UNIX–like system, and the programs it produces can be run

on heterogeneous networks composed of inexpensive work-
stations and personal computers. Furthermore, it can deal
with both terminating and non–terminating programs. In
any case, we have not got access to Adir’s implementation,
so no empirical comparison has been possible.

5. Conclusions and future work

In this paper, we have presented two different solutions
to the problem of distributed multiparty interaction. We
have also reported some experimental results that show that
our distributed solution is more effective than our central-
ised solution. The result was predictable because the in-
teraction scheduler of our centralised solution does a lot of
work that has been easily distributed among a set of interac-
tion managers in our distributed solution. These managers
execute simpler algorithms and use simpler data structures,
so they are more efficient. We think that the solution we
have presented is attractive because it is not bound up with
the underlying network. We rely on SR for efficient dis-
tribution of data and processes, and the compiler we have
produced is portable to any UNIX–like system.

The main problem with the solutions we have presen-
ted is that they require the whole set of enabled interactions
to be known before one of them is selected for execution.
Roughly speaking, this implies that the speed our imple-
mentation can achieve is bounded up with the speed of the
slowest process in a system, and this should be improved.
Speeding up the system is easy, as reported in [7], because
we only need to execute interactions as soon as they are de-
tected to be enabled, but this solution can be clearly unfair
and can show conspiratorial behaviours. This behaviour oc-
curs when a number of fast processes prevent an interaction
from being executed because several slow processes parti-
cipating in it are not readying it at the same time than the
fast processes. In other words, executing interactions as far
as they are detected to be enabled can prevent an interaction
from being executed because the processes participating in
it run at very different speeds. We are working out an al-
gorithm that solves this problem, but, for the time being, we
have not implemented it.

Currently, we are also developing IPIC(�) [4], which is
an assembler language intended to be used to implement
high–level system specification languages such as LOTOS
or TESORO [10]. These languages are based on multiparty
interaction, the difference being that they use constraints
in order to state the concrete set of interactions a process
is readying. Introducing constraints complicates the im-
plementation, but we can still reuse the solutions we have
presented in this paper. The main problem is fairness, be-

cause if constraints are used to state interaction, a constraint
solver able to deal with it is needed. The problem here is
that very little has been said about fairness and constraints.
Our research is centred on solving this problem, and we
have developed an algorithm for dealing with weak fairness
in the context of IPIC(�) [5].

In the future, we are going to introduce multiparty in-
teraction in the context of CORBA. We think that IP shall
not replace current programming languages, but we think
that the notion of multiparty interaction is quite important
because it allows for simpler programs than client/server
primitives and enjoys a higher level of abstraction. There-
fore, it would be desirable for languages such as C++ or
Java to support it, and introducing it as a CORBA service
would be the best way.

References

[1] A. Adir. Compiling Programs with Multiparty Interactions
and Teams. PhD thesis, Technion, 1994.

[2] G. Andrews and R. Olson.The SR Programming Language.
The Benjamin–Cummings Publishing Company, 1993.

[3] R. Bagrodia. Process synchronization: Design and per-
formance evaluation of distributed algorithms.IEEE Trans-
actions on Software Engineering, 15(9):1053–1065, Sept.
1989.

[4] R. Corchuelo, O. Mart´ın, and M. Toro. Symbolic constraints
as a means for multiparty synchronisation and communica-
tion. Journal on Computers and Information, May 1999.

[5] R. Corchuelo, O. Mart´ın, M. Toro, A. Ruiz, and J. Prieto.
Weak fairness in the context of constraint-based multiparty
interactions. InProceedings of the Simposio Espa˜nol de In-
formática Distribuı́da SEID’99, pages 99–107, Santiago de
Compostela, Spain, Feb. 1999.

[6] N. Francez.Fairness. Springer–Verlag, 1986.
[7] N. Francez and I. Forman.Interacting processes: A mul-

tiparty approach to coordinated distributed programming.
Addison–Wesley, 1996.

[8] V. Garg and S. Ajmani. An efficient algorithm for multi–
process shared events. InProceedings of the 2nd Symposium
on Parallel and Distributed Computing, 1990.

[9] Y. Joung and S. Smolka. A completely distributed and
message-efficient implementation of synchronous multipro-
cess communication. In P.-C. Yew, editor,Proceedings of
the 19th International Conference on Parallel Processing.
Volume 3: Algorithms and Architectures, pages 311–318,
Urbana-Champaign, Illinois, Aug. 1990. Pennsylvania State
University Press.

[10] J. Troyano, J. Torres, and M. Toro. TESORO: A technique
for distributed systems specification. InProceedings of the
3
rd Euromicro Workshop on Parallel and Distributed Pro-

cessing, pages 563–570, San Remo (Italy), Jan. 1995.

