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ABSTRACT 

The necessity of simulation software is esential in the robotic area. This software must be free, simple and 

powerful. Due to that urge, we are going to study in depth V-REP® software in order to discover his 

advantages and disadvantages. This software owns to Coppelia Robotics®, a new company which has 

obtained a remarkable popularity. 

We are going to start with simple examples to familiarize us with V-REP®. With this preparation we are 

going to be ready to analyse a more complex case such as humanoid robot. In order to boost this software and 

know better how it works, from control’s point of view, we are going to connect it with Matlab® via API. 
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1 INTRODUCTION 

1.1 Why V-REP®? 

Simulation software is essential to test any robotic system, in order to prevent it from hurting itself. 

Futhermore, it is really useful for education, due to the fact that the robot is not physically needed. The 

majority of softwares that can be found are designed only for robots, which have been designed by the 

company that has developed the software, and it is not common for them to be free or open source. Due to 

these arguments, we appeal to V-REP®. This Coppelia Robotics’ software is a free simulator wich allows 

different simulation modes and includes algorithms, which are attractive for the calculus of essential elements 

in a robot such as inverse kinematics or collision detection. The graphical environment allows designing your 

own robot with primitive shapes or importing your own design from any design software. The user is totally 

free in their design. 

 

 

Figure 1-1.V-REP environment 

1.2 Is V-REP easy to handle? 

The developper gives you a lengthy manual in digital format in which the mayority of topics are detailed in 

order to familiarize with this software. Nevertheless, in some aspects, this manual is not clear enough and there 

are some aspects, which are not mentioned explicitly. From my own experience, it is rather difficult to get to 

know this environment, especially when you have to design your own robot. The importance of hierarchy tree 

is essential in this way. What is more, as I have mentioned before, there are some elements that you have to 

investigate by yourself, because they are not even explained in the user’s manual. On the other hand, due to the 

attractiveness of the software, which is gainnig a remarkable importance and relevance, a large community has 

been created. Especifically, the own company has a forum in which you can discuss any of your doubts or 

problems and the own developers will answer you in a short period. It is a really useful tool, because the 

mayority of problems you can have in your travel with V-REP® are solved there. 
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1.3 Does V-REP have any limitations? 

It is a simulator of significant interest. Although, it is true that there are some elements which are not clear 

enough and It is possible to not really know what you are modifyind in first instance. Especifically, the 

programming language (LUA) and control are very limitating. LUA is a very high-level language with 

predesigned functions which might make user feel hands tied. It presents two diffetents types of kinematics 

controlling: Pseudoinverse and DLS. Inside these structures, you can modify actually a few elements and 

sometimes leaves much to be desired. Related to dynamic control, it presents a large range of options that 

allows the user to implement his own controller code in LUA. Across this thesis, we are going to work with 

these control structures in a more detailed way, knowing what this software does, and how. 

1.4 Analysis with V-REP 

Our study with V-REP® will start with a simple example such as a 2 grades of freedom robot that only moves 

in the XY plane to familiarize with this environment. Then, we are going to study a more complex case such 

as humanoid robot, specifically, Biolid Premium Type A model. 

 

Figure 1-2.Biolid Premium Type A model 

 

Because of the limitations that will be found, and to try to understand in a better way the control structures that 

this software uses, we look for a conexión API with MATLAB® in which V-REP® is the server an 

MATLAB® the client. 

 

 

 

 

 





   

2 2 DOF PLANAR ROBOT IN V-REP® 

 

n this chapter, we are going to explore this new software with an easy example such as two grades of 

freedom XY planar robot. Only the tools that V-REP has are going to be used in order to build it up. The 

steps that are going to be described are developed in the scenes and models chapter of the user’s manual 

(Bibliography [8]) for other configuration.However, it seems to me that there are some points I am going to 

develop which are not clear enough. 

2.1 Building up 

The final result can be seen in Figure 2-1. 

 

Figure 2-1.2 DOF robot in V-REP 

2.1.1 Links 

As it can be seen, it is composed just by cylinders and a little cube wich is the base. To create these shapes I 

select the pure shape I want (cilinder, sphere or cube). Once it is created, I can situate and orientate it as I want. 

It has to differentiate between two natures for the same link in its properties. It can be seen in figures 2-2 and 

2-3. 

 Non-dynamically enabled link: This is the original shape of the link. This nature is necessary to 

collision calculus and object detection by vision among other functions. We configurate the shape 

properties like that: 

                                                         

(a)                                                                                               (b)  

I 
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 Figure 2-2.Non-dynamically enabled link body properties (a) and common properties (b). 

 Dynamically enabled link: This nature looks for a simplified version link to help dynamic module 

and to enjoy a better simulation experience. Here the link presents: mass, inertia and motor torque 

response. We configurate the shape properties as it follows: 

 

                                                       

(a)                                                                                               (b)  

Figure 2-3.Dynamically enabled link body properties (a) and common properties (b) 

 

It is going to be described each of the options which appear in the object special properties dialog: 

 Collidable: allows enabling or disabling collision detection capability for the selected collidable 

object. 

 

 Measurable: allows enabling or disabling minimum distance calculation capability for the selected 

measurable object. 

 

 Detectable: allows enabling or disabling proximity sensor detection capability for the 

selected detectable object. 

 

 Renderable: allows enabling or disabling the vision sensor detection capability for the 

selected renderable object. 

 

 Cuttable: allows enabling or disabling the mill cutting capability for the selected cuttable object. 

 

As we will see next in hierarchy tree, non-dynamic links depends on dynamic ones and they move with them. 

Non-dynamic links are only like shell. The difference I am talking about can be found in figure 2-4. 

http://www.coppeliarobotics.com/helpFiles/en/collisionDetection.htm
http://www.coppeliarobotics.com/helpFiles/en/collidableObjects.htm
http://www.coppeliarobotics.com/helpFiles/en/collidableObjects.htm
http://www.coppeliarobotics.com/helpFiles/en/distanceCalculation.htm
http://www.coppeliarobotics.com/helpFiles/en/proximitySensors.htm
http://www.coppeliarobotics.com/helpFiles/en/detectableObjects.htm
http://www.coppeliarobotics.com/helpFiles/en/visionSensors.htm
http://www.coppeliarobotics.com/helpFiles/en/renderableObjects.htm
http://www.coppeliarobotics.com/helpFiles/en/mills.htm
http://www.coppeliarobotics.com/helpFiles/en/cuttableObjects.htm
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Figure 2-4.Non-Dynamically enabled links robot (above) and dynamically enabled link robot (down) 

 

It can be seen that dynamic shapes are much simpler than non-dynamic shapes. To have this result we need to 

select he shape and click on Edit/Morph selection into convex shapes option. During the simulation, we are 

only interested in seeing non-dynamically enabled links behavior, because of that we need to change the mask 

of dynamically enabled links inside Scene Object Properties/Common/Camera Visibility layers. To determine 

in which layer we put our links we need to know which are activated in the scene inside Tools/Layers. 

2.1.2 Joints 

In the same way we have added shapes, joints can be added (revolute, prismatic and spherical). There are two 

posibilities for situating and orientating joints in our model: 

 Manually: as we did with links. 

 Deviant-Hatemberg module: You introduce all parameters and they will be situated and orientated 

automatically. 

The different modes to use a joint can be found in figure 2-5. 

 

 

                                                          Figure 2-5.Joint modes 
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We are going to focus on torque/force mode, to dynamic control, and inverse kinematic mode, to obtain 

jacobian matrix, follow paths and kinematics control. Besides, we must habilitate: motors, dynamic control 

and set maximum velocity and torque in the joint dynamic properties as we can see in figure 2-6. 

 

                                                     Figure 2-6.Joint dynamic properties 

 

We are going to study soon what each element means. 

2.1.3 Hierarchy 

This is the final and most important step for our model to work properly. I would like to say that in the manual 

I have mentioned before this topic does not have the relevance that it deserves. Firstly, we have to set a base 

and then create a dependency with it. It is important to know that a joint moves what depends on it, but it has 

to have only ONE body directly linked. If we linked a second one, it would not notice motor’s presence and it 

is linked with the last one neither so it would fall. To combine two links that depend on the same joint, I have 

chosen Merge selected shapes option in Edit/Grouping/Merging. The result is a new figure which includes the 

two links. Our model’s hierarchy, taking into account what has been said, can be found in figure 2-7.  

 

 

Figure 2-7.Model’s hierarchy tree 
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2.2 Dynamic control 

At this point we are going to set joints values by user interface composed by sliders that can be added in the 

software. For joint control we are going to leave the default parameters, a proporcional controller with gain 0, 

1 [(rad/s)/rad]. 

2.2.1 Slider interface 

As I have said before, we are going to design it with a tool that V-REP brings. Every slider has a position in 

the interface (button handle) and it will be useful at programming time. It can be seen in figure 2-8. 

 

Figure 2-8.Designing user interface 

It is interesting to say that this functionality is not brought by new versions of V-REP. I have written this scene 

with V-REP version 3.04.00 (rev 1) and when I updated software to a newer version, user interface appears 

only during simulation and works properly, but can not be modified. 

2.2.2 Code 

The structure of my code must follow in that case and the different types are found in the user manual. 

Furthermore, all predefined API functions language brings are also explained in it. It would make no sense to 

detail which parameter receive each one when it is said in the manual. Script model, which is more adequate to 

our application, is non-threaned child script. I link this script to my robot base as it can be seen in figure 2-9. 

 

 

Figure 2-9.Script linked to robot base 
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In this script, which can be found in appendix A clearly expalined, we can see two different parts: variables 

initialization and code execution during simulation. 

2.2.3 Demo 

All this points are properly implemented in 2GOF_dynamicslider.ttt scene.  

 

Figure 2-10.Dynamic control with slider demo 

 

2.2.4 How do we control? 

Firstly, it is not clear enough how from moving the slider we have obtained the desired position, from control’s 

point of view. 

 

Figure 2-11.Action from user’s point of view 

 

As we are going to implent in Matlab afterwards, it is interesting to know what all parameters in the joint 

dynamic properties mean inside the control loop. Thinking over the behavior of each parameter we arrive to 

the control diagram which can be seen in figure 2-12. 
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Figure 2-12.Dynamic control diagram 

 

From left to right, we can distinguish all the elements of this diagram in the options as we can see in the figure 

2-13. 

 

                                                       

(a) First controller                                                         (b) Second controller and motor                                                                                          

  

Figure 2-13.Assignment in the dynamic control diagram 

 

In the first controller, if we enable Position control (PID), we will be controlling in position while we 

modulate in velocity with PID that brings implementated. In the next dialog, Motor enable option is to enable 

or disable motor block. Target velocity option will appear inaccessible while we had been enabled position 

controller. In case we do not enable position control, a joint velocity reference will be passed which will be 

reached inmediatly if the maximum torque is big enough, in other case, it will gradually reach it. 

2.3 Kinematics control 

Our goal now is to get jacobian for a determinated position. By defining differents position or a path, we will 

gain different values of the jacobian which can be interpolated to obtain symbolic jacobian. We have to change 

joint mode to Inverse kinematics mode to work properly in this case. 

2.3.1 Obtaining position in the target location 

To create a new position we have to create two dummies, one that will be in the extreme of the robot (tip) and 

other one in the location we wish (target). Inverse kinematics module, which will be explained in the next 

point, will generate the correspondent position for that location and orientation in the plane. We have to 

configurate the relation between the two dummies next as it can be seen in figure 2-14. 
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Figure 2-14.Configuration between dummies 

 

In the hierarchy tree, they must be distributed like it can be seen in figure 2-15. 

 

 

Figure 2-15.Correct distribution of dummies in hierarchy 

 

2.3.2 Inverse Kinematics Module 

With this module, we can create a kinematics controller for the IK group we wish two dummies in our case. In 

the options of the module, we can see different options, of which we need to know their meaning. 

 

Figure 2-16.Action from user’s point of view 

 

We can choose the method of calculus between Pseudoinverse and DLS. DLS is helpful when Pseudoinverse 

fails, for example, when a robot is near a singularity o it is a redundant robot. In case we select DLS, we can 

choose what damping we want. The bigger the damping is, the better approximation will be, but with the 

inconvenient of it being slower. Related to the number of iterations, it depends on the method we have choosen 

and the resolution we want. If we choose DLS, a bigger number of iterations will be necessary. For our 

example, we will choose a DLS with moderate damping as we can see in figure 2-17. 
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Figure 2-17.IK module configuration 

 

In the next step, we have to create an IK group for our two dummies which has to have the configuration we 

can see in figure 2-18. 

 

Figure 2-18.IK group configuration 

 



 

  2 DOF planar robot in V-REP® 

12 

 

12 

2.3.3 Code 

It is necessary to clearly know how functions retrieve data in this case to interpretate them correctly. Clear 

examples of that are functions which get Jacobian matrix, Deep awareness of their outputs is needed.This code 

can be found in the appendix B clearly commented and detailed. 

 

2.3.4 Demo 

All this points are correctly implemented in 2GOF_IK.ttt scene. It can be seen who Jacobian matrix appears on 

the console window in figure 2-19. 

 

 

Figure 2-19.Jacobian result on the console window 

 

2.3.5 How do we control? 

IK module is really opaque and we do not really know what it does. It follows the control diagram which can 

be foun in figure 2-20. 
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Figure 2-20.Kinematics control diagram 

The reference we have passed to it is the position target dummy position. We have found an important 

limitation which is not being able to modify neither the controller nor the method of calculus. This can be poor 

in certain cases. We will explore this diagram in a deeper way in Matlab. 
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3 HUMANOID ROBOT IN V-REP® 

 

n this section we are going to develop the example of a humanoid robot (Biolid Type A) which can be 

found in Ingeniería de Sistemas y Automática department of our school. It is interesting to focus on this 

configuration to set aside common configurations studied along degree. 

 

3.1 Buildind up 

The mayority of shapes I have used to build it up have been proportionated by Rafael Matínez Márquez in his 

thesis Diseño de un sistema de vuelo de un robot humanoide. It is detailed in the manual that the favorite 

format to import shapes from others design softwares, CATIA V5 in my case, is .stl format. All shapes can be 

found in the folder named as Piezas. Final result can be seen in figure 3-1. 

 

 

Figure 3-1.Humanoid robot in V-REP 

 

It is needed to create non-dynamically enabled links and dynamically enabled links. We have to select the 

same options we have chosen in 2 DOF robot. Furthermore, we have to simplify dynamically enabled links 

with Morph selection into convex shapes option. But first, we need to connect all the links properly; in the 

same way in the same way it was done. I have been especially careful with elements hierarchy and shape 

merging. In this case I have choosen the chest as base of our robot and legs and arms elements dependent of it. 

Finally, hierarchy resulted follows the scheme we can see in figure 3-2. 

I 
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Figure 3-2.Humanoid hierarchy tree 

 

It can be taken into account what I mentioned in the last chapter about merging shapes and not to have nested 

properly links with joints. A bad hierarchy model can produce results as that when it tries to move joints in the 

ankle as it can be seen in figure 3-3. 

 

Figure 3-3.Result of a bad hierarchy three 
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Finally, we have to configurate dynamically enabled links in the way mentioned before to have a properly 

behavior of the robot during simulation as can be seen in Figure 3-4. 

 

 

Figure 3-4.Humanoid dynamically enabled links 

We cannot forget that in the simulation we are only interested in seeing non-dynamically enabled links, due to 

the fact that they are the ones that may collide with other elements. 

3.2 Arms dynamic controller 

To control dynamically both arms I am going to proceed like I did in the second chapter. Firstly, I select torque 

mode for joints and leave all default parameters. Afterward, I add the same type of user interface I have 

created before as we can see in figure 3-5. 

 

Figure 3-5.UI to arms control 
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3.2.1 Code 

Conceptually, it is not different from the case of two grades of freedom. This code can be found in the 

appendix C clearly commented and detailed. 

3.2.2 Demo 

All has been properly implemented in Arms_control.ttt scene. 

 

Figure 3-6.Arms control demo 

3.3 Left Leg dynamic controller 

We can control each leg in the same way now, for this example, the left one has been chosen. Obviously, as I 

will handle it as I wish, my robot will lose its balance and it will fall. This can be found correctly implemented 

in Leg_control.ttt scene and this code can be found in the appendix D clearly commented and detailed. 

 

 

Figure 3-7.Leg control demo 
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3.4 Controlling in open loop to walk 

It is not possible to directly modify kinematics control limitations that will be present in this point.  As we 

cannot control stability elements such as waist and legs, we are going to aproach the problem from two 

different ways. 

3.4.1 Kinematics control: IK chain with dummies 

The main idea is to establish two kinematics chains for each foot. Each chain has associated two dummies: a 

tip (situaded in the foot sole) and a target (situated in the end of the foot). I have created two kinematics chains 

which include all the joints from each leg. Each chain will follow a straight path with a determined velocity 

that can be modify. Each kinematics chain will move following the dummies’ movement. Along code 

execution we will be gainging robot absolute position and dummie in the path to determinate the next step. 

This idea is discussed in certains topics in the forum I have mentioned in the introduction. Furthermore, it is 

implemented correctly in an example V-REP brings (Asti robot).In this example, it is created an accurate path 

so that it exists a certain swinging that  looks like it is a closed loop control when it is not. For our robot waist 

does not represent the main support, it uses the inclination of ankles and this method does not take into account 

that. From the example mentioned, it can be extracted that a really specifically path must been created, which 

does not appear quite interesting from control’s point of view.  Due to these arguments, we ruled out this 

method. Nevertheless, this code can be found in the appendix E clearly commented and detailed. It can be 

found implemented in Biolid_walk_ik.ttt scene. 

 

3.4.2 Dynamic control: State machine 

In this case, I am going to design a little state machine where in each state a different position of the step is 

declarated. Changing between states is conditionated by certain joint arrives to established refence. Different 

positions that are going to be established can be seen in figures 3-8, 3-9 and 3-10. 

 

 

Figure 3-8.Required inclination to not lose balance 
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Figure 3-9.Step beginning 

 

 

Figure 3-10.Step ending 
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It is a simple code, but it is tedious and not quite interesting from control’s point of view; this is the reason 

why I’m not going to explain all the steps included in this process. It is implemented in Biolid_walk_dim.ttt 

scene and code can be found in the appendix F clearly commented and detailed. 

At this point, I have to find a more effective control strategity. Matlab® seems a good candidate for this task. 

In the next chapter we are going to see how connection between Matlab® and V-REP® we can establish. 
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4 API CONECTION WITH MATLAB® 

 

n this chapter, we are going to study th conection beetwen Matlab and V-REP. This conection follows a 

client-server protocol, where Matlab is the client an V-REP is the server. To understand this protocol in a 

better way, the user’s manual is really helpful, because in it there is a detailed explaination. To establish 

this connection there are  two possibilities: 

1. When V-REP starts (continuous remote API server service): It is necessary to write a few 

command lines in the window that appears when software starts and modify certain API 

libraries. Connection is established In spite of the fact that no simulation is running. 

2. From a script in V-REP (temporary remote API server service): This is the easiest option and 

the one that has been chosen. In this mode, connection can only be established during 

simulation. We are going to develop how this conection works. 

All the functions which are going to be decribed can be found in the remote API chapter of the user’s manual 

(Bibliography [8]). 

4.1 What is it needed? 

From Matlab’s side we need three files which must ALWAYS be in our workspace: 

remoteApiProto.m 

remApi.m 

remoteApi.dll 

 

These files are libraries of functions we are going to need to send messages from client side (Matlab). 

They can be found in the sofware’s files in hard disk of our computer.  

 

4.2 How can we send messages? 

It will be communicated both sides through port 19999 of our computer. To start or close connection we need 

the following commands from each side: 

V-REP: We need a non-threaned child script like we have done before in which we have to open the 

connection: 

if ( simGetScriptExecutionCount ()==0) then 

simExtRemoteApiStart (19999); end; 

 

This connection will close when simulation stops. 

Matlab: To open the connection we need certain API functions which are clearly explained in the user 

manual: 

vrep=remApi ( ' remoteApi ' ) ; 

vrep.simxFini sh (-1); 

clientID=vrep.simxStart ( '127.0.0 .1',19999 , true , true , 5000 , 5 ) ; 

First command creates API library, second command closes all conections which are opened and we 

established the connection with the last one. The paremeters are these from left to right: 

I 
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1. The ip address where the server is located (i.e. V-REP) 

2. The port number where to connect 

3. If true, then the function blocks until connected (or timed out). 

4. If true, then the communication thread will not attempt a second connection if a connection was 

lost. 

5. Timeout in ms: 

a. if positive: the connection time-out in milliseconds for the first connection attempt. In 

that case, the time-out for blocking function calls is 5000 milliseconds. 

b. if negative: its positive value is the time-out for blocking function calls. In that case, the 

connection time-out for the first connection attempt is 5000 milliseconds. 

6. Indicates how often data packets are sent back and forth. Reducing this number improves 

responsiveness, and a default value of 5 is recommended. 

 
At this point, both sides will receive all messages they send between them. If we want to close the 

connection from Matlab side, we must proceed like this: 

 

vrep.simxGetPingTime(clientID ) ; 

vrep.simxFinish(clientID ) ; 

vrep.delete ( ); 

 

First command guarantees last message we have sent has had time to arrive. Finally, we close connection. 

With these steps we have defined all protocol needed in the connection. 
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5 DYNAMIC MODEL IN MATLAB 

 

t this point we are going to analyze robot dynamic model from Matlab and compare it to V-REP. In 

first place, we need to identify V-REP joint motor model.  

 

The diagram we are going to follow will be the one that can be found in figure 5-1. 

 

Figure 5-1.Comunication diagram 

 

Matlab function which sends joint velocity is VREPROBOT.m. This function receives reference from 

controller and sends it to server. Besides, this function gains joint position value requesting them to the server. 

This function and others I am going to describe in this chapter can be found from appendix G to P. 

5.1 V-REP joint motor model 

In order to identify motor transfer function and parameters, we are going to focus on one joint robot with one 

link as we can see in figure 5-2. 

 

Figure 5-2.One DOF Robot 

 

Firstly, we do not know if inertia of the motor is in relation to the inertia of the link. We need to simulate 

several experiments with differents inertias of the link and use the results which give a good estimation. We 

simulate in open loop in Matlab and do different simulations changing inertia of the link robot in V-REP, as 

we can see in figure 5-3. 

 

A 
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Figure 5-3.Open loop simulations 

 

We need to have setepped expermients; what this means is that it is needed to go from inertias order e-2 to e3 

increasing up the order in the next simulation. Summing up, we are to simulate six times, enough time to have 

good estimations. Now we have joint velocity and joint torque of the motor for inertias orders from e-2 and e0 

to the same joint velocity reference: 

 

Figure 5-4.Joint Velocity Reference 
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Figure 5-5.Torque and Joint Velocity planar 1DOF robot to differents inertias order 

 

From the results of the simulation it can be concluded that it is a motor controllated by a proportional.To 

identify all motor parameters and transfer function it is clear that follos equations (1). 
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Where Jm is the inertia of the motor [Nm], Jlink is the inertia of the link [Nm], B is the viscosity of the motor 

[Nm/(rad/s)], N is relation of transmission and Kp is the proportional action of the motor. 

From the results of the simulations changing Jlink for the different experiments, it can be concluded that the 

parameters of the motors are: 

Inertia=0.0765 [Nm] 

Viscosity= 6.9577 [Nm/(rad/s)] 

Reduction factor=70 

74.11
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It is given by a first orden system like this: 
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KpsG                                     (2) 

It is clear now that inertia of the link must be higher than the inertia of the motor to simulate dynamic robot 

model properly and not to simulate motor model. Due to this conlusion, we have to increase our inertia of the 

link to have a realistic simulation. We are going to change order of inertia to e0. 

Now we have to build our dynamic model in Matlab. Peter Corke’s robotics toolbox is the easiest way to 

change dynamic model parameters and simulation. We program our robot with the features we have 

mentioned as it can be seen in figure 5-6. 

 

Figure 5-6.Peter Corke one DOF robot 

 

We simulate in the same we did with V-REP robot as we can see in figure 5-7. 

 

Figure 5-7.Open loop simulations 

To calculate robot joint velocity, we are going to use slaccel function. This S-function computes robot joint 

acceleration with joint position, velocity and torque of the motor as inputs as it can be seen in figure 5-8. 
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Figure 5-8.Dynamic model block 

 

The result for our adjustment can be found in figure 5-9. 

 

Figure 5-9.Output joint position comparision 
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5.2 2 DOF dynamic control 

We look for control diagram which has been exposed in the second chapter: 

 

Figure 5-10.Dynamic control diagram 

 

It does not exist any API command to set joint torque directly, you can only get it. Due to this fact, we are 

going to simulate motor block in V-REP. It is the same for joint velocity, so we will have to derivate position. 

Our discrete control model in Matlab now can be seen in figure 5-11. 

  

Figure 5-11.Initial dynamic control diagram in Matlab 

Nevertheless, to apply this diagram we must disable Motor enabled option in joint dynamic properties to 

velocity controller works as we wish. If this option es enabled, a velocity controller will be activated which 

receives TargetVelocity as reference which will foot the reference we pass in our model.Furthermore, if we 

disable motor option, we will not be able to apply joint velocity to joint motor with API commands, because it 

is not the required configuration for the joints. We have to leave velocity control to V-REP, here it is another 

limitation. Each joint will have the configuration we can found in figure 5-12. 
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Figure 5-12.Joint Dynamic Properties to control in Matlab 

Finally, our control in Matlab is the one we can see in figure 5-13. 

 

 

Figure 5-13.Final dynamic control diagram in Matlab 

 

I apply a joint path which will start in 0 [rad] and it will end in 0.8[rad]. My controller will be a proportional 

controller with proportional constant terrm equal to 0.2[(rad/s)/rad].  

It is interesting to say that it is necessary to enable Real Time Simulation option in V-REP to Matlab and V-

REP to have the same time intervals. 
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The step that follows, now that we have identified motor model, is to compare the results we will obtain with 

dynamic control of 2 DOF robot in V-REP to Matlab. First, we are going to build 2 DOF dynamic model in 

Matlab as we did with 1 DOF. This robot can be seen in figure 5-14. 

 

Figure 5-14.Peter Corke 2 DOF robot 

And now we simulate them and represent them as it can be seen in figure 5-15. 

 

Figure 5-15.Output joint position comparision 

In conclusion, it has not been easy to estimate dynamic model, but we have obtained a really good estimation 

for motor model of V-REP and we have finally understood all V-REP dynamic. 
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6 KINEMATICS CONTROL FROM MATLAB® 

6.1  Pseudo inverse Kinematics control to planar 2 DOF robot 

We are going to open software options range and we are going to implement our own kinematics control by 

Pseudoinverse. Between Matlab and V-REP we want to send and receive the same data, so we will use the 

function VREPROBOT.m. The control diagram we are going to follow will be the one we can see in figure 6-

1. 

 

Figure 6-1.Kinematics control diagram- 

 

Pseudoinverse algotithm is given by equations (3) 
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It will be needed to calculate the pseudoinverse several times during the simulation, so this task is going to be 

carried out by the command pinv of Matlab, whish is faster. 

As it has been said before, we are going to leave V-REP motor block simulation. This diagram implemented in 

Matlab can be seen in figure 6-2. 
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Figure 6-2.Kinematics control diagram in Matlab 

 

To demonstrate its operation, a simulation in which a circle path reference is received will be carried out. 

Position controller that is going to implementated will be a PI with Ti=100 [s] and Kp=0.5[(m/s)/m]. To 

explore V-REP more, I am going to add a dummy at the end of the robot and I am going to plot XY postion in 

two different graphs as we can see in figure 6-3. 

 

Figure 6-3.Plotting results in V-REP 
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Finally, the results of the complete simulation can be found in figures 6-4 and 6-5. 

 

Figure 6-4.Reference versus Output XY position 

 

Figure 6-5.Reference versus Output XY position 
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6.2 DLS kinematics control to 4 DOF robot 

To study all options V-REP brings, we are going to implement DLS method to a redundant robot such as 4 

DOF robot: 

 

 

 Figure 6-6.4 DOF planar robot in V-REP  

With this new configuration, we need to be specially carefull about being close to singular configurations. In 

order to have acceptable results, we are going to improve the DLS algorithm V-REP brings. The DLS 

algorithm is given by: 

         
121 )(:   IkJJJJ TT

DLS                               (4) 

Where k is damping factor and I is identity matrix. In our case, k will not be a statict value like in V-REP. 

Damping factor has a maximum value k0 at singular configurations and zero in other case. So it should be a 

variable that must be shape for singular configurations and theirs neighbourhood: 
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Where ε is a shaping factor which is between 0 and 1. 

We practically have the same diagram in Matlab; the only change being the jacobian pseudoinverse code. 

Now, we have two new design parameters to obtain better results as we can see in figure 6-7-. 

 

Figure 6-7.DLS kinematics control diagram in Matlab 
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The position controller that is going to be implemented will be a PI with Ti=100 [s] and Kp=1.2[(m/s)/m]. 

DLS algorithm will have a damping factor equal to 0.9 and shape factor 0.9.  Finally, the results of the 

complete simulation can be found in figures 6-8 and 6-9. 

 

Figure 6-8.Reference versus Output XY position 

 

 

Figure 6-9.Reference versus Output XY position 
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7 KINECT SENSOR AND V-REP 

Ur final experience with V-REP will be to connect XBOX’s Kinect sensor to V-REP in order to handle 

every robot in V-REP with our own body. It is a matter of great interest, due to the fact that the user has 

de possibility to plug the physical robot in V-REP, and it can be teleoperated with the user’s own body.  

 

 

Figure 7-1.Kinect sensor 

 

To connect Kinect to V-REP, we are going to need two softwares in their first versions, OpenNI and NITE, in 

adittion to Kinect’s drivers. Once all are instaled, we need to copy the following files in our VREP’s 

installation directory in our PC: 

Glut32.dll (In its latest version) 

OpenNI.dll 

SamplesConfig.dll 

 

The problem here is that drivers application V-REP executes (KinectServer.exe) are deprecated and they 

cannot be found easily, due to the fact that software owner website was shut down. In the same way, softwares 

before mentioned (OpenNI and NITE) must be in their first version. OpenNI2 and NITE2 are not valid. I have 

read through several topics in Coppelia Forum and the main option is to modify the code of the application 

KinectServer.exe which can be found in VREP’s installation directory. To check this, questions were asked in 

the forum, and this was the answer received from Coppelia: 

 

http://www.forum.coppeliarobotics.com/viewtopic.php?f=9&t=6671&p=26600#p26600 

 

Several people have had whis problem, and nobody has been able to solve it yet. Nevertheless, looking for in a 

deeper way, I have found this link in which you can download all old versions and it is explained why they can 

be found so easily: 

https://fivedots.coe.psu.ac.th/~ad/kinect/installation.html 

 

We are now able to test it in V-REP. We add in our empty scene a new element named interface to kinect.ttm. 

This element has a script which aks for information about our body pose Kinect provides to the server. Our 

body pose is given a by a simple skeleton. Basically, it is executed KinectServer.exe application. All connected 

follows the next diagram: 

O 

http://www.forum.coppeliarobotics.com/viewtopic.php?f=9&t=6671&p=26600%23p26600
https://fivedots.coe.psu.ac.th/~ad/kinect/installation.html
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Figure 7-2.Connection diagram 

 

If we run our scene, we will have the result which can be seen in figure 7-3. 

 

Figure 7-3.Kinect simulation 

 

Which follows is to associate this skeleton to the humanoid robot we have studied. 
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7.1 Controlling Biolid Humanoid with Kinect Sensor 

I am going to associate each point from the skeleton; we have handled before with kinect sensor, with our 

Biolid Humanoid. In my case, I am only going to associate arms joints. Once they are associated, Biolid will 

follow the variations in position of the points with an inverse kinematics joint control mixed with torque joint 

control.  

To connect with the KinectServer.exe application, I am going to reuse the code we can find in the interface to 

kinect.ttm. To associate each joint with the skeleton, there is a scene, which is proporcionated by V-REP, 

named astiKinectControl.ttt. Nevertheless, this code has several errors. One of them is to define certain 

variables as local when they are global. An example of this clearly happens in lines 233 and 234 of the code. 

Once we have corrected the code, we need to define several IK groups which contain the dummies related to 

the skeleton: 

 

 

Figure 7-4.Hierarchy three and IK groups in our scene 

 

We are going to set DLS as calculation method, 6 as maximum number of iterations and 0.1 of damping factor 

for each IK group. 
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Finally, we obtain the behavior we were looking for as we can see in figure 7-5: 

 

Figure 7-5.Kinect simulation 

 

This scene correctly implemented can be found in Biolid_Kinect_Control.ttt and the code of this scene in the 

appendix Q. 
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8 FINAL CONSIDERATION AND FUTURE WORKS 

The main goals achieved with the present investigation was to study V-REP in a deep way and 

communicate it with Matlab, new robot configurations and new robot control techniques for me. 

In order to make control humanoid robot walks, one of the future works to do will be to develop a 

kinematics control as we have seen in this thesis. In addition, it can be explored connections API 

connections with others softwares such as ROS. Furthermore, it will be interesting to explore all V-

REP such as object detection or path planning. 

Finally, it can be also challenging to connect physical humanoid robot to V-REP and teleoperated it 

with Kinect sensor. 
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APPENDIX 

 

Appendix A: Dynamic control with slider for 2 DOF robot in V-REP: 

 
if (sim_call_type==sim_childscriptcall_initialization) then 

    --Handle user interface: 

    ui=simGetUIHandle("Control_articulaciones") 

    

    --Set joints ranges: 

    minVal={0,            -- q1 

            0}            -- q2 

 

    rangeVal={  math.pi/4,    -- q1 

                math.pi/4}    -- q2 

    --Sliders positions in the UI: 

    uiSliderIDs={3, 4} 

 

    --Handle the joints: 

    

articulaciones={simGetObjectHandle("Joint_1"),simGetObjectHandle("Joint_2")} 

 

    --Apply ranges to UI: 

    simSetUISlider(ui,uiSliderIDs[1],(simGetJointPosition(articulaciones[1])-

minVal[1])*1000/rangeVal[1]) 

    simSetUISlider(ui,uiSliderIDs[2],(simGetJointPosition(articulaciones[2])-

minVal[2])*1000/rangeVal[2]) 

     

end  

 

if (sim_call_type==sim_childscriptcall_cleanup) then  

  

end  

 

if (sim_call_type==sim_childscriptcall_actuation) then  

 

    --Set joint values:  

simSetJointTargetPosition(articulaciones[1],minVal[1]+simGetUISlider(ui,uiSli

derIDs[1])*rangeVal[1]/1000) 

    

simSetJointTargetPosition(articulaciones[2],minVal[2]+simGetUISlider(ui,uiSli

derIDs[2])*rangeVal[2]/1000) 

        

end 
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Appendix B: Obtain Jacobian for 2 DOF robot in V-REP: 

 

if (sim_call_type==sim_childscriptcall_initialization) then  

--Get Inverse Kinematics Group: 

    ik=simGetIkGroupHandle("IK_2GOF") 

     

end  

 

if (sim_call_type==sim_childscriptcall_cleanup) then  

  

end  

 

if (sim_call_type==sim_childscriptcall_actuation) then  

          

--OBTAIN Jacobian: 

--Handle ik group: 

           simHandleIkGroup(ik) 

            local jaco =simComputeJacobian(ik,0, NULL) 

            local jacobiano,indice=simGetIkGroupMatrix(ik,0) 

 

--index[1] represents the number of jacobian's rows. 

--index[2] represents the number of jacobian's columns. 

 

-- Jacobian data is organized like that: 

-- 

[row1,column1],[row2,column1],..,[rowN,column1],[row1,column2],[row2,column2]

,... 

 

--Turn the result into a character string to display on command window: 

            for i=1,indice[1],1 do 

                str='' 

                for j=1,indice[2],1 do 

                    if #str~=0 then 

                        str=str..', ' 

                    end 

                    str=str..string.format("%.1e",jacobiano[(j-

1)*indice[1]+i]) 

                end 

                simAddStatusbarMessage(str) 

            end 

    end 
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Appendix C: Arms dynamic controller with sliders for humanoid robot in V-

REP. 

 

if (sim_call_type==sim_childscriptcall_initialization) then  

    biolid=simGetObjectHandle("Biolid") 

    ui=simGetUIHandle("Biolid_arms_control") 

    simSetUIButtonLabel(ui,0,simGetObjectName(biolid).." Arms Control") 

     

    minVal={ 

            0,    -- Left shoulder 1 

            0,    -- Left shoulder 2 

            0,    -- Left shoulder 3 

            0,    -- Right shoulder 1 

            0,    -- Right shoulder 2 

            0}    -- Right shoulder 3 

    rangeVal={     

            2*math.pi,    -- Left shoulder 1 

            2*math.pi,    -- Left shoulder 2 

            2*math.pi,    -- Left shoulder 3 

            2*math.pi,    -- Right shoulder 1 

            2*math.pi,    -- Right shoulder 2 

            2*math.pi}    -- Right shoulder 3 

    uiSliderIDs={4,5,6,7,8,9} 

 

    

rightArmJoints={simGetObjectHandle("Right_arm_joint_1"),simGetObjectHandle("R

ight_arm_joint_2"),simGetObjectHandle("Right_arm_joint_3")}    

    

leftArmJoints={simGetObjectHandle("Left_arm_joint_1"),simGetObjectHandle("Lef

t_arm_joint_2"),simGetObjectHandle("Left_arm_joint_3")} 

     

    --Assign values to the sliders: 

    simSetUISlider(ui,uiSliderIDs[1],(simGetJointPosition(rightArmJoints[1])-

minVal[1])*1000/rangeVal[1]) 

    simSetUISlider(ui,uiSliderIDs[2],(simGetJointPosition(rightArmJoints[2])-

minVal[2])*1000/rangeVal[2]) 

    simSetUISlider(ui,uiSliderIDs[3],(simGetJointPosition(rightArmJoints[3])-

minVal[3])*1000/rangeVal[3]) 

    simSetUISlider(ui,uiSliderIDs[4],(simGetJointPosition(leftArmJoints[1])-

minVal[4])*1000/rangeVal[4]) 

    simSetUISlider(ui,uiSliderIDs[5],(simGetJointPosition(leftArmJoints[2])-

minVal[5])*1000/rangeVal[5]) 

    simSetUISlider(ui,uiSliderIDs[6],(simGetJointPosition(leftArmJoints[3])-

minVal[6])*1000/rangeVal[6]) 

     

end  

 

if (sim_call_type==sim_childscriptcall_cleanup) then  

end  

 

if (sim_call_type==sim_childscriptcall_actuation) then  

 

    -- Read desired values from the user control:    

simSetJointTargetPosition(rightArmJoints[1],minVal[1]+simGetUISlider(ui,uiSli

derIDs[1])*rangeVal[1]/1000) 

    

simSetJointTargetPosition(rightArmJoints[2],minVal[2]+simGetUISlider(ui,uiSli

derIDs[2])*rangeVal[2]/1000) 
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simSetJointTargetPosition(rightArmJoints[3],minVal[3]+simGetUISlider(ui,uiSli

derIDs[3])*rangeVal[3]/1000) 

    

simSetJointTargetPosition(leftArmJoints[1],minVal[4]+simGetUISlider(ui,uiSlid

erIDs[4])*rangeVal[4]/1000) 

    

simSetJointTargetPosition(leftArmJoints[2],minVal[5]+simGetUISlider(ui,uiSlid

erIDs[5])*rangeVal[5]/1000) 

    

simSetJointTargetPosition(leftArmJoints[3],minVal[6]+simGetUISlider(ui,uiSlid

erIDs[6])*rangeVal[6]/1000) 

       

end 
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Appendix D: Right Leg dynamic controller with sliders for humanoid robot in 

V-REP. 

 

if (sim_call_type==sim_childscriptcall_initialization) then  

    biolid=simGetObjectHandle("Biolid") 

    ui=simGetUIHandle("Biolid_Leg_control") 

    simSetUIButtonLabel(ui,0,simGetObjectName(biolid).." Leg Control") 

     

    minVal={ 

            0,    -- 1 

            0,    -- 2 

            0,    -- 3 

            0,    -- 4 

            0,    -- 5 

            0}    -- 6 

    rangeVal={     

            2*math.pi,    -- 1 

            2*math.pi,    -- 2 

            2*math.pi,    -- 3 

            2*math.pi,    -- 4 

            2*math.pi,    -- 5 

            2*math.pi}    -- 6 

    uiSliderIDs={4,5,6,7,8,9} 

 

    

rightLegJoints={simGetObjectHandle("Right_leg_joint_1"),simGetObjectHandle("R

ight_leg_joint_2"),simGetObjectHandle("Right_leg_joint_3"), 

simGetObjectHandle("Right_leg_joint_4"), 

simGetObjectHandle("Right_leg_joint_5"), 

simGetObjectHandle("Right_leg_joint_6")}    

     

    --Assign values to the sliders: 

    simSetUISlider(ui,uiSliderIDs[1],(simGetJointPosition(rightLegJoints[1])-

minVal[1])*1000/rangeVal[1]) 

    simSetUISlider(ui,uiSliderIDs[2],(simGetJointPosition(rightLegJoints[2])-

minVal[2])*1000/rangeVal[2]) 

    simSetUISlider(ui,uiSliderIDs[3],(simGetJointPosition(rightLegJoints[3])-

minVal[3])*1000/rangeVal[3]) 

    simSetUISlider(ui,uiSliderIDs[4],(simGetJointPosition(rightLegJoints[4])-

minVal[1])*1000/rangeVal[1]) 

    simSetUISlider(ui,uiSliderIDs[5],(simGetJointPosition(rightLegJoints[5])-

minVal[2])*1000/rangeVal[2]) 

    simSetUISlider(ui,uiSliderIDs[6],(simGetJointPosition(rightLegJoints[6])-

minVal[3])*1000/rangeVal[3]) 

      

end  

 

if (sim_call_type==sim_childscriptcall_cleanup) then   

end  

 

if (sim_call_type==sim_childscriptcall_actuation) then  

 

    -- Read desired values from the user control: 

    

simSetJointTargetPosition(rightLegJoints[1],minVal[1]+simGetUISlider(ui,uiSli

derIDs[1])*rangeVal[1]/1000) 

    

simSetJointTargetPosition(rightLegJoints[2],minVal[2]+simGetUISlider(ui,uiSli

derIDs[2])*rangeVal[2]/1000) 
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simSetJointTargetPosition(rightLegJoints[3],minVal[3]+simGetUISlider(ui,uiSli

derIDs[3])*rangeVal[3]/1000) 

    

simSetJointTargetPosition(rightLegJoints[4],minVal[4]+simGetUISlider(ui,uiSli

derIDs[4])*rangeVal[4]/1000) 

    

simSetJointTargetPosition(rightLegJoints[5],minVal[5]+simGetUISlider(ui,uiSli

derIDs[5])*rangeVal[5]/1000) 

    

simSetJointTargetPosition(rightLegJoints[6],minVal[6]+simGetUISlider(ui,uiSli

derIDs[6])*rangeVal[6]/1000) 

       

end 
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Appendix E: Walking by IK calculation with dummies for humanoid robot in V-

REP. 

if (sim_call_type==sim_childscriptcall_initialization) then  

    biolid=simGetObjectHandle("Biolid") 

    lFoot=simGetObjectHandle("Left_foot_target") 

    rFoot=simGetObjectHandle("Right_foot_target") 

    lPath=simGetObjectHandle("Left_foot_path") 

    rPath=simGetObjectHandle("Right_foot_path") 

    lPathLength=simGetPathLength(lPath) 

    rPathLength=simGetPathLength(rPath) 

    dist=0 

    

    nominalVelocity=3e-3 

     

     

end  

 

if (sim_call_type==sim_childscriptcall_cleanup) then  

  

end  

 

if (sim_call_type==sim_childscriptcall_actuation) then  

 

-- Get the desired position and orientation of each foot from the paths: 

--Depends on the selected path lenght calculation method. 

    t=simGetSimulationTimeStep()*nominalVelocity 

    dist=dist+t 

    lPos=simGetPositionOnPath(lPath,dist/lPathLength)--return values 

position: table of 3 values (x, y and z) 

    lOr=simGetOrientationOnPath(lPath,dist/lPathLength)--return values 

eulerAngles: table of 3 values (alpha, beta and gamma) 

     

    rPos=simGetPositionOnPath(rPath,dist/rPathLength) 

    rOr=simGetOrientationOnPath(rPath,dist/rPathLength) 

     

     

-- Now transform the absolute position/orientation to position/orientation 

relative to biolid   

    biolidM=simGetObjectMatrix(biolid,-1)--Specify -1 to retrieve the 

absolute transformation matrix 

--return value table of 12 numbers: 

    --The x-axis of the orientation component is 

(matrix[1],matrix[5],matrix[9]) 

    --The y-axis of the orientation component is 

(matrix[2],matrix[6],matrix[10]) 

    --The z-axis of the orientation component is 

(matrix[3],matrix[7],matrix[11]) 

    --The translation component is               

(matrix[4],matrix[8],matrix[12]) 

    biolidMInverse=simGetInvertedMatrix(biolidM) 

 

    m=simMultiplyMatrices(biolidMInverse, simBuildMatrix(lPos,lOr)) 

--simMultiplyMatrices: return value the output matrix (the result of the 

multiplication: matrixIn1*matrixIn2), same matrix as above. 

--simBuildMatrix: return value the transformation matrix    

    pos_or_ob=simMultiplyMatrices(biolidM,m) 

    lPos={pos_or_ob[4],pos_or_ob[8],pos_or_ob[12]} 

    lOr=simGetEulerAnglesFromMatrix(pos_or_ob) --table to 3 numbers 

representing the Euler angles 
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    m=simMultiplyMatrices(biolidMInverse, simBuildMatrix(rPos,rOr)) 

    pos_or_ob=simMultiplyMatrices(biolidM,m) 

    rPos={pos_or_ob[4], pos_or_ob[8], pos_or_ob[12]} 

    rOr=simGetEulerAnglesFromMatrix(pos_or_ob) 

     

     

-- Apply the desired ABSOLUTE positions/orientations to each foot (to two 

dummy objects that are then handled by the IK module) 

-- to automatically calculate all leg joint desired values. 

    simSetObjectPosition(lFoot, -1,lPos) --Specify -1 to set the absolute 

position 

    simSetObjectOrientation(lFoot,-1,lOr) 

     

    simSetObjectPosition(rFoot,-1,rPos) 

    simSetObjectOrientation(rFoot,-1,rOr) 

 

end 
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Appendix F: Walking by state machine for humanoid robot in V-REP. 

 

if (sim_call_type==sim_childscriptcall_initialization) then  

    dist=0 

    nominalVelocity=3e-2 

    case=1 

end  

 

if (sim_call_type==sim_childscriptcall_cleanup) then  

  

end  

 

if (sim_call_type==sim_childscriptcall_actuation) then  

v=simGetSimulationTimeStep()*nominalVelocity 

dist=dist+v 

 

if(case==1)then 

if(simGetJointTargetPosition(simGetObjectHandle("Left_leg_joint_6"))<0.09) 

then 

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_6"), 

math.pi/72+dist) 

simSetJointTargetPosition(simGetObjectHandle("Left_leg_joint_6"), 

math.pi/72+dist) 

else 

case=2 

end 

end 

 

if(case==2) then 

if(simGetJointTargetPosition(simGetObjectHandle("Right_leg_joint_4"))<0.6) 

then 

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_4"), 

math.pi/24+dist) 

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_3"), -

math.pi/12-dist) 

else 

case=3 

end 

end 

 

 

if(case==3) then 

if(simGetJointTargetPosition(simGetObjectHandle("Right_leg_joint_5"))<0.09) 

then 

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_5"), -

(math.pi/6-dist)) 

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_6"), 0) 

end 

end 

 

 

end 
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Appendix G: VREPROBOT function in Matlab for 2 DOF.  

 

function [out]=VREPROBOT(in) 

qdr1=in(1); 

qdr2=in(2); 

 

vrep=remApi('remoteApi'); %with the prototype file (remoteApiProto.m) 

vrep.simxFinish(-1);%close all connections before 

clientID=vrep.simxStart('127.0.0.1',19999,true,true,5000,5); 

 

%%Handle joints: 

[r1, 

j1]=(vrep.simxGetObjectHandle(clientID,'Joint_1#',vrep.simx_opmode_blocking))

;%%r1=a remote API function return code////j1=position 

[r2, 

j2]=(vrep.simxGetObjectHandle(clientID,'Joint_2#',vrep.simx_opmode_blocking))

; 

 

%%Move joints to the reference velocity:  

vrep.simxSetJointTargetVelocity(clientID, j1, qdr1, 

vrep.simx_opmode_oneshot_wait); 

vrep.simxSetJointTargetVelocity(clientID, j2, qdr2, 

vrep.simx_opmode_oneshot_wait); 

 

%%Get the real position: 

[s1, q1]=vrep.simxGetJointPosition(clientID, j1, 

vrep.simx_opmode_oneshot_wait); 

[s2, q2]=vrep.simxGetJointPosition(clientID, j2, 

vrep.simx_opmode_oneshot_wait); 

 

%%CHANGE THE FORMAT: 

q1d=double(q1); 

q2d=double(q2); 

 

out=[q1d, q2d]; 

end 
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Appendix H: Discrete PID controller function in Matlab for 2 inputs.  

 

function [out] = PID_pos(in) 

e1k=in(1); 

e2k=in(2); 

t=in(3); 

 

persistent int_e1k_1 int_e2k_1 

 

 

%Variables inialitation:  

if(t<1e-8) 

    int_e1k_1 =0; int_e2k_1 =0; 

end 

 

T=0.01; 

 

%PID parameters: 

Ti=[1e20; 1e20]; 

Td=[0; 0]; 

Kp=[0.2; 0.2]; 

 

e1vk=e1k/T; 

e2vk=e2k/T; 

 

%Sum of errors 

int_e1k= int_e1k_1 + e1k*T; 

int_e2k= int_e2k_1 + e2k*T; 

 

%Output motor current: 

qd1r=Kp(1)*(e1k+Td(1)*e1vk+1/Ti(1)*int_e1k); 

qd2r=Kp(2)*(e2k+Td(2)*e2vk+1/Ti(2)*int_e2k); 

 

%Variables update: 

int_e1k_1= int_e1k; 

int_e2k_1= int_e2k; 

 

qd1rd=double(qd1r); 

qd2rd=double(qd2r); 

 

[out]=[qd1rd, qd2rd]; 

end 
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Appendix I: Joint position reference function in Matlab for dynamic control.  

 

function [out] = qref(in) 

t=in(1);    

 

persistent q1_1 q2_1; 

 

if(t<1e-8) 

    q1_1=0; q2_1=0; 

end 

 

if(t>1e-8 && q2_1<pi/4)  

        q1r=q1_1+0.1; 

        q2r=q2_1+0.1; 

         

else 

       q1r=q1_1; 

       q2r=q2_1; 

end 

 

%%Variables update  

        q1_1=q1r; 

        q2_1=q2r; 

         

out=[q1r, q2r]; 

 

end 
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Appendix J: Pseudoinverse function in Matlab for 2 DOF robot. 

 

function [out]=PSEUDO_2GOF (in) 

q1=in(1); 

q2=in(2); 

xd=in(3); 

yd=in(4); 

zd=in(5); 

 

 

L1=5e-1; 

L2=5e-1; 

 

v=[xd; yd; zd]; 

 

J=[- L2*sin(q1 + q2) - L1*sin(q1), -L2*sin(q1 + q2); 

   L2*cos(q1 + q2) + L1*cos(q1),  L2*cos(q1 + q2); 

                              0,                0]; 

pseudo=pinv(J); 

 

qd=pseudo*v; 

 

out=qd; 

end 

 

Appendix K: Forward Kinematics function in Matlab for 2 DOF robot. 

 

function [out] = FK_2GOF(in) 

 

q1=in(1); 

q2=in(2); 

 

L1=5e-1; 

L2=5e-1; 

 

 

x = L1*cos(q1)+L2*cos(q1+q2); 

y = L1*sin(q1)+L2*sin(q1+q2); 

z=0; 

 

out=[x, y, z]; 

end 
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Appendix L: XYZ Circle path in Matlab. 

 

function [out] = circle_path(in) 

t=in(1);    

 

persistent angx_1 angy_1; 

angx=0; angy=0; 

if(t<1e-8) 

    angx_1=0; angy_1=0; 

    angx=0; angy=0; 

end 

 

if(t>1e-8)  

        angx=angx_1+0.01; 

        angy=angy_1+0.01; 

        xr=cos(angx); 

        yr=sin(angy); 

        zr=5e-2; 

         

else 

        xr=cos(angx_1); 

        yr=sin(angy_1); 

        zr=5e-2; 

end 

 

%%Variables update  

       angx_1=angx; 

       angy_1=angy; 

        

out=[xr, yr, zr]; 

 

end 
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Appendix M: DLS function in Matlab for 4 DOF robot. 

 

 

function [out]=DLS_4GOF (in) 

q1=in(1); 

q2=in(2); 

q3=in(3); 

q4=in(4); 

xd=in(5); 

yd=in(6); 

zd=in(7); 

k=in(8); 

E=in(9); 

 

L=5e-1; 

v=[xd; yd; zd]; 

 

J =[ -L*(sin(q1 + q2 + q3) + sin(q1 + q2 + q3 + q4) + sin(q1 + q2) + 

sin(q1)), -L*(sin(q1 + q2 + q3) + sin(q1 + q2 + q3 + q4) + sin(q1 + q2)), -

L*(sin(q1 + q2 + q3) + sin(q1 + q2 + q3 + q4)), -L*sin(q1 + q2 + q3 + q4); 

  L*(cos(q1 + q2 + q3) + cos(q1 + q2 + q3 + q4) + cos(q1 + q2) + cos(q1)),  

L*(cos(q1 + q2 + q3) + cos(q1 + q2 + q3 + q4) + cos(q1 + q2)),  L*(cos(q1 + 

q2 + q3) + cos(q1 + q2 + q3 + q4)),  L*cos(q1 + q2 + q3 + q4); 

                                                                        0,                                                              

0,                                               0,                         

0]; 

 

k=k0*exp(-det(J*J')/2*E^2); 

pseudo=J'*inv(J*J'+k^2*eye(3)); 

qd=pseudo*v; 

 

out=qd; 

end 

 

 

Appendix N: Forward Kinematics function in Matlab for 4 DOF robot. 

 

function [out] = FK_4GOF(in) 

 

q1=in(1); 

q2=in(2); 

q3=in(3); 

q4=in(4); 

 

L=5e-1; 

 

 

x = L*(cos(q1 + q2 + q3) + cos(q1 + q2 + q3 + q4) + cos(q1 + q2) + cos(q1)); 

y = L*(sin(q1 + q2 + q3) + sin(q1 + q2 + q3 + q4) + sin(q1 + q2) + sin(q1)); 

z=0; 

 

out=[x, y, z]; 

end 

  



 

  Appendix 

62 

 

62 

Appendix O: Peter Corke 1 DOF Robot 

startup_rvc 

%Parámetros D-H 

R(1)=Link([0 0 0.5 0]); 

R 

 

%Parámetros dinámicos 

R(1).m=4.335; 

R(1).r=[-0.25 0 0]; 

R(1).I=4.335*[2.912e-01 0 0; 0 2.649  0; 0 0 2.781]; 
R(1).B=6.9589;%%Viscosidad 
R(1).G=70;%%Relación de transmisión 
R(1).Jm=0.0765;%%Inercia del motor 
 

 

Robot_1DOF= SerialLink(R, 'name', '1DOF') 

 

Robot_1DOF.gravity=[0 0 9.81]'; 

 

%%Representarlo: 

Robot_1DOF.teach() 

 

Appendix P: Peter Corke 2 DOF Robot 

startup_rvc 

%Parámetros D-H 

R(1)=Link([0 0 0.5 0]); 

R(2)=Link([0 0 0.5 0]); 

R 

 

%Parámetros dinámicos 

R(1).m=4.335; 

R(1).r=[-0.25 0 0]; 

R(1).I=4.335*[2.912e-01 0 0; 0 2.649 0; 0 0 2.781]; 

R(1).B=6.9589;%%Viscosidad 
R(1).G=70;%%Relación de transmisión 
R(1).Jm=0.0765;%%Inercia del motor 
 

 

R(2).m=1.951; 

R(2).r=[-0.25 0 0]; 

R(2).I=1.951*[1.242e-01 0 0; 0 2.145 0; 0 0 2.145]; 
R(2).B=6.9589;%%Viscosidad 
R(2).G=70;%%Relación de transmisión 
R(2).Jm=0.0765;%%Inercia del motor 
 

Robot_2DOF= SerialLink(R, 'name', '2DOF') 

 

Robot_2DOF.gravity=[0 0 9.81]'; 

 

%%Representarlo: 

Robot_2DOF.teach() 
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Appendix Q: Biolid Kinect Control 

-- Following function writes data to the socket (the data might be sent in 

several packets) 

writeSocketData=function(client,data) 

    -- Check how many packets we need to send: 

    local packetCount=0 

    local s=#data 

    while (s~=0) do 

        packetCount=packetCount+1 

        if (s>256-6) then -- this is the max packet size minus header size 

            s=s-256+6 

        else 

            s=0 

        end 

    end 

    -- Now send the data: 

    s=#data 

    local pointer=0 

    while (s~=0) do 

        packetCount=packetCount-1 

        local sizeToSend=s 

        if (s>256-6) then 

            sizeToSend=256-6 

        end 

        s=s-sizeToSend 

        local 

header=string.char(59,57,math.mod(sizeToSend,256),math.floor(sizeToSend/256),

math.mod(packetCount,256),math.floor(packetCount/256)) 

        -- Packet header is: headerID (59,57), dataSize (WORD), packetsLeft 

(BYTE) 

        client:send(header..data:sub(pointer+1,pointer+sizeToSend)) 

        pointer=pointer+sizeToSend 

    end 

end 

 

-- Following function reads data from the socket (that might be arriving in 

several packets) 

readSocketData=function(client) 

    local returnData='' 

    while (true) do 

        -- Packet header is: headerID (59,57), dataSize (WORD), packetsLeft 

(WORD) 

        local header=client:receive(6) 

        if (header==nil) then 

            return(nil) -- error 

        end 

        if (header:byte(1)==59)and(header:byte(2)==57) then 

            local l=header:byte(3)+header:byte(4)*256 

            returnData=returnData..client:receive(l) 

            if (header:byte(5)==0)and(header:byte(6)==0) then 

                break -- That was the last packet 

            end 

        else 

            return(nil) -- error 

        end 

    end 

    return(returnData) 

end 
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linkPoints=function(returnData,index1,index2,minConfidence) 

    if 

(returnData[4*index1+4]>minConfidence)and(returnData[4*index2+4]>minConfidenc

e) then 

        local 

data={returnData[4*index1+1],returnData[4*index1+2],returnData[4*index1+3],re

turnData[4*index2+1],returnData[4*index2+2],returnData[4*index2+3]} 

        data[1]=data[1]-1 

        data[4]=data[4]-1 

        simAddDrawingObjectItem(lineContainer,data) 

    end 

end 

 

threadFunction=function() 

    while (simGetSimulationState()~=sim_simulation_advancing_abouttostop) do 

 

        -- Send a request to the server (just anything): 

        writeSocketData(client,' ') 

        -- Read the reply from the server: 

        local returnData=readSocketData(client) 

        if (returnData==nil) then 

            break -- Read error 

        else 

            returnData=simUnpackFloatTable(returnData) 

            simAddDrawingObjectItem(lineContainer,nil) 

            simAddDrawingObjectItem(sphereContainer,nil) 

            torsoTransf=simGetObjectMatrix(objectHandle,-1) 

            if (returnData[60]>0.5) then 

                

torsoPos={returnData[57]*scalingFact/1000,returnData[58]*scalingFact/1000,ret

urnData[59]*scalingFact/1000} 

                torsoPos=simMultiplyVector(m,torsoPos) 

            end 

            for i=0,15,1 do 

                if (i<6)or(i>13) then 

                if (returnData[4*i+4]>0.5) then 

                    

pointPos={returnData[4*i+1]*scalingFact/1000,returnData[4*i+2]*scalingFact/10

00,returnData[4*i+3]*scalingFact/1000} 

                    pointPos=simMultiplyVector(m,pointPos) 

                    pointPos[1]=pointPos[1]-torsoPos[1] 

                    pointPos[2]=pointPos[2]-torsoPos[2] 

                    pointPos[3]=pointPos[3]-torsoPos[3] 

                    pointPos=simMultiplyVector(torsoTransf,pointPos) 

                    returnData[4*i+1]=pointPos[1] 

                    returnData[4*i+2]=pointPos[2] 

                    returnData[4*i+3]=pointPos[3] 

                    pointPos[1]=pointPos[1]-1 

                    simAddDrawingObjectItem(sphereContainer,pointPos) 

                    

print(returnData[4*i+1],returnData[4*i+2],returnData[4*i+3]) 

                end 

                end 

            end 

            linkPoints(returnData,0,2,0.5) 

            linkPoints(returnData,1,3,0.5) 

            linkPoints(returnData,5,14,0.5) 

            linkPoints(returnData,4,14,0.5) 

            linkPoints(returnData,2,4,0.5) 

            linkPoints(returnData,3,5,0.5) 

            linkPoints(returnData,4,5,0.5) 

--            linkPoints(returnData,14,6,0.5) 
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--            linkPoints(returnData,14,7,0.5) 

--            linkPoints(returnData,6,8,0.5) 

--            linkPoints(returnData,7,9,0.5) 

--            linkPoints(returnData,8,10,0.5) 

--            linkPoints(returnData,10,12,0.5) 

--            linkPoints(returnData,9,11,0.5) 

--            linkPoints(returnData,13,11,0.5) 

            linkPoints(returnData,4,15,0.5) 

            linkPoints(returnData,5,15,0.5) 

 

            if 

(returnData[4*0+4]>0.5)and(returnData[4*1+4]>0.5)and(returnData[4*2+4]>0.5)an

d(returnData[4*3+4]>0.5)and(returnData[4*4+4]>0.5)and(returnData[4*5+4]>0.5)a

nd(returnData[4*14+4]>0.5) then 

                pt1={returnData[4*4+1],returnData[4*4+2],returnData[4*4+3]} 

                pt2={returnData[4*5+1],returnData[4*5+2],returnData[4*5+3]} 

                

pt3={returnData[4*14+1],returnData[4*14+2],returnData[4*14+3]} 

                v1={pt1[1]-pt2[1],pt1[2]-pt2[2],pt1[3]-pt2[3]} 

                v2={pt3[1]-pt2[1],pt3[2]-pt2[2],pt3[3]-pt2[3]} 

                n={v1[2]*v2[3]-v1[3]*v2[2],v1[3]*v2[1]-

v1[1]*v2[3],v1[1]*v2[2]-v1[2]*v2[1]} 

                l=math.sqrt(n[1]*n[1]+n[2]*n[2]+n[3]*n[3]) 

                n[1]=n[1]/l 

                n[2]=n[2]/l 

                n[3]=n[3]/l 

        dd={0,0,1.5,n[1],n[2],1.5+n[3]} 

 

 

                correctionAngle=math.asin(n[3]) 

--        simAddDrawingObjectItem(lineContainer,dd) 

                 

                z={v1[2]*n[3]-v1[3]*n[2],v1[3]*n[1]-v1[1]*n[3],v1[1]*n[2]-

v1[2]*n[1]} 

                l=math.sqrt(z[1]*z[1]+z[2]*z[2]+z[3]*z[3]) 

                z[1]=z[1]/l 

                z[2]=z[2]/l 

                z[3]=z[3]/l 

        dd={0,0,1.5,z[1],z[2],1.5+z[3]} 

--        simAddDrawingObjectItem(lineContainer,dd) 

 

--                n[1]=-n[1] 

--                n[2]=-n[2] 

--                n[3]=-n[3] 

                 

                x={n[2]*z[3]-n[3]*z[2],n[3]*z[1]-n[1]*z[3],n[1]*z[2]-

n[2]*z[1]} 

 

        dd={0,0,1.5,x[1],x[2],1.5+x[3]} 

--        simAddDrawingObjectItem(lineContainer,dd) 

 

                lsp=simGetObjectPosition(leftShoulder,-1) 

                rsp=simGetObjectPosition(rightShoulder,-1) 

 

                mm={0,0,0,0,0,0,0,0,0,0,0,0} 

                mm[1]=x[1] 

                mm[2]=n[1] 

                mm[3]=z[1] 

                mm[4]=returnData[17] 

                mm[5]=x[2] 

                mm[6]=n[2] 

                mm[7]=z[2] 
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                mm[8]=returnData[18] 

                mm[9]=x[3] 

                mm[10]=n[3] 

                mm[11]=z[3] 

                mm[12]=returnData[19] 

                 

                mml=simGetInvertedMatrix(mm) 

                mm[4]=returnData[21] 

                mm[8]=returnData[22] 

                mm[12]=returnData[23] 

                mmr=simGetInvertedMatrix(mm) 

                 

                

leftHandP=simMultiplyVector(mml,{returnData[1],returnData[2],returnData[3]}) 

--        leftHandP={0,0,0} 

                leftHandP[1]=leftHandP[1]+lsp[1] 

                leftHandP[2]=leftHandP[2]+lsp[2] 

                leftHandP[3]=leftHandP[3]+lsp[3] 

 

                

rightHandP=simMultiplyVector(mmr,{returnData[5],returnData[6],returnData[7]}) 

--        rightHandP={0,0,0} 

                rightHandP[1]=rightHandP[1]+rsp[1] 

                rightHandP[2]=rightHandP[2]+rsp[2] 

                rightHandP[3]=rightHandP[3]+rsp[3] 

 

                

leftElbowP=simMultiplyVector(mml,{returnData[9],returnData[10],returnData[11]

}) 

--        leftElbowP={0,0,0} 

                leftElbowP[1]=leftElbowP[1]+lsp[1] 

                leftElbowP[2]=leftElbowP[2]+lsp[2] 

                leftElbowP[3]=leftElbowP[3]+lsp[3] 

 

                

rightElbowP=simMultiplyVector(mmr,{returnData[13],returnData[14],returnData[1

5]}) 

--        rightElbowP={0,0,0} 

                rightElbowP[1]=rightElbowP[1]+rsp[1] 

                rightElbowP[2]=rightElbowP[2]+rsp[2] 

                rightElbowP[3]=rightElbowP[3]+rsp[3] 

 

            simSetObjectPosition(leftHand,-1,leftHandP) 

            simSetObjectPosition(rightHand,-1,rightHandP) 

 

            simSetObjectPosition(leftElbow,-1,leftElbowP) 

            simSetObjectPosition(rightElbow,-1,rightElbowP) 

 

            end 

 

 

        end 

        simSwitchThread() 

    end 

end 

 

simSetThreadSwitchTiming(200) -- We wanna manually switch for synchronization 

purpose (and also not to waste processing time!) 

 

-- We start the server on a port that is probably not used (try to always use 

a similar code): 

simSetThreadAutomaticSwitch(false) 
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local portNb=simGetIntegerSignal('freeLocalServerPort',true) 

local portStart=simGetInt32Parameter(sim_intparam_server_port_start) 

local portRange=simGetInt32Parameter(sim_intparam_server_port_range) 

if (not portNb) then 

    portNb=portStart 

end 

local newPortNb=portNb+1 

if (newPortNb>=portStart+portRange) then 

    newPortNb=portStart 

end 

simSetIntegerSignal('freeLocalServerPort',newPortNb,true) 

simSetThreadAutomaticSwitch(true) 

simLaunchExecutable('kinectServer.exe',portNb,1) 

 

-- Build a socket and connect to the server: 

 socket=require("socket") 

 client=socket.tcp() 

simSetThreadIsFree(true) -- To avoid a bief moment where the simulator 

appears as locked 

local result=client:connect('127.0.0.1',portNb) 

simSetThreadIsFree(false) 

 

-- Prepare the drawing containers for lines and spheres (to display the 

skeleton): 

lineContainer=simAddDrawingObject(sim_drawing_lines,4,0,-1,100,{1,0,0}) 

sphereContainer=simAddDrawingObject(sim_drawing_spherepoints,0.05,0,-

1,100,{0,0,1}) 

objectHandle=simGetObjectHandle('Biolid') 

leftHand=simGetObjectHandle('leftHandSphere') 

rightHand=simGetObjectHandle('rightHandSphere') 

leftElbow=simGetObjectHandle('leftElbowSphere') 

rightElbow=simGetObjectHandle('rightElbowSphere') 

leftShoulder=simGetObjectHandle('leftShoulderSphere') 

rightShoulder=simGetObjectHandle('rightShoulderSphere') 

torsoPos={0,0,0} 

scalingFact=0.7 

w=0.7 

correctionAngle=0 

m=simBuildMatrix({0,0,0},{math.pi/2,0,0}) 

if (result==1) then 

    -- Here we execute the regular thread code: 

    res,err=xpcall(threadFunction,function(err) return debug.traceback(err) 

end) 

    if not res then 

        simAddStatusbarMessage('Lua runtime error: '..err) 

    end 

end 

client:close() 
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