

0 Equation Chapter 1 Section 1

Trabajo Fin de Grado

Ingeniería Electrónica, Robótica y Mecatrónica

Exploración de la aplicación V-REP

Exploration of software V-REP

Autor: Jesús de Miguel Fernández

Tutor: José Ángel Acosta Rodríguez

Dep. de Ingeniería de Sistemas y Automática

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

 Sevilla, 2017

iii

Trabajo Fin de Grado

Ingeniería Electrónica, Robótica y Mecatrónica

Exploración de la aplicación V-REP

Exploration of software V-REP

Autor:

Jesús de Miguel Fernández

Tutor:

José Ángel Acosta Rodríguez

Profesor titular

Dep. de Ingeniería de Sistemas y Automática

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2017

v

Trabajo Fin de Grado: Exploración de la aplicación V-REP Exploration of software V-REP

Autor: Jesús de Miguel Fernández

Tutor: José Ángel Acosta Rodríguez

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2017

El Secretario del Tribunal

vii

A mi familia

A mis amigos

ix

ACKNOWLEDGEMENTS

Me gustaría agradecer en primer lugar la labor de mi tutor por haberme guiado a lo largo de este camino con

tantas bajadas y subidas.

Seguidamente, a mis padres y a mis tíos por la educación recibida sin la cual no estaría redactando este

documento.

Finalmente, gracias a mi compañero Miguel Ángel, por haberme ayudado a convertir mi inglés en un inglés

más formal.

xi

ABSTRACT

The necessity of simulation software is esential in the robotic area. This software must be free, simple and

powerful. Due to that urge, we are going to study in depth V-REP® software in order to discover his

advantages and disadvantages. This software owns to Coppelia Robotics®, a new company which has

obtained a remarkable popularity.

We are going to start with simple examples to familiarize us with V-REP®. With this preparation we are

going to be ready to analyse a more complex case such as humanoid robot. In order to boost this software and

know better how it works, from control’s point of view, we are going to connect it with Matlab® via API.

xiii

TABLE OF CONTENTS

Acknowledgements .. ix

Abstract .. xi

Table of Contents .. xiii

List of Figures ... xv

List of Symbols and Abbreviations ... xvii

1 Introduction ... 2
1.1 Why V-REP®?.. 2
1.2 Is V-REP easy to handle? ... 2
1.3 Does V-REP have any limitations? .. 3
1.4 Analysis with V-REP ... 3

2 2 DOF planar robot in V-REP® ... 3
2.1 Building up .. 3

2.1.1 Links .. 3
2.1.2 Joints ... 5
2.1.3 Hierarchy .. 6

2.2 Dynamic control ... 7
2.2.1 Slider interface ... 7
2.2.2 Code .. 7
2.2.3 Demo .. 8
2.2.4 How do we control? .. 8

2.3 Kinematics control ... 9
2.3.1 Obtaining position in the target location ... 9
2.3.2 Inverse Kinematics Module... 10
2.3.3 Code .. 12
2.3.4 Demo .. 12
2.3.5 How do we control? .. 12

3 Humanoid robot in V-REP® ... 15
3.1 Buildind up .. 15
3.2 Arms dynamic controller ... 17

3.2.1 Code .. 18
3.2.2 Demo .. 18

3.3 Left Leg dynamic controller ... 18
3.4 Controlling in open loop to walk ... 19

3.4.1 Kinematics control: IK chain with dummies .. 19
3.4.2 Dynamic control: State machine .. 19

4 API conection with Matlab®.. 23
4.1 What is it needed? ... 23
4.2 How can we send messages? ... 23

5 Dynamic model in Matlab .. 25
5.1 V-REP joint motor model ... 25
5.2 2 DOF dynamic control .. 30

6 Kinematics control from Matlab® ... 33
6.1 Pseudo inverse Kinematics control to planar 2 DOF robot ... 33
6.2 DLS kinematics control to 4 DOF robot .. 36

7 Kinect sensor and V-REP .. 39

7.1 Controlling Biolid Humanoid with Kinect Sensor ... 41

8 Final consideration and future works... 43

Bibliography .. 45

Appendix ... 47

xv

LIST OF FIGURES

Figure 1-1.V-REP environment 2

Figure 1-2.Biolid Premium Type A model 3

Figure 2-1.2 DOF robot in V-REP 3

Figure 2-2.Non-dynamically enabled link body properties (a) and common properties (b). 4

Figure 2-3.Dynamically enabled link body properties (a) and common properties (b) 4

Figure 2-4.Non-Dynamically enabled links robot (above) and dynamically enabled link robot (down) 5

Figure 2-5.Joint modes 5

Figure 2-6.Joint dynamic properties 6

Figure 2-7.Model’s hierarchy three 6

Figure 2-8.Designing user interface 7

Figure 2-9.Script linked to robot base 7

Figure 2-10.Dynamic control with slider demo 8

Figure 2-11.Action from user’s point of view 8

Figure 2-12.Dynamic control diagram 9

Figure 2-13.Assignment in the dynamic control diagram 9

Figure 2-14.Configuration between dummies 10

Figure 2-15.Correct distribution of dummies in hierarchy 10

Figure 2-16.Action from user’s point of view 10

Figure 2-17.IK module configuration 11

Figure 2-18.IK group configuration 11

Figure 2-19.Jacobian result on the console window 12

Figure 2-20.Kinematics control diagram 13

Figure 3-1.Humanoid robot in V-REP 15

Figure 3-2.Humanoid hierarchy three 16

Figure 3-3.Result of a bad hierarchy three 16

Figure 3-4.Humanoid dynamically enabled links 17

Figure 3-5.UI to arms control 17

Figure 3-6.Arms control demo 18

Figure 3-7.Leg control demo 18

Figure 3-8.Required inclination to not lose balance 19

Figure 3-9.Step beginning 20

Figure 3-10.Step ending 20

Figure 5-1.Comunnication diagram 25

Figure 5-2.One DOF Robot 25

Figure 5-3.Open loop simulations 26

Figure 5-4.Joint Velocity Reference 26

Figure 5-5.Torque and Joint Velocity planar 1DOF robot to differents inertias order 27

Figure 5-6.Peter Corke one DOF robot 28

Figure 5-7.Open loop simulations 28

Figure 5-8.Dynamic model block 29

Figure 5-9.Output joint position comparision 29

Figure 5-10.Dynamic control diagram 30

Figure 5-11.Initial dynamic control diagram in Matlab 30

Figure 5-12.Joint Dynamic Properties to control in Matlab 31

Figure 5-13.Final dynamic control diagram in Matlab 31

Figure 5-14.Peter Corke 2 DOF robot 32

Figure 5-15.Output joint position comparision 32

Figure 6-1.Kinematics control diagram- 33

Figure 6-2.Kinematics control diagram in Matlab 34

Figure 6-3.Plotting results in V-REP 34

Figure 6-4.Reference versus Output XY position 35

Figure 6-5.Reference versus Output XY position 35

Figure 6-6.4 DOF planar robot in V-REP 36

Figure 6-7.DLS kinematics control diagram in Matlab 36

Figure 6-8.Reference versus Output XY position 37

Figure 6-9.Reference versus Output XY position 37

Figure 7-1.Kinect sensor 39

Figure 7-2.Connection diagram 40

Figure 7-3.Kinect simulation 40

Figure 7-4.Hierarchy three and IK groups in our scene 41

Figure 7-5.Kinect simulation 42

xvii

LIST OF SYMBOLS AND ABBREVIATIONS

q Joint Position rad

qd Joint Velocity rad/s

qr Joint Position Reference rad

qdr Joint Velocity Reference rad/s

xr XYZ Position Reference m

Kp Controller Proportional Term
units signalerror

units signaloutput controller

Ti Controller Integral Time s

Td Controller Derivative Time s

Tau Motor Torque N·m

FK Forward Kinematics

J Jacobian

Pseudo Jacobian Pseudoinverse

DOF Degrees of freedom

 Introduction

2

1 INTRODUCTION

1.1 Why V-REP®?

Simulation software is essential to test any robotic system, in order to prevent it from hurting itself.

Futhermore, it is really useful for education, due to the fact that the robot is not physically needed. The

majority of softwares that can be found are designed only for robots, which have been designed by the

company that has developed the software, and it is not common for them to be free or open source. Due to

these arguments, we appeal to V-REP®. This Coppelia Robotics’ software is a free simulator wich allows

different simulation modes and includes algorithms, which are attractive for the calculus of essential elements

in a robot such as inverse kinematics or collision detection. The graphical environment allows designing your

own robot with primitive shapes or importing your own design from any design software. The user is totally

free in their design.

Figure 1-1.V-REP environment

1.2 Is V-REP easy to handle?

The developper gives you a lengthy manual in digital format in which the mayority of topics are detailed in

order to familiarize with this software. Nevertheless, in some aspects, this manual is not clear enough and there

are some aspects, which are not mentioned explicitly. From my own experience, it is rather difficult to get to

know this environment, especially when you have to design your own robot. The importance of hierarchy tree

is essential in this way. What is more, as I have mentioned before, there are some elements that you have to

investigate by yourself, because they are not even explained in the user’s manual. On the other hand, due to the

attractiveness of the software, which is gainnig a remarkable importance and relevance, a large community has

been created. Especifically, the own company has a forum in which you can discuss any of your doubts or

problems and the own developers will answer you in a short period. It is a really useful tool, because the

mayority of problems you can have in your travel with V-REP® are solved there.

3

1.3 Does V-REP have any limitations?

It is a simulator of significant interest. Although, it is true that there are some elements which are not clear

enough and It is possible to not really know what you are modifyind in first instance. Especifically, the

programming language (LUA) and control are very limitating. LUA is a very high-level language with

predesigned functions which might make user feel hands tied. It presents two diffetents types of kinematics

controlling: Pseudoinverse and DLS. Inside these structures, you can modify actually a few elements and

sometimes leaves much to be desired. Related to dynamic control, it presents a large range of options that

allows the user to implement his own controller code in LUA. Across this thesis, we are going to work with

these control structures in a more detailed way, knowing what this software does, and how.

1.4 Analysis with V-REP

Our study with V-REP® will start with a simple example such as a 2 grades of freedom robot that only moves

in the XY plane to familiarize with this environment. Then, we are going to study a more complex case such

as humanoid robot, specifically, Biolid Premium Type A model.

Figure 1-2.Biolid Premium Type A model

Because of the limitations that will be found, and to try to understand in a better way the control structures that

this software uses, we look for a conexión API with MATLAB® in which V-REP® is the server an

MATLAB® the client.

2 2 DOF PLANAR ROBOT IN V-REP®

n this chapter, we are going to explore this new software with an easy example such as two grades of

freedom XY planar robot. Only the tools that V-REP has are going to be used in order to build it up. The

steps that are going to be described are developed in the scenes and models chapter of the user’s manual

(Bibliography [8]) for other configuration.However, it seems to me that there are some points I am going to

develop which are not clear enough.

2.1 Building up

The final result can be seen in Figure 2-1.

Figure 2-1.2 DOF robot in V-REP

2.1.1 Links

As it can be seen, it is composed just by cylinders and a little cube wich is the base. To create these shapes I

select the pure shape I want (cilinder, sphere or cube). Once it is created, I can situate and orientate it as I want.

It has to differentiate between two natures for the same link in its properties. It can be seen in figures 2-2 and

2-3.

 Non-dynamically enabled link: This is the original shape of the link. This nature is necessary to

collision calculus and object detection by vision among other functions. We configurate the shape

properties like that:

(a) (b)

I

 2 DOF planar robot in V-REP®

4

4

 Figure 2-2.Non-dynamically enabled link body properties (a) and common properties (b).

 Dynamically enabled link: This nature looks for a simplified version link to help dynamic module

and to enjoy a better simulation experience. Here the link presents: mass, inertia and motor torque

response. We configurate the shape properties as it follows:

(a) (b)

Figure 2-3.Dynamically enabled link body properties (a) and common properties (b)

It is going to be described each of the options which appear in the object special properties dialog:

 Collidable: allows enabling or disabling collision detection capability for the selected collidable

object.

 Measurable: allows enabling or disabling minimum distance calculation capability for the selected

measurable object.

 Detectable: allows enabling or disabling proximity sensor detection capability for the

selected detectable object.

 Renderable: allows enabling or disabling the vision sensor detection capability for the

selected renderable object.

 Cuttable: allows enabling or disabling the mill cutting capability for the selected cuttable object.

As we will see next in hierarchy tree, non-dynamic links depends on dynamic ones and they move with them.

Non-dynamic links are only like shell. The difference I am talking about can be found in figure 2-4.

http://www.coppeliarobotics.com/helpFiles/en/collisionDetection.htm
http://www.coppeliarobotics.com/helpFiles/en/collidableObjects.htm
http://www.coppeliarobotics.com/helpFiles/en/collidableObjects.htm
http://www.coppeliarobotics.com/helpFiles/en/distanceCalculation.htm
http://www.coppeliarobotics.com/helpFiles/en/proximitySensors.htm
http://www.coppeliarobotics.com/helpFiles/en/detectableObjects.htm
http://www.coppeliarobotics.com/helpFiles/en/visionSensors.htm
http://www.coppeliarobotics.com/helpFiles/en/renderableObjects.htm
http://www.coppeliarobotics.com/helpFiles/en/mills.htm
http://www.coppeliarobotics.com/helpFiles/en/cuttableObjects.htm

5

Figure 2-4.Non-Dynamically enabled links robot (above) and dynamically enabled link robot (down)

It can be seen that dynamic shapes are much simpler than non-dynamic shapes. To have this result we need to

select he shape and click on Edit/Morph selection into convex shapes option. During the simulation, we are

only interested in seeing non-dynamically enabled links behavior, because of that we need to change the mask

of dynamically enabled links inside Scene Object Properties/Common/Camera Visibility layers. To determine

in which layer we put our links we need to know which are activated in the scene inside Tools/Layers.

2.1.2 Joints

In the same way we have added shapes, joints can be added (revolute, prismatic and spherical). There are two

posibilities for situating and orientating joints in our model:

 Manually: as we did with links.

 Deviant-Hatemberg module: You introduce all parameters and they will be situated and orientated

automatically.

The different modes to use a joint can be found in figure 2-5.

 Figure 2-5.Joint modes

 2 DOF planar robot in V-REP®

6

6

We are going to focus on torque/force mode, to dynamic control, and inverse kinematic mode, to obtain

jacobian matrix, follow paths and kinematics control. Besides, we must habilitate: motors, dynamic control

and set maximum velocity and torque in the joint dynamic properties as we can see in figure 2-6.

 Figure 2-6.Joint dynamic properties

We are going to study soon what each element means.

2.1.3 Hierarchy

This is the final and most important step for our model to work properly. I would like to say that in the manual

I have mentioned before this topic does not have the relevance that it deserves. Firstly, we have to set a base

and then create a dependency with it. It is important to know that a joint moves what depends on it, but it has

to have only ONE body directly linked. If we linked a second one, it would not notice motor’s presence and it

is linked with the last one neither so it would fall. To combine two links that depend on the same joint, I have

chosen Merge selected shapes option in Edit/Grouping/Merging. The result is a new figure which includes the

two links. Our model’s hierarchy, taking into account what has been said, can be found in figure 2-7.

Figure 2-7.Model’s hierarchy tree

7

2.2 Dynamic control

At this point we are going to set joints values by user interface composed by sliders that can be added in the

software. For joint control we are going to leave the default parameters, a proporcional controller with gain 0,

1 [(rad/s)/rad].

2.2.1 Slider interface

As I have said before, we are going to design it with a tool that V-REP brings. Every slider has a position in

the interface (button handle) and it will be useful at programming time. It can be seen in figure 2-8.

Figure 2-8.Designing user interface

It is interesting to say that this functionality is not brought by new versions of V-REP. I have written this scene

with V-REP version 3.04.00 (rev 1) and when I updated software to a newer version, user interface appears

only during simulation and works properly, but can not be modified.

2.2.2 Code

The structure of my code must follow in that case and the different types are found in the user manual.

Furthermore, all predefined API functions language brings are also explained in it. It would make no sense to

detail which parameter receive each one when it is said in the manual. Script model, which is more adequate to

our application, is non-threaned child script. I link this script to my robot base as it can be seen in figure 2-9.

Figure 2-9.Script linked to robot base

 2 DOF planar robot in V-REP®

8

8

In this script, which can be found in appendix A clearly expalined, we can see two different parts: variables

initialization and code execution during simulation.

2.2.3 Demo

All this points are properly implemented in 2GOF_dynamicslider.ttt scene.

Figure 2-10.Dynamic control with slider demo

2.2.4 How do we control?

Firstly, it is not clear enough how from moving the slider we have obtained the desired position, from control’s

point of view.

Figure 2-11.Action from user’s point of view

As we are going to implent in Matlab afterwards, it is interesting to know what all parameters in the joint

dynamic properties mean inside the control loop. Thinking over the behavior of each parameter we arrive to

the control diagram which can be seen in figure 2-12.

9

Figure 2-12.Dynamic control diagram

From left to right, we can distinguish all the elements of this diagram in the options as we can see in the figure

2-13.

(a) First controller (b) Second controller and motor

Figure 2-13.Assignment in the dynamic control diagram

In the first controller, if we enable Position control (PID), we will be controlling in position while we

modulate in velocity with PID that brings implementated. In the next dialog, Motor enable option is to enable

or disable motor block. Target velocity option will appear inaccessible while we had been enabled position

controller. In case we do not enable position control, a joint velocity reference will be passed which will be

reached inmediatly if the maximum torque is big enough, in other case, it will gradually reach it.

2.3 Kinematics control

Our goal now is to get jacobian for a determinated position. By defining differents position or a path, we will

gain different values of the jacobian which can be interpolated to obtain symbolic jacobian. We have to change

joint mode to Inverse kinematics mode to work properly in this case.

2.3.1 Obtaining position in the target location

To create a new position we have to create two dummies, one that will be in the extreme of the robot (tip) and

other one in the location we wish (target). Inverse kinematics module, which will be explained in the next

point, will generate the correspondent position for that location and orientation in the plane. We have to

configurate the relation between the two dummies next as it can be seen in figure 2-14.

 2 DOF planar robot in V-REP®

10

10

Figure 2-14.Configuration between dummies

In the hierarchy tree, they must be distributed like it can be seen in figure 2-15.

Figure 2-15.Correct distribution of dummies in hierarchy

2.3.2 Inverse Kinematics Module

With this module, we can create a kinematics controller for the IK group we wish two dummies in our case. In

the options of the module, we can see different options, of which we need to know their meaning.

Figure 2-16.Action from user’s point of view

We can choose the method of calculus between Pseudoinverse and DLS. DLS is helpful when Pseudoinverse

fails, for example, when a robot is near a singularity o it is a redundant robot. In case we select DLS, we can

choose what damping we want. The bigger the damping is, the better approximation will be, but with the

inconvenient of it being slower. Related to the number of iterations, it depends on the method we have choosen

and the resolution we want. If we choose DLS, a bigger number of iterations will be necessary. For our

example, we will choose a DLS with moderate damping as we can see in figure 2-17.

11

Figure 2-17.IK module configuration

In the next step, we have to create an IK group for our two dummies which has to have the configuration we

can see in figure 2-18.

Figure 2-18.IK group configuration

 2 DOF planar robot in V-REP®

12

12

2.3.3 Code

It is necessary to clearly know how functions retrieve data in this case to interpretate them correctly. Clear

examples of that are functions which get Jacobian matrix, Deep awareness of their outputs is needed.This code

can be found in the appendix B clearly commented and detailed.

2.3.4 Demo

All this points are correctly implemented in 2GOF_IK.ttt scene. It can be seen who Jacobian matrix appears on

the console window in figure 2-19.

Figure 2-19.Jacobian result on the console window

2.3.5 How do we control?

IK module is really opaque and we do not really know what it does. It follows the control diagram which can

be foun in figure 2-20.

13

Figure 2-20.Kinematics control diagram

The reference we have passed to it is the position target dummy position. We have found an important

limitation which is not being able to modify neither the controller nor the method of calculus. This can be poor

in certain cases. We will explore this diagram in a deeper way in Matlab.

 2 DOF planar robot in V-REP®

14

14

15

3 HUMANOID ROBOT IN V-REP®

n this section we are going to develop the example of a humanoid robot (Biolid Type A) which can be

found in Ingeniería de Sistemas y Automática department of our school. It is interesting to focus on this

configuration to set aside common configurations studied along degree.

3.1 Buildind up

The mayority of shapes I have used to build it up have been proportionated by Rafael Matínez Márquez in his

thesis Diseño de un sistema de vuelo de un robot humanoide. It is detailed in the manual that the favorite

format to import shapes from others design softwares, CATIA V5 in my case, is .stl format. All shapes can be

found in the folder named as Piezas. Final result can be seen in figure 3-1.

Figure 3-1.Humanoid robot in V-REP

It is needed to create non-dynamically enabled links and dynamically enabled links. We have to select the

same options we have chosen in 2 DOF robot. Furthermore, we have to simplify dynamically enabled links

with Morph selection into convex shapes option. But first, we need to connect all the links properly; in the

same way in the same way it was done. I have been especially careful with elements hierarchy and shape

merging. In this case I have choosen the chest as base of our robot and legs and arms elements dependent of it.

Finally, hierarchy resulted follows the scheme we can see in figure 3-2.

I

 Humanoid robot in V-REP®

16

16

Figure 3-2.Humanoid hierarchy tree

It can be taken into account what I mentioned in the last chapter about merging shapes and not to have nested

properly links with joints. A bad hierarchy model can produce results as that when it tries to move joints in the

ankle as it can be seen in figure 3-3.

Figure 3-3.Result of a bad hierarchy three

17

Finally, we have to configurate dynamically enabled links in the way mentioned before to have a properly

behavior of the robot during simulation as can be seen in Figure 3-4.

Figure 3-4.Humanoid dynamically enabled links

We cannot forget that in the simulation we are only interested in seeing non-dynamically enabled links, due to

the fact that they are the ones that may collide with other elements.

3.2 Arms dynamic controller

To control dynamically both arms I am going to proceed like I did in the second chapter. Firstly, I select torque

mode for joints and leave all default parameters. Afterward, I add the same type of user interface I have

created before as we can see in figure 3-5.

Figure 3-5.UI to arms control

 Humanoid robot in V-REP®

18

18

3.2.1 Code

Conceptually, it is not different from the case of two grades of freedom. This code can be found in the

appendix C clearly commented and detailed.

3.2.2 Demo

All has been properly implemented in Arms_control.ttt scene.

Figure 3-6.Arms control demo

3.3 Left Leg dynamic controller

We can control each leg in the same way now, for this example, the left one has been chosen. Obviously, as I

will handle it as I wish, my robot will lose its balance and it will fall. This can be found correctly implemented

in Leg_control.ttt scene and this code can be found in the appendix D clearly commented and detailed.

Figure 3-7.Leg control demo

19

3.4 Controlling in open loop to walk

It is not possible to directly modify kinematics control limitations that will be present in this point. As we

cannot control stability elements such as waist and legs, we are going to aproach the problem from two

different ways.

3.4.1 Kinematics control: IK chain with dummies

The main idea is to establish two kinematics chains for each foot. Each chain has associated two dummies: a

tip (situaded in the foot sole) and a target (situated in the end of the foot). I have created two kinematics chains

which include all the joints from each leg. Each chain will follow a straight path with a determined velocity

that can be modify. Each kinematics chain will move following the dummies’ movement. Along code

execution we will be gainging robot absolute position and dummie in the path to determinate the next step.

This idea is discussed in certains topics in the forum I have mentioned in the introduction. Furthermore, it is

implemented correctly in an example V-REP brings (Asti robot).In this example, it is created an accurate path

so that it exists a certain swinging that looks like it is a closed loop control when it is not. For our robot waist

does not represent the main support, it uses the inclination of ankles and this method does not take into account

that. From the example mentioned, it can be extracted that a really specifically path must been created, which

does not appear quite interesting from control’s point of view. Due to these arguments, we ruled out this

method. Nevertheless, this code can be found in the appendix E clearly commented and detailed. It can be

found implemented in Biolid_walk_ik.ttt scene.

3.4.2 Dynamic control: State machine

In this case, I am going to design a little state machine where in each state a different position of the step is

declarated. Changing between states is conditionated by certain joint arrives to established refence. Different

positions that are going to be established can be seen in figures 3-8, 3-9 and 3-10.

Figure 3-8.Required inclination to not lose balance

 Humanoid robot in V-REP®

20

20

Figure 3-9.Step beginning

Figure 3-10.Step ending

21

It is a simple code, but it is tedious and not quite interesting from control’s point of view; this is the reason

why I’m not going to explain all the steps included in this process. It is implemented in Biolid_walk_dim.ttt

scene and code can be found in the appendix F clearly commented and detailed.

At this point, I have to find a more effective control strategity. Matlab® seems a good candidate for this task.

In the next chapter we are going to see how connection between Matlab® and V-REP® we can establish.

 Humanoid robot in V-REP®

22

22

23

4 API CONECTION WITH MATLAB®

n this chapter, we are going to study th conection beetwen Matlab and V-REP. This conection follows a

client-server protocol, where Matlab is the client an V-REP is the server. To understand this protocol in a

better way, the user’s manual is really helpful, because in it there is a detailed explaination. To establish

this connection there are two possibilities:

1. When V-REP starts (continuous remote API server service): It is necessary to write a few

command lines in the window that appears when software starts and modify certain API

libraries. Connection is established In spite of the fact that no simulation is running.

2. From a script in V-REP (temporary remote API server service): This is the easiest option and

the one that has been chosen. In this mode, connection can only be established during

simulation. We are going to develop how this conection works.

All the functions which are going to be decribed can be found in the remote API chapter of the user’s manual

(Bibliography [8]).

4.1 What is it needed?

From Matlab’s side we need three files which must ALWAYS be in our workspace:

remoteApiProto.m

remApi.m

remoteApi.dll

These files are libraries of functions we are going to need to send messages from client side (Matlab).

They can be found in the sofware’s files in hard disk of our computer.

4.2 How can we send messages?

It will be communicated both sides through port 19999 of our computer. To start or close connection we need

the following commands from each side:

V-REP: We need a non-threaned child script like we have done before in which we have to open the

connection:

if (simGetScriptExecutionCount ()==0) then

simExtRemoteApiStart (19999); end;

This connection will close when simulation stops.

Matlab: To open the connection we need certain API functions which are clearly explained in the user

manual:

vrep=remApi (' remoteApi ') ;

vrep.simxFini sh (-1);

clientID=vrep.simxStart ('127.0.0 .1',19999 , true , true , 5000 , 5) ;

First command creates API library, second command closes all conections which are opened and we

established the connection with the last one. The paremeters are these from left to right:

I

 API conection with Matlab®

24

24

1. The ip address where the server is located (i.e. V-REP)

2. The port number where to connect

3. If true, then the function blocks until connected (or timed out).

4. If true, then the communication thread will not attempt a second connection if a connection was

lost.

5. Timeout in ms:

a. if positive: the connection time-out in milliseconds for the first connection attempt. In

that case, the time-out for blocking function calls is 5000 milliseconds.

b. if negative: its positive value is the time-out for blocking function calls. In that case, the

connection time-out for the first connection attempt is 5000 milliseconds.

6. Indicates how often data packets are sent back and forth. Reducing this number improves

responsiveness, and a default value of 5 is recommended.

At this point, both sides will receive all messages they send between them. If we want to close the

connection from Matlab side, we must proceed like this:

vrep.simxGetPingTime(clientID) ;

vrep.simxFinish(clientID) ;

vrep.delete ();

First command guarantees last message we have sent has had time to arrive. Finally, we close connection.

With these steps we have defined all protocol needed in the connection.

25

5 DYNAMIC MODEL IN MATLAB

t this point we are going to analyze robot dynamic model from Matlab and compare it to V-REP. In

first place, we need to identify V-REP joint motor model.

The diagram we are going to follow will be the one that can be found in figure 5-1.

Figure 5-1.Comunication diagram

Matlab function which sends joint velocity is VREPROBOT.m. This function receives reference from

controller and sends it to server. Besides, this function gains joint position value requesting them to the server.

This function and others I am going to describe in this chapter can be found from appendix G to P.

5.1 V-REP joint motor model

In order to identify motor transfer function and parameters, we are going to focus on one joint robot with one

link as we can see in figure 5-2.

Figure 5-2.One DOF Robot

Firstly, we do not know if inertia of the motor is in relation to the inertia of the link. We need to simulate

several experiments with differents inertias of the link and use the results which give a good estimation. We

simulate in open loop in Matlab and do different simulations changing inertia of the link robot in V-REP, as

we can see in figure 5-3.

A

 Dynamic model in Matlab

26

26

Figure 5-3.Open loop simulations

We need to have setepped expermients; what this means is that it is needed to go from inertias order e-2 to e3

increasing up the order in the next simulation. Summing up, we are to simulate six times, enough time to have

good estimations. Now we have joint velocity and joint torque of the motor for inertias orders from e-2 and e0

to the same joint velocity reference:

Figure 5-4.Joint Velocity Reference

27

Figure 5-5.Torque and Joint Velocity planar 1DOF robot to differents inertias order

From the results of the simulation it can be concluded that it is a motor controllated by a proportional.To

identify all motor parameters and transfer function it is clear that follos equations (1).

1
1

);(

)(

1
)(

)(

N
qdKpTorque

qd

qd
NqdqdKpTorque

BsJJm
sG

TorqueqdBqddJJm

REF

REF

LINK

LINK

 (1)

Where Jm is the inertia of the motor [Nm], Jlink is the inertia of the link [Nm], B is the viscosity of the motor

[Nm/(rad/s)], N is relation of transmission and Kp is the proportional action of the motor.

From the results of the simulations changing Jlink for the different experiments, it can be concluded that the

parameters of the motors are:

Inertia=0.0765 [Nm]

Viscosity= 6.9577 [Nm/(rad/s)]

Reduction factor=70

74.11
1

e
N

Kp

 Dynamic model in Matlab

28

28

It is given by a first orden system like this:

1011.0

0.1437
1

1
)(

sN
KpsG (2)

It is clear now that inertia of the link must be higher than the inertia of the motor to simulate dynamic robot

model properly and not to simulate motor model. Due to this conlusion, we have to increase our inertia of the

link to have a realistic simulation. We are going to change order of inertia to e0.

Now we have to build our dynamic model in Matlab. Peter Corke’s robotics toolbox is the easiest way to

change dynamic model parameters and simulation. We program our robot with the features we have

mentioned as it can be seen in figure 5-6.

Figure 5-6.Peter Corke one DOF robot

We simulate in the same we did with V-REP robot as we can see in figure 5-7.

Figure 5-7.Open loop simulations

To calculate robot joint velocity, we are going to use slaccel function. This S-function computes robot joint

acceleration with joint position, velocity and torque of the motor as inputs as it can be seen in figure 5-8.

29

Figure 5-8.Dynamic model block

The result for our adjustment can be found in figure 5-9.

Figure 5-9.Output joint position comparision

 Dynamic model in Matlab

30

30

5.2 2 DOF dynamic control

We look for control diagram which has been exposed in the second chapter:

Figure 5-10.Dynamic control diagram

It does not exist any API command to set joint torque directly, you can only get it. Due to this fact, we are

going to simulate motor block in V-REP. It is the same for joint velocity, so we will have to derivate position.

Our discrete control model in Matlab now can be seen in figure 5-11.

Figure 5-11.Initial dynamic control diagram in Matlab

Nevertheless, to apply this diagram we must disable Motor enabled option in joint dynamic properties to

velocity controller works as we wish. If this option es enabled, a velocity controller will be activated which

receives TargetVelocity as reference which will foot the reference we pass in our model.Furthermore, if we

disable motor option, we will not be able to apply joint velocity to joint motor with API commands, because it

is not the required configuration for the joints. We have to leave velocity control to V-REP, here it is another

limitation. Each joint will have the configuration we can found in figure 5-12.

31

Figure 5-12.Joint Dynamic Properties to control in Matlab

Finally, our control in Matlab is the one we can see in figure 5-13.

Figure 5-13.Final dynamic control diagram in Matlab

I apply a joint path which will start in 0 [rad] and it will end in 0.8[rad]. My controller will be a proportional

controller with proportional constant terrm equal to 0.2[(rad/s)/rad].

It is interesting to say that it is necessary to enable Real Time Simulation option in V-REP to Matlab and V-

REP to have the same time intervals.

 Dynamic model in Matlab

32

32

The step that follows, now that we have identified motor model, is to compare the results we will obtain with

dynamic control of 2 DOF robot in V-REP to Matlab. First, we are going to build 2 DOF dynamic model in

Matlab as we did with 1 DOF. This robot can be seen in figure 5-14.

Figure 5-14.Peter Corke 2 DOF robot

And now we simulate them and represent them as it can be seen in figure 5-15.

Figure 5-15.Output joint position comparision

In conclusion, it has not been easy to estimate dynamic model, but we have obtained a really good estimation

for motor model of V-REP and we have finally understood all V-REP dynamic.

33

6 KINEMATICS CONTROL FROM MATLAB®

6.1 Pseudo inverse Kinematics control to planar 2 DOF robot

We are going to open software options range and we are going to implement our own kinematics control by

Pseudoinverse. Between Matlab and V-REP we want to send and receive the same data, so we will use the

function VREPROBOT.m. The control diagram we are going to follow will be the one we can see in figure 6-

1.

Figure 6-1.Kinematics control diagram-

Pseudoinverse algotithm is given by equations (3)

11

1

)(:

Vz

Vy

Vx

=
q2d

q1d

TT

PSEUDO

PSEUDO

JJJJ

J
 (3)

It will be needed to calculate the pseudoinverse several times during the simulation, so this task is going to be

carried out by the command pinv of Matlab, whish is faster.

As it has been said before, we are going to leave V-REP motor block simulation. This diagram implemented in

Matlab can be seen in figure 6-2.

 Kinematics control from Matlab®

34

34

Figure 6-2.Kinematics control diagram in Matlab

To demonstrate its operation, a simulation in which a circle path reference is received will be carried out.

Position controller that is going to implementated will be a PI with Ti=100 [s] and Kp=0.5[(m/s)/m]. To

explore V-REP more, I am going to add a dummy at the end of the robot and I am going to plot XY postion in

two different graphs as we can see in figure 6-3.

Figure 6-3.Plotting results in V-REP

35

Finally, the results of the complete simulation can be found in figures 6-4 and 6-5.

Figure 6-4.Reference versus Output XY position

Figure 6-5.Reference versus Output XY position

 Kinematics control from Matlab®

36

36

6.2 DLS kinematics control to 4 DOF robot

To study all options V-REP brings, we are going to implement DLS method to a redundant robot such as 4

DOF robot:

 Figure 6-6.4 DOF planar robot in V-REP

With this new configuration, we need to be specially carefull about being close to singular configurations. In

order to have acceptable results, we are going to improve the DLS algorithm V-REP brings. The DLS

algorithm is given by:

121)(: IkJJJJ TT

DLS (4)

Where k is damping factor and I is identity matrix. In our case, k will not be a statict value like in V-REP.

Damping factor has a maximum value k0 at singular configurations and zero in other case. So it should be a

variable that must be shape for singular configurations and theirs neighbourhood:

20
2

)det(
exp:

TJJ
kk (5)

Where ε is a shaping factor which is between 0 and 1.

We practically have the same diagram in Matlab; the only change being the jacobian pseudoinverse code.

Now, we have two new design parameters to obtain better results as we can see in figure 6-7-.

Figure 6-7.DLS kinematics control diagram in Matlab

37

The position controller that is going to be implemented will be a PI with Ti=100 [s] and Kp=1.2[(m/s)/m].

DLS algorithm will have a damping factor equal to 0.9 and shape factor 0.9. Finally, the results of the

complete simulation can be found in figures 6-8 and 6-9.

Figure 6-8.Reference versus Output XY position

Figure 6-9.Reference versus Output XY position

 Kinematics control from Matlab®

38

38

39

7 KINECT SENSOR AND V-REP

Ur final experience with V-REP will be to connect XBOX’s Kinect sensor to V-REP in order to handle

every robot in V-REP with our own body. It is a matter of great interest, due to the fact that the user has

de possibility to plug the physical robot in V-REP, and it can be teleoperated with the user’s own body.

Figure 7-1.Kinect sensor

To connect Kinect to V-REP, we are going to need two softwares in their first versions, OpenNI and NITE, in

adittion to Kinect’s drivers. Once all are instaled, we need to copy the following files in our VREP’s

installation directory in our PC:

Glut32.dll (In its latest version)

OpenNI.dll

SamplesConfig.dll

The problem here is that drivers application V-REP executes (KinectServer.exe) are deprecated and they

cannot be found easily, due to the fact that software owner website was shut down. In the same way, softwares

before mentioned (OpenNI and NITE) must be in their first version. OpenNI2 and NITE2 are not valid. I have

read through several topics in Coppelia Forum and the main option is to modify the code of the application

KinectServer.exe which can be found in VREP’s installation directory. To check this, questions were asked in

the forum, and this was the answer received from Coppelia:

http://www.forum.coppeliarobotics.com/viewtopic.php?f=9&t=6671&p=26600#p26600

Several people have had whis problem, and nobody has been able to solve it yet. Nevertheless, looking for in a

deeper way, I have found this link in which you can download all old versions and it is explained why they can

be found so easily:

https://fivedots.coe.psu.ac.th/~ad/kinect/installation.html

We are now able to test it in V-REP. We add in our empty scene a new element named interface to kinect.ttm.

This element has a script which aks for information about our body pose Kinect provides to the server. Our

body pose is given a by a simple skeleton. Basically, it is executed KinectServer.exe application. All connected

follows the next diagram:

O

http://www.forum.coppeliarobotics.com/viewtopic.php?f=9&t=6671&p=26600%23p26600
https://fivedots.coe.psu.ac.th/~ad/kinect/installation.html

 Kinect sensor and V-REP

40

40

Figure 7-2.Connection diagram

If we run our scene, we will have the result which can be seen in figure 7-3.

Figure 7-3.Kinect simulation

Which follows is to associate this skeleton to the humanoid robot we have studied.

41

7.1 Controlling Biolid Humanoid with Kinect Sensor

I am going to associate each point from the skeleton; we have handled before with kinect sensor, with our

Biolid Humanoid. In my case, I am only going to associate arms joints. Once they are associated, Biolid will

follow the variations in position of the points with an inverse kinematics joint control mixed with torque joint

control.

To connect with the KinectServer.exe application, I am going to reuse the code we can find in the interface to

kinect.ttm. To associate each joint with the skeleton, there is a scene, which is proporcionated by V-REP,

named astiKinectControl.ttt. Nevertheless, this code has several errors. One of them is to define certain

variables as local when they are global. An example of this clearly happens in lines 233 and 234 of the code.

Once we have corrected the code, we need to define several IK groups which contain the dummies related to

the skeleton:

Figure 7-4.Hierarchy three and IK groups in our scene

We are going to set DLS as calculation method, 6 as maximum number of iterations and 0.1 of damping factor

for each IK group.

 Kinect sensor and V-REP

42

42

Finally, we obtain the behavior we were looking for as we can see in figure 7-5:

Figure 7-5.Kinect simulation

This scene correctly implemented can be found in Biolid_Kinect_Control.ttt and the code of this scene in the

appendix Q.

43

8 FINAL CONSIDERATION AND FUTURE WORKS

The main goals achieved with the present investigation was to study V-REP in a deep way and

communicate it with Matlab, new robot configurations and new robot control techniques for me.

In order to make control humanoid robot walks, one of the future works to do will be to develop a

kinematics control as we have seen in this thesis. In addition, it can be explored connections API

connections with others softwares such as ROS. Furthermore, it will be interesting to explore all V-

REP such as object detection or path planning.

Finally, it can be also challenging to connect physical humanoid robot to V-REP and teleoperated it

with Kinect sensor.

 Final consideration and future works

44

44

45

BIBLIOGRAPHY

[1]
Siciliano, B.; Sciavicco, L.; Villani, L. & Oriolo, G. Robotics. Modelling, Planning and Control.

Springer, 2009

[2]
Serena Ivaldi, V. P. & Norix, F. Tools for dynamics simulation of robots: a survey based on user

feedback. arXiv:1402.7050 [cs.RO], 2014

[3

[3]
Robotis.CO. L. Biolid Premium Kit Manual web site.

Link: https://issuu.com/ro-botica/docs/quick_start_v1_low_es

[4]
Coppelia Robotics. V-REP 3.4.0 download web site.

Link: http://www.coppeliarobotics.com/downloads.html

[5]
Coppelia Robotics. Forum web site.

Link: http://www.forum.coppeliarobotics.com/

[6]
Coppelia Robotics. API functions web site.

Link: http://www.coppeliarobotics.com/helpFiles/en/apiFunctions.htm

[7]
Coppelia Robotics. Remote API functions to Matlab web site.

Link: http://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionsMatlab.htm

[8]
Coppelia Robotics. V-REP user guide web site.

Link: http://www.coppeliarobotics.com/helpFiles/

[9]
Vázquez Martínez, R. Trabajo de Fin de Grado en Ingeniería Aeroespacial Intensificación de

Vehículos Aeroespaciales. Diseño de un sistema de vuelo para un robot humanoide. Universidad de

Sevilla, 2014

[10]
M.I. Sánchez, J.Á. Acosta and A.Ollero, "Integral Action in First-Order Closed-Loop Inverse

Kinematics. Application to Aerial Manipulators", in IEEE International Conference on Robotics and

Automation. Seatle, Washington, May 26-30, 2015.

[11]
Davison, A. OpenNI/NITE Installation on Windows.

Link: https://fivedots.coe.psu.ac.th/~ad/kinect/installation.html

[12]
Corke, Peter, Robotics, Vision and Control, Springer, 2011

https://issuu.com/ro-botica/docs/quick_start_v1_low_es
http://www.coppeliarobotics.com/downloads.html
http://www.forum.coppeliarobotics.com/
http://www.coppeliarobotics.com/helpFiles/en/apiFunctions.htm
http://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionsMatlab.htm
http://www.coppeliarobotics.com/helpFiles/
https://fivedots.coe.psu.ac.th/~ad/kinect/installation.html

 Bibliography

46

46

47

APPENDIX

Appendix A: Dynamic control with slider for 2 DOF robot in V-REP:

if (sim_call_type==sim_childscriptcall_initialization) then

 --Handle user interface:

 ui=simGetUIHandle("Control_articulaciones")

 --Set joints ranges:

 minVal={0, -- q1

 0} -- q2

 rangeVal={ math.pi/4, -- q1

 math.pi/4} -- q2

 --Sliders positions in the UI:

 uiSliderIDs={3, 4}

 --Handle the joints:

articulaciones={simGetObjectHandle("Joint_1"),simGetObjectHandle("Joint_2")}

 --Apply ranges to UI:

 simSetUISlider(ui,uiSliderIDs[1],(simGetJointPosition(articulaciones[1])-

minVal[1])*1000/rangeVal[1])

 simSetUISlider(ui,uiSliderIDs[2],(simGetJointPosition(articulaciones[2])-

minVal[2])*1000/rangeVal[2])

end

if (sim_call_type==sim_childscriptcall_cleanup) then

end

if (sim_call_type==sim_childscriptcall_actuation) then

 --Set joint values:

simSetJointTargetPosition(articulaciones[1],minVal[1]+simGetUISlider(ui,uiSli

derIDs[1])*rangeVal[1]/1000)

simSetJointTargetPosition(articulaciones[2],minVal[2]+simGetUISlider(ui,uiSli

derIDs[2])*rangeVal[2]/1000)

end

 Appendix

48

48

Appendix B: Obtain Jacobian for 2 DOF robot in V-REP:

if (sim_call_type==sim_childscriptcall_initialization) then

--Get Inverse Kinematics Group:

 ik=simGetIkGroupHandle("IK_2GOF")

end

if (sim_call_type==sim_childscriptcall_cleanup) then

end

if (sim_call_type==sim_childscriptcall_actuation) then

--OBTAIN Jacobian:

--Handle ik group:

 simHandleIkGroup(ik)

 local jaco =simComputeJacobian(ik,0, NULL)

 local jacobiano,indice=simGetIkGroupMatrix(ik,0)

--index[1] represents the number of jacobian's rows.

--index[2] represents the number of jacobian's columns.

-- Jacobian data is organized like that:

--

[row1,column1],[row2,column1],..,[rowN,column1],[row1,column2],[row2,column2]

,...

--Turn the result into a character string to display on command window:

 for i=1,indice[1],1 do

 str=''

 for j=1,indice[2],1 do

 if #str~=0 then

 str=str..', '

 end

 str=str..string.format("%.1e",jacobiano[(j-

1)*indice[1]+i])

 end

 simAddStatusbarMessage(str)

 end

 end

49

Appendix C: Arms dynamic controller with sliders for humanoid robot in V-

REP.

if (sim_call_type==sim_childscriptcall_initialization) then

 biolid=simGetObjectHandle("Biolid")

 ui=simGetUIHandle("Biolid_arms_control")

 simSetUIButtonLabel(ui,0,simGetObjectName(biolid).." Arms Control")

 minVal={

 0, -- Left shoulder 1

 0, -- Left shoulder 2

 0, -- Left shoulder 3

 0, -- Right shoulder 1

 0, -- Right shoulder 2

 0} -- Right shoulder 3

 rangeVal={

 2*math.pi, -- Left shoulder 1

 2*math.pi, -- Left shoulder 2

 2*math.pi, -- Left shoulder 3

 2*math.pi, -- Right shoulder 1

 2*math.pi, -- Right shoulder 2

 2*math.pi} -- Right shoulder 3

 uiSliderIDs={4,5,6,7,8,9}

rightArmJoints={simGetObjectHandle("Right_arm_joint_1"),simGetObjectHandle("R

ight_arm_joint_2"),simGetObjectHandle("Right_arm_joint_3")}

leftArmJoints={simGetObjectHandle("Left_arm_joint_1"),simGetObjectHandle("Lef

t_arm_joint_2"),simGetObjectHandle("Left_arm_joint_3")}

 --Assign values to the sliders:

 simSetUISlider(ui,uiSliderIDs[1],(simGetJointPosition(rightArmJoints[1])-

minVal[1])*1000/rangeVal[1])

 simSetUISlider(ui,uiSliderIDs[2],(simGetJointPosition(rightArmJoints[2])-

minVal[2])*1000/rangeVal[2])

 simSetUISlider(ui,uiSliderIDs[3],(simGetJointPosition(rightArmJoints[3])-

minVal[3])*1000/rangeVal[3])

 simSetUISlider(ui,uiSliderIDs[4],(simGetJointPosition(leftArmJoints[1])-

minVal[4])*1000/rangeVal[4])

 simSetUISlider(ui,uiSliderIDs[5],(simGetJointPosition(leftArmJoints[2])-

minVal[5])*1000/rangeVal[5])

 simSetUISlider(ui,uiSliderIDs[6],(simGetJointPosition(leftArmJoints[3])-

minVal[6])*1000/rangeVal[6])

end

if (sim_call_type==sim_childscriptcall_cleanup) then

end

if (sim_call_type==sim_childscriptcall_actuation) then

 -- Read desired values from the user control:

simSetJointTargetPosition(rightArmJoints[1],minVal[1]+simGetUISlider(ui,uiSli

derIDs[1])*rangeVal[1]/1000)

simSetJointTargetPosition(rightArmJoints[2],minVal[2]+simGetUISlider(ui,uiSli

derIDs[2])*rangeVal[2]/1000)

 Appendix

50

50

simSetJointTargetPosition(rightArmJoints[3],minVal[3]+simGetUISlider(ui,uiSli

derIDs[3])*rangeVal[3]/1000)

simSetJointTargetPosition(leftArmJoints[1],minVal[4]+simGetUISlider(ui,uiSlid

erIDs[4])*rangeVal[4]/1000)

simSetJointTargetPosition(leftArmJoints[2],minVal[5]+simGetUISlider(ui,uiSlid

erIDs[5])*rangeVal[5]/1000)

simSetJointTargetPosition(leftArmJoints[3],minVal[6]+simGetUISlider(ui,uiSlid

erIDs[6])*rangeVal[6]/1000)

end

51

Appendix D: Right Leg dynamic controller with sliders for humanoid robot in

V-REP.

if (sim_call_type==sim_childscriptcall_initialization) then

 biolid=simGetObjectHandle("Biolid")

 ui=simGetUIHandle("Biolid_Leg_control")

 simSetUIButtonLabel(ui,0,simGetObjectName(biolid).." Leg Control")

 minVal={

 0, -- 1

 0, -- 2

 0, -- 3

 0, -- 4

 0, -- 5

 0} -- 6

 rangeVal={

 2*math.pi, -- 1

 2*math.pi, -- 2

 2*math.pi, -- 3

 2*math.pi, -- 4

 2*math.pi, -- 5

 2*math.pi} -- 6

 uiSliderIDs={4,5,6,7,8,9}

rightLegJoints={simGetObjectHandle("Right_leg_joint_1"),simGetObjectHandle("R

ight_leg_joint_2"),simGetObjectHandle("Right_leg_joint_3"),

simGetObjectHandle("Right_leg_joint_4"),

simGetObjectHandle("Right_leg_joint_5"),

simGetObjectHandle("Right_leg_joint_6")}

 --Assign values to the sliders:

 simSetUISlider(ui,uiSliderIDs[1],(simGetJointPosition(rightLegJoints[1])-

minVal[1])*1000/rangeVal[1])

 simSetUISlider(ui,uiSliderIDs[2],(simGetJointPosition(rightLegJoints[2])-

minVal[2])*1000/rangeVal[2])

 simSetUISlider(ui,uiSliderIDs[3],(simGetJointPosition(rightLegJoints[3])-

minVal[3])*1000/rangeVal[3])

 simSetUISlider(ui,uiSliderIDs[4],(simGetJointPosition(rightLegJoints[4])-

minVal[1])*1000/rangeVal[1])

 simSetUISlider(ui,uiSliderIDs[5],(simGetJointPosition(rightLegJoints[5])-

minVal[2])*1000/rangeVal[2])

 simSetUISlider(ui,uiSliderIDs[6],(simGetJointPosition(rightLegJoints[6])-

minVal[3])*1000/rangeVal[3])

end

if (sim_call_type==sim_childscriptcall_cleanup) then

end

if (sim_call_type==sim_childscriptcall_actuation) then

 -- Read desired values from the user control:

simSetJointTargetPosition(rightLegJoints[1],minVal[1]+simGetUISlider(ui,uiSli

derIDs[1])*rangeVal[1]/1000)

simSetJointTargetPosition(rightLegJoints[2],minVal[2]+simGetUISlider(ui,uiSli

derIDs[2])*rangeVal[2]/1000)

 Appendix

52

52

simSetJointTargetPosition(rightLegJoints[3],minVal[3]+simGetUISlider(ui,uiSli

derIDs[3])*rangeVal[3]/1000)

simSetJointTargetPosition(rightLegJoints[4],minVal[4]+simGetUISlider(ui,uiSli

derIDs[4])*rangeVal[4]/1000)

simSetJointTargetPosition(rightLegJoints[5],minVal[5]+simGetUISlider(ui,uiSli

derIDs[5])*rangeVal[5]/1000)

simSetJointTargetPosition(rightLegJoints[6],minVal[6]+simGetUISlider(ui,uiSli

derIDs[6])*rangeVal[6]/1000)

end

53

Appendix E: Walking by IK calculation with dummies for humanoid robot in V-

REP.

if (sim_call_type==sim_childscriptcall_initialization) then

 biolid=simGetObjectHandle("Biolid")

 lFoot=simGetObjectHandle("Left_foot_target")

 rFoot=simGetObjectHandle("Right_foot_target")

 lPath=simGetObjectHandle("Left_foot_path")

 rPath=simGetObjectHandle("Right_foot_path")

 lPathLength=simGetPathLength(lPath)

 rPathLength=simGetPathLength(rPath)

 dist=0

 nominalVelocity=3e-3

end

if (sim_call_type==sim_childscriptcall_cleanup) then

end

if (sim_call_type==sim_childscriptcall_actuation) then

-- Get the desired position and orientation of each foot from the paths:

--Depends on the selected path lenght calculation method.

 t=simGetSimulationTimeStep()*nominalVelocity

 dist=dist+t

 lPos=simGetPositionOnPath(lPath,dist/lPathLength)--return values

position: table of 3 values (x, y and z)

 lOr=simGetOrientationOnPath(lPath,dist/lPathLength)--return values

eulerAngles: table of 3 values (alpha, beta and gamma)

 rPos=simGetPositionOnPath(rPath,dist/rPathLength)

 rOr=simGetOrientationOnPath(rPath,dist/rPathLength)

-- Now transform the absolute position/orientation to position/orientation

relative to biolid

 biolidM=simGetObjectMatrix(biolid,-1)--Specify -1 to retrieve the

absolute transformation matrix

--return value table of 12 numbers:

 --The x-axis of the orientation component is

(matrix[1],matrix[5],matrix[9])

 --The y-axis of the orientation component is

(matrix[2],matrix[6],matrix[10])

 --The z-axis of the orientation component is

(matrix[3],matrix[7],matrix[11])

 --The translation component is

(matrix[4],matrix[8],matrix[12])

 biolidMInverse=simGetInvertedMatrix(biolidM)

 m=simMultiplyMatrices(biolidMInverse, simBuildMatrix(lPos,lOr))

--simMultiplyMatrices: return value the output matrix (the result of the

multiplication: matrixIn1*matrixIn2), same matrix as above.

--simBuildMatrix: return value the transformation matrix

 pos_or_ob=simMultiplyMatrices(biolidM,m)

 lPos={pos_or_ob[4],pos_or_ob[8],pos_or_ob[12]}

 lOr=simGetEulerAnglesFromMatrix(pos_or_ob) --table to 3 numbers

representing the Euler angles

 Appendix

54

54

 m=simMultiplyMatrices(biolidMInverse, simBuildMatrix(rPos,rOr))

 pos_or_ob=simMultiplyMatrices(biolidM,m)

 rPos={pos_or_ob[4], pos_or_ob[8], pos_or_ob[12]}

 rOr=simGetEulerAnglesFromMatrix(pos_or_ob)

-- Apply the desired ABSOLUTE positions/orientations to each foot (to two

dummy objects that are then handled by the IK module)

-- to automatically calculate all leg joint desired values.

 simSetObjectPosition(lFoot, -1,lPos) --Specify -1 to set the absolute

position

 simSetObjectOrientation(lFoot,-1,lOr)

 simSetObjectPosition(rFoot,-1,rPos)

 simSetObjectOrientation(rFoot,-1,rOr)

end

55

Appendix F: Walking by state machine for humanoid robot in V-REP.

if (sim_call_type==sim_childscriptcall_initialization) then

 dist=0

 nominalVelocity=3e-2

 case=1

end

if (sim_call_type==sim_childscriptcall_cleanup) then

end

if (sim_call_type==sim_childscriptcall_actuation) then

v=simGetSimulationTimeStep()*nominalVelocity

dist=dist+v

if(case==1)then

if(simGetJointTargetPosition(simGetObjectHandle("Left_leg_joint_6"))<0.09)

then

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_6"),

math.pi/72+dist)

simSetJointTargetPosition(simGetObjectHandle("Left_leg_joint_6"),

math.pi/72+dist)

else

case=2

end

end

if(case==2) then

if(simGetJointTargetPosition(simGetObjectHandle("Right_leg_joint_4"))<0.6)

then

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_4"),

math.pi/24+dist)

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_3"), -

math.pi/12-dist)

else

case=3

end

end

if(case==3) then

if(simGetJointTargetPosition(simGetObjectHandle("Right_leg_joint_5"))<0.09)

then

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_5"), -

(math.pi/6-dist))

simSetJointTargetPosition(simGetObjectHandle("Right_leg_joint_6"), 0)

end

end

end

 Appendix

56

56

Appendix G: VREPROBOT function in Matlab for 2 DOF.

function [out]=VREPROBOT(in)

qdr1=in(1);

qdr2=in(2);

vrep=remApi('remoteApi'); %with the prototype file (remoteApiProto.m)

vrep.simxFinish(-1);%close all connections before

clientID=vrep.simxStart('127.0.0.1',19999,true,true,5000,5);

%%Handle joints:

[r1,

j1]=(vrep.simxGetObjectHandle(clientID,'Joint_1#',vrep.simx_opmode_blocking))

;%%r1=a remote API function return code////j1=position

[r2,

j2]=(vrep.simxGetObjectHandle(clientID,'Joint_2#',vrep.simx_opmode_blocking))

;

%%Move joints to the reference velocity:

vrep.simxSetJointTargetVelocity(clientID, j1, qdr1,

vrep.simx_opmode_oneshot_wait);

vrep.simxSetJointTargetVelocity(clientID, j2, qdr2,

vrep.simx_opmode_oneshot_wait);

%%Get the real position:

[s1, q1]=vrep.simxGetJointPosition(clientID, j1,

vrep.simx_opmode_oneshot_wait);

[s2, q2]=vrep.simxGetJointPosition(clientID, j2,

vrep.simx_opmode_oneshot_wait);

%%CHANGE THE FORMAT:

q1d=double(q1);

q2d=double(q2);

out=[q1d, q2d];

end

57

Appendix H: Discrete PID controller function in Matlab for 2 inputs.

function [out] = PID_pos(in)

e1k=in(1);

e2k=in(2);

t=in(3);

persistent int_e1k_1 int_e2k_1

%Variables inialitation:

if(t<1e-8)

 int_e1k_1 =0; int_e2k_1 =0;

end

T=0.01;

%PID parameters:

Ti=[1e20; 1e20];

Td=[0; 0];

Kp=[0.2; 0.2];

e1vk=e1k/T;

e2vk=e2k/T;

%Sum of errors

int_e1k= int_e1k_1 + e1k*T;

int_e2k= int_e2k_1 + e2k*T;

%Output motor current:

qd1r=Kp(1)*(e1k+Td(1)*e1vk+1/Ti(1)*int_e1k);

qd2r=Kp(2)*(e2k+Td(2)*e2vk+1/Ti(2)*int_e2k);

%Variables update:

int_e1k_1= int_e1k;

int_e2k_1= int_e2k;

qd1rd=double(qd1r);

qd2rd=double(qd2r);

[out]=[qd1rd, qd2rd];

end

 Appendix

58

58

Appendix I: Joint position reference function in Matlab for dynamic control.

function [out] = qref(in)

t=in(1);

persistent q1_1 q2_1;

if(t<1e-8)

 q1_1=0; q2_1=0;

end

if(t>1e-8 && q2_1<pi/4)

 q1r=q1_1+0.1;

 q2r=q2_1+0.1;

else

 q1r=q1_1;

 q2r=q2_1;

end

%%Variables update

 q1_1=q1r;

 q2_1=q2r;

out=[q1r, q2r];

end

59

Appendix J: Pseudoinverse function in Matlab for 2 DOF robot.

function [out]=PSEUDO_2GOF (in)

q1=in(1);

q2=in(2);

xd=in(3);

yd=in(4);

zd=in(5);

L1=5e-1;

L2=5e-1;

v=[xd; yd; zd];

J=[- L2*sin(q1 + q2) - L1*sin(q1), -L2*sin(q1 + q2);

 L2*cos(q1 + q2) + L1*cos(q1), L2*cos(q1 + q2);

 0, 0];

pseudo=pinv(J);

qd=pseudo*v;

out=qd;

end

Appendix K: Forward Kinematics function in Matlab for 2 DOF robot.

function [out] = FK_2GOF(in)

q1=in(1);

q2=in(2);

L1=5e-1;

L2=5e-1;

x = L1*cos(q1)+L2*cos(q1+q2);

y = L1*sin(q1)+L2*sin(q1+q2);

z=0;

out=[x, y, z];

end

 Appendix

60

60

Appendix L: XYZ Circle path in Matlab.

function [out] = circle_path(in)

t=in(1);

persistent angx_1 angy_1;

angx=0; angy=0;

if(t<1e-8)

 angx_1=0; angy_1=0;

 angx=0; angy=0;

end

if(t>1e-8)

 angx=angx_1+0.01;

 angy=angy_1+0.01;

 xr=cos(angx);

 yr=sin(angy);

 zr=5e-2;

else

 xr=cos(angx_1);

 yr=sin(angy_1);

 zr=5e-2;

end

%%Variables update

 angx_1=angx;

 angy_1=angy;

out=[xr, yr, zr];

end

61

Appendix M: DLS function in Matlab for 4 DOF robot.

function [out]=DLS_4GOF (in)

q1=in(1);

q2=in(2);

q3=in(3);

q4=in(4);

xd=in(5);

yd=in(6);

zd=in(7);

k=in(8);

E=in(9);

L=5e-1;

v=[xd; yd; zd];

J =[-L*(sin(q1 + q2 + q3) + sin(q1 + q2 + q3 + q4) + sin(q1 + q2) +

sin(q1)), -L*(sin(q1 + q2 + q3) + sin(q1 + q2 + q3 + q4) + sin(q1 + q2)), -

L*(sin(q1 + q2 + q3) + sin(q1 + q2 + q3 + q4)), -L*sin(q1 + q2 + q3 + q4);

 L*(cos(q1 + q2 + q3) + cos(q1 + q2 + q3 + q4) + cos(q1 + q2) + cos(q1)),

L*(cos(q1 + q2 + q3) + cos(q1 + q2 + q3 + q4) + cos(q1 + q2)), L*(cos(q1 +

q2 + q3) + cos(q1 + q2 + q3 + q4)), L*cos(q1 + q2 + q3 + q4);

 0,

0, 0,

0];

k=k0*exp(-det(J*J')/2*E^2);

pseudo=J'*inv(J*J'+k^2*eye(3));

qd=pseudo*v;

out=qd;

end

Appendix N: Forward Kinematics function in Matlab for 4 DOF robot.

function [out] = FK_4GOF(in)

q1=in(1);

q2=in(2);

q3=in(3);

q4=in(4);

L=5e-1;

x = L*(cos(q1 + q2 + q3) + cos(q1 + q2 + q3 + q4) + cos(q1 + q2) + cos(q1));

y = L*(sin(q1 + q2 + q3) + sin(q1 + q2 + q3 + q4) + sin(q1 + q2) + sin(q1));

z=0;

out=[x, y, z];

end

 Appendix

62

62

Appendix O: Peter Corke 1 DOF Robot

startup_rvc

%Parámetros D-H

R(1)=Link([0 0 0.5 0]);

R

%Parámetros dinámicos

R(1).m=4.335;

R(1).r=[-0.25 0 0];

R(1).I=4.335*[2.912e-01 0 0; 0 2.649 0; 0 0 2.781];
R(1).B=6.9589;%%Viscosidad
R(1).G=70;%%Relación de transmisión
R(1).Jm=0.0765;%%Inercia del motor

Robot_1DOF= SerialLink(R, 'name', '1DOF')

Robot_1DOF.gravity=[0 0 9.81]';

%%Representarlo:

Robot_1DOF.teach()

Appendix P: Peter Corke 2 DOF Robot

startup_rvc

%Parámetros D-H

R(1)=Link([0 0 0.5 0]);

R(2)=Link([0 0 0.5 0]);

R

%Parámetros dinámicos

R(1).m=4.335;

R(1).r=[-0.25 0 0];

R(1).I=4.335*[2.912e-01 0 0; 0 2.649 0; 0 0 2.781];

R(1).B=6.9589;%%Viscosidad
R(1).G=70;%%Relación de transmisión
R(1).Jm=0.0765;%%Inercia del motor

R(2).m=1.951;

R(2).r=[-0.25 0 0];

R(2).I=1.951*[1.242e-01 0 0; 0 2.145 0; 0 0 2.145];
R(2).B=6.9589;%%Viscosidad
R(2).G=70;%%Relación de transmisión
R(2).Jm=0.0765;%%Inercia del motor

Robot_2DOF= SerialLink(R, 'name', '2DOF')

Robot_2DOF.gravity=[0 0 9.81]';

%%Representarlo:

Robot_2DOF.teach()

63

Appendix Q: Biolid Kinect Control

-- Following function writes data to the socket (the data might be sent in

several packets)

writeSocketData=function(client,data)

 -- Check how many packets we need to send:

 local packetCount=0

 local s=#data

 while (s~=0) do

 packetCount=packetCount+1

 if (s>256-6) then -- this is the max packet size minus header size

 s=s-256+6

 else

 s=0

 end

 end

 -- Now send the data:

 s=#data

 local pointer=0

 while (s~=0) do

 packetCount=packetCount-1

 local sizeToSend=s

 if (s>256-6) then

 sizeToSend=256-6

 end

 s=s-sizeToSend

 local

header=string.char(59,57,math.mod(sizeToSend,256),math.floor(sizeToSend/256),

math.mod(packetCount,256),math.floor(packetCount/256))

 -- Packet header is: headerID (59,57), dataSize (WORD), packetsLeft

(BYTE)

 client:send(header..data:sub(pointer+1,pointer+sizeToSend))

 pointer=pointer+sizeToSend

 end

end

-- Following function reads data from the socket (that might be arriving in

several packets)

readSocketData=function(client)

 local returnData=''

 while (true) do

 -- Packet header is: headerID (59,57), dataSize (WORD), packetsLeft

(WORD)

 local header=client:receive(6)

 if (header==nil) then

 return(nil) -- error

 end

 if (header:byte(1)==59)and(header:byte(2)==57) then

 local l=header:byte(3)+header:byte(4)*256

 returnData=returnData..client:receive(l)

 if (header:byte(5)==0)and(header:byte(6)==0) then

 break -- That was the last packet

 end

 else

 return(nil) -- error

 end

 end

 return(returnData)

end

 Appendix

64

64

linkPoints=function(returnData,index1,index2,minConfidence)

 if

(returnData[4*index1+4]>minConfidence)and(returnData[4*index2+4]>minConfidenc

e) then

 local

data={returnData[4*index1+1],returnData[4*index1+2],returnData[4*index1+3],re

turnData[4*index2+1],returnData[4*index2+2],returnData[4*index2+3]}

 data[1]=data[1]-1

 data[4]=data[4]-1

 simAddDrawingObjectItem(lineContainer,data)

 end

end

threadFunction=function()

 while (simGetSimulationState()~=sim_simulation_advancing_abouttostop) do

 -- Send a request to the server (just anything):

 writeSocketData(client,' ')

 -- Read the reply from the server:

 local returnData=readSocketData(client)

 if (returnData==nil) then

 break -- Read error

 else

 returnData=simUnpackFloatTable(returnData)

 simAddDrawingObjectItem(lineContainer,nil)

 simAddDrawingObjectItem(sphereContainer,nil)

 torsoTransf=simGetObjectMatrix(objectHandle,-1)

 if (returnData[60]>0.5) then

torsoPos={returnData[57]*scalingFact/1000,returnData[58]*scalingFact/1000,ret

urnData[59]*scalingFact/1000}

 torsoPos=simMultiplyVector(m,torsoPos)

 end

 for i=0,15,1 do

 if (i<6)or(i>13) then

 if (returnData[4*i+4]>0.5) then

pointPos={returnData[4*i+1]*scalingFact/1000,returnData[4*i+2]*scalingFact/10

00,returnData[4*i+3]*scalingFact/1000}

 pointPos=simMultiplyVector(m,pointPos)

 pointPos[1]=pointPos[1]-torsoPos[1]

 pointPos[2]=pointPos[2]-torsoPos[2]

 pointPos[3]=pointPos[3]-torsoPos[3]

 pointPos=simMultiplyVector(torsoTransf,pointPos)

 returnData[4*i+1]=pointPos[1]

 returnData[4*i+2]=pointPos[2]

 returnData[4*i+3]=pointPos[3]

 pointPos[1]=pointPos[1]-1

 simAddDrawingObjectItem(sphereContainer,pointPos)

print(returnData[4*i+1],returnData[4*i+2],returnData[4*i+3])

 end

 end

 end

 linkPoints(returnData,0,2,0.5)

 linkPoints(returnData,1,3,0.5)

 linkPoints(returnData,5,14,0.5)

 linkPoints(returnData,4,14,0.5)

 linkPoints(returnData,2,4,0.5)

 linkPoints(returnData,3,5,0.5)

 linkPoints(returnData,4,5,0.5)

-- linkPoints(returnData,14,6,0.5)

65

-- linkPoints(returnData,14,7,0.5)

-- linkPoints(returnData,6,8,0.5)

-- linkPoints(returnData,7,9,0.5)

-- linkPoints(returnData,8,10,0.5)

-- linkPoints(returnData,10,12,0.5)

-- linkPoints(returnData,9,11,0.5)

-- linkPoints(returnData,13,11,0.5)

 linkPoints(returnData,4,15,0.5)

 linkPoints(returnData,5,15,0.5)

 if

(returnData[4*0+4]>0.5)and(returnData[4*1+4]>0.5)and(returnData[4*2+4]>0.5)an

d(returnData[4*3+4]>0.5)and(returnData[4*4+4]>0.5)and(returnData[4*5+4]>0.5)a

nd(returnData[4*14+4]>0.5) then

 pt1={returnData[4*4+1],returnData[4*4+2],returnData[4*4+3]}

 pt2={returnData[4*5+1],returnData[4*5+2],returnData[4*5+3]}

pt3={returnData[4*14+1],returnData[4*14+2],returnData[4*14+3]}

 v1={pt1[1]-pt2[1],pt1[2]-pt2[2],pt1[3]-pt2[3]}

 v2={pt3[1]-pt2[1],pt3[2]-pt2[2],pt3[3]-pt2[3]}

 n={v1[2]*v2[3]-v1[3]*v2[2],v1[3]*v2[1]-

v1[1]*v2[3],v1[1]*v2[2]-v1[2]*v2[1]}

 l=math.sqrt(n[1]*n[1]+n[2]*n[2]+n[3]*n[3])

 n[1]=n[1]/l

 n[2]=n[2]/l

 n[3]=n[3]/l

 dd={0,0,1.5,n[1],n[2],1.5+n[3]}

 correctionAngle=math.asin(n[3])

-- simAddDrawingObjectItem(lineContainer,dd)

 z={v1[2]*n[3]-v1[3]*n[2],v1[3]*n[1]-v1[1]*n[3],v1[1]*n[2]-

v1[2]*n[1]}

 l=math.sqrt(z[1]*z[1]+z[2]*z[2]+z[3]*z[3])

 z[1]=z[1]/l

 z[2]=z[2]/l

 z[3]=z[3]/l

 dd={0,0,1.5,z[1],z[2],1.5+z[3]}

-- simAddDrawingObjectItem(lineContainer,dd)

-- n[1]=-n[1]

-- n[2]=-n[2]

-- n[3]=-n[3]

 x={n[2]*z[3]-n[3]*z[2],n[3]*z[1]-n[1]*z[3],n[1]*z[2]-

n[2]*z[1]}

 dd={0,0,1.5,x[1],x[2],1.5+x[3]}

-- simAddDrawingObjectItem(lineContainer,dd)

 lsp=simGetObjectPosition(leftShoulder,-1)

 rsp=simGetObjectPosition(rightShoulder,-1)

 mm={0,0,0,0,0,0,0,0,0,0,0,0}

 mm[1]=x[1]

 mm[2]=n[1]

 mm[3]=z[1]

 mm[4]=returnData[17]

 mm[5]=x[2]

 mm[6]=n[2]

 mm[7]=z[2]

 Appendix

66

66

 mm[8]=returnData[18]

 mm[9]=x[3]

 mm[10]=n[3]

 mm[11]=z[3]

 mm[12]=returnData[19]

 mml=simGetInvertedMatrix(mm)

 mm[4]=returnData[21]

 mm[8]=returnData[22]

 mm[12]=returnData[23]

 mmr=simGetInvertedMatrix(mm)

leftHandP=simMultiplyVector(mml,{returnData[1],returnData[2],returnData[3]})

-- leftHandP={0,0,0}

 leftHandP[1]=leftHandP[1]+lsp[1]

 leftHandP[2]=leftHandP[2]+lsp[2]

 leftHandP[3]=leftHandP[3]+lsp[3]

rightHandP=simMultiplyVector(mmr,{returnData[5],returnData[6],returnData[7]})

-- rightHandP={0,0,0}

 rightHandP[1]=rightHandP[1]+rsp[1]

 rightHandP[2]=rightHandP[2]+rsp[2]

 rightHandP[3]=rightHandP[3]+rsp[3]

leftElbowP=simMultiplyVector(mml,{returnData[9],returnData[10],returnData[11]

})

-- leftElbowP={0,0,0}

 leftElbowP[1]=leftElbowP[1]+lsp[1]

 leftElbowP[2]=leftElbowP[2]+lsp[2]

 leftElbowP[3]=leftElbowP[3]+lsp[3]

rightElbowP=simMultiplyVector(mmr,{returnData[13],returnData[14],returnData[1

5]})

-- rightElbowP={0,0,0}

 rightElbowP[1]=rightElbowP[1]+rsp[1]

 rightElbowP[2]=rightElbowP[2]+rsp[2]

 rightElbowP[3]=rightElbowP[3]+rsp[3]

 simSetObjectPosition(leftHand,-1,leftHandP)

 simSetObjectPosition(rightHand,-1,rightHandP)

 simSetObjectPosition(leftElbow,-1,leftElbowP)

 simSetObjectPosition(rightElbow,-1,rightElbowP)

 end

 end

 simSwitchThread()

 end

end

simSetThreadSwitchTiming(200) -- We wanna manually switch for synchronization

purpose (and also not to waste processing time!)

-- We start the server on a port that is probably not used (try to always use

a similar code):

simSetThreadAutomaticSwitch(false)

67

local portNb=simGetIntegerSignal('freeLocalServerPort',true)

local portStart=simGetInt32Parameter(sim_intparam_server_port_start)

local portRange=simGetInt32Parameter(sim_intparam_server_port_range)

if (not portNb) then

 portNb=portStart

end

local newPortNb=portNb+1

if (newPortNb>=portStart+portRange) then

 newPortNb=portStart

end

simSetIntegerSignal('freeLocalServerPort',newPortNb,true)

simSetThreadAutomaticSwitch(true)

simLaunchExecutable('kinectServer.exe',portNb,1)

-- Build a socket and connect to the server:

 socket=require("socket")

 client=socket.tcp()

simSetThreadIsFree(true) -- To avoid a bief moment where the simulator

appears as locked

local result=client:connect('127.0.0.1',portNb)

simSetThreadIsFree(false)

-- Prepare the drawing containers for lines and spheres (to display the

skeleton):

lineContainer=simAddDrawingObject(sim_drawing_lines,4,0,-1,100,{1,0,0})

sphereContainer=simAddDrawingObject(sim_drawing_spherepoints,0.05,0,-

1,100,{0,0,1})

objectHandle=simGetObjectHandle('Biolid')

leftHand=simGetObjectHandle('leftHandSphere')

rightHand=simGetObjectHandle('rightHandSphere')

leftElbow=simGetObjectHandle('leftElbowSphere')

rightElbow=simGetObjectHandle('rightElbowSphere')

leftShoulder=simGetObjectHandle('leftShoulderSphere')

rightShoulder=simGetObjectHandle('rightShoulderSphere')

torsoPos={0,0,0}

scalingFact=0.7

w=0.7

correctionAngle=0

m=simBuildMatrix({0,0,0},{math.pi/2,0,0})

if (result==1) then

 -- Here we execute the regular thread code:

 res,err=xpcall(threadFunction,function(err) return debug.traceback(err)

end)

 if not res then

 simAddStatusbarMessage('Lua runtime error: '..err)

 end

end

client:close()

 Appendix

68

68

