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Resumen

Este trabajo se enmarca dentro del campo del control predictivo basado en modelo (MPC, por sus siglas
en inglés), con especial enfásis en problemas de control distribuido (DMPC).

El proyecto está orientado a sistemas compuestos por múltiples subsistemas con dinámicas acopladas
interactuando entre sí, y que a su vez están controlados en base al MPC. El objetivo será la evolución óptima
del sistema global operando de manera descentralizada mediante la incorporación del algoritmo de control
propuesto en [1]. De esta manera, el comienzo de este trabajo es el estudio e implementación de dicho
algoritmo, el cual es analizado en primer lugar en condiciones estándares de funcionamiento.
Con ello, se procede a considerar la posible presencia de agentes maliciosos en el sistema dispuestos a

inyectar información que pueda comprometer su evolución, lo que genera una importante brecha de seguridad.
Es en esta última situación en la que el trabajo hace especial hincapié, de ahí el notable enfoque hacia
problemas relacionados con ciberseguridad.

El estudio de los ataques que puede sufrir el algoritmo comienza con la presentación de distintas posibili-
dades con las que cuenta un agente malicioso durante el desarrollo del mismo para introducir información
falsa, así como el mecanismo por el cual ésta es extendida por el sistema. Igualmente, se expone cómo un
agente dispuesto a atacar puede optimizar algunas de dichas posibilidades para lograr un mayor grado de
aprovechamiento.

Finalmente, se introduce brevemente la técnica denominadamin-max con el fin de desarrollar unmecanismo
para la reacción ante dichos ataques, de manera que se mitiguen los problemas derivados de éstos.
La exposición teórica de lo aquí comentado está sucedida por una serie de simulaciones que permitirán

probar los resultados presentados analíticamente.
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Abstract

This project falls within the field of Model Predictive Control (MPC), with particular emphasis in dis-
tributed control problems (DMPC).

This work is geared towards systems composed of several subsystems with coupled dynamics which
interact with each other, and whose control is based on MPC. The goal in the first instance will be the control
of the overall system acting on a decentralized basis through the application of the algorithm presented in
[1]. Thus, this project begins with the study and implementation of the mentioned algorithm, which is first
analyzed in standard operating conditions.

Therewith, we proceed to consider the possible presence of malicious agents in the system that are willing to
inject information which might prejudice its evolution. The latter results in an important security breach which
is highlighted in the development of this project, hence its approach to problems related to cybersecurity.

The study of the attacks that the algorithmmay experience starts with a presentation of different possibilities
available to a malicious agent for introducing false information during the development of it. Furthermore,
the optimization of some of these possibilities in order to reach a higher level of effectiveness from the point
of view of the attacker is also discussed.

Finally, the min-max approach is briefly introduced with the purpose of coping with the attacks, in such a
way that it mitigates the problems derived from them.

The theoretical presentation is followed by the corresponding simulations with a view to prove the analytical
results.
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1 Introduction

1.1 Motivation of the project

This project focuses on the control of networked systems based on MPC. The objective will be addressed
in a distributed manner such that the systemwide control goals are intended to be attained by the actions of
several MPCs subsystems. For this reason, a division of the global system (or plant) into a set of components
that will be in charge of different controllers (or agents) will be considered. The increasing pressence of
large-scale networked systems in which control plays a very important role gives the distributed approach
special relevance nowadays.
Amongst the first aims of this work is the presentation and study of an algorithm that enable us to deal

with the problem as described. The algorithm used here is presented in [1] and proposes a cooperative
distributed framework which considers the couplings between the subsystems in which the plant has been
divided. Hence, the dependence and interaction between subsystems take particular importance along the
development of this project.
Once the algorithm has been introduced, the objective will be the enhancement of the mentioned plant’s

performance applying the latter. This leads to the definition of a standard case with which the normal perfo-
mance can be assessed. However, one of the main motivations of this work is not controlling under reliable
circumstances but analysing different possibilities for malicious controllers to introduce false information
in order to alter the standard performance in favour of themselves. It will be shown that there are various
alternatives for acting locally and steering the global evolution towards a new situation, hence the good
use of them supposes clear opportunities to be taken by the mentioned malicious agents. This leads to
problems associated with cibersecurity when the algorithm is implemented and whose study is objective of
this work. To this end, the theoretical presentation will be followed by the simulation of the alternatives on
given examples.
Before continuing, we are going to present briefly the principle elements of MPC which will be used in

this project.

1.2 A brief overview of MPC

Model predictive control (MPC) is a control strategy which is framed within the field of optimal controllers
and whose inherent features have made it increasingly important. An MPC controller can deal with multiple
inputs and outputs, nonlinear dynamics, multiple objectives and also copes with the corresponding constraints
on the system state and input. The advantages it offers have provided it with a great success in both industry
applications and research. Today’s situation and knowledge in the field is consequence of having undergone
an evolution in which improvements have been added and in which the possibilities that it offers have been
extended.

Although it has been referred to as a single control strategy, MPC encloses a set of techniques which share
certain commonalities. The basic elements used when applied MPC strategy are introduced below.

1.2.1 Prediction model

The prediction models are the mathematical expressions used in the application of the strategy to describe
the future behaviour of the systems. For that reason, a good design should lead to those models that consider,
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2 Chapter 1. Introduction

as far as possible, the dynamic characteristics of the process, as well as ensuing an useful tool for the analysis
of the control problem.

The application field of MPC includes, as it has been mentioned, linear and non-linear systems that are
modelled with the purpose of obtaining predicted information over a finite time horizon. This time horizon is
denoted as prediction horizon and will be from now on represented by N. Despite the fact that in this project
a state space representation will be used, other model structures, such as input-output representation, fall also
into the mentioned technique. A representation in the state space can be seen as

x(k+1) = f (x(k),u(k))

y(k) = g(x(k),u(k))
(1.1)

where the letters x, u and y indicate respectively the state, input and output of the system. In addition, the
course of time will be reflected in the time index k.

1.2.2 Cost function

The cost function defines the optimization problem that is held each sample time and, which in turn determines
the decision variables for a subsequent receding horizon implementation.

The application of MPC technique implies the resolution of a certain number of optimization problems
with respect to the manipulating variables of the system at issue.

The objective functions that will appear in this project are defined as quadratic expressions that weigh the
state error with respect to a predefined reference, as well as the input vector, both over a determined N.

The letter φ has been chosen to represent cost functions along this work.

φ(x(k),u(k),k) =
N−1

∑
n=0

[(
x(k+n)− xre f

)T Q(k+n)
(
x(k+n)− xre f

)
+u(k+n)T R(k+n)u(k+n)

]
(1.2)

As a consequence of using the regulation of the system to the origin as control objective in many of the
suceeding parts, the explicit dependence of the reference will not be shown, without loss of generality.

Hereon, when applying cost functions with this structure, the corresponding matrices Q and R are assumed
to be such as Q(k+n)> 0,R(k+n)> 0, for all n = 0,1,...,N−1. The latter conditions imply that we will
deal with convex positive definite functions.

1.2.3 Control Law and receding horizon implementation

The MPC control law denotes the solution u∗(k) that is arrived at when solving the optimization problem at
time index k.

u∗(k) = argmin
u

φ(x(k),u(k)) (1.3)

Therefore, it represents a sequence of inputs calculated for the next sample times. In this project this
number of sample times is again N, so that, per each k the control law can be repesented as (1.4).

u∗(k) =


u∗(k|k)

u∗(k+1|k)
...

u∗(k+N−1|k)

 (1.4)

A commonn characteristic of particular importance of MPC strategies is the application of a receding
horizon implementation. This means that per instant time k only the first input of the solution in (1.3) is
implemented. The receding horizon implementation, whose graphical representation can be seen in Figure
1.1, will be applied each time step.
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Figure 1.1 Scheme of receding horizon implementation.

1.2.4 Constraints

The optimization problem to reach u∗(k) will be done taking into account the current and future constraints
for the N next sample times. In this work, the constraints will be imposed on the state and inputs trajectories
calculated, so that the implementation of u∗(k) must lead to a sequence of states that complies with certain
conditions. Let x∗(k) denote the resulting state trajectory, then the constraints can be expressed as

u∗(k) ∈U

x∗(k) ∈X
(1.5)

where U and X are the sets that define them.





2 Model of the coupled system

In this project the plant/system is considered to comprise M subsystems, each of them controlled by its
corresponding agent and denoted by the index i, where i = 1,2,...M.

One of the options to address the problem of controlling networked system is to use decentralized-models
which assume insignificant the effects of the interactions (2.1).

xii(k+1) = Aiixii(k)+Biiui(k)

yi(k) =Ciixii(k)
(2.1)

That is, a certain subsystem i is supposed not to be affected by the rest of subsystems j ( j 6= i). Despite
its computational simplicity, the reliability of this assumption, together with the lack of information that is
shared, is questionable and may end up in a not suitable control performance. On the contrary, it is possible
to define a discrete model to calculate the effects caused by interactions of a certain j on i ( j 6= i). (2.2).

xi j(k+1) = Ai jx j(k)+Bi ju j(k)

yi(k) =
M

∑
j=1

Ci jxi j(k)
(2.2)

A proposal to consider the information provided by both of them, is the mathematical model (2.3), which
will be used hereafter to address the problem of distributed MPC. The purpose of the resulting combination
is to deal with the couplings and possible exchange of variables between subsystems and taking account of
them when calculating the optimal decisions. In short, (2.3) contains the effects of the interaction between
the subsystem i and any other j in the plant, as well as the state information given by the decentralized model,
expressing them as discrete LTI equations.

xi(k+1) = Aiixi(k)+Biiui(k)+
M

∑
j=1, j 6=i

[
Ai jx j(k)+Bi ju j(k)

]
yi(k) =Cixi(k)

i = 1,2, ...,M.

(2.3)

From now on, the number of components of the state xi and input ui for a certain i and all k will be denoted
respectively as ni and mi. Therefore,

xi ∈ Rni , ui ∈ Rmi

Ail ∈ Rni×nl , Bil ∈ Rni×ml , ∀l = 1,...,M

2.1 Extension of the model over a control horizon N

During the development of this project, and due to the application of MPC strategy, the use of vectors which
represent predicted trajectories will be recurrent. For this reason, and basing the following reasoning in (2.3),
the corresponding matrix representation when extending the model over a control horizon N is presented

5



6 Chapter 2. Model of the coupled system

(N has been supposed in the reasoning to be greater than 3). That is, the aim here is to arrive at a single
expression which provides the predicted trajectory of xi for the following N time steps.

The notation (k+n|k) as time indicator has been used, in which the parameter on the right side, k, indicates
the current discrete time and, therefore, the one from which current information is taken. The parameter on
the left, k+n, where n is a positive number, specify the time index of the prediction, either for state or input.

Let’s define wi j(k) as

wi(k) =
M

∑
j=1, j 6=i

[
Ai jx j(k)+Bi ju j(k)

]
(2.4)

for a simpler formulation of (2.3).

xi(k+1) = Aiixi(k)+Biiui(k)+wi(k)

yi(k) =Cixi(k)

i = 1,2, ...,M.

(2.5)

Making use of (2.5) with the aforementioned purpose, the way of proceeding for reaching the desired
result is presented.

xi(k+1|k) =Aiixi(k|k)+Biiui(k|k)+wi(k|k)
xi(k+2|k) =A2

iixi(k|k)+AiiBiui(k|k)+Aiiwi(k|k)+Biiui(k+1|k)+wi(k+1|k)
xi(k+3|k) =A3

iixi(k|k)+A2
iiBiiui(k|k)+A2

iiwi(k|k)+AiiBiiui(k+1|k)+Aiiwi(k+1|k)
+Biiui(k+2|k)+wi(k+2|k)
...

xi(k+N|k) =AN
ii xi(k|k)+AN−1

ii Biiui(k|k)+AN−1
ii wi(k|k)+AN−2

ii Biiui(k+1|k)+AN−2
ii wi(k+1|k)

+AN−3
ii Biiui(k+2|k)+AN−3

ii wi(k+2|k)+ ...+AN−N
ii Biiui(k+N−1|k)+AN−N

ii wi(k+N−1|k)


xi(k+1|k)
xi(k+2|k)

...
xi(k+N|k)

=


Aii
A2

ii
...

AN
ii

xi(k|k)+


Bii

AiiBii Bii
...

. . .
AN−1

ii Bii · · · · · · Bii




ui(k|k)
ui(k+1|k)

...
ui(k+N−1|k)

+


I
Aii I
...

. . .
AN−1

ii · · · · · · I




wi(k|k)
wi(k+1|k)

...
wi(k+N−1|k)


(2.6)

Similarly, the trajectory wi(k) can be expressed, as consequence of its defintion, in terms of the states’
and inputs’ variables related to every subsystem j 6= i. Concretely,

wi(k|k)
wi(k+1|k)

...
wi(k+N−1|k)

=
M

∑
j=1, j 6=1




Ai j
A2

i j
...

AN
i j

x j(k|k)+


Bi j

Ai jBi j Bi j
...

. . .
AN−1

i j Bi j · · · · · · Bi j




u j(k|k)
u j(k+1|k)

...
u j(k+N−1|k)




(2.7)

Therefore, result (2.6) equates to
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
xi(k+1|k)
xi(k+2|k)

...
xi(k+N|k)

=


Aii
A2

ii
...

AN
ii

xi(k|k)+


Bii

AiiBii Bii
...

. . .
AN−1

ii Bii · · · · · · Bii




ui(k|k)
ui(k+1|k)

...
ui(k+N−1|k)



+
M

∑
j=1, j 6=i


I

Aii I
...

. . .
AN−1

ii · · · · · · I




Ai j
A2

i j
...

AN
i j

x j(k|k)

+
M

∑
j=1, j 6=i


I

Aii I
...

. . .
AN−1

ii · · · · · · I




Bi j
Ai jBi j Bi j

...
. . .

AN−1
i j Bi j · · · · · · Bi j




u j(k|k)
u j(k+1|k)

...
u j(k+N−1|k)



Definitions:

Gxi =


Aii
A2

ii
...

AN
ii

 , Gui =


Bii

AiiBii Bii
...

. . .
AN−1

ii Bii · · · · · · Bii

 , Gwi =


I

Aii I
...

. . .
AN−1

ii · · · · · · I



G
x j
wi =


I

Aii I
...

. . .
AN−1

ii · · · · · · I




Ai j
A2

i j
...

AN
i j

 , G
u j
wi =


I

Aii I
...

. . .
AN−1

ii · · · · · · I




Bi j
Ai jBi j Bi j

...
. . .

AN−1
i j Bi j · · · · · · Bi j



xi(k) =


xi(k|k)

xi(k+1|k)
...

xi(k+N−1|k)

 , ui(k) =


ui(k|k)

ui(k+1|k)
...

ui(k+N−1|k)

 , wi(k) =


wi(k|k)

wi(k+1|k)
...

wi(k+N−1|k)



Result:
The expressions in (2.8) represent the matricial form which arise when extending the subsystem’s model

in (2.3), for some i, through a determined time horizon N.

xi(k+1) = Gxixi(k|k)+Guiui(k)+Gwiwi(k)

xi(k+1) = Gxixi(k|k)+Guiui(k)+
M

∑
j=1, j 6=i

[
G

x j
wix j(k|k)+G

u j
wiu j(k)

] (2.8)

2.2 Centralized model based on (2.3).

As well as using the model to reach a prediction for the following N steps, it may be also be used with the
goal of designing a model in which all the subsystems equations are involved. To this end, the components of
the state and input vector are defined to be the sequence of every xi and ui for i = 1,2, ...M. After application
of (2.3) to every i using the previous definitions, a single matrix framework is reached for the entire plant
(2.9).The result we get to is a centralized representation which implicitly assumes all the subsystems’ models.
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The explicit dependence of the index i will, as consequence, be lost. The corresponding matrices Acen, Bcen
and Ccen are the ones shown below.


x1
x2
...

xM

(k+1)

︸ ︷︷ ︸
x(k+1)

=


A11 A12 · · · A1M
A21 A22 · · · A2M
...

. . .
AM1 AM2 · · · AMM


︸ ︷︷ ︸

Acen


x1
x2
...

xM

(k)
︸ ︷︷ ︸

x(k)

+


B11 B12 · · · B1M
B21 B22 · · · B2M
...

. . .
BM1 BM2 · · · BMM


︸ ︷︷ ︸

Bcen


u1
u2
...

uM


︸ ︷︷ ︸

u(k)


y1
y2
...

yM

(k)
︸ ︷︷ ︸

y(k)

=


C1

C2
. . .

CM


︸ ︷︷ ︸

Ccen


x1
x2
...

xM

(k)
︸ ︷︷ ︸

x(k)

→ x(k+1) = Acenx(k)+Bcenu(k), y(k) =Ccenx(k)
(2.9)

where
x ∈ R∑i ni , u ∈ R∑i mi , Acen ∈ R∑i ni×∑i ni, Bcen ∈ R∑i ni×∑i mi



3 From communication-based MPC to
cooperation-based MPC

The integration of the appointed M subsystems in the entire plant implies that the overall behavior will be
consequence of the decisions taken by each of the agents (i = 1,2,...,M). Different formulations have been
developed in order to address this issue, with a certain idea behind and a goal. Moreover, the definition of the
controls is directly related to the assessment of the interactions in the interconected system we are dealing
with.

3.1 Communication-based MPC

First of all, it may be a possibility to solve the problem under the assumption that each subsystem’s MPC
only knows its own cost function, which is presented in (3.1) and which supposes a weighted sum of the state
and input’s components. In addition, at any iteration, the information about the state and input trajectories of
the rest of the subsystems at the previous iteration will be provided, and used for the corresponding update
equations. In other words, if we denote the current iteration number as p, we have that every i at p will
receive every xp−1

j 6=i (k),u
p−1
j 6=i (k).

With that conditions applied parallelly for every i integrated, what is proposed in communication-based
MPC is the individual resolution of the optimization problem (3.2) and the succeeding implementation of the
optimal inputs calculated. It is clearly observable that the assumption taken by all i that every j 6= i remain at
iteration p−1 is maintained during the entire time length, so preceding information is always used in the
optimizations. These assumptions, along with the fact that any of them knows how their decision will affect
the others, and therefore the overall performance, induce the risk of ending up in disagreements between
subsystems objectives. In the case that it leads up to an equilibrium, we will reach the named non-cooperative
or Nash equilibrium. The latter is characterized by the fact that when it is reached, no single subsystem’s
MPC will improve its cost function if they decide to deviate from it. That is, the inputs calculated give each
of them their best local situations.

Cost function communication-based MPC:

φi(xi(k),ui(k),x
p−1
j 6=i (k),u

p−1
j 6=i (k);xi(k|k)) =

N−1

∑
n=0

xT
i (k+n|k)Qi(k+n|k)xi(k+n|k)+uT

i (k+n|k)Ri(k+n|k)ui(k+n|k)
(3.1)

Optimization problem:

ui,opt = arg min
ui

φi(xi(k),ui(k),x
p−1
j 6=i (k),u

p−1
j 6=i (k);xi(k|k)) (3.2)

9
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subject to the following constraints

xi(k+n+1|k) = Aixi(k+n|k)+Biui(k+n|k)+∑
j 6=i

[
Ai jx

p−1
j (k+n|k)+Bi ju

p−1
j (k+n|k)

]
ui(k+n|k) ∈Ui, k ≤ k+n≤ k+N−1

ui(k+n|k) = 0, n≥ N

i ∈ {1,M}.

(3.3)

where Ui is the set of admissible control decisions for subsystem i. The omission of the superscript
related to the iteration implies that it is a variable associated to p, either defined or to be defined. Due to
the fact that the objective is the control of the plant, some disadvantages can be found in the use of the
communication-based technique. This way of proceeding gives rise to the possibility of not taking the best
decision for the plant, despite being the best by the point of view of each i. At this point, we should introduce
the concept of cooperation.

3.2 Cooperation-based MPC

With the objective of finding the optimal achievable performance considering the aforementioned conflicts
that may occur between subsystem’s objectives, formulations which propose acting by means of cooperation
have been developed. To characterize this concept, we have the so-called Pareto surface, which supposes an
important term in simultaneous optimization of several objective functions. In a Pareto solution, we have that
the cost of one i cannot be improved without affecting negatively the cost of one j 6= i. Mathematically, it
could be possible to address the plantwide problem modifying the cost function to optimize by the agents. In
that new formulation, it will be important to consider the influence of the decision taken by one subsystem
to the rest of them, as well as their predicted evolution in the iteration before. The optimization problem to
solve in the so-called feasible cooperation-based MPC can be written as the weighted sum in (3.4), in which
preceding information will again be assumed but, in this case, the objective will assess the entire plant.

φi,c(ui(k),u
p−1
j 6=i (k);x(k|k)) =

M

∑
l=1

λlφl(ui(k),u
p−1
j 6=i (k);xl(k|k)) (3.4)

where φl represents the function defined in (3.1) for agent l, and λl the weighting factor. The letter c is referred
here to the term cooperation-based and it has been introduced to differentiate the entire summatory that
define the function to optimize and φi(·) presented above. Moreover, the dependance of the state’s trajectory
is avoided using the expression (2.8) as shown later.

Table 3.1 Summary (Communication-/Cooperation- based MPC).

Agent i problem
Communication-based MPC minui

φi(ui,u
p−1
j 6=i ;xi(k))

Cooperation-based MPC minui ∑
M
l=1 λlφl(ui,u

p−1
j 6=i ;xl(k))

After determined transformations, the entire summation indicated in φi,c(·) can be simplified without
affecting the optimization’s solution, so that the expression in (3.5) is reached as proved below. Given
that the optimization problem in (3.4) equals the one in (3.5) it can therefore be used in the corresponding
implementation.

min
ui

1
2

ui(k)
T Hiui(k)+

(
ri(u

p−1
j 6=i (k))+qi(x(k|k))

)T
ui(k) (3.5)

Proof of (3.5):
1) Removal of the dependance of xi in φi(·)(i = 1,..,M).

φi(ui,u
p−1
j 6=i ;xi(k)) =

(
Gxixi(k|k)+Guiui(k)+Gwiw

p−1
i (k)

)T
Q̂i

(
Gxixi(k|k)+Guiui(k)+Gwiw

p−1
i (k)

)
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+uT
i (k)R̂iui(k)+ cte

2) Introduction of the result in 1) for each i in the sumatory (3.4)

λi (Gxixi(k|k)+Guiui(k)+Gwiwi(k))
T Q̂i (Gxixi(k|k)+Guiui(k)+Gwiwi(k))+λiuT

i (k)R̂iui(k)

+
M

∑
l=1,l 6=i

λl

(
Gxlxl(k|k)+Gulu

p−1
l (k)+

M

∑
j 6=l, j 6=i

[
G

x j
wlx j(k|k)+G

u j
wlu

p−1
j (k)

]
+Gxi

wlxi(k|k)+Gui
wlui(k)

)T

Q̂l

(
Gxlxl(k|k)+Gulu

p−1
l (k)+

M

∑
j 6=l, j 6=i

[
G

x j
wlx j(k|k)+G

u j
wlu

p−1
j (k)

]
+Gxi

wlxi(k|k)+Gui
wlui(k)

)

+
M

∑
l=1,l 6=i

λlu
p−1
l (k)T R̂lu

p−1
l (k)+ cte

3) Avoidance of the terms that are independent of ui(k) and definition of the problem.

min
ui

λiuT
i

(
GT

uiQ̂iGui + R̂i

)
ui +λi

(
2xi(k|k)T GT

xiQ̂iGui +2wi(k)
T GT

wiQ̂iGui

)
ui

+
M

∑
l=1,l 6=i

λlui(k)
(

Gui
wl

T Q̂lG
ui
wl + R̂l

)
ui(k)

+
M

∑
l=1,l 6=i

λl2

(
xl(k|k)T GT

xlQ̂lG
ui
wl +up−1

l (k)
T

GT
ulQ̂lG

ui
wl +

M

∑
j 6=l, j 6=i

[
G

x j
wlx j(k|k)+G

u j
wlu

p−1
j (k)

]T
Q̂lG

ui
wl

)
ui(k)

+
M

∑
l=1,l 6=i

λl2
(

xi(k|k)T Gxi
wl

T Q̂lG
ui
wl

)
ui(k)

4) Regrouping of the terms and division by two. Final expression for the desired optimization reached.

min
ui

1
2

uT
i

(
λi

[
GT

uiQ̂iGui + R̂i

]
+

M

∑
l=1,l 6=i

λl

[
Gui

wl
T Q̂lG

ui
wl + R̂l

])
ui

+λi

(
xi(k|k)T GT

xiQ̂iGui +
M

∑
j 6=i

[
G

x j
wix j(k|k)+G

u j
wiu

p−1
j (k)

]T
Q̂iGui

)
ui

+
M

∑
l=1,l 6=i

λl

(
up−1

l (k)
T

GT
ulQ̂lG

ui
wl +

M

∑
j 6=l, j 6=i

up−1
j (k)

T
G

u j
wl

T
Q̂lG

ui
wl

)
ui(k)

+
M

∑
l=1,l 6=i

λl

(
xl(k|k)T GT

xlQ̂lG
ui
wl +

M

∑
j 6=l

x j(k|k)T G
x j
wl

T
Q̂lG

ui
wl

)
ui(k)

min
ui

1
2

uT
i

(
λi

[
GT

uiQ̂iGui + R̂i

]
+

M

∑
l=1,l 6=i

λl

[
Gui

wl
T Q̂lG

ui
wl + R̂l

])
ui

+

λi

[
M

∑
j 6=i

G
u j
wiu

p−1
j (k)

]T

Q̂iGui +
M

∑
l=1,l 6=i

λl

[
Gulu

p−1
l (k)+

M

∑
j 6=l, j 6=i

G
u j
wlu

p−1
j (k)

]T

Q̂lG
ui
wl

ui

+

λi

[
Gxixi(k|k)+

M

∑
j 6=i

G
x j
wix j(k|k)

]T

Q̂iGui +
M

∑
l=1,l 6=i

λl

[
Gxlxl(k|k)+

M

∑
j 6=l

G
x j
wlx j(k|k)

]T

Q̂lG
ui
wl

ui(k)
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Definitions:

ri(u
p−1
j 6=i (k)) = λi

[
M

∑
j 6=i

G
u j
wiu

p−1
j (k)

]T

Q̂iGui +
M

∑
l=1,l 6=i

λl

[
Gulu

p−1
l (k)+

M

∑
j 6=l, j 6=i

G
u j
wlu

p−1
j (k)

]T

Q̂lG
ui
wl

qi(x(k|k)) = λi

[
Gxixi(k|k)+

M

∑
j 6=i

G
x j
wix j(k|k)

]T

Q̂iGui +
M

∑
l=1,l 6=i

λl

[
Gxlxl(k|k)+

M

∑
j 6=l

G
x j
wlx j(k|k)

]T

Q̂lG
ui
wl

Hi = λi

[
GT

uiQ̂iGui + R̂i

]
+

M

∑
l=1,l 6=i

λl

[
Gui

wl
T Q̂lG

ui
wl + R̂l

]
We have to underline here that the previous reasoning has introduced an additional penalty by a ponderation

of the state’s prediction at time k+N. This term is not included in (3.1), but to come up with the result
above each matrix Q̂i has been defined as follows. This introduction should not disrupt the convexity of
the optimization problem, so that the choice of Qi(k+N) must be done in accordance with a criterion that
ensures it.

Q̂i =


Qi(k+1)

Qi(k+2)
. . .

Qi(k+N)

 R̂i =


Ri(k)

Ri(k+1)
. . .

Ri(k+N−1)





4 Controller design procedure

To solve the feasible cooperation-based MPC problem, we can use the result in (3.5) to calculate the optimal
input for each agent at iteration p. In the corresponding algorithm, a certain maximum of iterations and a
stability condition will be applied to determine the decision variables to implement per step. In other words,
each sample time, the problem (3.5) will be solved iteratively, together with the update of the state and input
trajectories at every p, until convergence is reached or until a fixed pmax. The last control law arrived will
define the controls for each subsystem. Here, a slightly different way of resolution have been chosen, but
with the same purpose and fundamentals, in a manner that the same approach of distributed control will be
implemented.

4.1 Centralized model

Firstly, we draw from the centralized model of the plant, whose equations can be seen in (2.9). Proceeding
as in the reasoning (2.1), but using, in this case, the equations of the centralized model, we get to a matrix
trajectory framework for N steps. Then, introducing this result into the centralized cost function, expressed
equally in a matrix way, the optimization problem for the centralized case is defined.

min
u(k)

φ(x,u;x(k|k)) = 1
2

u(k)T Hu(k)+FT u(k) (4.1)

H = GT
u Q̂Gu + R̂

F = GT
u Q̂Gxx(k|k)

Proof of (4.1)
1) Extension of (2.9) over a control time horizon N.

x(k+1|k)
x(k+2|k)

...
x(k+N|k)

=


Acen
A2

cen
...

AN
cen

x(k|k)+


Bcen

AcenBcen Bcen
...

. . .
AN−1

cen Bcen · · · · · · Bcen




u(k|k)
u(k+1|k)

...
u(k+N−1|k)

 (4.2)

Definitions:

x(k+1)=


x(k+1|k)
x(k+2|k)

...
x(k+N|k)

 ,Gx =


Acen
A2

cen
...

AN
cen

 ,Gu =


Bcen

AcenBcen Bcen
...

. . .
AN−1

cen Bcen · · · · · · Bcen

 ,u(k)=


u(k|k)
u(k+1|k)

...
u(k+N−1|k)


2) Cost function (expressed matricially)

φ(x,u;x(k|k)) = xT (k+1)Q̂x(k+1)+uT (k)R̂u(k)

13
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Definitions:

Q̂ =


Q(k+1)

Q(k+2)
. . .

Q(k+N)

 , R̂ =


R(k)

R(k+1)
. . .

R(k+N−1)



Q(k) =


Q1(k)

Q2(k)
. . .

QM(k)

 , R(k) =


R1(k)

R2(k)
. . .

RM(k)


3) Introduction of the step 1) into 2).

(Gxx(k|k)+Guu(k))T Q̂(Gxx(k|k)+Guu(k))+uT (k)R̂u(k)

4) Desired optimization problem definition (after grouping terms)

min
u(k)

φ(u(k);x(k|k)) = 1
2

u(k)T
(

GT
u Q̂Gu + R̂

)
u(k)+

(
x(k|k)T GT

x Q̂Gu

)
u(k)

→min
u(k)

φ(u(k);x(k|k)) = 1
2

u(k)T Hu(k)+FT u(k)

4.2 Change of variable

At this point, the mentioned way to address the problem proposes a change of variable in order to comply
what has been put forward by cooperation-based MPC. That is, the agents should be able to calculate their
own optimal controls at iteration p, while the others are supposed to stay at p−1. This change is defined
in (4.3) and, as it can be seen, supposes a division of the centralized input vector into a summation of each
subsystems’ inputs weighted by matrices denoted Mi. The aim is the decoupling of each ui(k) that comprise
u(k), and the subsequent use of it to implement a control algorithm that acts in a distributed manner.

u(k) =
M

∑
i=1

Miui(k) (4.3)

Each of the matrices Mi will consist on the integration of N identity submatrices 1 into a set of submatrices
of zeros, which will finally define an operator Mi ∈ R(∑M

i=1 mi)N×miN . Considering implicitely the dimensions
of 1 and 0, and seeing Mi as a set of NM×N submatrices (M: number of subsystems), we have that each 1
will take up (from the column i to the last one) the row (r−1)M+ i, ∀r = 1,...,N. The matrix forms of 1
and 0 are caused due to the fact that each ui(k+n|k) may have a determined number of components mi. In
other words, each of them will have as dimension mi×mi.

This change of variable, together with construction of the matrices Mi will be shown for simplicity by an
example. In this case, we have chosen M = 2, so the resultant transformation will be the presented below.

u1(k|k)
u2(k|k)

u1(k+1|k)
u2(k+1|k)

...
u1(k−N +1|k)
u2(k−N +1|k)


=



1 0 0 · · · 0
0 0 0 · · ·
0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0


︸ ︷︷ ︸

M1


u1(k|k)

u1(k+1|k)
...

u1(k−N +1|k)

+



0 0 0 · · · 0
0 1 0 · · ·
0 0 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 0
0 0 0 · · · 1


︸ ︷︷ ︸

M2


u2(k|k)

u1(k+1|k)
...

u2(k−N +1|k)


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Therewith we proceed to introduce the change of variable as it has been defined in (4.3) into the objective
function in (4.1).

1
2

u(k)T Hu(k)+FT u(k)

1
2

(
M

∑
i=1

Miui(k)

)T

H

(
M

∑
i=1

Miui(k)

)
+FT

(
M

∑
i=1

Miui(k)

)

1
2

(
M

∑
i=1

ui(k)
T MT

i H

)(
M

∑
i=1

Miui(k)

)
+

(
M

∑
i=1

FT Miui(k)

)

1
2
(
u1(k)

T MT
1 H + ...+ui(k)

T MT
i H + ...+uM(k)T MT

MH
)
(M1u1(k)+ ...+Miui(k)+ ...+MMuM(k))

+
(
FT M1u1(k)+ ...+FT Miui(k)+ ...+FT MMuM(k)

)
(4.4)

An expression which depends on all the ui(k) for i = 1,..,M is arrived (4.4). Taking into account that
the objective is the plantwide control in a distributed way, this result supposes a useful approach. If we
think about it from the point of view of each agent i, we have that each of them have the chance of partially
minimizing a function that measures the entire system acting on their own decision variables ui(k) at every k.
As it has been held in the proposed cooperation-based problem, per sampling interval the algorithm will

enter an iterative procedure to determine the optimal control variables, until reaching either convergence or a
certain maximum of iterations pmax. The cooperation among the controllers is implemented by means of an
objective function that consider the whole plant, together with the fact of sharing information. All the agents
at each p receive the trajectories u j(k) for j 6= i at p−1. So that, applying this data to the function (4.4) and
using it as the cost function to optimize by each i, it will be transformed into an expression in terms of ui(k),
which is the one depicted in the result (4.5).

Result:
1
2

ui(k)
T (MT

i HMi
)

ui(k)+

(
M

∑
j 6=i

up−1
j (k)T MT

j HMi +FT Mi

)T

ui(k) (4.5)

Definitions:
Hi = MiHMi

F p
i (k) = MT

i H
M

∑
j 6=i

M ju
p−1
j (k)+MT

i F

where the dependance of F p
i (k) on the time index is not only caused by up−1

j (k), but also by the matrix
F which contains x(k|k) .With that, we can define the optimization problem that will have to be solved
individually by all of the agents per iteration (4.6). As it can be observed, the results after implementation will
equal the ones using (3.5), as this manner is just a possibility to address the same control problem respecting
the same principles. The weighted factors represented explicitily in (3.5), λi, can be introduced using the
weighted matrices in the cost function. The optimal input to apply to subsystem i per sampling interval will
be corresponding ui(k|k), that is, only the first step in the resulting optimal control sequence is implemented
(receding horizon implementation).

up
i,opt(k) = arg min

ui(k)

1
2

ui(k)
T (MT

i HMi
)

ui(k)
T +

(
M

∑
j 6=i

up−1
j (k)T MT

j HMi +FT Mi

)
ui(k) (4.6)

4.3 Constraints

We now focus on the issue of introducing constraints on the trajectories decided by the optimization problem,
that can be a requirement of the process to control. Using the centralized model, we have that certain limits
on the state trajectory vector x(k+1), can be expressed mathematically as the following matrix inequation,



16 Chapter 4. Controller design procedure

where Ax = [1, −1]T . In others words, all the components of the trajectory vector will have to fulfill certain
specified constraints. 

Ax
Ax

. . .
. . .

Ax




x(k+1|k)
x(k+2|k)

...
x(k+N|k)

≤


bx
bx
...
...

bx


Âxx(k+1)≤ b̂x, Âx ∈ R2N ∑

M
i ni×N ∑

M
i ni , b̂x ∈ R2N ∑

M
i ni×1 (4.7)

Proceeding in the same way (now Au = [1, −1]T ), but this time considering the possible costraints in the
input trajectory vector, it means, in the decision variables, we get to

Au
Au

. . .
. . .

Au




u(k|k)
u(k+1|k)

...
u(k+N−1|k)

≤


bu
bu
...
...

bu

 (4.8)

Âuu(k)≤ b̂u, Âu ∈ R2N ∑
M
i mi×N ∑

M
i mi , b̂u ∈ R2N ∑

M
i mi×1

Both kinds of contrains can be grouped into one single inequation using the definition of xi(k+1).

Âuu(k)≤ b̂u

Âx(Gxx(k|k)+Guu(k))≤ b̂x→ ÂxGuu(k)≤ b̂x− ÂxGxx(k|k)

[
ÂxGu

Âu

]
︸ ︷︷ ︸

AU

u(k)≤

[
b̂x− ÂxGxx(k|k)

b̂u

]
︸ ︷︷ ︸

bU

(4.9)

Thinking now about the distributed approach, it is possible to relate from this latter expression the
constraints used in the optimization problems to solve individually by each of the agents. The change of
variable explained above will be also applied here, to the end of defining the constraints on ui(k) (4.10).[

ÂxGu
Âu

]
(

M

∑
i=1

Miui(k))≤

[
b̂x− ÂxGxx(k|k)

b̂u

]
[

ÂxGu
Âu

]
Miui(k)≤

[
b̂x− ÂxGxx(k|k)

b̂u

]
−
[

ÂxGu
Âu

]
(

M

∑
j 6=i

M ju j(k))

[
ÂxGuMi

ÂuMi

]
︸ ︷︷ ︸

AUdec,i

ui(k)≤

[
b̂x− ÂxGxx(k|k)− ÂxGu(∑

M
j 6=i M ju j(k))

b̂u− Âu(∑
M
j 6=i M ju j(k))

]
︸ ︷︷ ︸

bUdec,i

(4.10)

4.4 Algorithm

In the corresponding implementation of the proposed DMPC control problem, we have that per sampling
time, the algorithm will involve an iterative procedure to determine what are the optimal control variables
up

i,opt(k) for all i.
This algorithm can be summarized in the following steps for each k.
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1. Determine the matrices H,F , AU and bU that were defined where we described the centralized model.

H = GuQ̂Gu + R̂, FT = x(k|k)T GT
x Q̂Gu

AU = [ÂxGu, Âu]
T , bU = [b̂x− ÂxGxx(k|k), b̂u]

T

2. Enter a while loop conditioned by a maximum number of iterations pmax and a convergence condition.
This latter one can be seen as disti < ε , for every i; where the parameter dist represents the norm of
diference between the state and input trajectories calculated at iteration p and the ones at p−1.

3. Define the matrices of (4.10) to impose the corresponding constraints for every i, using the change of
variable and the result in 1.

AUdec,i = AUMi, bUdec,i = bU−AU(
M

∑
j 6=i

M ju
p−1
j (k))

4. Calculate the optimal up
i,opt(k), ∀i. Here we make use of (4.6), in which the parameters calculated in 1

are introduced, as well as taking into account the constraints above.

5. Define the control variables up
i (k). It has not been assigned directly the optimal value of up

i,opt(k)

to up
i (k). In this case, what has been done is defining up

i (k) = λiu
p
i,opt(k)+ (1−λi)u

p−1
i (k), which

introduces a certain inertia in the algorithm .

6. Calculate the predicted trajectories xp
i (k) with the values arrived, for which the idea of the inertia has

been equally applied.

7. Measure the norms of the diference [xp
i (k), up

i (k)]
T − [xp−1

i (k), up−1
i (k)]T to give the corresponding

values to disti.

8. Save the vectors xp
i (k), up

i (k) for the following iteration and increment the value of p.

9. If p > pmax or disti < ε for all i, then
• Implement the first inputs of the finally decided input trajectories on every subsystems.

If p < pmax and disti > ε for some i, then
• Go back to step 2.





5 Stability of the algorithm

Achieving stability is a key issue in distributed control, which can be essential in many applications. For this
reason, we present in this section a short analysis of the strategy and algorithm proposed concerning this
aspect.

The study of the plant’s stability should consider the models’ equations that describe each subsystem which
make it up. On the basis of the above, for cooperation-based MPC, as well as for communication-based
strategy, we have made use of the models whose definition has been presented in (2.3). For their part,
they suppose a matrix combination of parameters related to each subsystem itself and others related to
the influence of the rest, which provides useful features to tackle the distributed problem. Figure 5.1 is a
schematic representation of the situation for the particular case in which the number of subsystem is 2. The
couplings between them can be seen by means of the block diagram, in which the funtions in the z-domain for
i, j ∈ {1,2} are defined as: Ii j(z) = Bi jU j(z)/(Iz−Aii) and Si j(z) = Ai jX j(z)/(Iz−Aii) ( the latter for i 6= j).
It can be noted here that extending the plant to the case in which M > 2 would also lead to functions with
zI−Aii as characteristic polynomial when the system is represented in this way.

Figure 5.1 Scheme of the problem for M = 2.

The subject matter of this project revolves around what happens outside the box in dashed lines, that is
in the actions we should take on the system to achieve our target and how to find them. The blocks 1 and 2
represent the agents in charge of coming to an agreement, which for practical purposes can be seen as optimal
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input trajectories. With the application of the algorithm it is expected that the overall system with evolve to
the desired point over time, which is equivalent to reducing when possible the corresponding cost. Given
that, we are going to assume the stability of the plant’s model and focus if we can trust the algorithm to meet
this goal.

5.1 Quadratic forms

Since the development of MPC makes an extensive use of quadratic forms, we are going to present a short
analysis of this specific kind of functions in order to come up with some results that will be useful now.

For further use, the concept of symmetric and skew-symmetric matrices is reviewed. For a square matrix
denoted as P, we have:

• P is symmetric if P = PT

• P is skew-symmetric if P =−PT

With that, we can affirm that any square matrix can be decomposed into a summation of a symmetric and
a skew-symmetric as shown below.

P =
P+PT

2︸ ︷︷ ︸
Symm.

+
P−PT

2︸ ︷︷ ︸
Skew−Symm.

Using now this definition into a generic quadratic function vT Pv, we have that

vT
(

P+PT

2
+

P−PT

2

)
v = vT

(
P+PT

2

)
v+vT

(
P−PT

2

)
v

vT
(

P−PT

2

)
v =−vT

(
P−PT

2

)
v, ∀v ←→ vT

(
P−PT

2

)
v = 0

vT Pv = vT
(

P+PT

2

)
v→ vT Pv = vT P̂v where P̂ is a symmetric matrix

.
Result:It can be assumed that the expression is always equal to a quadratic function with a symmetric

matrix.

5.1.1 Convexity

Now we analyse the convexity of expressions which the form
1
2

vT P̂v+ cT v, where P̂ is a symmetric positive
definite matrix.

Definiton: Convex functions
A function f (x) : Rn→ R is a convex function if

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y), ∀x,y ∈ Rn, ∀λ ∈ [0,1]

Applying this definition to f (v) =
1
2

vT P̂v+ cT v, we have

f (λv1+(1−λ )v2) = f (λ (v1−v2)+v2) =
1
2
(λ (v1−v2)+v2)

T P̂(λ (v1−v2)+v2)+cT (λ (v1−v2)+v2)

1
2

λ
2(v1−v2)

T P̂(v1−v2)+
1
2

λ (v1−v2)
T P̂v2 +

1
2

yT P̂λ (v1−v2)+
1
2

vT
2 P̂v2 +λcT (v1−v2)+ cT v2

≤ 1
2

λ (v1−v2)
T P̂(v1−v2)+

1
2

λ (v1−v2)
T P̂y+

1
2

vT
2 P̂λ (v1−v2)+

1
2

vT
2 P̂v2 +λcT (v1−v2)+ cT v2

=
1
2

λ (v1−y)T P̂v1 +
1
2

vT
2 P̂λ (v1−v2)+

1
2

vT
2 P̂v2 +λcT (v1−v2)+ cT v2
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=
1
2

λvT
1 P̂v1−

1
2

λvT
2 P̂v2 +

1
2

vT
2 P̂v2 +λcT v1−λcT v2 + cT v2

≤ λ f (v1)+(1−λ ) f (v2)

Hence, f (v) is a convex function.

The theoretical minimization of functions with this structure implies finding the v that makes the gradient
equal to 0 in order to have an optimum at this point. We proof here that in the case of these convex funtions,
the fact of reaching this vopt will lead to a minimization of f (v).

∇ f (v) = P̂ vopt + c = 0

f (v) = f (vopt +(v−vopt))

f (v) =
1
2
(vopt +(v−vopt))

T P̂(vopt +(v−vopt))+ cT (vopt +(v−vopt))

f (v)=
1
2
(vT

opt P̂vopt +(v−vopt)
T P̂vopt)+

1
2
(vT

opt P̂(v−vopt)+(v−vopt)
T P̂(v−vopt))+cT (vopt +(v−vopt))

f (v) =
1
2
(vT

opt P̂vopt)+
1
2
((v−vopt)

T P̂(v−vopt))+ cT vopt

f (v) = f (vopt)+
1
2
((v−vopt)

T P̂(v−vopt))

f (v)≥ f (vopt)

5.2 An insight on the objective functions

The objective functions applied and their characteristics determine the optimization problems to be solved by
the agents, hence the performace of the control strategy. This objective functions has been defined for each
agent i (i = 1,...,M) as

min
ui

M

∑
l=1

λlφl(ui(k),u
p−1
j 6=i ;xl(k|k))

which supposes a weighted summation of the basic cost funciton presented in (3.1) and repeated below.

φi(xi(k),ui(k),x
p−1
j 6=i (k),u

p−1
j 6=i (k);xi(k|k)) =

N−1

∑
n=0

xT
i (k+n|k)Qi(k+n|k)xi(k+n|k)+uT

i (k+n|k)Ri(k+n|k)ui(k+n|k)

It has been previously indicated with respect to them that at all times we have considered Qi(k+ n) >
0, Ri(k+n)> 0,∀n = 0,1,...,N−1 and ∀i with i = 1,...,M. What this fact implies is that the corresponding
matrices are positive definite, or in other words, that all the its eigenvalues are strictly positive. Assuming
this mathematical condition enables us to apply the entailing properties, which provide useful features in the
minimization problems. The definition of positive definite matrix involves that

∀xi 6= 0, xT
i Qixi > 0

∀ui 6= 0, uT
i Riui > 0

so that, all individual funcitons φi(·) will never reach negative values and, therefore, the weighted sumation
with positive weights will not reach them either. At this point, it is important to remind that the objective
functions have been redefined as a matrix equation terms of the controls actions and in which a terminal cost
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has been implicetely included.

φi(ui(k),u
p−1
j 6=i (k);xi(k|k))=

1
2

uT
i (k)

(
GT

uiQ̂iGui + R̂i

)
ui(k)+

(
xi(k|k)T GT

xiQ̂iGui +wp−1
i (k)T GT

wiQ̂iGui

)
ui(k)

(5.1)

The expression above shows the features and form of a generic quadratic form
1
2

vT Pv+ cT v, which
involves the possibility of using what has been above proved for the latter. Therefore, from now on we can
assumme that φi(·) is a convex positive definite funcition. Consequently the weighted summation that define
the objective functions for each of the agent i (i = 1,...,M), where λl ≥ 0 (l = 1,...,M.), are also covex p.d.
problems, as the sumation of convex functions will not alter the condition of convexity.

5.3 The algorithm in the negotiating process and progression over time

Henceforth, it will be study whether this cost function is a decreasing sequence lower-bounded by zero. This
issue will be addresed from two different approaches. Firsly, we will focus on a certain time step k, for which
the the question: What will happen along the successive iterations at time k? is desired to be answered. After
it, the evolution will be analysed from the point of view of the simulation time lenght, that is: What will
happen as k increases?

5.3.1 Decrease of the cost with the iterations

The cooperation strategy suggests minimizing (3.4) per iteration p (p < pmax) and per agent i , so that each of
them calculates its own optimal control action up

i,opt(k)(i = 1,...,M). This leads to the determination of a set
of optimal inputs associated to each p that are denoted as {up

1,opt(k),...,u
p
M,opt(k)}, which after the iterative

procedure will define the controls implemented to the subsystems.
So that, φi,c(ui(k),u

p−1
j 6=i (k);x(k|k)) denotes the objective function to minimize by agent i at iteration p and

step time k. Let φ
p
i,c(·) denote the value that the cost function take when up

i (k) is introduced as a parameter.

φ
p
i,c(u

p
i (k),u

p−1
j 6=i (k);x(k|k)) =

M

∑
l=1

λlφl(u
p
i (k),u

p−1
j 6=i (k),x(k|k))

The convexity property of φ
p
i,c(·) and the proof in the previous section enables us to affirm that, theoretically,

if the minimization is done correctly, then

φi,c(u
p
i,opt(k),u

p−1
j 6=i (k),x(k|k))≤ φ

p−1
i,c (up−1

i (k),up−1
j 6=i (k),x(k|k))

However, in the algorithm proposed the control action implemented is not directly the optimal calculated but
it also considers what was the value of the input at the iteration before, in a manner of

up
i (k) = λiu

p
i,opt(k)+(1−λi)u

p−1
i (k)

Using now the mathematical definition of convex funtions:

φ
p
i,c(λiu

p
i,opt(k)+(1−λi)u

p−1
i (k),up−1

j 6=i (k),x(k|k))

≤ λiφ
p
i,c(u

p
i,opt(k),u

p−1
j 6=i (k),x(k|k))+(1−λi)φ

p
i,c(u

p−1
i (k),up−1

j 6=i (k),x(k|k))

φ
p
i,c(λiu

p
i,opt(k)+(1−λi)u

p−1
i (k),up−1

j 6=i (k),x(k|k))

≤ φ
p
i,c(u

p−1
i (k),up−1

j 6=i (k)x(k|k))+λi

(
φ

p
i,c(u

p
i,opt(k),u

p−1
j 6=i (k),x(k|k))−φ

p
i,c(u

p−1
i (k),up−1

j 6=i (k),x(k|k))
)

where
φ

p
i,c(u

p
i,opt(k),u

p−1
j 6=i (k),x(k|k))−φ

p
i,c(u

p−1
i (k),up−1

j 6=i (k),x(k|k))≤ 0

Hence, the values that cost function of each agent will take per iteration will be a decreasing sequence at
each step time k.
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Result:

φ
p
i,c(u

p
i (k),u

p
j 6=i(k),x(k|k))≤ φ

p−1
i,c (up−1

i (k),up−1
j 6=i (k),x(k|k)) (5.2)

5.3.2 Decrease of the cost with the time

Once the evolution of the cost has been studied for a certain time k, focusing on what will happen while the
iterative procedure is held, what will be addressed now is the problem from the point of view of the time.
That is, we wonder here what will happen when the time k increases.

Firstly, it will be assumed that at time k the iteration process is finished after fk iterations, where thus fk
denotes an integer in {0,pmax}. Given that, at time k−1, the corresponding iteration is fk−1.

We have that when the step time is changed, for example turning to k from k−1, the initial value of the cost
function at k will be determined by the control actions defined at k−1. At this point, we are going to introduce
a definition of the vectors u0

i (k), i = 1,...,M, which are specified by the inputs trajectories agreed at the
previous time step but in which morevoer we take account of the constraint which implies that ui(k+n) = 0
for all n ≥ N and for all i. Therefore u0

i (k) are vectors which are associated to time k and which provide
information to ponderate the objective functions at the initial point.

u0
i (k) =



u fk−1
i (k|k−1)

u fk−1
i (k+1|k−1)

...
u fk−1

i (k+N−1|k−1)
0
...
0


Let φc(u fk−1(k),x(k−1|k−1)) represent the value of the summatory ∑

M
l=1 λlφl(u fk−1 ;xl(k−1|k−1)). In

other words, the value that the cost reaches at k−1. The initial cost at k can be definded as φc(u0(k);x(k|k)).
With that, the following holds

φc(u0(k);x(k|k)) = φc(u fk−1(k−1);x(k−1|k−1))

−
M

∑
i=1

(
λixi(k−1|k−1)T Qixi(k−1|k−1)+u fk−1

i (k−1|k−1)T Riu
fk−1
i (k−1|k−1)

)
Finally, and considering the result in the previous (i), we get to

φc(upk(k);x(k|k))≤ φc(u0(k);x(k|k))≤ φc(u fk−1(k−1);x(k−1|k−1))≤ φc(u0(0);x(0|0))

where p denotes any iteration number greater than 0 and smaller than pmax, and u0(0) and x(0|0) the initial
input and states, respectively.
Following the reference article [1], we could affirm that: under the assumption of stability of the models,

together with setting Qi(k+n)> 0 ( for n = 0,1..,N) and Ri(k+n)> 0 (for n = 0,1..,N−1), the origin is an
exponentially stable equilibrium for the closed-loop (state-feedback) system.





6 Attacks to the DMPC scheme

Hitherto, it has been assumed the algorithm works in a reliable information exchange setting in which all the
agents proceed such as the strategy indicates. In this part, the fact of having an agent which is not willing to
perform so is studied. That is, we address the problem here of having a controller which introduces false
information in the course of the algorithm’s application, thus represents a clear risk that can make the control
lose optimality and so affects negatively the overall performance. This kind of controllers use misleading
information in different ways whith the purpose of profiting from the rest of the agents. Some of these
possibilities that they can take to carry out the deception are presented here. Afterward, it will be studied the
effects it would cause in the examples presented, focusing this analysis in how the algorithm’s optimality for
the global system is affected.

6.1 Attacker’s objective

Henceforth, let a ∈ {1,..,M} denotes the malicious controller that will alter the normal development of the
DMPC algorithm proposed.
In first place, and for a further use in the attacks’ analysis, it should be clearly stated what is the purpose

which motivates the malicious performance of the attacker and how the mischief can be evaluated when
implemented.
The scheme under consideration pursues a convenient global behaviour based on a cooperative iterative

negotiation in which the agents realign their own controls with the others until an agreement which fulfills
certain conditions is reached. It gives rise to the possibility of being locally better off when applied a different
input with respect to the one agreed. The latter is the starting point to carry out an attack.

From a local point of view, the welfare of an agent i (i = 1,...,M) is assessed by expression (6.1), therefore
a decrease of the cumulative cost pertaining to the attacker will be a reflection of the attack’s effectiveness.

Ji(x(k+1),u(k);xi(k|k)) =
N−1

∑
n=0

[(
xi(k+n|k)− xi,re f

)T Qi(k+n|k)
(
xi(k+n|k)− xi,re f

)T
+uT

i (k+n|k)Ri(k+n|k)ui(k+n|k)
]

+
(
xi(k+N|k)− xi,re f

)T Qi(k+N|k)
(
xi(k+N|k)− xi,re f

) (6.1)

Likewise, the associated expression to (6.1) is declared, in which the dependance of the states is removed,
due to its usefulness for this problem.

Ji(u(k);xi(k|k)) =(
Gxi
(
xi(k|k)− xi,re f

)
+Guiui(k)+Gwiwi(k)

)T Q̂i
(
Gxi
(
xi(k|k)− xi,re f

)
+Guiui(k)+Gwiwi(k)

)
+

uT
i (k)R̂iui(k)+ cte

Given that this function will be treated with a view to its optimization and that the way of action on the plant
is through the inputs ui(k), it will also be simplified to (6.2), where the introduced modification eliminates
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information that has no influence for the problem.

Ji(u(k);xi(k|k)) =
1
2

ui(k)
T H iui(k)+FT

i (k)ui(k) (6.2)

Hi,loc = GuiQ̂iGui + R̂i

FT
i,loc(k) =

(
xi(k|k)− xi,re f

)T GT
xiQ̂iGui +wT

i (k)G
T
wiQ̂iGui

Hi,loc ∈ RNmi×Nmi , Fi,loc ∈ RNmi×1

Ji(·) represents approximately the same as φi(·) with just the difference that there is no variance of
iterations concerning the variables. Therefore, it represents theoretically the objective, but given the way of
communication between the controllers, the one useful for the implementation is φi(·).

6.2 False reference

The first possible attack to the DMPC scheme presented is the one that takes action bymeans of the introduction
of a false reference, which will be denoted from now on as x f

a,re f . The misleading information enters the
DMPC scheme through the cost function optimized by the attacker, hence the subindex a. On the basis of
the above, the objective of the malicious agent is a reduction of (6.1) for i = a, and consequently of the
corresponding cumulative cost. The goal is to be attained by the change of xa,re f to x f

a,re f in the optimization
problem solved by a, that is, the original objective function is amended for i = a as follows (6.3).

φa,c(ua(k),u
p−1
j 6=a (k);x(k|k)) =

M

∑
l=1,l 6=a

λlφl(ua,u
p−1
j 6=a ;xl(k))

+λa

N−1

∑
n=0

(
xa(k+n+1|k)− x f

a,re f

)T
Qi(k+n+1|k)

(
xa(k+n+1|k)− x f

a,re f

)
+λauT

a (k+n|k)Ra(k+n|k)ua(k+n|k)

(6.3)

When one of the controllers decides to alter the regular development of the algorithm by introducing a false
reference, the immediate mathematical consequence will not be just a change in its own objective function
but also in the ones to optimize by the rest of the agents i 6= a . In other words, the inherent communicative
aspect of the DMPC algorithm is the mean that the attacker uses to spread the false information to the whole
plant. Moreover, the cooperation between agents will lead to misleading results and thus the attacker’s aim
will be propitiating that these are in favour of a. Mathematically, what has been described can be seen clearly
hereunder.

• Problem solved by agent a:

min
ua(k)

φa,c(ua(k),u
p−1
j 6=a (k);x(k|k))

→ up
a,opt(k) = arg min

ua(k)
φa,c(ua(k),u

p−1
j 6=a (k);x(k|k))

→ up
a,opt(k) contains false information as consequence of x f

a,re f

• Problem solved by agents i 6= a (i ∈ {1, ...,M}\{a}):

min
ui(k)

φi,c(ui(k),u
p−1
j 6=i (k);x(k|k)) =

M

∑
l=1

λlφl(ui(k),u
p−1
j 6=i (k);x(k|k))

→ up
i,opt(k) = arg min

ui(k)
φi,c(ui(k),u

p−1
j 6=i (k);x(k|k))

→ up
i,opt(k) affected by up−1

a (k), therefore, the negotation process is steered to a new situation
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Consequently, the local improvement is based on the appropiated choice of the false reference, which will
meet the target when causing the solutions up

a,opt(k), and its impact on the rest of subsystems, to be in support
of agent a.

Clearly, for this kind of attack, the dependence of the objective functions for all i on xre f is of particular
importance , as it is the fact that the attacker seizes to go ahead with its deception.

At this point, it should be remarked that xre f represents a vector in R∑
M
i=1 ni×1 with the state references for

all subsystems in the plant, which allows the application of the change of variable below. Every 1 of each Pi
reprentes an identity matrix in Rni×ni . On the other hand, each 0 in row j of Pi corresponds to null matrices
of dimension n j×ni.

xre f =



x1,re f
...

xa,re f
...

xM,re f

 ;−→ xre f =


1
0
...
...

x1,re f +


0
1
0
...

x2,re f + · · ·+


0
...
...
1

xM,re f

xre f =
M

∑
i=1

Pixi,re f (6.4)

The practicality of the latter lies in the fact of reaching certain decoupling of each agent’s reference, which
will be used afterwards.

6.2.1 Pursuit of an optimal x f
a,re f

In this part, the problem addressed is focused on reaching the greatest effectiveness when conducting a
false reference attack, considering the mentioned effectiveness from the point of view of the attacker. In
other words, it sought to find the optimal value of the misleading x f

a,re f that will lead to the best possible
minimization of (6.1) for i = a along the negotiation.

It is given, for the considered algorithm, that the problems which agents i 6= a carry out are such as:

min
ui(k)

1
2

ui(k)
T (MiHMi)ui(k)+

(
M

∑
j 6=i

up−1
j (k)T MT

j HMi +FT (k)Mi

)
ui(k)

where
FT (k) = (x(k|k)− xre f )

T GT
x Q̂Gu

Analytically, the attack that a conducts leads to a redefinition of the matrix F(k) that appears in the
linear term, which is an immediate consequence of the change from xa,re f to the false x f

a,re f . Let denote the
misleading matrix arrived as F(k,x f

re f ) and assume its use in the calculation of up
a(k). It must be concluded

that the problem of agent a is the one that follows.

Problem agent a:

min
ua(k)

1
2

ua(k)
T (MaHMa)ua(k)+

(
M

∑
j 6=a

up−1
j (k)T MT

j HMa +FT (k,x f
a,re f )Ma

)
ua(k)

where

FT (k,x f
a,re f ) = (x(k|k)− x f

re f )
T GT

x Q̂Gu =

(
x(k|k)−

M

∑
i=1,i 6=a

Pixi,re f −Pax f
a,re f

)T

GT
x Q̂Gu (6.5)
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Let consider hereon that x f
a,re f is not a parameter any more and that it comes into play as a variable, affecting

directly the computing of every up
a,opt(k). Let also denote this dependance as up

a,opt(k,x
f
a,re f ), therefore

up(k) =
M

∑
i=1

Miu
p
i (k)

up
a(k): Function of x f

a,re f −→ up = up(k,x f
a,re f )

As it has been described, the objective to keep in mind is the improvement of the attacker’s local cost,
which is approximated by

φa(ua(k),u
p−1
j 6=a (k);xa(k|k)) =

1
2

uT
a (k)

(
GT

uaQ̂aGua + R̂a

)
ua(k)+(

(xa(k|k)− x f
a,re f )

T GT
xaQ̂aGua +wp−1

a (k)T GT
waQ̂aGua

)
ua(k)

This last expression allows the computing of the optimal value of x f
a,re f that the malicious agent should

take. In the corresponding implementation, the values agreed along the negotations will be used to update
the information with the purpose of steering the negotation in an appropiated way. In short, the optimization
that agent a will solve per iteration (together with the one which determine its input) to get to the optimal
x f

a,re f that should be aplied is

min
x f

a,re f

1
2

uT
a (k)

(
GT

uaQ̂aGua + R̂a

)
ua(k)+

(
(xa(k|k)− x f

a,re f )
T GT

xaQ̂aGua +wp−1
a (k)T GT

waQ̂aGua

)
ua(k)

(6.6)
Therefore,

x f
a,re f

∗
= arg min

x f
a,re f

1
2

uT
a (k)

(
GT

uaQ̂aGua + R̂a

)
ua(k)+

(
(xa(k|k)− x f

a,re f )
T GT

xaQ̂aGua +wp−1
a (k)T GT

waQ̂aGua

)T
ua(k)

6.2.2 Particular case. Non-constrained problem

Considering the problem under assumption that no constraints are applicable would allow us to determine
the optimization’s problem solutions analytically. In addition to what precedes, this special case is studied
here with the purpose of defining the mentioned expression for the optimal false reference.

Let’s consider the objective functions (4.5) and remark the dependance of F p
i (k) on every given p and

time instant k. As a result, the optimal inputs up
i,opt(k) calculated under this special conditions will be

Hiu
p
i,opt(k) =−F p

i (k)−→ up
i,opt(k) =−H−1

i F p
i (k)

in which all squared matrices Hi are supposed to be non singular. Equivallently, we would have

up
a,opt(k,x

f
a,re f ) =−H−1

a F p
a (k,x

f
a,re f )

Ha = MaHMa, F p
a

T (k,x f
a,re f ) =

M

∑
j 6=a

up−1
j (k)T MT

j HMa +FT (k,x f
a,re f )Ma

With that, we have to go back to (6.6) and try to find what is the optimal x f∗
a,re f . Let’s use:

Ha = GT
uaQ̂aGua + R̂a

FT
a = (xa(k|k)− x f

a,re f )
T GT

xaQ̂aGua +wp−1
a (k)T GT

waQ̂aGua

Then, the problem to solve at any iteration p is:
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min
x f

a,re f

1
2

(
H−1

a F p
a (k,x

f
a,re f )

)T
Ha

(
H−1

a F p
a (k,x

f
a,re f )

)
−FT

a (k)H
−1
a F p

a (k,x
f
a,re f )

min
x f

a,re f

1
2

(
M

∑
j 6=a

up−1
j (k)T MT

j HMa +FT (k,x f
a,re f )Ma

)
H−1

a
T

HaH−1
a

(
M

∑
j 6=a

up−1
j (k)T MT

j HMa +FT (k,x f
a,re f )Ma

)T

−FT
a (k)H

−1
a

(
M

∑
j 6=a

up−1
j (k)T MT

j HMa +FT (k,x f
a,re f )Ma

)T

Given that we address an optimization in terms of the false reference, we remove in the latter the terms
that are not funcition of x f

a,re f and thus do not contribute to the solution.

min
x f

a,re f

1
2

FT (k,x f
a,re f )MaH−1

a
T

HaH−1
a MT

a F(k,x f
a,re f )+

−H−1
a

T
Fa(k)+H−1

a
T

HaH−1
a

(
M

∑
j 6=a

up−1
j (k)T MT

j HMa

)T
T

MT
a F(k,x f

a,re f )

For a clearer notation, C1 and C2 are defined.

C1 = MaH−1
a

T
HaH−1

a MT
a , C2 = Ma

−H−1
a

T
Fa(k)+H−1

a
T

HaH−1
a

(
M

∑
j 6=a

up−1
j (k)T MT

j HMa

)T


C1 ∈ RN ∑i mi×N ∑i mi , C2 ∈ RN ∑i mi×1

x f∗
a,re f = arg min

x f
a,re f

1
2

FT (k,x f
a,re f )C1F(k,x f

a,re f )+CT
2 F(k,x f

a,re f )

At this point, the partial derivative of F(k,x f
a,re f ) with respect to x f

a,re f is used for the application of the
chain rule to find the desired one.

∂

(
F(k,x f

a,re f )
)

∂x f
a,re f

=−PT
a GT

x Q̂Gu

D =−PT
a GT

x Q̂Gu, D ∈ Rna×N ∑i mi

With that,

∂

(
1
2

FT (k,x f
a,re f )C1F(k,x f

a,re f )+CT
2 F(k,x f

a,re f )

)
∂x f

a,re f

=

∂F(k,x f
a,re f )

∂x f
a,re f

∂

(
1
2

FT (k,x f
a,re f )C1F(k,x f

a,re f )+CT
2 F(k,x f

a,re f )

)
∂F(k,x f

a,re f )
=

D
(

C1F(k,x f
a,re f )+C2

)
D
(

C1F(k,x f
a,re f )+C2

)
∈ Rna×1

Finally, to arrive to the optimal desired value the latter should be equal to zero when x f
a,re f = x f∗

a,re f .Therefore,
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C1F(k,x f∗
a,re f ) =−C2

Assuming now the non singularity of the squared matrix C1, it would be possible to state what follows.

F(k,x f∗
a,re f ) = GT

u Q̂Gx

(
x(k|k)−

M

∑
i=1,i 6=a

Pixi,re f −Pax f∗
a,re f

)
, F(k,x f∗

a,re f ) ∈ RN ∑i mi×1

F(k,x f∗
a,re f ) =−C1

−1C2

The latter equation also shows consistency in the dimensions of the matrices, which can be seen as a good
indication about the above procedure.

GT
u Q̂GxPax f∗

a,re f = GT
u Q̂Gx

(
x(k|k)−

M

∑
i=1,i 6=a

Pixi,re f

)
+C1

−1C2

b = GT
u Q̂Gx

(
x(k|k)−

M

∑
i=1,i6=a

Pixi,re f

)
+C1

−1C2, b ∈ RN ∑i mi×1

A = GT
u Q̂GxPa, A ∈ RN ∑i mi×na

Ax f∗
a,re f = b (6.7)

The analytical resolution ends up in N ∑i mi equations to determine na variables. This fact supposes a clear
likehood that the system under consideration will be over- or under- determined. In case of overdetermination,
when no exact solution exists, a possible approximation to the desired solution could be reached using the
normal equations as it is shown below to conclude this section.

Ax f∗
a,re f = b−→ x f∗

a,re f = (AT A)−1AT b

6.3 Fake weights

In a fake weights attackt agent a conducts the introduction of false information through a change in the values
that the weights factor λ j ( j = 1,...,M) take in its own optimization problem. This kind of attack is directly
related with the definition of the objective functions (φi,c(·)) that determine the minimization problems for
the agents the plant comprises (i = 1,...,M).

φi,c(ui(k),u
p−1
j 6=i (k);x(k|k)) =

M

∑
l=1

λlφl(ui(k),u
p−1
j 6=i (k);x(k|k))

Then, a malicious agent can play with the possibility of altering the negotation process by means of a
change of λ j. An increase of the corresponding λa which weights φa(·) in (φa,c(·)) entail that the input up

a(k)
will tend to decline the cumulative cost of a rather than reaching the certain global performance defined by
the original optimization.

Let’s focus on the optimization problem to be solved by the attacker and assume that all λ j for j 6= a remain
with their original values. Therefore, agent a will solve an optimization like the one depicted below.

min
ua

φa,c(ua(k),u
p−1
j 6=a (k);x(k|k)) =

M

∑
l=1,l 6=a

λlφl(ua(k),u
p−1
j 6=a (k);xl(k|k))+λ

f
a φa(ua(k),u

p−1
j 6=a (k);xa(k|k))

(6.8)
where λ

f
a denotes the fake applied weight. Consequently, the interests of a will receive more importance in

comparison to the real framework, as its individual cost funciton will be weighted by λ
f

a > λa. The rest of
the agents will make an effort to provide a control action in favour of controller a so, as before, the attacker
not only introduce false information, but expects the plant to cooperate to reach a solution inclined towards
its preferences.
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In the case in which λi are set to

λi =
1
M
, ∀i = 1,...,M

the redefinition which supposes the root cause for the steering of the negotiation can be clearer represented.
Let use λ =

1
M
, then the optimization problem to solve by a will become

min
ua

φa,c(ua(k),u
p−1
j 6=a (k);x(k|k)) =

M

∑
l=1,l 6=a

φl(ua,u
p−1
j 6=a ;xl(k))+

λ
f

a

λ
φa(ua,u

p−1
j 6=a ;xa(k))

λ
f

a

λ
> 1

The spreading mechanism over the whole system is the equivalent to the one described for a false reference
attack, just with the difference that in this case up

a,opt(k) contains malicious information as a result of λ
f

a for
all p < pmax and time instant k. Therefrom the impact on up

j,opt(k) ( j 6= a) and the possibility of steering the
process towards a point in which the the solutions obatained are biased in favour of a.

6.3.1 Particular case: Selfish agent

Within this attack is the case in which a decides to optimize only its own subsystem, which then supposes an
important particular scenario that should be analysed.

The subsystem a will be defined by Aa and the set of matrices Ba j. This case involves a selfish resolution
of the optimization problem that solves the malicious controller through setting

λ j = 0, ∀ j 6= a

λa = 1

In other words, up
a(k) will be calculated irrespective of the cooperative feature of the DMPC scheme,

solving in its case an optimization defined mathematically by the following objective objective function

φa,c(xa(k),ua(k),x
p−1
j (k),up−1

j (k);xa(k|k))=
N

∑
n=0

xT
a (k+n|k)Qa(k+n|k)xa(k+n|k)+uT

a (k+n|k)Ra(k+n|k)ua(k+n|k)

Hence, the input arrived will be

up
a,opt(k) = arg min

ua
φa(xa(k),ua(k),x

p−1
j (k),up−1

j (k);xa(k|k))

The selfish problem is directly rewritten as

up
a,opt(k) = arg min

ua

1
2

ua(k)
T
(

GuaQ̂aGua + R̂a

)
ua(k)+((

xa(k|k)− xa,re f
)T GT

xaQ̂aGua +wp−1
a (k)

T
GT

waQ̂aGua

)T
ua(k)

(6.9)

This particular case supposes an application of a fake weights attack taken to the extreme, which might
induce a fail of the global DMPC scheme performance. This aspect is one of the manifestations of the
interactions and influence between agents in the plant, which entail that an improvement from a local
perspective does not involve an improvement for the overall system.

6.4 Fake constraints

In this case, the original DMPC framework is threated by means of modifying the constraints imposed on
the state’s and input’s evolution related to subsystem a. It raises the possibility of leading the system to a
more advantageous situation for agent a when changing the intervals in which its controls and states can take
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values. Mathematically, if we denote the sets that define the constraints for each subsystem i as Xi and Ui,
we could represent this attack for all n = 0,1,...,N and for all k as

xa(k+n|k) ∈X f
a

ua(k+n|k) ∈U f
a

where X f
a and U f

a are the sets after the introduction of the misleading information.
The solution of every optimization problem performed by a is done subject to certain constraints previously

defined, consequently, an ease or tightening of them cause changes in the results provided. Therewith, we
are in a similar situation as in the attacks above in the sense that the rest of agents j ( j 6= a) will optimize a
function affected by the corresponding malicious information that a shares. It is important to underline here
that in the previously presented attacks all minimization problems for each i are solved under the conditions
imposed by Xi and Ui, although it has not been explicitely specified for simplicity.

A fake constraints attack differs with regard to the others in where the root of the threat is. In other words,
either in a fake constraints or a false reference attack agent a carry out a modification of its objective function
to optimize, and that is the starting point to make a profit for itself. However, in this case φa,c(·) remain the
same as firstly proposed and the way of action is through the conditions imposed in its resolution.

Given that, it is consistent that an ease ofXa andUa at iteration p and time instant k might benefit indirectly
the attacker but the real effect on the algorithm would be that agent a would dispose of greater sets to find the
solution up

a,opt(k) that is globally better. So that, it could be said that a acts out of malice. If the condition that
the attacker knows everything about the evolution of the entire plant is assumed, then a clear opportunity to
take advantage from the others would arise. This fact implies that a would have the knowledge to determine
what is the region where the inputs that would cause the greatest decline of its cost are located. Therefore,
this information could be used in the determination of up

a,opt(k) by stablishing the fake constraints that would
guide itself to the more beneficial solutions. By doing so the attacker’s malice would become a indisputable
fact. Once again, the procedure for transfering the false information is the same as for the previous attacks,
therefore the false information is extended throughout the global system.
In order to show the results after the implementation of the DMPC algorithm that has been arrived

theoretically in the preceding parts, later some examples will be presented. The purpose will be going into the
performance of the algorithm from a practical point of view, as well as considering the risks and consequences
that suppose for them acting under the effects of the attacks described above.

6.5 A bidimensional depiction

To conclude the attack’s presentation, we show here in a visual way the purpose and effects that have been
described.

Setting the prediction length to N = 1 and the number of subsystem to M = 2 allows us to represent clearly
in the plane up

1(k)/up
2(k) all that happens along iterations and thus how the attacker manages to steer the

agreement for its own benefit. With that parameters, the optimal trajectories calculated each p by the agents
1 or 2 becomes a single number, so that a point in the plane up

1(k)/up
2(k). Moreover, the the cost functions

are then defined in three dimensions with the possibility of representing their level curves in the mentioned
plane. By doing so, we are going to present a short analysis of the different kinds of attacks disscussed.

Figures 6.1 to 6.3 show the results for a false reference, fake weights and fake constraints attacks respectively.
The effectiveness of the attack is reflected in the tendence of the points (up

1(k),u
p
2(k)) to those curves which

represent lower local cost por the attacker, which is in this graphics is 1. This aspect is shown in all of
them as the malice information has been chosen in order to meet this purpose. That is, in the case of a fake
constraints attack, the set U f

1 has been defined as a modification of the original one to another that includes
those values of up

1(k) associated with lower costs for 1 and the initial u0
1(k). Equally, when acting by means

of x f
re f = constant, this parameter has been chosen to misdirect appropiately the negotation.

The other important feature to note is the difference arrived when the malicious controller also optimizes
the misleading parameter which is the root of the problem or either acts in a complete selfish way. These
cases lead to a much more notable deviation of the inputs agreed with respect to the normal development of
the algorithm.

Moreover, as it can be seen, performing under reliable conditions will end up with a solution which does
not privilege any subsystem over the others but is chosen in favour of the global behaviour.
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Figure 6.1 Trajectories in up
1(k)/up

2(k) for false reference attacks.

Figure 6.2 Trajectories in up
1(k)/up

2(k) for fake weights attacks.
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Figure 6.3 Trajectories in up
1(k)/up

2(k) for fake constraints attacks.
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6.6 Key Performace Indicator

This project focuses on problems characterized by the presence of multiple agents which interact with each
other and which are controlled in a distributed way. The algorithm proposed supports a strategic behaviour
based on collaborative settings, however it has been outlined the possibility of dealing with self-interested
agents which, in different manner, will affect negatively the reliability of the information that is transferred
during the development of the algorithm. Own independent objectives are provided to each of the agents and
their way of working will determine the global behaviour of the system as a whole. The objective of this part
is the assessment of the consequences of introducing false information, in a manner that a certain number,
which will be a reflection of the severity of the attack, will be associated. Given that this number will provide
information with which the behaviour can be assessed, it will be used as Key Performance Indicator (KPI).

Hereafter, the standard case will be pointed out repeatedly. For that reason it is important to indicate before
that it is referred to that case in which the algorithm presented in 4.4 is developed being guaranteed that there
is no false information circulating among the agents.

6.6.1 Price of Anarchy

Performance loss caused by a lack of coordination can be evaluated using the so-called Price of Anarchy
(PoA), the ratio between the objective function value of an equilibrium and that of an optimal outcome. For
its application here, we will assume that the mentioned optimal outcome will be the results obtained with
centralized MPC. The PoA will be a reflection of the change introduce with the cooperation, hence values
above 1 will be expected.

Price of Anarchy=
Cumulative cost when all act individually

Cumulative cost Centralized MPC
(6.10)

6.6.2 Price of Corruption

To assess the impact of each of the attacks presented we have defined a ratio with a similar background as the
PoA. This number will depict the consequences of the cyber-security faults in the algorithm in hand, and will
be denoted as Price of Corruption (PoC).
Now, the values are referred to those arrived in the standard case as the objective is the study of the

algorithm in different situations.

Price of Corruption=
Cumulative cost with presence of attack
Cumulative cost in the standard case

(6.11)

A value of the PoC > 1 will imply a fall in the optimality concerning the global system. Therefore, it is
expected that in case of attack this ratio will reach values above 1, being greater for those which cause more
damage to the plant.

6.6.3 Effectivity of the attacks

Despite the latter, the real purpose of an attacker a is not an increase of the PoC but a decrease of its cumulative
cost concerning its corresponding in the standard case. The probably resulting increment of the PoC is
consequence of that this objective is achieved at expense of the rest of the agents. Given that, we could also
define a ratio to assess the reduction when acting in a misleading way by the point of view of the attacker.

Attack’s effectivity=
Cumulative cost agent a with attack

Cumulative cost in the standard case of a
(6.12)

6.7 Min-max approach

Hereafter, let h denote a determined honest agent of the considered system (h ∈ {1,M}). As a result of the
couplings among subsystems, every agent h is influenced by decisions adopted by outer agents j 6= h. Hence,
if h wants to determine its state, it will need external information to itself, which leads to the fact that there is
always uncertainties about the variables that are not directly controlled by h but have a considerable effect on
it. The presence of any malicious agent a will cause a deviation of the expected results in a manner that a
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loss of performance is observed. The main purpose now is the study of the possibility of using min-max
strategy in order to cope with these attacks.

6.7.1 Detecting the attack

We see the problem now from the point of view of an honest agent and see how we could protect them and
avoid that at least certain harmful situations are reached. The first step is therefore to detect when a certain h
is being attacked. To this end, the couplings will be the key principle to define a condition to be used by the
honest agent in order to realize that someone is taking advantage of itself.

One of the first possibilities for dealing with uncertainties is considering the worst possible case. So that,
when working with cost functions, the optimized control will be accordingly to the maximum value that
the cost fuction could take due to the uncertainties. In other words, the problem results in a maximization
followed by a minimization. The strategies in MPC that are based in the resolution of a min-max optimization
are know as Min-Max MPC. Despite the availability of a wide range of variants concerning the latter, its
application in this project does not go beyond the consideration of the information received by an outer
subsystem within the plant as disturbance and then solving a problem for the worst possible case that could
come about.

In the proposed algorithm, we have that the optimization problem to be solved each iteration p by a certain
agent i is defined by the objective function (6.13).

φi,c(ui(k),u
p−1
j (k);x(k|k))= 1

2
uT

i (k)
(
MT

i HMi
)

ui(k)+

(
M

∑
j 6=i

up−1
j (k)

T
MT

j HMi +F(k)T Mi

)
ui(k) (6.13)

Let’s assume that we are at time index k, so that the values are xl(k|k) for l = 1,...,M are parameters known.
The negotiating process seen by the point a view of agent i = h is such that the rest of the plant set their
proposed inputs u j(k) and transfer these proposals to h, which make use of this information for the calculation
of its own input.

The fact that determining the inputs for h in such a way that acting for the plant leads to a situation that is
worse than the worst one which would be arrived when acting independently is a clear incentive to think that
at least there is something wrong. In this case, h would reach an undesired situation caused by acting for the
plant without receiving nothing in return.

To apply this idea and be able to compare both costs, we have to go back to the local cost function for any
agent i, which has been is (6.14).

φi(u(k);x(k|k)) = 1
2

uT
i (k)

(
GT

uiQ̂iGui

)
ui(k)+

(
xi(k|k)T GT

xiQ̂iGui +wi(k)
T GT

wiQ̂iGui

)
ui(k) (6.14)

where

Gwiwi(k) =
M

∑
j=1, j 6=i

[
G

x j
wix j(k|k)+G

u j
wiu j(k)

]
In case h acts independently, in the worst possible situation its cost would be the one defined by

min
uh(k)

max
wh(k)

1
2

uT
h (k)

(
GT

uhQ̂hGuh

)
uh(k)+

(
xh(k|k)T GT

xhQ̂hGuh +wh(k)
T GT

whQ̂hGuh

)
uh(k) (6.15)

The values that wh(k) can take at every iteration is limited by the constraints imposed, so what is done here is
assuming that this vector is inside a certain set in RNnh×1.

wh(k) ∈
⊕

j∈{1,M}\{h}
Ah jX j⊕Bh jU j

The presented above can be summarized in the following condition. It supposes a very conservative
condition but which leads to a point in which clearly something should be done. In short, if the following
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inequation is true, it will be an indicator to act in a different way as expected.

min
uh(k)

max
wh(k)

1
2

uT
h (k)

(
GT

uhQ̂hGuh

)
uh(k)+

(
xh(k|k)T GT

xhQ̂hGuh +wh(k)
T GT

whQ̂hGuh

)
uh(k)

< min
uh(k)

1
2

uT
h (k)

(
MT

h HMh
)

uh(k)+

(
M

∑
j 6=h

up−1
j (k)

T
MT

j HMh +F(k)T Mh

)
uh(k)

(6.16)

6.7.2 Response to the attack

As it has been seen in the preceding parts, the agents can be steered towards a different and much worse
situation than the one they should arrive when working under standard conditions. The evolution with
presence of attacks is not only determined by the attacker but by all the decisions agreed in the plant, so that
we can see the attacker a just as the root cause of the loss of performance. Therefore, we have that every h
has the chance of parcipating in the negotiating process in such a way that its optimized inputs will not be in
favour of agent a or diminish the strength of the attack.

If (6.16) holds at iteration p and time index k, it would be better to forget about he cooperative aspect and
solve the problem just from its local point of view to avoid higher costs. In other words, in this case agent h
would optimize its input as:

up
h,opt(k) = arg min

uh(k)

1
2

uT
h (k)

(
GT

uhQ̂hGuh

)
uh(k)+

(
xh(k|k)T GT

xhQ̂hGuh +wp−1
h (k)T GT

whQ̂hGuh

)
uh(k)

(6.17)
It is important to reiterate the conservatism of this approach in order to be well protected against the effects

of false information. When it is implemented, it only causes changes when the situation represented by
(6.16) is reached, which for its part implies expecting the worst from an outer controller. Given that this
limit situation could not be the case even when an attacker is performing effectively, the fact that an agent is
protected with this method does not imply that it would not see a poorer performance.





7 Example 1: Two double integrators with
coupled inputs

In this first example, a plant composed of 2 subsystems (M = 2) and a prediction time length of 5 (N = 5)
have been considered. Firstly, we present the matrices of the model (2.3) that will describe the performace of
each subsystem. Along with this, we will have the associated centralized model, whose matrices are also
shown below.

As specification of the problem, some constraints on the states and inputs will be imposed in the resolution
and a certain reference will be provided. Finally, an initial state has to be fixed, due to the fact that the values
of certain variables at the previous iteration are used in the algorithm, so it will be necessary for the start of
the simulation.

A11 =

[
1 0
1 1

]
, B11 =

[
0
1

]
, B12 =

[
0

0.4

]
n1 = 2, m1 = 2

A22 =

[
1 0
1 1

]
, B21 =

[
0
1

]
, B22 =

[
0
1

]
n2 = 2, m2 = 2

Acen =


1 0
1 1

1 0
1 1

 , Bcen =


0 0
1 0.4
0 0
1 1

 , nx = 4, mu = 2

Constraints:[
−2
−2

]
≤ x1 ≤

[
2
2

]
,

[
−2
−2

]
≤ x2 ≤

[
2
2

]
, |u1| ≤ 5, |u2| ≤ 5

Initial state:
x1(0) =

[
0.1
−0.2

]
, x2(0) =

[
−0.1

1

]
In addition, the weighting matrices that will define the cost functions to be optimized are

Q1 =

[
1 0
0 1

]
, Q2 =

[
1 0
0 1

]
, Q =


1 0
0 1

1 0
0 1


R1 = 0.1, R2 = 0.1 R =

[
0.1 0
0 0.1

]
With all this data, and the previous coding of Âx, Âu, b̂x and b̂u, we proceed to the resolution of the

centralized problem, and the subsequent application of the change of variable to solve it in a distributed way.
Given that this double integrator is used as introductory example, we are going to detail some of the

particularized DMPC algorithm’s mathematical expressions. For the specific case of M = 2, the change
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of variable will be u = M1u1 +M2u2, which leads us to the following optimizations problems, that are
respectively the one that will be addressed by agent 1, and the one for 2.

min
u1

1
2

u1(k)
T (MT

1 HM1
)

u1(k)+
(
u2(k)

T MT
2 HM1 +FT M1

)
u1(k)

min
u2

1
2

u2(k)
T (MT

2 HM2
)

u2(k)+
(
u1(k)

T MT
1 HM2 +FT M2

)
u2(k)

They will be solved iteratively as it has been described, considering the constraints[
ÂxGuM1

ÂuM1

]
u1(k)≤

[
b̂x− ÂxGxx(k|k)− ÂxGuM2u2(k)

b̂u− ÂuM2u2(k)

]
[

ÂxGuM2
ÂuM2

]
u2(k)≤

[
b̂x− ÂxGxx(k|k)− ÂxGuM1u1(k)

b̂u− ÂuM1u1(k)

]
The maximum number of iterations has been fixed to pmax = 100 and the value of the parameter ε has

been 0.01.
Regarding this example, it is important to notice that we are dealing with a non controllable system which

can be easily observe in the fact that the first components of xi for i = 1,2. will remain unaltered during the
entire simulation length at the value of xi(0). More properly, the contrability property has been tested via
the corresponding rank of the subsystem’s controllability matrices, or equally, with the centralized model,
for which this rank is 2. Therefore, this system will not allow us to move all componets of the state x from
any initial state to another final one in a finite time by acting on the inputs. Given that the purpose of this
example is to assess the performance of the algorithm when it is implemented, we will not go beyond to
what is necessary for this aim. In other words, some parameters are going to be fixed with view to a clearly
presentation of this behaviour rather than going into an specific control problem of the system.
The mentioned first states’ components cause that a constant term Ki might be added each k to the

corresponding cumulative cost and moreover it will affect the objective functions to optimize.

Ki =
N−1

∑
n=0

(x1
i (0)− x1

i,re f )
2

To avoid a bias of the negotiation process just due to a choice of the initial state and the reference, it has been
set

x1,re f =

[
0.1
1.5

]
, x2,re f =

[
−0.1
−1

]
However, despite not affecting the cost functions, the agents should consider the influence in the controllable
component of the states of this pecualirity.

7.1 Standard case with Example 1

The results obtained solving the parallel cooperation-based optimizations (without being influenced by any
possible attacks) are presented in Figures 7.1 to 7.5.
In the first figure, inputs u1 and u2 over a simulation length of 25 time units can be seen. The coupling

between the two subsystems of this example is caused by the influence of the input of one on the other, hence
both evolutions are decisive in any state change, either for 1 or 2. The algorithm leads to a sequence of control
actions implemented that barely differ from the one applied when controlling the system in a centralized
way, which supposes a meaningful aspect with regard to the good performance of the negotation process. We
have to remark here that the control is achieved through a receding horizon implementation of the decision
variables at the last iteration per sampling time. It implies that just the first input of the trajectory calculated
is the one implemented and represented in the figures. That is, u1(k|k) and u2(k|k) at the iteration p which
fulfils either p > pmax or dist1 and dist2 smaller than ε .

Figures 7.2 and 7.2 shows the state representation. The notation xc
i means component c of the state vector

xi. As the number of states of each subsystem equals 2, it shows four different curves, in which the application
of the control law, together with the intrinsic properties of the model equations above, are reflected. Both
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Figure 7.1 Inputs evolution (standard case).

subsystem’s first components stay constant at the corresponding initial value while the other present an
evolution towards values relatively closed to the reference. This example allow us to present the differences
that can be achieved by changes in the stop conditions, that is, the possibility of making the algorithm more
or less accurate. To illustrate it, it is shown in Figure 7.4 the change in in the curves of x2

1 and x2
2 when just ε

is redefined as 0.1.
Finally, in Figure 7.5 shows the corresponding cumulative costs for subsystems 1 and 2 for a further

comparison when the attacks are introduced. These curves will be used as references to see the effect that the
mentioned attacks will have on them. In principle, the cumulative cost for 1 derived from the application of
the algorithm without any threat of malicious information has resulted to be around 2 when k = 25.
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Figure 7.2 State evolution of subsystem 1 (standard case).

Figure 7.3 State evolution of subsystem 2 (standard case).
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Figure 7.4 x2
1 and x2

2 evolutions when ε = 0.1 (standard case).

Figure 7.5 Cumulative cost for subsystems 1 and 2 (standard case).
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7.2 False reference attack to Example 1

In this firs attack’s presentation, we address the issue of introducing a false reference in the normal course of
the algorithm. It has been considered that agent 1 is a malicious controller which introduces a misleading
reference denoted as x f

1,re f , so a = 1. Given the intended purpose of every attack, that is, the aim of taking
advantages from the others to get benefits for the attacker, the implementation of this false reference attack
has been done in conjunction with the determination of a certain x f

1,re f which leads to the desired goal. The
latter has been done by means of the described method in the precending parts to determine the optimal x f∗

1,re f .
So that it can also be analysed whether the performance obtained when this method is implemented here is
satisfactory or not.

We have arrived the results presented in Figures 7.6 to 7.9, in which Figure 7.9 takes special importance as
shows the difference in the evolution of the cumulative cost. It reflects how the misleading information has
been introduced in favour of agent 1 and how this fact has made itself be better off from its local point of
view. For now, it can be seen the pursuit of an appropiate x f∗

1,re f has been done effectively as it fulfills the
attacker’s goal.

An important difference regarding the standard case can be observed in the state evolution of 1 towards the
reference. To conclude the presentation of results related to this attack, it has been added the graphic with the
values that the components of x f

1,re f take along time k, that is, the ones that affect directly the computing of
the inputs impleted each time instant (Figure 7.10).

Figure 7.6 Inputs evolution ( x f
1,re f = x f∗

1,re f ).
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Figure 7.7 States evolution of subsystem 1 ( x f
1,re f = x f∗

1,re f ).

Figure 7.8 States evolution of subsystem 2 ( x f
1,re f = x f∗

1,re f ).



46 Chapter 7. Example 1: Two double integrators with coupled inputs

Figure 7.9 Comparison with the standard case ( x f
1,re f = x f∗

1,re f ).

Figure 7.10 Evolution of x f∗
1,re f .
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7.3 Fake weights attack to Example 1

Hereunder, we address the issue of having a fake weights attack in the plant, which will be again carried out
by agent 1. We are going to analyse the response of the double integrator to this attack from two different
perspective. On the one hand, we will present the results that will be arrived for the case in which the value
of the corresponding λ1 in the attacker’s optimization problem is changed to λ

f
1 > λ1 while λ2 remains with

its original value. On the other hand, they will be compared with the ones arrived for the particular case
related to this attack, that is, when agent 1 acts in a complete selfish way by removing the consideration of
subsystem 2 in its objective funtion ( λ

f
2 = 0).

7.3.1 λ
f
1 = 1.5λ1

Setting λ
f

1 = 1.5λ1 and applying the attack as it was described, leads to the results presented in Figures
7.11 to 7.14. The enhancement that controller 1 makes for itself can be reflected in the last of these figures,
however, in view of the result of the previous attack, there is still scope to improve.

Figure 7.11 Inputs evolution (λ f
1 = 1.5λ1).
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Figure 7.12 States evolution of subsystem 1 (λ f
1 = 1.5λ1).

Figure 7.13 States evolution of subsystem 2 (λ f
1 = 1.5λ1).
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Figure 7.14 Comparison with the standard cas (λ f
1 = 1.5λ1).
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7.3.2 λ
f
1 = 1,λ f

2 = 0

At this point, we are going to compare them with a selfish agent attack. Figure 7.18 is a proof that the latter
causes more harmful effects on the overall performance as it was expected.

Figure 7.15 Inputs evolution (λ f
1 = 1,λ f

2 = 0).

Figure 7.16 States evolution of subsystem 1 (λ f
1 = 1,λ f

2 = 0).
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Figure 7.17 States evolution of subsystem 2 (λ f
1 = 1,λ f

2 = 0).

Figure 7.18 Comparison of the cumulative costs (selfish attack and standard case).
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7.3.3 λ
f
1 = λ

f∗
1

All this results raises the question of if it could be possible to achieve the similar behaviour reached by a
selfish agent maintaining λ

f
2 = λ2 and optimizing the values that λ

f
1 takes. That is, we have implemented a

similar algorithm to the one to calculate x f∗
a,re f , but in this case the variable will be λ

f
1 . The results arrived

are presented and compared in Figure 7.19, in which the achievements related to the different fake weights
attacks are reflected. It can be obseved that the pursuit of an optimal λ

f∗
1 also leads us to a satisfactory result

as the desired reduction is arrived. Consequently, in this example it is not necessary making λ
f

2 = 0 to reach
the best local situation seen until now. Finally, those applied values of λ

f∗
1 per instant time are shown in

Figure 7.20. It is important to mention that in the corresponding implementation the maximum value which
this weight can take has been limited to 20.

Figure 7.19 Comparison of the cumulative costs (fake weights attacks).
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Figure 7.20 Evolution of λ
f∗

1 .
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7.4 Evaluation of the Key Performance Indicators

In this section we present the values that the Key Performance Indicators takes for the different attacks applied,
all of them for a time horizon of 25. The purpose is to associate to the results that the graphics describe
different numbers with a particular meaning.

Firstly, the standard case of the algorithm will be compare with the centralized strategy. These first values
would allow us to assess how the algorithm works in standard conditions, so that the next step is to evaluate
what are the effects of the attacks.

Table 7.3 shows the costs arrived at for both subsystems and for the entire plant when the attacks are
carried out. The reduction in the cumulative cost of 1 is notable, which is a reflection of the effectivity of the
attack. It has to be underline here that we have arrived to a peculiar situation as we have that the overall cost
of the plant is in some cases slightly lower when introducing the false information than when we work under
reliable conditions. This is just consequence of the fact that the decline that 1 reaches for itself is greater than
the increase of the cost of 2 as result of having taken advantage of the latter. As it can be seen we have that
the overall cost is almost the same as in the standard case with another distribution of it in which agent 2
suffers more to help 1 be in a better situation.
Anyway, it should be outlined that if we implement the algorithm without any added inertia the results

obtained change and we arrive at those expected values greater than 1 in cases that here are below it. For
example, the global cost in the standard case is 4.6039, the one for a selfish attack 4.8911. Therefore, we see
the loss of perfomance expected and show with it that the inertia is present and has its effect in the algorithm.

Table 7.1 Performance comparison of the standard case of the algorithm with centralized MPC. Values
associated to subsystems 1 and 2 (Example 1).

Cumulative cost 1 Cumulative cost 2
Standard case of the algorithm (pmax = 100,ε = 0.01) 2.0381 2.7905

Centralized MPC 1.8165 2.9823

Table 7.2 Performance comparison of the standard case of the algorithm with centralized MPC. Values
associated to the whole system (Example 1).

Cumulative cost in the plant
Standard case of the algorithm (pmax = 100,ε = 0.01) 4.8286

Centralized MPC 4.4988

Table 7.3 Cumulative costs reached under the effects of the different attacks (Example 1).

Cumulative cost 1 Cumulative cost 2 Cumulative cost in the plant
Optimal false reference 1.6158 3.1227 4.7385

Selfish agent 1.6418 3.2654 4.9072
Fixed fake weight 1.7643 2.9290 4.6933

Optimal fake weight 1.6459 3.2213 4.8672

Table 7.4 Evaluation of the Price of Corruption and improvement achieved by agent 1 (Example 1).

PoC Cum. Cost 1
Cum. Cost 1 (standard)

Optimal false reference 0.9813 0.7928
Selfish agent 1.0163 0.8056

Fixed fake weight 0.9720 0.8657
Optimal fake weight 1.0080 0.8076



8 Example 2: A Four Tank Plant

In this example, the case of a system comprised of four interconnected water tanks whose parameters have
been taken from [2] is studied. Hereafter, the problem of controlling the plant will be addressed by applying
the cooperative DMPC algorithm proposed. It will be done considering the aim of reaching a certain water
level in each of the tanks, while taking into account the corresponding couplings and constraints.

An illustrative scheme of the plant can be seen in Figure 8.1. It consists of two top tanks to which the
numbers 3 and 4 will be asigned, and two others at the bottom that will be denoted as 1 and 2. The systems
works in a manner that the tanks at the top discharge into the ones at the bottom at the same time that all of
them are filled with a flow that comes from a storage tank. The latter is done via the actuation of two pumbs
denoted as qA and qB. Moreover, it is given that this flow can be managed by means of three-way valves,
which can also be observed in the scheme representation.

AB

A
B

AB

A
B

3 4

qA qB

h1

h2

h3 h4

1 2

γa γb

 

Figure 8.1 Diagram of the plant.

Firsly, the equations which model phisically the evolution of the water levels over continuous time t, are
presented (8.1). These levels are related to a certain height that will be indicated from now on by hi, with
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i = 1,2,3,4.

dh1
dt

=
−a1
S1

√
2gh1 +

a3
S3

√
2gh1 +

γa

S1
qA

dh2
dt

=
−a2
S2

√
2gh2 +

a4
S4

√
2gh4 +

γb

S2
qB

dh3
dt

=
−a3
S3

√
2gh3 +

1− γb

S3
qB

dh4
dt

=
−a4
S4

√
2gh4 +

1− γa

S4
qA

(8.1)

where Si represents the cross section of the duct, ai a constant which characterises the discharge, and γm (m
indicates indistinctly A or B) the ratio of the three-ways valves.

Table 8.1 Discharge constants, cross sections of the ducts and ratios of the three-way valves.

a1 1.31×10−4m2 S1 0.06m2
γa 0.3

a2 1.507×10−4m2 S2 0.06m2
γb 0.4

a3 9.627×10−5m2 S3 0.06m2

a4 8.31×10−5m2 S4 0.06m2

Following the reference article [2], we will use since now the discrete-time LTI model associated (8.2) and
essential information for the problem’s resolution provided below.

LTI model:

x(k+1) =


0.9705 0 0.0205 0

0 0.9661 0 0.0195
0 0 0.9792 0
0 0 0 0.9802

x(k)+


0.0068 0.0011
0.0002 0.0091

0 0.0137
0.0160 0

u(k) (8.2)

Operating point:
The operating point is determined by q0

A, q0
B and h0

i , which results in the following definitons of each
component of the state and input vector, x(k) and u(k), respectively. In addiction, Table 8.2 specifies the
corresponding values.

Components of x(k) : hi(k)−h0
i

Componets of u(k) : qm(k)−q0
m

Table 8.2 Values of the operating point.

h0
1 0.65m q0

A 1.63m3/h
h0

2 0.65m q0
B 2m3/h

h0
3 0.65m

h0
4 0.65m

Constraints:
As in Example 1, the problem is subject to certain constraints that will be imposed for an appropiated

performance of the plant. In this case, the constraints are specified by different bounded intervals that restrain
the possible values that the water levels hi can reach, as well as the admitted controls of the pumps qA and qB.
So that, for all time instant k and for every iteration p, the indications in Table 8.3 must be respected.
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Table 8.3 Constraints.

0.2 m≤ h1(k),h3(k)≤ 1.36 m 0 m3/h≤ qA(k)≤ 3.26 m3/h
0.2 m≤ h2(k),h4(k)≤ 1.36 m 0 m3/h≤ qB(k)≤ 4 m3/h

References:
Finally, the point towards the system should be steered is indicated.

h1,re f = 0.5 m, h2,re f = 0.6 m, h3,re f = 0.7 m, h4,re f = 0.8 m

With all of this information, we address the control using the algorithm in the preceding parts with the
objective of reaching an appropiate distributed action.

It has been suggested a division of the global system into two subsystems, one which considers tanks 1 and
3, and, therefore, another one composed of tanks 2 and 4. To proceed with the same nomenclature that has
been used until now, we will translate the data above to the following matrices. It is important to underline
before continuing that the letter i, which has differentiated the subsystems in the previous parts, has been used
in this example as index for the tanks, which are not directly subsystems, so it should not be confused when
the index 1 or 2 are referred to subsystems themselves or to a determined tank. Taking that into account, we
have

A1 =

[
0.9705 0.0205

0 0.09792

]
, B1A =

[
0.0068

0

]
, B1B =

[
0.0011
0.0137

]
n1 = 2, m1 = 2

A2 =

[
0.9961 0.0195

0 0.9802

]
, B2A =

[
0.0002
0.0160

]
, B2B =

[
0.0091

0

]
n2 = 2, m2 = 2

Acen =


0.9705 0.0205

0 0.09792
0.9961 0.0195

0 0.9802

 , Bcen =


0.0068 0.0011

0 0.0137
0.0002 0.0091
0.0160 0

 , nx = 4, mu = 2

Hence, at k the states at this current time are given by

x1(k|k) =
[

h1(k|k)−h0
1

h3(k|k)−h0
3

]
, x2(k|k) =

[
h2(k|k)−h0

2
h4(k|k)−h0

4

]
, x(k|k) =


h1(k|k)−h0

1
h3(k|k)−h0

3
h2(k|k)−h0

2
h4(k|k)−h0

4


Let xi

j(·) denote the component of subsystem j ( j = 1,2) referred to tank i (i = 1,2,3,4). The constraints
for all n = 0,1,...,N and for all k can be expressed as[

−0.45
−0.45

]
≤
[

x1
1(k+n|k)

x3
1(k+n|k)

]
≤
[

0.71
0.71

]
,

[
−0.45
−0.45

]
≤
[

x2
2(k+n|k)

x4
2(k+n|k)

]
≤
[

0.71
0.71

]
and, moreover, the references are[

x1
1
re f

x1
3
re f

]
=

[
−0.15
0.05

]
,

[
x2

2
re f

x2
4
re f

]
=

[
−0.05
0.15

]
To finish the parametrization of the problem, the weighting matrices that will define the cost functions are

chosen as

Q1 =

[
1 0
0 1

]
, Q2 =

[
1 0
0 1

]
, Q =


1 0
0 1

1 0
0 1


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R1 = 0.01, R2 = 0.01 R =

[
0.01 0

0 0.01

]
The length of the simulation has been set to 100 time units, so that k ∈ {0,100} , and the control horizon

has been defined such as N = 5. Further parameters that must be specified are the maximum number of
iterations per sample time pmax = 50 or the value assigned to ε , which has been 0.05.
Then, we will make use of the same change of variable, that is u = M1u1 +M2u2, which leads us to the

defined optimizations problems and constraints interval in Example 1 but with the application of the new
plant’s data.

8.1 Standard case with Example 2

The results obtained solving the cooperation-based optimizations of this distributed MPC framework are
presented in Figures 8.2 to 8.4. The first one shows the actions performed on the pumps along time, thus,
they are the most direct reflection of the agreements reached each k. It can be noticed that the curves
associated to the distributed algorithm almost overlaps the ones that would be arrived with a centralized
control. Furthermore, Figure 8.3 shows the corresponding heights reached by the stored water in each tank
when working under reliable conditions. In Figure 8.4 the cumulative costs are represented, which in principle
evidences a better local situation of subsystem 2. Henceforth, these results will be used as reference for
assessing how the system responds to the described attacks.

Figure 8.2 Pump control evolution (standard case).
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Figure 8.3 Evolution of the tanks’ water levels (standard case).

Figure 8.4 Cumulative cost for subsystems 1 and 2 (standard case).
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8.2 False reference attacks to Example 2

The implementation of this first attack has been addressed in two different ways. Firstly, it has been cosidered
the case in which a constant false reference is introduced from the beginning in the optimization problem
solved by the attacker. As it has been described, a convenient choice of the value that this false reference
takes can lead to a reduction of the attacker’s local cost and thus get its objective. Secondly, it has been
presented what happens when the proposed method of determining the optimal false reference is applied.
Finally, both results are compared in order to see wheter the algorithm performs as intented or not.

8.2.1 Constant false reference

Figures 8.5 to 8.7 show the results when agent 1 (a= 1) considers x f
1,re f = [−0.21;0.01] to bias the negotiation

through the trajectories up
1(k) calculated per iteration and time instant. This attack causes a clear impact in

the water level’s arrived in the tanks and their evolution. It is also remarkable the worsening for 4 and the
notable improvement for 1 regarding the real reference (h1,re f = 0.5).

Figure 8.7 deserves special focus as it shows the difference in the cumulative costs reached and they are the
motivation for the attack. It has been directly represented together with the standard case to prove that this
choice of x f

1,re f leads to a reduction of the cost of 1 at the expense of 2. In principle, there is no guarantee
that this decline is the optimal that can be induced and, besides that, another arbitrary choice of the false
reference could have resulted in not meeting the target.

Figure 8.5 Pump control evolution (x f
1,re f = [−0.21;0.01]).



8.2 False reference attacks to Example 2 61

Figure 8.6 Evolution of the tanks’ heights (x f
1,re f = [−0.21;0.01]).

Figure 8.7 Comparison with the standard case (x f
1,re f = [−0.21;0.01]).
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8.2.2 Optimal false reference

Here, the attacker 1 determines the optimal x f
1,re f to be used in its optimization problem. Figure 8.8 shows

the pump control’s evolution in which can be seen the wide range of deviation concerning the centralized
solution especially in the case of qA. The consequence of their implementation is represented in Figure 8.9, in
which the curves associated to subsystem 2 are adversely affected while h1 and h3 present the best evolution
towards the real reference achieved until now.

Figure 8.8 Pump control evolution (x f
1,re f = x f∗

1,re f ).

Figure 8.9 Evolution of the tanks’ heights (x f
1,re f = x f∗

1,re f ).
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Figure 8.10 compares the outcome with the standard case while Figure 8.11 contrasts the costs for both
examples of false references attacks. This figure indends to illustrate the effectiveness and improvement
related with the pursuit of the optimal false reference and, therefore, to show the good behaviour of the
method proposed theoretically.

Lastly, Figure 7.10 has been added to show the values that the components of the false reference take along
time. It is important to mention that they are the ones directly used in the computing of the inputs applied,
that is, the false reference arrived each k after the iterative negotiation.

Figure 8.10 Comparison with the standard case (x f
1,re f = x f∗

1,re f ) .

Figure 8.11 Comparison of both false references attacks’ cumulative costs .
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Figure 8.12 Evolution of x f∗
1,re f .

8.3 Selfish agent attack to Example 2

This attack does not only implies the introduction of an extreme attacker in which a controller just thinks
about itself, but also confirms the mentioned effectiveness of the preceeding optimal false reference case. The
reason for that is that the results arrived are almost the same, so that what has been done before is forgetting
about the welfare of 2 and try to take advantage of it to improve 1. The implementation differs but the
outcomes coincide. Figures 8.13 and 8.14 correspond to the inputs and water level’s evolution respectively,
where we can see again how the attack makes the negotiation’s agreements to be in favour of 1. Finally, the
cumulative costs have been compared to the standard case in Figure 8.15.

Figure 8.13 Pump control evolution (selfish agent).
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Figure 8.14 Evolution of the tanks’ heights (selfish agent).

Figure 8.15 Comparison with the standard case (selfish agent).



66 Chapter 8. Example 2: A Four Tank Plant

8.4 Fake constraints attack to Example 2

This last attack is a proof of that benefits can also be gotten by changes in the constraints as described
theoretically. In this case it has been used U ∗

1 = 0.05×U1. As before, the inputs, states and cumulative cost
are presented (Figures 8.16 to 8.18). First time steps of the corresponding graph to u1 reflects the application
of the new limitation . In this case the latter does not strongly affect the water levels reached at time k = 100
with respect to the standard case, however it has leads to a slight improvement of the attacker’s local situation.

Figure 8.16 Pump control evolution (fake constraints).
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Figure 8.17 Evolution of the tanks’ heights (fake constraints).

Figure 8.18 Comparison with the standard case (fake constraints).
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8.5 Evaluation of the Price of Corruption

The following tables show the results presented above translated to a serie of numbers which assess the
damage caused (all of them for a time horizon of 100). It is proved that the higher PoC, and therefore, the
harder loss of performance, is associated with the selfish attack which almost leads to trebling the cost for
the plant concerning the reliable development of the algorithm. Table 8.8 has been added to represent the
decrease in the cost of the attacker reached in all cases, being the latter greater for those values higher of the
PoC.

Table 8.4 Performance comparison of the standard case of the algorithm with Centralized MPC. Values
associated to subsystems 1 and 2 (Example 2).

Cumulative cost 1 Cumulative cost 2
Standard case of the algorithm (pmax = 50,ε = 0.05) 3.1115 1.3025

Centralized MPC 3.0317 1.3721

Table 8.5 Performance comparison of the standard case of the algorithm with Centralized MPC. Values
associated to the whole system (Example 2).

Cumulative cost in the plant
Standard case of the algorithm (pmax = 50,ε = 0.05) 4.4140

Centralized MPC 4.4038

Table 8.6 Cumulative costs reached under the effects of the different attacks (Example 2).

Cumulative cost 1 Cumulative cost 2 Cumulative cost in the plant
Fixed false reference 2.9570 1.5037 4.4607
Fake constraints 2.9149 1.6042 4.5191

Optimal false reference 1.4323 9.0300 10.4623
Selfish agent 1.2659 11.7109 12.9768

Table 8.7 Evaluation of the Price of Corruption (Example 2).

PoC
Fixed false reference 1.0106
Fake constraints 1.0238

Optimal false reference 2.3703
Selfish agent 2.9399

Table 8.8 Improvement achieved by agent 1 (Example 2).

Cum. Cost 1
Cum. Cost 1 (standard)

Fixed false reference 0.9493
Fake constraints 0.9368

Optimal false reference 0.4603
Selfish agent 0.4068
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8.6 Min-Max approach with Example 2

In this last section, we show the behaviour when the described min-max method is implemented. Again, it
proves the conservadurism of the latter as just a small improvement is achieved with the parameters of the
problem. However, the change introduced can be more notable for different parameters. Figure 8.20 shows
the case in which just the second component of h1,re f has been modified such that h1,re f = [0.5 0.8]T . For
this case, the reduction of the cost associated to 2 with respect to the selfish attack without defense is more
significant as well as the increase in the cost of the attacker.

Figure 8.19 Results when introducing the min-max defense .

Figure 8.20 Results when introducing the min-max defense (change of h1,re f to h1,re f = [0.5 0.8]T ).
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