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ABSTRACT
Thioredoxins (Trxs) play a relevant role in thiol-dependent redox regulation, which allows the rapid
adaptation of chloroplast metabolism to unpredictable environmental conditions. In chloroplasts, Trxs use
reducing equivalents provided by photoreduced ferredoxin (Fdx) via the action of a ferredoxin-
thioredoxin reductase (FTR), thus linking redox regulation to light. In addition, these organelles contain an
NADPH-thioredoxin reductase, NTRC, with a Trx domain at the C-terminus. NTRC efficiently reduces 2-Cys
peroxiredoxins (Prxs), hence having antioxidant function. However, NTRC also participates in the redox
regulation of processes, such as starch and chlorophyll biosynthesis, which are known to be regulated by
Trxs. Thus, the question arising is whether there is a cross-talk between the 2 redox systems. Arabidopsis
mutants simultaneously devoid of NTRC and Trx x or Trxs f show a dramatic growth inhibition phenotype,
indicating that NTRC is required for the function of these unrelated Trxs. Remarkably, both the ntrc-trxx
double mutant and, to a higher extent, the ntrc-trxf1f2 triple mutant show high mortality at the seedling
stage, which is rescued by sucrose. These findings show the relevant role of redox regulation for
chloroplast performance and uncover the key function of cotyledons chloroplasts at the transition to
autotrophic metabolism during seedling establishment.
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Chloroplasts, the organelles in which light energy is converted
in organic material, are the source of metabolic precursors for
plant growth. Therefore, the deep influence of light on chloro-
plast performance and, hence, on plant development is not sur-
prising. Central to the metabolic plasticity of chloroplasts is
thiol-dependent redox regulation of enzyme activity, a regula-
tory mechanism in which the protein disulphide reductase
activity of thioredoxins (Trxs) plays an important role.1 While
in heterotrophic organisms Trxs are reduced by NADPH with
the participation of an NADPH-thioredoxin reductase (NTR),
the complex set of chloroplast Trxs are reduced by photosyn-
thetically reduced ferredoxin (Fdx) with the participation of
ferredoxin-thioredoxin reductase (FTR).2 Therefore, by using
photoreduced Fdx as source of reducing power the FTR-Trxs
system links chloroplast redox regulation to light. Virtually any
process taking place in this organelle is redox sensitive, the dif-
ferent types of Trxs showing specific functions. While Trxs f
are considered to participate in redox regulation of metabolic
pathways, such as the Calvin-Benson cycle enzymes, Trx x has
been proposed to have antioxidant function.3

This classical view of chloroplast redox regulation was modified
by the discovery of anNTRwith a joint Trx domain at the C-termi-
nus, termed NTRC,4 which is exclusively found in organisms that
perform oxygenic photosynthesis.5 Based on the finding that
NTRC is a very efficient reductant of the thiol-dependent

peroxidase 2-Cys peroxiredoxin (2-Cys Prxs), it was proposed the
participation of NTRC in the antioxidant defense mechanism of
the chloroplast.6 However, Arabidopsis mutants devoid of NTRC
show growth retard phenotype6,7 and low efficiency of light energy
utilization,8,9 suggesting additional functions for this enzyme. In
line with this notion, it was shown that NTRC participates in redox
regulation of previously identified Trx-regulated pathways such as
starch10,11 and chlorophyll biosynthesis,12,13 hence raising the ques-
tion of the relationship of NTRC and the Fdx/FTR/Trxs redox sys-
tem in chloroplast redox regulation.

This issue is currently being addressed by genetic
approaches. In this regard, it is worth mentioning that Arabi-
dopsis single mutants lacking specific isoforms of chloroplast
Trxs such as those of the types x,14 f,15-17 or m18,19 show almost
wild type phenotype, which is in contrast with the important
function assigned to these Trxs based on biochemical analy-
ses.20 Interestingly, mutants combining the deficiencies of
NTRC and chloroplast Trxs, such as the ntrc-trxf1 mutant,
show a very severe phenotype,21 suggesting that both systems
have overlapping functions in chloroplast redox regulation. In
support of this notion, Arabidopsis mutants devoid of NTRC
and FTR are not viable.22 Our finding that Arabidopsis mutants
lacking NTRC and Trx x, and, to a higher extent, mutants lack-
ing NTRC and Trxs f1 and f2 show a very severe growth inhibi-
tion phenotype,23 indicate that the deficiency of NTRC impairs
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the activity of chloroplast Trxs. While these findings further
support the notion that the 2 chloroplast redox systems act
concertedly, the molecular basis of this interaction remains
unknown. One possibility is that NTRC and the different Trxs
modulate the activity of common targets. If this is the case, the
deficiency of one of the systems could be counteracted by the
other while the simultaneous deficiency of both systems would
cause the severe impairment of redox regulation of these tar-
gets. However, the light-dependent reduction of fructose 1,6-
bisphosphatase (FBPase), a well-established redox regulated
enzyme of the Calvin-Benson cycle, was more affected in the
ntrc than in the trxx and trxf1f2 mutants despite the fact that
the enzyme was reduced by Trxs f, and less efficiently by Trx x,
but not by NTRC in vitro.23 These results suggest that NTRC
may exert an indirect effect on the redox regulation of FBPase.
Since NTRC is the most efficient reductant of 2-Cys Prxs in
vivo,14 an additional possibility to be taken into account is that
the lack of NTRC affects hydrogen peroxide homeostasis pro-
voking oxidative stress, which would affect Trx activity. How-
ever, the biochemical basis of the functional relationship of
NTRC, 2-Cys Prxs and the Trxs remains to be elucidated.

The ntrc-trxx and the ntrc-trxf1f2 mutants show a severe
growth inhibition phenotype; moreover, a remarkable feature of
the phenotype of these mutants was the low number of individu-
als that reached the adult stage when grown on soil, the mortal-
ity of the ntrc-trxx and ntrc-trxf1f2 seedlings being of approx.
50% and 95%, respectively.23 These results not only show the
profound relationship of NTRC and functionally unrelated Trxs
x and f, they also highlight the relevance of redox regulation on
chloroplast performance at early stages of development. Seedling
establishment, defined as the formation of the first true leaves,
was delayed in ntrc-trxx and ntrc-trxf1f2 surviving seedlings. In
line with these results, seedlings of these mutant lines germinated
in synthetic media without exogenous carbon source displayed
impaired root growth. This phenotypic effect was partially res-
cued by sucrose, indicating that the photosynthetic activity of
cotyledon chloroplasts is critical to reach autotrophic growth and
for the development of new tissues such as roots and true leaves.

Therefore, the impairment of the chloroplast redox network
in the ntrc-trxx and, more severely, in ntrc-trxf1f2 mutants
causes growth retard but not lethality at the adult phase of
development. In contrast, this impairment of the redox net-
work is critical for post-germinative seedling establishment.
The analysis of soil-germinated seedlings of the ntrc-trxf1f2 tri-
ple mutant (Fig. 1A) shows short hypocotyls and expanded
cotyledons, indicating that the developmental program of pho-
tomorphogenesis is not affected by the deficient chloroplast
redox regulation in these mutants. However, these seedlings are
unable to generate the new organs and undergo progressive
cotyledon bleaching (Fig. 1A), suggesting that the photosyn-
thetic performance of the cotyledon chloroplasts is not suffi-
cient to provide the sucrose required for further development
of the new tissues.24 In contrast with the wild type (Fig. 1B),
chloroplasts of the ntrc-trxf1f2 seedlings show symptoms of
thylakoid dismantling and the presence of clear regions in the
stroma indicating active degradation of chloroplast structures
(Fig. 1C-E). Moreover, chloroplasts in advanced degree of
degeneration with the appearance of gerontoplasts25 were also
detected at this stage of development (Fig. 1E). Chloroplast

degeneration is characterized by the increase in the number
and size of plastoglobules and an increase of plastoglobule
attachment (Fig. 1C-E), which is indicative of oxidative stress.26

This feature suggests that once autotrophic growth is arrested
by the deficiency of the redox system of cotyledon chloroplasts,
these cells suffer increasing oxidative stress and normal devel-
opment of the new organs, leaves and roots, is inhibited. The
dramatic effect of the lack of the redox systems here analyzed
at the seedling stage uncovers the relevance of redox regulation
for chloroplast performance, which is critical for the transition
to autotrophic growth at the seedling stage.
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Figure 1. Cotyledon chloroplast structure of wild type and ntrc-trxf1f2 bleaching
seedlings. (A) Seeds of ntrc-trxf1f2 triple mutant were allowed to germinate on soil
and seedlings at different stages of bleaching are shown. (B-E) Electron transmis-
sion microscopy analysis of chloroplast structure from wild-type plants (B) and the
mutant line seedlings (C-E). Plants were germinated on soil for 10 days, and seed-
lings were collected just before the appearance of the first true leaves and fixed in
glutaraldehyde. Transmission electron microscopy analysis was performed as previ-
ously reported.23 Bars represent 1 mm (B, C, E) and 0.5 mm (D). c, chloroplasts; cw,
cell wall; v, vacuoles. Arrows indicate plastogobules.
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Abbreviations

Fdx ferredoxin
FTR ferredoxin-dependent thioredoxin reductase
NTRC NADPH-dependent thioredoxin reductase C
Prx peroxiredoxin
Trx thioredoxin
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