Trabajo Fin de Grado Grado en Ingeniería Aeroespacial

Determinación de la Carga de Combustible en Presencia de Incertidumbre Meteorológica

Autor: Cristina Durán Jiménez Tutor: Antonio Franco Espín

> Dep. Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Técnica Superior de Ingeniería Universidad de Sevilla

> > Sevilla, 2017

Trabajo Fin de Grado Grado en Ingeniería Aeroespacial

Determinación de la Carga de Combustible en Presencia de Incertidumbre Meteorológica

Autor:

Cristina Durán Jiménez

Tutor:

Antonio Franco Espín

Dep. Ingeniería Aeroespacial y Mecánica de Fluidos Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Sevilla, 2017

Trabajo Fin de Grado: Determinación de la Carga de Combustible en Presencia de Incertidumbre Meteorológica

Autor:Cristina Durán JiménezTutor:Antonio Franco Espín

El tribunal nombrado para juzgar el trabajo arriba indicado, compuesto por los siguientes profesores:

Presidente:

Vocal/es:

Secretario:

acuerdan otorgarle la calificación de:

El Secretario del Tribunal

Fecha:

Agradecimientos

Quisiera agradecer en primer lugar a mi familia, en especial a mis padres y a mi hermano, por quererme y apoyarme, por su infinita paciencia, por estar siempre a mi lado, celebrando los momentos buenos y animándome en los no tan buenos, por darme todo su cariño y confiar en mí.

A los profesores de esta Escuela, por transmitirme día a día la pasión que sienten por su trabajo, por prestarme su ayuda de manera desinteresada en los momentos en los que más lo necesitaba. Porque sus conocimientos a lo largo de estos cuatro años me ha hecho crecer enormemente, no solo en el ámbito académico, sino también en el personal. Agradecer especialmente a mi tutor, Antonio Franco Espín, por su tiempo y dedicación a lo largo del desarrollo de este trabajo.

Por último, agradecer a todos los amigos y compañeros que me han acompañado a lo largo de estos años, por su ayuda y apoyo, por todas esas risas en los momentos más difíciles.

> Cristina Durán Jiménez Sevilla, 2017

Π

Resumen

Este trabajo se centra en el análisis probabilístico del consumo de combustible de la aeronave teniendo en cuenta la incertidumbre meteorológica, en particular, se consideran los efectos de la incertidumbre en el viento. La información referente a los vientos se obtiene a partir de predicciones meteorológicas por conjuntos (EWF), técnica que ha demostrado ser una manera efectiva de cuantificar la incertidumbre meteorológica.

En el análisis, se considera un crucero multi-segmento, en el cual se vuela a número de Mach constante y a altitud constante. Cada segmento se supone sujeto a un viento medio longitudinal constante y a un viento medio cruzado constante. La velocidad respecto de tierra resultante se modelará como una variable aleatoria continua y su función de densidad de probabilidad se propagará a lo largo de toda la trayectoria del avión. En este trabajo se proponen 3 modelos para las velocidades respecto de tierra: dos distribuciones uniformes, obtenidas empleando el método de los momentos y el estimador máximo-verosímil, y una distribución normal.

El objetivo de este trabajo es permitir la toma de una decisión más eficiente en relación al combustible a cargar en la aeronave, teniendo en cuenta el nivel de seguridad requerido y el sobrecoste que se esté dispuesto a asumir. Para ello, se van a comparar los resultados del problema hacia atrás (en el cual las ecuaciones del crucero han de ser integradas en sentido inverso, fijando la masa final de la aeronave) y del problema hacia adelante (donde las ecuaciones han de ser resueltas en sentido directo, con una masa inicial dada), y se va a establecer, si es posible, una conexión entre ellos.

Los resultados se presentan para una ruta Niza-Nueva York, recorrida hacia Este y Oeste. De esta manera, es posible analizar la diferencia en la carga de combustible asociada a volar con vientos predominantemente de cola o de cara.

IV

Abstract

This project is focused on the probabilistic analysis of the aircraft fuel consumption taking into account weather uncertainty, in particular, the effects of wind uncertainty are considered. The wind data is obtained from ensemble weather forecasts (EWF), technique that has proven to be an effective way to quantify weather uncertainty.

In the analysis, a multi-segment cruise, flown at constant Mach number and at constant altitude, is considered. Each segment is supposed to be subject to both an average constant along-track wind and an average constant crosswind. The resulting ground speed will be modeled as a continuous random variable and its probability density function will be propagated along the aircraft trayectory. In this project three models for the ground speed are proposed: two uniform distributions, which are obtained by using the method of moments and the maximum likelihood estimator, and a normal distribution.

The objective of this work is to allow a more efficient decision making in relation to aircraft fuel load, taking into account the required safety level and the overrun we were disposed to assume. For this purpose, results for the backwards problem (where cruise equations have to be integrated backwards by fixing final aircraft mass) and for the forwards problem (where the equations have to be solved forwards with a given initial aircraft mass) will be compared, and a connetion between them will be established, if possible.

Results are presented for the aircraft travelling a Niza-New York route both eastbound and westbound. Therefore, it is possible to analyze the difference in fuel load between the cases of being in the presence of predominantly tailwinds or headwinds.

VI

Índice general

Re	sumen II	
Ał	bstract	V
Ín	dice de figuras	IX
Ín	dice de tablas	XIII
1.	Introducción	1
	1.1. Motivación	1
	1.2. Objetivos y alcance del trabajo	1
	1.3. Estructura del trabajo	2
2.	Formulación	3
	2.1. Ecuaciones generales e hipótesis	3
	2.1.1.Modelos adicionales	
	cero	9
	2.2. Particularización para el problema hacia atrás	12
	2.2.1. Modelo probabilístico de velocidad respecto de tierra	13
	2.2.2. Modelo probabilístico para la masa de combustible	16
	2.3. Particularización para el problema hacia adelante	20
	2.3.1. Modelo probabilístico para la masa de combustible	21
	2.4. Comparación del problema hacia atrás y hacia adelante	22
3.	Resolución numérica	25
4.	Resultados	29
5.	Conclusiones y trabajo futuro	63
Bi	ibliografía	65
Aı	nexo A. Datos de vientos	67
Aı	nexo B. Resultados para todos los segmentos del crucero	91

Índice de figuras

2.1.	Triángulo de viento.	5
2.2.	Esquema de la ruta loxodrómica seguida en el segmento j $\ \ldots \ \ldots$	9
2.3.	Para $\lambda_{A_j} = \lambda_{B_j}$, la trayectoria de la aeronave sigue un meridiano	10
2.4.	Para $\phi_{A_j} = \phi_{B_j}$, la trayectoria de la aeronave sigue un paralelo	11
2.5.	Esquema del problema hacia atrás	12
2.6.	Esquema del problema hacia adelante	20
3.1.	Errores numéricos debidos a la redefinición del mallado. Asteriscos: Componentes del vector creado por MATLAB. Círculos: Valores míni- mos y máximo del intervalo de tiempo en el que está definida la fun- ción. (a) Distribución uniforme, (b) Distribución normal	27
4.1.	Ruta considerada.	29
4.2.	Funciones de densidad de las velocidades respecto de tierra correspon- dientes a los diferentes segmentos del crucero. Barras: histogramas de V_{g_j} . Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el esti- mador máximo-verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este	32
4.3.	Funciones de probabilidad acumulada de las velocidades respecto de tierra correspondientes a los diferentes segmentos del crucero. Curva azul oscuro: <i>Ensembles</i> . Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul claro: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este	34
4.4.	Funciones de densidad de los tiempos empleados en recorrer los di- ferentes segmentos del crucero. Barras: histogramas de $(\Delta t)_j$. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo- verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste,	
4.5.	(b) Ruta hacia el Este	36 38

4.6.	Funciones de densidad del tiempo total de vuelo. Barras: histogra- mas de t_f . Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el esti- mador máximo-verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este	39
4.7.	Funciones de probabilidad acumulada del tiempo total de vuelo. Cur- va azul oscuro: <i>Ensemble</i> . Curva roja: distribución uniforme emplean- do el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul claro: distri- bución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este	41
4.8.	Funciones de densidad de la masa de combustible consumida para el problema hacia atrás. Barras: histogramas de m_F con m_f fija. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximoverosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este	42
4.9.	Función de probabilidad acumulada de la masa de combustible con- sumida con m_f fija. Curva azul oscuro: <i>Ensemble</i> . Curva roja: distri- bución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Cur- va azul claro: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este	44
4.10.	Funciones de densidad de la masa de combustible con m_0 fija, obte- nidas a partir de las distribuciones uniformes empleando el método de los momentos. Líneas de trazos: percentiles asociados a los diferen- tes niveles de seguridad. Curva negra: problema hacia atrás. Curva azul oscuro: problema hacia adelante con $m_0 _{95\%}$. Curva azul claro: problema hacia adelante con $m_0 _{97\%}$. Curva verde: problema hacia adelante con $m_0 _{99\%}$. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.	47
4.11.	Funciones de densidad de la masa de combustible con m_0 fija, obte- nidas a partir de las distribuciones uniformes empleando el estimador máximo-verosímil. Líneas de trazos: percentiles asociados a los dife- rentes niveles de seguridad. Curva negra: problema hacia atrás. Curva azul oscuro: problema hacia adelante con $m_0 _{95\%}$. Curva azul claro: problema hacia adelante con $m_0 _{97\%}$. Curva verde: problema hacia adelante con $m_0 _{99\%}$. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.	48
4.12.	Funciones de densidad de la masa de combustible con m_0 fija, obte- nidas a partir de las distribuciones normales. Líneas de trazos: per- centiles asociados a los diferentes niveles de seguridad. Curva negra: problema hacia atrás. Curva azul oscuro: problema hacia adelante con $m_0 _{95\%}$. Curva azul claro: problema hacia adelante con $m_0 _{97\%}$. Curva verde: problema hacia adelante con $m_0 _{99\%}$. (a) Ruta hacia el Oeste (b) Ruta hacia el Este	40
	Ocste, (D) Ituta flatia el Este	49

4.13. Funciones de probabilidad acumulada de la masa de combustible con m_0 fija, obtenidas a partir de las distribuciones uniformes empleando	
el método de los momentos. Asteriscos: percentiles asociados a los	
diferentes niveles de seguridad. Curva negra: problema hacia atras.	
claro: problema hacia adelante con $m_{0 27\%}$. Curva verde: problema	
hacia adelante con $m_0 _{99\%}$. (a) Ruta hacia el Oeste, (b) Ruta hacia	
el Este.	52
4.14. Funciones de probabilidad acumulada de la masa de combustible con	
m_0 fija, obtenidas a partir de las distribuciones uniformes empleando el estimador máximo-verosímil. Asteriscos: percentiles asociados a los diferentes niveles de seguridad. Curva negra: problema hacia atrás.	
claro: problema hacia adelante con $m_0 _{97\%}$. Curva verde: problema hacia adelante con $m_0 _{97\%}$. Curva verde: problema hacia adelante con $m_0 _{97\%}$.	
el Este	53
4.15. Funciones de probabilidad acumulada de la masa de combustible con	
m_0 fija, obtenidas a partir de las distribuciones normales. Asteriscos:	
percentiles asociados a los diferentes niveles de seguridad. Curva ne-	
gra: problema hacia atrás. Curva azul oscuro: problema hacia adelante	
con $m_0 _{95\%}$. Curva azul claro: problema hacia adelante con $m_0 _{97\%}$.	
Curva verde: problema nacia adeiante con $m_{0 99\%}$. (a) Ruta nacia el Oosto (b) Buta hacia el Esto	54
4.16. Curvas de sobrecoste frente a nivel de seguridad adoptado. Curva	94
roja: distribución uniforme empleando el método de los momentos.	
Curva verde: distribución uniforme empleando el estimador máximo-	
verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste,	
(b) Ruta hacia el Este	55
4.17. Curvas de decisión frente a nivel de seguridad adoptado. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil.	
Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta	.
hacia el Este.	56
4.18. Curvas de sobrecoste frente a decision. Curva roja: distribución uni-	
ción uniforme empleando el estimador máximo-verosímil. Curva azul:	
distribución normal. (a) Ruta hacia el Oeste. (b) Ruta hacia el Este.	57
4.19. Curvas de sobrecoste frente a nivel de seguridad adoptado, con esca-	0.
lado del eje de abscisas. Curva roja: distribución uniforme emplean-	
do el método de los momentos. Curva verde: distribución uniforme	
empleando el estimador máximo-verosímil. Curva azul: distribución	
normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este	59
4.20. Evolucion de las curvas de sobrecoste trente a nivel de seguridad adop-	
tauo a lo largo de un ano. (a) ruta nacia el Oeste, (b) ruta nacia el Este	61
Libut	01

Índice de tablas

4.1.	Coordenadas de los puntos que definen la ruta seguida	29
4.2.	Valores para las variables que definen el crucero.	30
4.3.	Distancias recorridas en los tramos que componen el crucero	30
4.4.	Valores para la definición de los modelos aerodinámico y propulsivo.	30
4.5.	Errores numéricos, medias y desviaciones típicas para la velocidad respecto de tierra en el primer segmento del crucero	33
4.6.	Errores numéricos, medias y desviaciones típicas para el tiempo em- pleado en recorrer el primer segmento del crucero.	37
4.7.	Errores numéricos, medias y desviaciones típicas para el tiempo total de vuelo	40
4.8.	Errores numéricos, medias y desviaciones típicas para la masa de com- bustible con m_f fija.	43
4.9.	Percentiles de la distribución de m_F con m_f fija, partiendo de las distribuciones uniformes obtenidas mediante el método de los momentos.	45
4.10.	Percentiles de la distribución de m_F con m_f fija, partiendo de las distribuciones uniformes obtenidas mediante el estimador máximo- verosímil	45
4.11.	Percentiles de la distribución de m_F con m_f fija, partiendo de las distribuciones normales.	45
4.12.	Percentiles de la distribución de m_F con m_0 fija, partiendo de los diferentes modelos de velocidades respecto de tierra	46
4.13.	Errores numéricos, medias y desviaciones típicas para la masa de combustible con m_0 fija, partiendo de las distribuciones uniformes obtenidas mediante el método de los momentos. Comparación con el	50
4.14.	Errores numéricos, medias y desviaciones típicas para la masa de com- bustible con m_0 fija, partiendo de las distribuciones uniformes obte- nidas mediante el estimador máximo-verosímil. Comparación con el	50
4 15	problema hacia atrás.	50
4.10.	bustible con m_0 fija, partiendo de las distribuciones normales. Com- paración con el problema hacia atrás.	51
4.16.	Pendiente de las secantes a las curvas de sobrecoste frente a decisión, para cada uno de los modelos de partida para las velocidades respecto	
4.17.	de tierra	58
	del 99.9 %	61

A.1. V	Vientos longitudinales para la ruta hacia el Oeste correspondientes al	67
A.2. V	Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de	68
A.3. V	Vientos longitudinales para la ruta hacia el Oeste correspondientes al	60
A.4. V	Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de	70
A.5. V	Vientos longitudinales para la ruta hacia el Oeste correspondientes al	71
A.6. V	Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de	72
A.7. V	Vientos longitudinales para la ruta hacia el Oeste correspondientes al	73
A.8. V	Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de	74
A.9. V	Vientos longitudinales para la ruta hacia el Oeste correspondientes al	74
A.10.V	Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de	70
A.11.V	Vientos longitudinales para la ruta hacia el Oeste correspondientes al	70
A.12.V	Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de	
A.13.V	Vientos longitudinales para la ruta hacia el Oeste correspondientes al	78
A.14.V	Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de	79
r A.15.V	Vientos longitudinales para la ruta hacia el Oeste correspondientes al	80
A.16.V	Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de	81
A.17.V	Vientos longitudinales para la ruta hacia el Oeste correspondientes al	82
A.18.V	Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de	83
е А.19.V	enero de 2017	84
5 A.20.V	5 de febrero de 2017	85
f A.21.V	febrero de 2017	86
5 A.22.V	5 de marzo de 2017	87
r	marzo de 2017	88

A.23 A.24	Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de abril de 2017	89 90
B.1.	Errores numéricos, medias y desviaciones típicas para las velocidades respecto de tierra en los diferentes segmentos que componen el crucero para la ruta hacia el Oeste. Resultados obtenidos para el 5 de mayo de 2016.	91
B.2.	Errores numéricos, medias y desviaciones típicas para las velocidades respecto de tierra en los diferentes segmentos que componen el crucero para la ruta hacia el Este. Resultados obtenidos para el 5 de mayo de 2016.	92
B.3.	Errores numéricos, medias y desviaciones típicas para los tiempos em- pleados en recorrer los diferentes segmentos que componen el crucero para la ruta hacia el Oeste. Resultados obtenidos para el 5 de mayo de 2016.	93
B.4.	Errores numéricos, medias y desviaciones típicas para los tiempos em- pleados en recorrer los diferentes segmentos que componen el crucero para la ruta hacia el Este. Resultados obtenidos para el 5 de mayo de	0.4
	2010	94

1. Introducción

1.1. Motivación

El viento constituye una de las principales fuentes de incertidumbre en la predicción de trayectorias. En concreto, las incertidumbres a las que tenga que hacer frente la aeronave en la fase de crucero tendrán un gran impacto sobre el vuelo global, puesto que ésta es la etapa que mayor parte del vuelo ocupa, al menos para aviones de largo alcance.

En este sentido, está plenamente justificado un análisis en profundidad que tenga como objetivo estimar el efecto de la incertidumbre del viento sobre el consumo de combustible de la aeronave, entendiéndose como algo más que atractivo para las aerolíneas, en particular, para aquellas aerolíneas cuyos vuelos comerciales cubran grandes distancias.

1.2. Objetivos y alcance del trabajo

El principal objetivo de este trabajo es analizar el impacto de la incertidumbre meteorológica sobre el consumo de combustible de la aeronave. En concreto, el trabajo está orientado a proporcionar resultados cuantitativos que permitan tomar una decisión en lo referente a la masa de combustible a cargar en la aeronave, en función del nivel de seguridad que se pretenda alcanzar (o, equivalentemente, en función del riesgo que se esté dispuesto a asumir) y del sobrecoste en consumo de combustible en que se esté dispuesto a incurrir.

Para ello, se considera un vuelo de crucero formado por varios segmentos, con una ruta fijada de antemano y un modelo de avión dado. Se considerarán los casos en los que dicha trayectoria es recorrida hacia el Este y hacia el Oeste, con el fin de estudiar el impacto sobre las diferentes variable del problema de unos vientos predominantemente de cola o de cara.

La metodología a seguir es la siguiente: mediante los datos meteorológicos obtenidos a partir de un EPS (*Ensemble Prediction System*) concreto, se determinará la función de densidad de probabilidad de la velocidad respecto de tierra, en cada uno de los tramos del crucero. Dicha función de densidad de probabilidad será propagada a lo largo de toda la trayectoria, haciendo uso del Teorema de Transformación de Variables Aleatorias, llegándose finalmente a la función de densidad de probabilidad del consumo de combustible.

En primer lugar, siguiendo el procedimiento anterior, se resolverá numéricamente el problema hacia atrás. A continuación, mediante los resultados obtenidos, se determinará la masa incial que servirá para la resolución numérica del problema hacia adelante. La comparación de ambos problemas arrojará un serie de conclusiones relacionadas con la carga de combustible asociada a adoptar un determinado nivel de seguridad y al sobrecoste que conlleva dicha decisión. Además, se analizará la conveniencia de resolver el problema hacia adelante para cada nivel de seguridad, proponiendo un método simplificado que permitirá reducir enormemente el coste computacional.

Por último, se estudiarán los sobrecostes asociados a cada nivel de seguridad para diferentes días a lo largo de un año completo, con el fin de determinar las situaciones más favorables y desfavorables a las que tendrá que hacer frente la aeronave.

1.3. Estructura del trabajo

Este trabajo se organiza de la siguiente manera.

En el Capítulo 2, en primer lugar, se plantea en líneas generales el problema de estudio, presentando las ecuaciones que rigen el movimiento de la aeronave bajo las hipótesis consideradas, así como los modelos adicionales adoptados; en segundo lugar, se particularizan dichas ecuaciones para los problemas hacia atrás y hacia adelante, para finalizar estableciendo una comparación entre lo obtenido de la resolución de ambos problemas.

En el Capítulo 3, se describe en detalle el proceso de resolución numérica llevado a cabo.

En el Capítulo 4, se exponen los resultados obtenidos, definiendo la ruta considerada y presentando los valores numéricos para las condiciones de vuelo y para los diferentes parámetros que definen los modelos aerodinámico y propulsivo del avión seleccionado.

En el Capítulo 5, se presentan las conclusiones extraidas de todo el proceso llevado a cabo y se exponen las líneas de trabajo futuras.

Los datos correspondientes a los vientos longitudinales y cruzados, asociados a cada segmento del crucero y miembro del *ensemble*, pueden encontrarse en el Anexo A. En el Anexo B, puede consultarse el conjunto completo de resultados correspondientes a velocidades respecto de tierra y tiempos para cada segmento del crucero.

2. Formulación

En este capítulo, se deducen en primer lugar las ecuaciones generales de la Mecánica del Vuelo que rigen el problema bajo estudio. Para ello, se introducirán las hipótesis simplificativas pertinentes y se aportarán una serie de modelos adicionales, necesarios para la completa definición del problema. Una vez obtenidas dichas ecuaciones, se pasa a la particularización de las mismas para el problema hacia atrás y para el problema hacia adelante, finalizando con una comparación de las soluciones obtenidas en ambos casos.

Así mismo, se justifica y describe detalladamente el proceso de modelado de las velocidades respecto de tierra como variables aleatorias continuas. Esta es la clave de todo el proceso, ya que es lo que permite introducir la incertidumbre meteorológica en la formulación del problema.

2.1. Ecuaciones generales e hipótesis

En el estudio del movimiento, la aeronave se modela como un cuerpo puntual, con toda su masa concentrada en el centro de gravedad. Así, las ecuaciones describen el movimiento del centro de masas del avión, considerado como un cuerpo de masa variable con 3 grados de libertad.

En la formulación de las ecuaciones del movimiento se asumen las siguientes hipótesis generales:

- Se adopta un modelo de Tierra esférica, con radio $R_E = 6371.009$ km igual al radio medio de la Tierra [5], y aceleración de la gravedad constante, de valor g = 9.8 m/s².
- Se admite el modelo de atmósfera ISA, excepto por la consideración de vientos.
- El avión se considera un cuerpo rígido, despreciando posibles efectos aeroelásticos, y simétrico.
- La dirección del empuje se supone paralela a la velocidad aerodinámica de la aeronave.
- La trayectoria completa se estudia como un único vuelo de crucero, compuesto por p segmentos, cada uno de los cuales está caracterizado por un valor de curso constante ψ_j . De esta manera, no se tienen en cuenta despegue, aterrizaje, subida, desceso, circuitos de espera u otros posibles segmentos de vuelo.
- Los campos de viento se encuentran contenidos en el plano horizontal.

- Se consideran despreciables las variaciones temporales de las diferentes componentes del viento.
- Los vientos cruzados se analizan de manera simplificada, teniéndolos en cuenta en la cinemática pero ignorando su efecto en la dinámica lateral, y traduciendo el viento cruzado a un viento de cara equivalente. De esta manera, cada uno de los segmentos, caracterizados por un valor de curso constante, también tendrá asociado un valor de rumbo χ_i que no variará a lo largo del segmento j.
- El vuelo es simétrico, con las fuerzas aerodinámicas y propulsiva contenidas en el plano de simetría y aplicadas en el centro de gravedad.

El problema, tal y como se ha planteado, presenta 2 grados de libertad matemáticos, por lo que será necesario imponer dos ligaduras de vuelo adicionales. En este trabajo se tomarán número de Mach constante y altitud geométrica constante (lo cual equivale a ángulo de asiento de la velocidad nulo, $\gamma = 0$). Con el modelo de atmósfera propuesto, el hecho de que la altitud geométrica no varíe implica que se mantegan constantes tanto la altitud geopotencial como la altitud presión.

Dado que la altitud de vuelo no varía a lo largo de toda la trayectoria, la velocidad del sonido tampoco lo hará, de nuevo, en virtud del modelo de atmósfera, ya que no se considera incertidumbre en la temperatura. Consecuentemente, la velocidad aerodinámica de la aeronave permanecerá constante a lo largo de todo el vuelo de crucero.

Las ecuaciones generales, con todas las hipótesis anteriores, son (ver [6]):

$$(R_E + h)\frac{d\phi}{dt} = V\cos\chi + w_N$$

$$(R_E + h)\cos\phi\frac{d\lambda}{dt} = V\sin\chi + w_E$$

$$L = mg$$

$$T = D$$

$$\frac{dm}{dt} = -c_T T$$
(2.1)

donde h es la altitud; ϕ y λ son la latitud y la longitud, respectivamente; χ es el rumbo; V es la velocidad aerodinámica; w_N es la componente del viento en dirección Norte (viento meridional) y w_E la componente del viento en dirección Este (viento zonal); L y D son la sustentación y la resistencia aerodinámica, respectivamente; T es el empuje; m es la masa de la aeronave; c_T es el consumo específico y t es el tiempo.

La velocidad respecto de tierra $\vec{V_g}$ puede expresarse como $\vec{V_g} = \vec{V} + \vec{w}$, siendo \vec{V} y \vec{w} los vectores que determinan, respectivamente, la velocidad aerodinámica (velocidad del avión respecto del aire) y la velocidad del viento (velocidad del aire respecto de tierra). A su vez, la velocidad del viento en el plano horizontal puede

ponerse como la suma de una componente según la dirección Norte, w_N , y otra según la dirección Este, w_E , tal y como aparece representado en la Figura 2.1.

Figura 2.1: Triángulo de viento.

Las relaciones trigonométricas extraidas de la Figura 2.1, permiten expresar la primera y segunda ecuación del sistema (2.1) en función del módulo del vector velocidad respecto de tierra, V_g , y del curso, ψ .

$$(R_E + h)\frac{d\phi}{dt} = V\cos\chi + w_N = V_g\cos\psi$$

$$(R_E + h)\cos\phi\frac{d\lambda}{dt} = V\sin\chi + w_E = V_g\sin\psi$$
(2.2)

La variación de la distancia recorrida por unidad de tiempo viene dada por la expresión (2.3), considerando que la aeronave se mueve en la esfera de radio $R_E + h$ y cuyo centro se sitúa en el centro de la Tierra.

$$\frac{ds}{dt} = (R_E + h)\sqrt{\left(\frac{d\phi}{dt}\right)^2 + \cos^2\phi \left(\frac{d\lambda}{dt}\right)^2}$$
(2.3)

De este modo, combinando las ecuaciones (2.2) y (2.3) y particularizando para el segmento j, se tiene que la variación de la distancia recorrida por unidad de tiempo es igual a la velocidad absoluta de la aeronave, esto es, a la velocidad respecto de tierra, en dicho segmento del crucero.

$$\frac{ds}{dt} = V_{g_j} \tag{2.4}$$

A partir del vector de viento en el segmento j, \vec{w}_j , expresado en coordenadas horizonte local, puede obtenerse la componente del viento paralela a la dirección de la velocidad respecto de tierra \vec{V}_{g_j} (viento longitudinal) y la componente perpendicular (viento cruzado), sin más que aplicar el cambio de base definido por

$$\begin{bmatrix} w_{AT_j} \\ w_{XT_j} \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \chi_{g_j} & \sin \chi_{g_j} & 0 \\ -\sin \chi_{g_j} & \cos \chi_{g_j} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} w_{N_j} \\ w_{E_j} \\ 0 \end{bmatrix}$$
(2.5)

Consecuentemente, en cada segmento, el vuelo estará sujeto a un viento longitudinal w_{AT_j} (positivo si el viento es de cola y negativo si es de cara) y a un viento cruzado w_{XT_j} (positivo cuando el viento le entra al avión por el lado izquierdo y negativo en caso contrario). Dichas componentes se suponen constantes a lo largo de cada segmento, pudiendo modificar su valor al pasar de un segmento a otro. De esta manera, se modela la posible variación del campo de vientos a lo largo de la trayectoria completa.

Así, de acuerdo a lo que se representa en la Figura 2.1, la velocidad respecto de tierra en el segmento j del crucero vendrá dada por la expresión (2.6), en función de los vientos longitudinal y cruzado.

$$V_{g_j} = \sqrt{V^2 - w_{XT_j}^2} + w_{AT_j} \tag{2.6}$$

Nótese que, al ser la velocidad aerodinámica constante para toda la trayectoria y las componentes del viento constantes en cada uno de los tramos, los valores de las velocidades respecto de tierra no cambiarán a lo largo de un mismo segmento del crucero.

De este modo, las ecuaciones del movimiento para el segmento j del crucero quedan finalmente

$$\frac{ds}{dt} = V_{g_j}$$

$$T = D$$

$$L = mg$$

$$\frac{dm}{dt} = -c_T T$$
(2.7)

Combinando la primera y la cuarta ecuación del sistema (2.7), se llega a la expresión que describe la evolución de la masa de la aeronave en función de la distancia recorrida, para el segmento j.

$$\frac{dm}{ds} = -\frac{c_T T}{V_{g_i}} \tag{2.8}$$

2.1.1. Modelos adicionales

Para cerrar completamente el problema es necesario proporcionar una serie de modelos adicionales, los cuales se presentan a continuación.

• Modelo de atmósfera

Como modelo de atmósfera se tomará el modelo ISA (International Standard Atmosphere), el cual permite determinar los valores de presión p, densidad ρ y temperatura Θ en función de la altitud. Para ello, se parte de los valores de las diferentes variables al nivel del mar (condiciones "0") y en la tropopausa (condiciones "11"), situada a una altitud h_{11} =11000 m.

1. En la troposfera, esto es, para altitudes comprendidas entre $0 < h < h_{11},$ se tiene

$$\Theta = \Theta_0 - \alpha_T h$$

$$p = p_0 \left(1 - \frac{\alpha_T h}{\Theta_0} \right)^{\frac{g}{R_a \alpha_T}}$$

$$\rho = \rho_0 \left(1 - \frac{\alpha_T h}{\Theta_0} \right)^{\frac{g}{R_a \alpha_T} - 1}$$
(2.9)

donde α_T =6.5·10⁻³ K/m y R_a =287.05 J/(kg K) es la constante del aire. Las condiciones al nivel del mar son Θ_0 =288.15 K, p_0 =1.01325·10⁵ N/m² y ρ_0 =1.225 kg/m³.

2. En estratosfera, esto es, para altitudes superiores a la de la tropopausa, $h > h_{11}$, se tiene

$$\Theta = \Theta_{11}$$

$$p = p_{11} \exp\left(-\frac{g(h-h_{11})}{R_a \Theta_{11}}\right)$$

$$\rho = \rho_{11} \exp\left(-\frac{g(h-h_{11})}{R_a \Theta_{11}}\right)$$
(2.10)

donde los valores de las variables en la tropopausa son Θ_{11} =216.65 K, p_{11} =0.22632·10⁵ N/m² y ρ_{11} =0.3639 kg/m³.

La velocidad del sonido a se obtiene, de acuerdo a la expresión (2.11), a partir de la tempertura, calculada según proceda en función de la altitud.

$$a = \sqrt{\kappa R_a \Theta} \tag{2.11}$$

donde $\kappa = 1.4$ es la relación de calores específicos para el aire.

• Modelo aerodinámico

Siguiendo lo establecido en [1], la resistencia aerodinámica viene definida por la expresión (2.12) en función de las condiciones de vuelo, dadas tanto en términos de densidad y velocidad aerodinámica como de presión y número de Mach.

$$D = \frac{1}{2}\rho V^2 S C_D = \frac{1}{2}\kappa P M^2$$
 (2.12)

donde S es la superficie de referencia del ala y C_D es el coeficiente de resistencia. Adoptando una polar parabólica, el coeficiente de resistencia C_D vendrá dado por una expresión de la forma

$$C_D = C_{D_0} + C_{D_2} C_L^2 \tag{2.13}$$

donde los coeficientes de la polar C_{D_0} y C_{D_2} son constantes para las condiciones de vuelo dadas y el coeficiente de sustentación, C_L , viene definido como

$$C_L = \frac{L}{\frac{1}{2}\rho V^2 S} \tag{2.14}$$

• Modelo propulsivo

De acuerdo a lo establecido en [1], el consumo específico de combustible c_T de la aeronave vendrá dado por la expresión (2.15), siendo $C_{f_{cr}}$ un factor de corrección. Dicho factor está asociado a un menor consumo de combustible por parte del motor durante las fases de crucero y descenso a ralentí, por lo que será menor o igual que la unidad, $C_{f_{cr}} \leq 1$.

$$c_T = \eta \ C_{f_{cr}} \tag{2.15}$$

donde η viene dada por

$$\eta = C_{f1} \left(1 + \frac{V}{C_{f2}} \right) \tag{2.16}$$

siendo los coeficientes C_{f1} y C_{f2} valores dados para cada aeronave.

Particularizando la ecuación (2.8) en función de los diferentes parámetros incluidos en los modelos anteriores, se llega a la expresión (2.17).

$$\frac{dm}{ds} = -\frac{A + Bm^2}{V_{g_j}} \tag{2.17}$$

donde las constantes positivas A y B vienen determinadas por la expresión (2.18).

$$A = \frac{c_T}{2} \rho V^2 S C_{D_0}, \quad B = \frac{2c_T \ C_{D_2} g^2}{\rho V^2 S}$$
(2.18)

2.1.2. Rutas loxodrómicas: Caracterización de los segmentos del crucero

Por último, puesto que los puntos inicial y final de cada uno de los segmentos que componen el crucero son conocidos, es posible determinar, de acuerdo a lo descrito en [7], la ruta loxodrómica que los une (ruta de curso constante) y la distancia loxodrómica que los separa, la cual corresponderá a la distancia recorrida en cada tramo.

Figura 2.2: Esquema de la ruta loxodrómica seguida en el segmento j

El curso ψ_j , dadas las coordenadas $(\lambda_{A_j}, \phi_{A_j})$ y $(\lambda_{B_j}, \phi_{B_j})$ de los puntos inicial y final del segmento j del crucero, viene dado por la expresión (2.19).

$$\psi_j = \arctan\left(\frac{\lambda_{B_j} - \lambda_{A_j}}{\ln\left(\frac{\tan\left(\pi/4 - \phi_{A_j}/2\right)}{\tan\left(\pi/4 - \phi_{B_j}/2\right)}\right)}\right)$$
(2.19)

Si $|\lambda_{B_j} - \lambda_{A_j}| > \pi$, para seguir la ruta loxodrómica de menor distancia, es decir, aquella que atraviesa el meridiano 180°, será necesario corregir la expresión (2.19) de la siguiente manera

$$\psi_{j} = \begin{cases} \arctan\left(\frac{\lambda_{B_{j}} + 2\pi - \lambda_{A_{j}}}{\ln\left(\frac{\tan\left(\pi/4 - \phi_{A_{j}}/2\right)}{\tan\left(\pi/4 - \phi_{B_{j}}/2\right)}\right)}\right) & si \quad \lambda_{B_{j}} < 0 \\ \arctan\left(\frac{\lambda_{B_{j}} - 2\pi - \lambda_{A_{j}}}{\ln\left(\frac{\tan\left(\pi/4 - \phi_{A_{j}}/2\right)}{\tan\left(\pi/4 - \phi_{B_{j}}/2\right)}\right)}\right) & si \quad \lambda_{B_{j}} > 0 \end{cases}$$
(2.20)

Por último, una vez calculado el curso, la distancia recorrida en el segmento j queda como

$$(s_f)_j = (R_E + h) \frac{\phi_{B_j} - \phi_{A_j}}{\cos \psi_j}$$
 (2.21)

No obstante, existen una serie de casos especiales en los que las expresiones anteriores dejan de ser válidas o pueden simplificarse de manera significativa. Dichos casos son los que se presentan a continuación.

• Para $\lambda_{A_j} = \lambda_{B_j}$, la trayectoria descrita por la aeronave seguirá un meridiano. Consecuentemente, de acuerdo a la ecuación (2.19), el curso será $\psi_j = 0^\circ$, 180° y la distancia recorrida vendrá dada por la expresión (2.22).

$$(s_f)_j = (R_E + h) |\phi_{B_j} - \phi_{A_j}|$$
(2.22)

Figura 2.3: Para $\lambda_{A_j} = \lambda_{B_j}$, la trayectoria de la aeronave sigue un meridiano.

• Para $\phi_{A_j} = \phi_{B_j} = \phi_j$, la trayectoria descrita por la aeronave seguirá un paralelo. En esta ocasión, la expresión (2.19) presenta una singularidad. No obstante, es fácil determinar que el valor del curso es $\psi_j = 90^\circ$, 270° y que la distancia recorrida será la dada por la expresión (2.23).

$$(s_f)_j = (R_E + h) |\lambda_{B_j} - \lambda_{A_j}| \cos \phi_j$$
(2.23)

Figura 2.4: Para $\phi_{A_j} = \phi_{B_j}$, la trayectoria de la aeronave sigue un paralelo.

2.2. Particularización para el problema hacia atrás

En primer lugar, se llevará a cabo la particularización de las ecuaciones generales para el problema hacia atrás, es decir, aquel en el que el vuelo de crucero completo es integrado recorriendo la trayectoria de manera inversa, empezando por el punto final del último segmento (j = p) y terminando con el punto inicial del primero (j = 1). Para este problema, tanto la distancia recorrida en cada segmento $(s_f)_j$ como la masa final $m_f = (m_f)_p$ son valores dados.

Figura 2.5: Esquema del problema hacia atrás.

Con el fin de determinar el tiempo $(\Delta t)_j$ empleado en recorrer el segmento j, será necesario integrar la primera ecuación de (2.7), para cada segmento del crucero, desde $s = (s_f)_j$ hasta $s = (s_i)_j = 0$. Como resultado, se obtiene la expresión para $(\Delta t)_j$ que se presenta en (2.24), teniendo en cuenta que la velocidad respecto de tierra V_{q_i} es constante en el segmento j.

$$(\Delta t)_j = \frac{(s_f)_j}{V_{g_j}} \tag{2.24}$$

De este modo, puesto que la distancia recorrida en el segmento j es un valor dado, el tiempo empleado en recorrer dicho segmento queda únicamente como función de la velocidad respecto de tierra V_{g_j} , es decir, se tiene la transformación definida por la expresión (2.25).

$$(\Delta t)_j = g(V_{g_j}) \tag{2.25}$$

Por otro lado, se persigue obtener una expresión para la masa total de combustible consumido a lo largo del crucero completo. Para ello, habrá que caracterizar de alguna manera la variación que experimenta la masa de la aeronave a lo largo de cada uno de los segmentos, hallando una expresión que relacione la masa al inicio y al final de cada uno de ellos. De este modo, será preciso, igualmente, integrar la ecuación (2.17) para cada segmento, desde $s=(s_f)_j$ hasta $s=(s_i)_j=0,$ con la condición de contorno

$$m((x_f)_j) = (m_f)_j$$
 (2.26)

donde la masa final de cada segmento es igual a la masa inicial del segmento siguiente, esto es, $(m_f)_j = (m_i)_{j+1}, j < p$, por continuidad de la masa.

$$\int_{(m_f)_j}^{(m_i)_j} \frac{dm}{A + Bm^2} = \int_0^{(s_f)_j} \frac{ds}{V_{g_j}}$$
(2.27)

La solución analítica consecuencia de dicha integración es la que se presenta en la ecuación (2.28).

$$(\Delta t)_j = \frac{1}{\sqrt{AB}} \left[\arctan\left(\sqrt{\frac{B}{A}} \ (m_i)_j\right) - \arctan\left(\sqrt{\frac{B}{A}} \ (m_f)_j\right) \right]$$
(2.28)

Combinando la solución dada por (2.28) para cada uno de los segmentos e imponiendo la continuidad de masa, se llega a la expresión (2.29), donde la masa de combustible consumido m_F es la diferencia entre las masas inicial y final de la aeronave considerando el vuelo de crucero completo, $m_F = m_0 - m_f$.

$$m_F = \sqrt{\frac{A}{B}} \tan\left[\arctan\left(\sqrt{\frac{B}{A}} \ m_f\right) + \sqrt{AB} \ t_f\right] - m_f \tag{2.29}$$

siendo el tiempo de vuelo t_f empleado en recorrer la trayectoria completa igual a la suma de cada uno de los tiempos que, por separado, se emplean en recorrer cada segmento: $t_f = \sum_{j=1}^{p} (\Delta t)_j$.

Consecuentemente, el consumo de combustible, en el caso en el que la masa final m_f es fija, es únicamente función del tiempo de vuelo t_f , esto es, se tiene la siguiente transformación

$$m_F = \hat{g}(t_f) \tag{2.30}$$

Para llegar a este resultado ha sido necesario considerar que A y B son, en efecto, constantes y las mismas en todos los segmentos. Ello quedaría en entredicho si se considerase temperatura variable.

2.2.1. Modelo probabilístico de velocidad respecto de tierra

El primer paso a seguir para introducir en la formulación el efecto de la incertidumbre es modelar las velocidades respecto de tierra en cada segmento j como variables aleatorias continuas. En este trabajo se proponen dos alternativas: modelar V_{g_j} como una variable aleatoria que se distribuye según una uniforme y como una variable aleatoria que se distribuye según una normal.

1. Distribución uniforme

Asumiendo que la velocidad respecto de tierra V_{g_j} sigue una distribución uniforme en el intervalo $[V_{g_{j,m}}, V_{g_{j,M}}]$, su función de densidad de probabilidad vendrá dada por la expresión (2.31).

$$f_{V_{g_j}}(V_{g_j}) = \begin{cases} \frac{1}{V_{g_{j,M}} - V_{g_{j,m}}}, & V_{g_j} \in [V_{g_{j,m}}, V_{g_{j,M}}] \\ 0, & V_{g_j} \notin [V_{g_{j,m}}, V_{g_{j,M}}] \end{cases}$$
(2.31)

donde los valores mínimo y máximo del intervalo, $V_{g_{j,m}}$ y $V_{g_{j,M}}$, han de ser estimados a partir de la muestra. Para ello, se propone el uso dos procedimientos, el método de los momentos y el estimador máximo-verosimil (ver [3]), los cuales se explican a continuación.

a) Método de los momentos

Sea X una variable aleatoria cuya función de densidad depende de una serie de parámetros $\theta_1, \theta_2, \ldots, \theta_k$, esto es, $f_X(x; \theta_1, \theta_2, \ldots, \theta_k)$ y sean x_1, x_2, \ldots, x_n los elementos que componen una muestra aleatoria simple. El método de los momentos consiste en la igualación de los momentos de los primeros k órdenes de la muestra a los correspondientes k momentos de la distribución, y en la resolución del sistema de ecuaciones resultantes, de manera que queden determinados todos aquellos parámetros desconocidos de los que depende la distribución.

Si X es una variable aleatoria continua, el momento de orden n viene definido como

$$m_n = \int_{-\infty}^{+\infty} \xi^n f_X(\xi) \ d\xi \tag{2.32}$$

En nuestro caso, se han de determinar dos parámetros, $V_{g_{j,m}}$ y $V_{g_{j,M}}$, por lo que será necesario hacer uso de los momentos de primer y segundo orden.

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} = m_{1} = \int_{-\infty}^{+\infty}\xi f_{X}(\xi) \ d\xi = E[X]$$

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} = m_{2} = \int_{-\infty}^{+\infty}\xi^{2}f_{X}(\xi) \ d\xi \qquad (2.33)$$

Dado que la varianza de X se define como

$$Var[X] = \int_{-\infty}^{+\infty} \xi^2 f_X(\xi) \ d\xi - (E[X])^2$$
(2.34)
igualar los momentos de primer y segundo orden de la muestra y la distribución es equivalente a igualar las medias y las varianzas o, lo que es lo mismo, a igualar las medias y las desviaciones típicas de la muestra y la distribución. Así, asumiendo que la velocidad respecto de tierra en el segmento j sigue una distribución uniforme, se llega al siguiente sistema de ecuaciones.

$$E[v_{g_j}] = \frac{V_{g_{j,M}} + V_{g_{j,m}}}{2}$$

$$\sigma[v_{g_j}] = \frac{V_{g_{j,M}} - V_{g_{j,m}}}{2\sqrt{3}}$$
(2.35)

La resolución del sistema (2.35) proporciona los valores de los parámetros $V_{g_{j,M}}$ y $V_{g_{j,M}}$ buscados.

$$V_{g_{j,m}} = E[v_{g_j}] - \sqrt{3} \sigma[v_{g_j}]$$

$$V_{g_{j,M}} = E[v_{g_j}] + \sqrt{3} \sigma[v_{g_j}]$$
(2.36)

b) Estimador máximo-verosimil

Sea X una variable aleatoria que se distribuye según una función de densidad que depende de dos parámetros θ_1 y θ_2 , es decir, $f_X(x; \theta_1, \theta_2)$, y sean x_1, x_2, \ldots, x_n los elementos que componen una muestra aleatoria simple. La función de verosimilitud se define como

$$v(x_1, x_2, \dots, x_n; \theta_1, \theta_2) = \prod_{i=1}^n f_X(x_i; \theta_1, \theta_2)$$
 (2.37)

El método de máxima verosimilitud consiste en elegir aquellos valores de los parámetros θ_1 y θ_2 que maximizan la función de verosimilitud.

$$\theta_1, \theta_2 = \underset{\theta_1, \theta_2}{\operatorname{argmax}} v \tag{2.38}$$

Particularizando el resultado anterior para el caso que se viene considerando, en el cual se asume que las velocidades respecto de tierra siguen una distribución uniforme, la función de verosimilitud queda según la expresión (2.39).

$$v(v_{g_{j_i}}; V_{g_{j,m}}, V_{g_{j,M}}) = \left(\frac{1}{V_{g_{j,M}} - V_{g_{j,m}}}\right)^n$$
(2.39)

De esta manera, los valores de los parámetros $V_{g_{j,m}}$ y $V_{g_{j,M}}$ serán aquellos que minimicen el denominador en la expresión (2.39) y, por lo tanto, aquellos valores que, estando lo más cerca posible, incluyan todos los elementos de la muestra. Consecuentemente, el valor de $V_{g_{j,m}}$ será el mínimo de los valores de la muestra y $V_{g_{j,M}}$ el máximo de los valores de la muestra.

$$V_{g_{j,m}} = \min_{i=1,...,n} \{ v_{g_j} \}$$

$$V_{g_{j,M}} = \max_{i=1,...,n} \{ v_{g_j} \}$$
(2.40)

2. Distribución normal

Considerando que las velocidades respecto de tierra siguen una distribución normal, su función de densidad vendrá dada por la expresión (2.41).

$$f_{V_{g_j}}(V_{g_j}) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(V_{g_j}-\mu)^2}{2\sigma^2}}$$
(2.41)

donde la media μ y la desviación típica σ de la distribución han de ser nuevamente estimadas a partir de la muestra. No obstante, en este caso, los resultados proporcionados por el método de los momentos y por el de máxima verosimilitud coinciden, de manera que, la media y la desviación típica de la distribución serán iguales a la media y a la desviación típica de la muestra, es decir, $\mu = E[v_{g_i}]$ y $\sigma = \sigma[v_{g_i}]$.

2.2.2. Modelo probabilístico para la masa de combustible

Una vez modeladas las velocidades respecto de tierra en cada segmento como variables aleatorias, introduciendo así el efecto de la incertidumbre en la formulación del problema, el objetivo es determinar el impacto de dicha incertidumbre meteorológica sobre el consumo total de combustible. Para ello, será necesario emplear en varias ocasiones el Teorema de Transformación de Variables Aleatorias [2], según el cual:

Sea X una variable aleatoria continua con función de densidad $f_X(x)$ y defínase otra variable aleatoria Y según la transformación Y = g(X). Si g(x) es derivable e invertible en el dominio de x, entonces la función de densidad de la nueva variable Y viene definida por la expresión

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|}$$
(2.42)

donde g'(x) es la derivada de la transformación.

De esta manera, aplicando el teorema de transformación de variables a la transformación (2.25), con $(s_f)_j$ fija y V_{g_j} una variable aleatoria que se distribuye según $f_{V_{g_j}}(V_{g_j})$, se llega a la expresión general que define la función de densidad del tiempo en el segmento j del crucero, $(\Delta t)_j$.

$$f_{(\Delta t)_j}((\Delta t)_j) = \frac{f_{V_{g_j}}(g^{-1}((\Delta t)_j))}{|g'(g^{-1}((\Delta t)_j))|}$$
(2.43)

Sustituyendo en (2.43) las expresiones que definen $g'(V_{g_i}) \ge g^{-1}((\Delta t)_j)$

$$g'(V_{g_j}) = -\frac{(s_f)_j}{V_{g_j}^2}; \qquad g^{-1}((\Delta t)_j) = \frac{(s_f)_j}{(\Delta t)_j}$$
(2.44)

se obtiene finalmente la función de densidad del tiempo $(\Delta t)_j$ empleado en recorrer cada segmento j.

$$f_{(\Delta t)_j}((\Delta t)_j) = \frac{(s_f)_j}{(\Delta t)_j^2} f_{V_{g_j}}\left(\frac{(s_f)_j}{(\Delta t)_j}\right)$$
(2.45)

La función de densidad del tiempo total de vuelo t_f puede obtenerse a partir de las funciones de densidad de los tiempos empleados en recorrer cada uno de los segmentos por separado, suponiendo que estos son independientes entre sí. De esta manera, el tiempo total vendrá definido como suma de p variables aleatorias independientes y su función de densidad quedará como la convolución de las p funciones de densidad que determinan cómo se distribuye Δt en el segmento j, tal y como se demuestra a continuación.

Sea Z una variable aleatoria definida como suma de otras dos variables X e Y independientes, Z = X + Y, y sea F_{XY} la función de distribución conjunta de (X, Y), la cual viene dada por la expresión (2.46), donde $f_{XY}(x, y)$ es la función de densidad de probabilidad conjunta de (X, Y).

$$F_{XY}(x,y) = P[X \le x; Y \le y] = \int_{-\infty}^{u} \int_{-\infty}^{v} f_{XY}(u,v) \, dv du$$
(2.46)

La función de probabilidad acumulada de Z, $F_Z(z)$, se define como aquella función que, para cada z, proporciona la probabilidad de que Z alcance valores menores o iguales que z. Puesto que Z es suma de X e Y, el valor de $F_Z(z)$ será igual a la probabilidad de que X alcance cualquier valor en \mathbb{R} e Y tome valores menores o iguales que z - x, es decir, se tiene que

$$F_{Z}(z) = P[Z \le z] = P[X + Y \le z] = \int_{-\infty}^{+\infty} \int_{-\infty}^{z-u} f_{XY}(u, v) \, dv du \qquad (2.47)$$

Dado que X e Y son independientes, la función de densidad de probabilidad conjunta será igual al producto de las funciones de densidad de probabilidad marginales, $f_{XY}(x,y) = f_X(x) \cdot f_Y(y)$. De esta manera, la igualdad (2.47) queda

$$F_{Z}(z) = \int_{-\infty}^{z} f_{Z}(w) dw = \int_{-\infty}^{+\infty} f_{X}(u) \left(\int_{-\infty}^{z-u} f_{Y}(v) dv \right) du$$
(2.48)

A continuación, derivando respecto de z ambos términos en la expresión (2.48),

$$\frac{d}{dz}\left(\int_{-\infty}^{z} f_Z(w)dw\right) = \frac{d}{dz}\left[\int_{-\infty}^{+\infty} f_X(u)\left(\int_{-\infty}^{z-u} f_Y(v)dv\right)du\right]$$
(2.49)

el primer término que da igual a la función de densidad de ${\cal Z}$

$$\frac{d}{dz}\left(\int_{-\infty}^{z} f_Z(w)dw\right) = f_Z(z) \tag{2.50}$$

y el segundo término puede transformarse gracias al Teorema Fundamental del Cálculo, obteniéndose

$$\int_{-\infty}^{+\infty} f_X(u) \frac{d}{dz} \left(\int_{-\infty}^{z-u} f_Y(v) dv \right) du = \int_{-\infty}^{+\infty} f_X(u) f_Y(z-u) du$$
(2.51)

Igualando las expresiones (2.50) y (2.51), se llega finalmente a que la función de densidad de Z es igual a la convolución de las funciones de densidad de X e Y.

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(u) \ f_Y(z-u) du = f_X(x) \otimes f_Y(y)$$
(2.52)

Aplicando el resultado anterior al caso que nos ocupa, la función de densidad del tiempo total de vuelo t_f vendrá dada por la convolución de todas las funciones de densidad de los tiempos $(\Delta t)_j$.

$$f_{t_f}(t_f) = f_{(\Delta t)_1} \otimes f_{(\Delta t)_2} \otimes \ldots \otimes f_{(\Delta t)_p}$$
(2.53)

Por último, para determinar la función de densidad de la masa total de combustible consumido con m_f fija, habrá que aplicar nuevamente el teorema de transformación de variables a la transformación dada por (2.30). La expresión general que define la función de densidad de la masa de combustible m_F para el problema hacia atrás es pues

$$f_{m_F}(m_F) = \frac{f_{t_f}(\hat{g}^{-1}(m_F))}{|\hat{g}'(\hat{g}^{-1}(m_F))|}$$
(2.54)

Sustituyendo en (2.56) las expresiones que define
n $\hat{g}'(t_f)$ y $\hat{g}^{-1}(m_F)$

$$\hat{g}'(t_f) = A + A \tan^2 \left[\arctan\left(\sqrt{\frac{B}{A}}m_f\right) + \sqrt{AB} t_f \right]$$

$$\hat{g}^{-1}(m_F) = \frac{1}{\sqrt{AB}} \left\{ \arctan\left[\sqrt{\frac{B}{A}}(m_F + m_f)\right] - \arctan\left(\sqrt{\frac{B}{A}}m_f\right) \right\}$$
(2.55)

se obtiene finalmente la función de densidad de la masa total de combustible consumido m_F cuando la masa final es un valor fijo.

$$f_{m_F}(m_F) = \frac{f_{t_f}(\hat{g}^{-1}(m_F))}{A + B(m_f + m_F)^2}$$
(2.56)

2.3. Particularización para el problema hacia adelante

A continuación, se llevará a cabo la particularización para el problema hacia adelante, esto es, aquel en el que el vuelo de crucero completo es integrado recorriendo la trayectoria desde el punto inicial del primer segmento (j = 1) hasta el punto final del último (j = p). Por contraposición al problema hacia atrás, en este caso, la distancia recorrida en cada segmento $(s_f)_j$ y la masa inicial $m_0 = (m_i)_1$ son valores dados, siendo la masa final desconocida.

Figura 2.6: Esquema del problema hacia adelante.

La integración de la primera ecuación de (2.7) en sentido directo proporciona exactamente la misma solución que en el problema hacia atrás. Esto es debido a que dicha ecuación es autónoma y, por lo tanto, su solución no depende del sentido de integración.

De esta manera, dado que las velocidades respecto de tierra V_{g_j} siguen la misma distribución que en el problema inverso y, puesto que el tiempo $(\Delta t)_j$ empleado en recorrer el segmento j queda igual en función de la velocidad respecto de tierra en ese segmento, $(\Delta t)_j$ seguirá exactamente la misma distribución que en el problema hacia atrás y, por lo tanto, el tiempo de vuelo total t_f también.

En esta ocasión, la ecuación (2.17) ha de ser integrada para cada segmento, desde $s = (s_i)_j = 0$ hasta $s = (s_f)_j$, con la condición de contorno

$$m((x_i)_i) = (m_i)_i \tag{2.57}$$

donde la masa inicial de cada segmento es igual a la masa final del segmento anterior, es decir, $(m_i)_j = (m_f)_{j-1}, j > 1$, por continuidad de la masa.

La solución que se obtiene de esta integración es exactamente la misma que se obtuvo para el problema hacia atrás (ver ecuación (2.28)). Combinando dicha solución para cada uno de los segmentos e imponiendo la condición que define, en este caso, la continuidad de masa, se llega a la expresión (2.58).

$$m_F = m_0 - \sqrt{\frac{A}{B}} \tan\left[\arctan\sqrt{\frac{B}{A}} \ m_0 - \sqrt{AB} \ t_f\right]$$
(2.58)

Consecuentemente, al igual que ocurría en el problema hacia atrás, para una masa inicial m_0 fija, la masa de combustible consumido queda únicamente como una función del tiempo de vuelo t_f según la transformación

$$m_F = \hat{h}(t_f) \tag{2.59}$$

2.3.1. Modelo probabilístico para la masa de combustible

Aplicando, el teorema de transformación de variables aleatorias a la transformación (2.59), la expresión general que define la función de densidad de la masa de combustible consumido con m_0 fija queda

$$f_{m_F}(m_F) = \frac{f_{t_f}(\hat{h}^{-1}(m_F))}{|\hat{h}'(\hat{h}^{-1}(m_F))|}$$
(2.60)

Sustituyendo en (2.62) las expresiones que definen $\hat{h}'(t_f)$ y $\hat{h}^{-1}(m_F)$

$$\hat{h}'(t_f) = A + A \tan^2 \left[\arctan\left(\sqrt{\frac{B}{A}}m_0\right) - \sqrt{AB} t_f \right]$$

$$\hat{h}^{-1}(m_F) = \frac{1}{\sqrt{AB}} \left\{ \arctan\left(\sqrt{\frac{B}{A}}m_0\right) - \arctan\left[\sqrt{\frac{B}{A}}(m_0 - m_F)\right] \right\}$$
(2.61)

se obtiene finalmente la función de densidad de la masa total de combustible consumido m_F cuando la masa inicial es un valor fijo.

$$f_{m_F}(m_F) = \frac{f_{t_f}(\hat{h}^{-1}(m_F))}{A + B(m_0 - m_F)^2}$$
(2.62)

2.4. Comparación del problema hacia atrás y hacia adelante

Una vez definidos completamente ambos problemas, es conveniente llevar a cabo una comparación de los resultados obtenidos. En concreto, resulta interesante relacionar la masa de combustible consumida cuando la masa final es fija, en adelante denominada $m_F|_{m_f}$, y la masa de combustible consumida cuando la masa inicial es fija, llamada a partir de ahora $m_F|_{m_0}$. Dichas variables vienen definidas en función del tiempo total de vuelo, como se detalló anteriormente, por las expresiones (2.29) y (2.58), respectivamente, de manera que, combinándolas, se llega a la ecuación (2.63).

$$\arctan\left[\sqrt{\frac{B}{A}} (m_f + m_F|_{m_f})\right] + \arctan\left[\sqrt{\frac{B}{A}} (m_0 - m_F|_{m_0})\right] =$$

$$\arctan\sqrt{\frac{B}{A}} m_f + \arctan\sqrt{\frac{B}{A}} m_0$$
(2.63)

Aplicando en la ecuación (2.63) la igualdad $\arctan(a) + \arctan(b) = \arctan\left(\frac{a+b}{1-ab}\right)$, se llega a la ecuación (2.64).

$$\arctan\left(\frac{\sqrt{\frac{B}{A}}\left(m_{f}+m_{F}|_{m_{f}}+m_{0}-m_{F}|_{m_{0}}\right)}{1-\frac{B}{A}\left(m_{f}+m_{F}|_{m_{f}}\right)(m_{0}-m_{F}|_{m_{0}})}\right) = \arctan\left(\frac{\sqrt{\frac{B}{A}}\left(m_{f}+m_{0}\right)}{1-\frac{B}{A}m_{f}m_{0}}\right)$$
(2.64)

Finalmente, resolviendo la ecuación (2.64) y simplificando términos, se tiene que

$$m_F|_{m_0} = \frac{1 + \frac{B}{A} m_0^2}{\frac{1}{m_F|_{m_f}} - \frac{B}{A} \left(m_f + m_0 - \frac{m_f^2}{m_F|_{m_f}} \right)} = l \ (m_F|_{m_f})$$
(2.65)

Por lo que el consumo de combustible para el problema hacia adelante, fijadas las masas inicial y final, queda únicamente como función del consumo de combustible para el problema hacia atrás, según la transformación dada por (2.65).

Si el valor de la masa inicial necesario para la resolución del problema hacia adelante se define como la masa final en el problema hacia atrás más la masa de combustible consumida, para dicho problema, asociada a un determinado nivel de seguridad, es decir, definiendo m_0 como $m_0 = m_f + m_F|_{m_f}$, se llega finalmente a la expresión (2.66).

$$m_F|_{m_0} = l(m_F|_{m_f}) = m_F|_{m_f} \tag{2.66}$$

De esta manera, se tiene que la transformación que relaciona las masas de combustible consumidas para los problemas hacia adelante y hacia atrás es la identidad.

Si X e Y son dos variables aleatorias, con Y definida a partir X como Y = g(X), entonces sus respectivas funciones de probabilidad acumulada se relacionan de la siguiente manera: $F_X(x) = F_Y(g(x))$.

Aplicando el resultado anterior al caso que nos ocupa, se llega que

$$F_{m_F|_{m_f}}(\hat{m}_F|_{m_f}) = F_{m_F|_{m_0}}(l(\hat{m}_F|_{m_f})) = F_{m_F|_{m_0}}(\hat{m}_F|_{m_f})$$
(2.67)

Consecuentemente, las funciones de probabilidad acumulada correspondientes a los dos problemas alcanzan el mismo valor para la misma masa de combustible consumida, es decir, los percentiles de ambas distribuciones son idénticos. La masa de combustible necesaria para alcanzar un nivel de seguridad determinado es el mismo para el problema hacia atrás y para el problema hacia adelante resuelto adoptando como valor para la masa inicial el asociado a dicho nivel de seguridad.

3. Resolución numérica

El proceso de resolución tanto del problema hacia adelante como del problema hacia atrás se ha llevado a cabo numéricamente, empleando MATLAB [10]. En este capítulo, se describe detalladamente dicho proceso de resolución, poniendo especial atención en lo que concierne a precisión y errores numéricos.

En primer lugar, es conveniente establecer una serie de aclaraciones generales. Por un lado, para trabajar en MATLAB con funciones de densidad de probabilidad, es preciso definir, en cada caso, dos vectores. Un primer vector, correspondiente a la variable cuya función de densidad se pretende determinar. Su primera y última componentes serán, respectivamente, los valores mínimo y máximo del intervalo en el que se quiere definir la función de densidad, y el resto de componentes corresponderán a una serie de puntos intermedios. Un segundo vector, con la misma longitud que el anterior, cuyas componentes contendrán el valor que alcanza la función de densidad en cada uno de los valores de la variable determinados por el primer vector. Es importante notar que la precisión en el cáculo será tanto mayor cuanto mayor sea el número de puntos intermedios en los vectores anteriores.

Por otro lado, el error cometido en cada una de las funciones de densidad calculadas se va estimar en base a la propiedad según la cual el área total encerrada bajo la curva que define toda función de densidad ha de ser la unidad. De esta manera, comparando el resultado de la integración numérica de cada función de densidad a lo largo de todo su dominio con la unidad, puede establecerse un orden de magnitud para el error cometido.

A continuación, se pasa a describir el proceso de resolución seguido. Primeramente, los valores de los vientos longitudinales y cruzados para la ruta considerada han sido proporcionados por una herramienta ajena a este trabajo. A partir de dicho conjunto de valores, se obtiene, de acuerdo a lo definido en la expresión (2.6), la muestra para las velocidades respecto de tierra en cada uno de los segmentos que componen el vuelo de crucero. Es con esta muestra con la que se van a determinar cada una de las funciones de densidad que modelan las velocidades respecto de tierra en los diferentes tramos, siguiendo lo descrito en el Apartado 2.2.1.

Para ello, en primer lugar, será necesario definir los vectores correspondientes a V_g para cada modelo y segmento del crucero, llevando a cabo un mallado en velocidades respecto de tierra. Dicho mallado se va a realizar empleando el comando *linspace* de MATLAB (consultar [9]), el cual crea un vector de componentes equiespaciadas dados los valores inicial y final del intervalo y el número de puntos que se desean. En cuanto al intervalo en el que se van a definir las diferentes funciones de densidad, cabe diferenciar los casos correspondientes a distribuciones uniformes y los correspondientes a distribuciones normales. Para las distribuciones uniformes, se tomará aquel intervalo de velocidades respecto de tierra en el que la función de densidad alcanza valores no nulos. En cambio, para las distribuciones normales, el vector correspondiente a la variable se definirá en el intervalo de velocidades respecto de tierra $[\mu - 8\sigma, \mu + 8\sigma]$, lo que hace innecesaria la consideración explícita de un modelo de variable normal truncada. Por último, en lo que respecta al número de puntos intermedios, para cada tramo del crucero, se tomarán N=100000 puntos. De esta manera, dado que el intervalo de V_g será, en general, diferente para cada modelo y segmento, se tendrá un mallado en velocidades respecto de tierra uniforme en todos los casos pero con paso distinto para cada uno de ellos.

Para determinar los vectores correspondientes a los tiempos empleados en recorrer cada segmento, es necesario transformar los vectores de velocidades respecto de tierra de acuerdo a la expresión (2.25). Dado que dicha transformación no es lineal, el mallado tendrá el mismo número de puntos intermedios, pero ahora no será uniforme. El vector correspondiente a la función de densidad del tiempo $(\Delta t)_j$ se obtiene a partir del vector $f_{V_{q_i}}$ según la transformación (2.45).

La función de densidad del tiempo de vuelo total vendrá dada por la convolución de las funciones de densidad anteriores. En este trabajo, para calcular dicha convolución, se propone el empleo de la Transformada de Fourier que, para una función x(t) viene definida por la expresión (3.1).

$$X(f) = \mathcal{F}(x(t)) = \int_{-\infty}^{+\infty} x(t)e^{-2\pi i f t} dt$$
(3.1)

donde X(f) es la función correspondiente a la Transformada de Fourier en el dominio de la frecuencia; $t \neq f$ son el tiempo y la frecuencia, respectivamente, e i es la unidad imaginaria.

De esta manera, la convolución de las funciones de densidad correspondientes a dos segmentos consecutivos del crucero, $f_{(\Delta t)_{j-1}}$ y $f_{(\Delta t)_j}$, vendrá dada por la antitransformada del producto de sus respectivas transformadas, esto es

$$f_{(\Delta t)_{j-1}} \otimes f_{(\Delta t)_j} = \mathcal{F}^{-1}[\mathcal{F}(f_{(\Delta t)_{j-1}}) \cdot \mathcal{F}(f_{(\Delta t)_j})]$$
(3.2)

No obstante, para llevar a cabo esta operación en MATLAB, es preciso que todos los vectores de tiempo $(\Delta t)_j$ estén mallados de manera uniforme y con el mismo paso. Consecuentemente, será necesario redefinir el mallado, de manera que, aquellos segmentos en los que se tengan intervalos de tiempo mayores contarán con vectores $(\Delta t)_j$ con un mayor número de componentes.

Esta redefinición del mallado se lleva a cabo introduciendo en MATLAB un vector de la forma $t_j = (t_{min_j} : Dt : t_{max_j})$, donde t_{min_j} y t_{max_j} son los valores mínimo y máximo para el tiempo en el segmento j y Dt es el paso de tiempo. Así, los vectores de tiempo $(\Delta t)_j$ resultantes estarán formados por componentes de valor $t_{min_j} + n Dt$, con n un número natural. Llegando a un compromiso entre precisión y tiempo de computación, se adoptará como valor para el paso $Dt = 1.6667 \cdot 10^{-6}$ min. El problema que presenta redefinir el mallado de esta manera es que, si t_{max_j} no es de la forma $t_{min_j} + n Dt$, MATLAB por defecto se queda en el punto anterior. De este modo, se está perdiendo parte de la función, lo cual va a provocar un aumento significativo de los errores. Obviamente, cuanto más fino sea el mallado, más cerca estarán los puntos que componen el vector correspondiente a la variable y, por lo tanto, menor será el error cometido.

En el caso de tener distribuciones uniformes o similares, este error puede ser importante, tal y como se muestra en la Figura 3.1a. No obstante, para una distribución normal este error no es tan significativo, ya que el valor de la función de densidad que se está omitiendo es prácticamente nulo, tal y como puede apreciarse en la Figura 3.1b.

Figura 3.1: Errores numéricos debidos a la redefinición del mallado. Asteriscos: Componentes del vector creado por MATLAB. Círculos: Valores mínimos y máximo del intervalo de tiempo en el que está definida la función. (a) Distribución uniforme, (b) Distribución normal.

Las diferentes transformadas y antitransformadas de Fourier se aproximarán mediante los comandos *fft* e *ifft* de MATLAB, los cuales calculan la Transformada Rápida de Fourier y su inversa, respectivamente, dado un vector que contenga los distintos valores que toma la función a lo largo de su dominio (ver [8]). La Transformada Rápida de Fourier constituye un algoritmo muy eficiente computacionalmente que permite aproximar la Transformada de Fourier a partir de la Transformada de Fourier discreta. Si se discretiza la función x(t) mediante un vector $x(t_k)$ con k = 0, ..., N - 1, la Transformada de Fourier discreta vendrá dada por la expresión

$$X(f_n) = \sum_{k=0}^{N-1} x(t_k) e^{-2\pi i k n/N}$$
(3.3)

donde n = 0, ..., N - 1

Si las longitudes de los vectores $f_{(\Delta t)_{j-1}}$ y $f_{(\Delta t)_j}$ son l_{j-1} y l_j , el vector resultante de la convolución tendrá $l_{j-1} + l_j - 1$ componentes. Así mismo, el intervalo de tiempo en el que se encontrará definida dicha función será $[(\Delta t)_{j-1})_{min} + (\Delta t)_j)_{min}, (\Delta t)_{j-1})_{max} + (\Delta t)_j)_{max}].$

De este modo, el proceso de obtención de la función de densidad del tiempo de vuelo total consistiría en calcular la convolución de las funciones de densidad de los tiempos $(\Delta t)_1 y (\Delta t)_2$ en el primer y segundo segmento; a continuación, se calcularía la convolución del vector resultante con la función de densidad del tercer segmento y así, sucesivamente, hasta completar el crucero. Como resultado, el vector que definirá la función de densidad del tiempo de vuelo total tendrá $\sum_{j=1}^p l_j - p + 1$ componentes. El intervalo de tiempo t_f en el que estará definida dicha función de densidad vendrá dado por un vector cuya primera y última componentes serán $t_{f_{min}} = \sum_{j=1}^p min((\Delta t)_j)$

y
$$t_{f_{max}} = \sum_{j=1}^{p} max((\Delta t)_j)$$
, con paso Dt .

Por último, para determinar los vectores correspondientes a las masas de combustible con m_f fija y m_0 fija, es necesario transformar el vector de tiempo total de vuelo de acuerdo a las expresiones (2.30) y (2.59), respectivamente. Dado que, de nuevo, dichas transformaciones no son lineales, el mallado tendrá el mismo número de puntos intermedios que el vector t_f pero no será uniforme. Los vectores correspondientes a las funciones de densidad de las masas con m_f fija y m_0 fija se obtienen a partir del vector f_{t_f} según las transformaciones (2.56) y (2.62).

4. Resultados

Los resultados han sido obtenidos para la ruta Niza-Nueva York que aparece representada en la Figura 4.1. Como puede observarse, el vuelo de crucero está compuesto por 9 segmentos, cada uno de ellos caracterizado por un valor de curso constante. Nótese que, al representarse la ruta en una proyección de Mercator, cada uno de los segmentos loxodrómicos aparecen como tramos rectos.

Figura 4.1: Ruta considerada.

En la Tabla 4.1, aparecen recogidas las coordenadas, expresadas en latitud y longitud, de los 10 puntos que delimitan los diferentes tramos del crucero, recorriendo la trayectoria de Este a Oeste.

Tabla 4.1: Coordenadas de los puntos que definen la ruta seguida.

Latitud	43° 37.5' N	46° N	48° N	49° N	49° N	49° N	48° N	46° N	42° N	40° 38.4' N
Longitud	6° 9.84' E	0°	$10^{\circ} \mathrm{W}$	$20^{\circ} \mathrm{W}$	30° W	$40^{\circ} \mathrm{W}$	50° W	60° W	70° W	73° 46.74' W

Tal y como se detalló en el Apartado 2.1, las dos ligaduras de vuelo impuestas sobre el crucero son M = cte y h = cte. En la Tabla 4.2, aparecen los valores adoptados tanto para el número de Mach como para la altitud de vuelo, así como los valores de aquellas variables que derivan de estas dos condiciones. Nótese que la altitud de vuelo seleccionada se corresponde, de acuerdo con el modelo ISA, con una presión de 200 hPa. Para las variables atmosféricas, se ha hecho uso del modelo de atmósfera definido en (2.10). Adicionalmente, se proporciona el valor de la masa final m_f de la aeronave, necesario para la resolución del problema hacia atrás.

Variable	Nomenclatura	Valor		
Número de Mach	M	0.8		
Altitud de crucero	h	11784 m		
Velocidad aerodinámica	V	$236.05~\mathrm{m/s}$		
Densidad	ρ	$0.32158~\mathrm{kg/m^3}$		
Masa final	m_f	110000 kg		

Tabla 4.2: Valores para las variables que definen el crucero.

Las distancias loxodrómicas, calculadas según las expresiones definidas en (2.21), (2.22) y (2.23), que determinan las distancias recorridas en los distintos segmentos del crucero, para la altitud de vuelo dada, son las que se recogen en la Tabla 4.3. El orden en el que se presentan los tramos es coherente con la anterior definición de los waypoints, es decir, la trayectoria se recorre igualmente de Este a Oeste. Nótese que, en el caso de describir la ruta en sentido contrario, esto es, de Oeste a Este, el crucero comenzaría por el segmento 9 y finalizaría con el segmento 1.

Tabla 4.3: Distancias recorridas en los tramos que componen el crucero.

Segmento	1	2	3	4	5	6	7	8	9	
$(s_f)_j$ [km]	554.260	791.624	746.490	730.855	730.855	746.490	791.624	916.502	350.581	

Por último, el modelo de avión seleccionado es un Boeing 767-400. De acuerdo a lo establecido en [1], los valores de los parámetros necesarios para la definición de los modelos aerodinámico y propulsivo son los que se recogen en la Tabla 4.4.

Tabla 4.4: Valores para la definición de los modelos aerodinámico y propulsivo.

Variable	Nomenclatura	Valor
Coeficientes de la polar	C_{D_0}	0.017439
	C_{D_2}	0.048227
Superficie de referencia	S_{ref}	283.5 m^2
	C_{f_1}	$0.62911 \text{ kg/(min \cdot kN)}$
Coeficientes del modelo propulsivo	C_{f_2}	851.87 kts
	$C_{f_{cr}}$	0.91891
Consumo específico	c_T	$1.4825 \cdot 10^{-5} \text{ s/m}$

Para la determinación de las velocidades respecto de tierra, el EPS elegido ha sido el PEARPS, de *Météo France*, el cual está compuesto por 35 miembros. Los datos corresponden a una predicción a 0 horas para el 5 de mayo de 2016 a las 6:00, y para un nivel de presión de 200 hPa, lo cual se corresponde con la altitud de vuelo seleccionada. Los diferentes valores de vientos son procesados, obteniéndose un viento constante por segmento y miembro del *ensemble*. De esta manera, se tiene un conjunto de 35x9x2 = 630 valores asociados a los vientos longitudinales y cruzados, que resultan en un total de 315 valores para las velocidades respecto de tierra, 35 por cada segmento, para el caso en que la trayectoria se recorre de Este a Oeste. Las velocidades respecto de tierra para la ruta en sentido contrario pueden obtenerse fácilmente, puesto que los vientos longitudinales y cruzados para ambos sentidos son iguales en magnitud pero tienen signos opuestos.

En la Figura 4.2, se encuentran representados todos estos valores de velocidades respecto de tierra en forma de histogramas, tanto para la ruta hacia el Oeste como para la ruta hacia el Este, respectivamente. Junto a los histogramas, aparecen también las funciones de densidad por las que se optado para el modelado de las velocidades respecto de tierra: dos distribuciones uniformes, empleando el método de los momentos y el estimador máximo-verosímil, y una distribución normal.

Figura 4.2: Funciones de densidad de las velocidades respecto de tierra correspondientes a los diferentes segmentos del crucero. Barras: histogramas de V_{g_j} . Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Como puede apreciarse en la Figuras 4.2, las velocidades respecto de tierra en la ruta hacia el Este son apreciablemente mayores que en la ruta hacia el Oeste, ya que, en este primer caso, los vientos longitudinales son predominantemente de cola.

Nótese que la función de densidad de la distribución uniforme ajustada mediante el estimador máximo-verosímil alcanza valores no nulos para el mismo intervalo de V_g en el que se tienen valores de la muestra. Además, en vista de los resultados, puede afirmarse que, por regla general, dicha distribución presenta una mayor desviación típica que las otras dos distribuciones propuestas.

En la Tabla 4.5, aparecen recogidos los errores numéricos ε , medias μ y desviaciones típicas σ para V_g en el primer segmento del crucero. Para consultar el conjunto completo de resultados ver el Anexo B. Nótese que los valores de las medias y desviaciones típicas correspondientes a la distribución uniforme ajustada mediante el método de los momentos y a la distribución normal no son resultados, sino que han sido impuestos de manera que coincidan con los obtenidos a partir del *ensemble*.

Modelo para las velocidades respecto de	Ruta h	acia el C	Deste	Ruta hacia el Este			
tierra	ε [-]	$\mu~[{\rm m/s}]$	$\sigma~[{\rm m/s}]$	ε [-]	$\mu~[{\rm m/s}]$	$\sigma~[{\rm m/s}]$	
Ensembles	-	228.0387	0.68059	-	244.0506	0.68020	
Método de los momentos	$5.9 \cdot 10^{-14}$	228.0387	0.68059	$4.4 \cdot 10^{-15}$	244.0506	0.68020	
Estimador máximo-verosímil	$6.2 \cdot 10^{-14}$	228.0406	1.03229	$2.0 \cdot 10^{-14}$	244.0508	1.03387	
Distribución normal	$1.0 \cdot 10^{-15}$	228.0387	0.68059	$1.2 \cdot 10^{-15}$	244.0506	0.68020	

 Tabla 4.5: Errores numéricos, medias y desviaciones típicas para la velocidad respecto de tierra en el primer segmento del crucero.

En la Figura 4.3, se presentan las diferentes funciones de probabilidad acumulada para V_{g_j} , junto con la función de probabilidad acumulada empírica de V_g en cada segmento. Si x_1, x_2, \ldots, x_n es una muestra aleatoria simple formada por n elementos, entonces su función de probabilidad acumulada empírica se define como aquella función en escalera que da un salto escalón de valor 1/n cada vez que se encuentra con un valor de la muestra.

Figura 4.3: Funciones de probabilidad acumulada de las velocidades respecto de tierra correspondientes a los diferentes segmentos del crucero. Curva azul oscuro: *Ensembles.* Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul claro: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este

Mediante la expresión (2.45) pueden obtenerse, a partir de las funciones de densidad de las velocidades respecto de tierra representadas en la Figura 4.2, las funciones de densidad de los tiempos $(\Delta t)_j$ empleados en recorrer cada uno de los segmentos del crucero. Dichas funciones de densidad son las que aparecen en la Figura 4.4. En la misma figura, también se representan, en forma de histogramas, los tiempos empleados en recorrer cada segmento obtenidos a partir de los valores del *ensemble*.

Nótese que dicha transformación para pasar de velocidades respecto de tierra a tiempos no produce cambios significativos en las formas de las distintas distribuciones. Por ejemplo, en el caso de las dos distribuciones uniformes, tras la transformación, éstas continúan siendo prácticamente uniformes.

Dado que, para la ruta hacia el Oeste, se tienen vientos longitudinales que son predominantemente de cara y que, consecuentemente, originan unas menores velocidades respecto de tierra, los tiempos empleados en recorrer los diferentes segmentos del crucero serán, en media, mayores que en el caso en el que la trayectoria se recorre hacia el Este.

Figura 4.4: Funciones de densidad de los tiempos empleados en recorrer los diferentes segmentos del crucero. Barras: histogramas de $(\Delta t)_j$. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

En la Tabla 4.6, aparecen los valores de errores numéricos ε , medias μ y desviaciones típicas σ obtenidas para el tiempo empleado en recorrer el primer segmento del crucero, correspondientes a cada uno de los modelos de partida de velocidades respecto de tierra. Nuevamente, los resultados obtenidos para todos los demás segmentos que conforman el crucero pueden consultarse en el Anexo B.

En la tabla, puede comprobarse cómo las funciones de densidad obtenidas a partir de la distribución uniforme con el método de los momentos y de la distribución normal poseen medias y desviaciones típicas muy similares a las del conjunto de valores obtenidos a partir del *ensemble*, si bien ya no son idénticas, como ocurría en el caso de las velocidades respecto de tierra. Adicionalmente, cabe destacar que las funciones de densidad obtenidas a partir de las distribuciones uniformes mediante el estimador máximo-verosímil poseen desviaciones típicas superiores a las del resto de distribuciones.

Modelo para las velocidades respecto de	Ruta h	acia el (Oeste	Ruta hacia el Este			
tierra	ε [-]	μ [min]	σ [min]	ε [-]	μ [min]	$\sigma~[{\rm min}]$	
Ensembles	-	40.5095	0.12090	-	37.8517	0.10550	
Método de los momentos	$8.4 \cdot 10^{-15}$	40.5096	0.12090	$4.2 \cdot 10^{-15}$	37.8517	0.10550	
Estimador máximo-verosímil	$7.8 \cdot 10^{-15}$	40.5097	0.18338	$1.4 \cdot 10^{-14}$	37.8521	0.16036	
Distribución normal	$2.3 \cdot 10^{-13}$	40.5096	0.12091	$2.0 \cdot 10^{-13}$	37.8517	0.10550	

Tabla 4.6: Errores numéricos, medias y desviaciones típicas para el tiempo emplea-do en recorrer el primer segmento del crucero.

A partir de las funciones de densidad para los tiempos en cada uno de los segmentos que componen el crucero, pueden obtenerse las funciones de probabilidad acumulada para el tiempo en cada segmento, las cuales se representan en la Figura 4.5, junto con la función de probabilidad acumulada empírica de $(\Delta t)_j$.

37

Figura 4.5: Funciones de probabilidad acumulada de los tiempos empleados en recorrer los diferentes segmentos del crucero. Curva azul oscuro: *Ensembles*. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul claro: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Como resultado de la convolución de las funciones de densidad de la Figura 4.4, se obtienen las funciones de densidad para el tiempo total de vuelo, una para cada uno de los modelos adoptados para las velocidades respecto de tierra. Dichas funciones de densidad son las que aparecen representadas en la Figura 4.6, para las rutas hacia Oeste y hacia el Este, respectivamente.

De acuerdo al Teorema Central del Límite, las funciones de densidad obtenidas deben tender a la función de densidad de una distribución normal, al ser t_f suma de variables aleatorias independientes. Cabe destacar que, puesto que los modelos de partida adoptados para V_{g_j} en el caso de la distribución uniforme con el método de los momentos y la distribución normal comparten media y desviación típica, las funciones de densidad obtenidas para t_f son muy similares en estos dos casos.

Figura 4.6: Funciones de densidad del tiempo total de vuelo. Barras: histogramas de t_f . Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

En la Tabla 4.7, se presentan los errores numéricos ε , medias μ y desviaciones típicas σ obtenidas para el tiempo de vuelo total t_f . Naturalmente, puesto que, en media, los tiempos empleados en recorrer cada uno de los segmentos por separado es mayor para la trayectoria recorrida hacia el Oeste, el tiempo total de vuelo también será mayor en este caso.

 Tabla 4.7: Errores numéricos, medias y desviaciones típicas para el tiempo total de vuelo.

Modelo de partida para las velocidades respecto	Ruta h	acia el C)este	Ruta hacia el Este			
de tierra	ε [-]	μ [min]	$\sigma~[{\rm min}]$	ε [-]	μ [min]	$\sigma~[{\rm min}]$	
Ensembles	-	520.8392	0.48735	-	400.0394	0.26459	
Método de los momentos	$1.7 \cdot 10^{-5}$	520.8484	0.62712	$2.3 \cdot 10^{-5}$	400.0487	0.32517	
Estimador máximo-verosímil	$1.6 \cdot 10^{-5}$	520.8491	0.80747	$1.6 \cdot 10^{-5}$	400.0501	0.43276	
Distribución normal	$1.2 \cdot 10^{-13}$	520.8394	0.62707	$1.2 \cdot 10^{-13}$	400.0395	0.32504	

En la Tabla 4.7, puede apreciarse que, tal y como se ha explicado en el Apartado 3, los errores numéricos aumentan significativamente tras la convolución, para los casos en los que los modelos de partida para las velocidades respecto de tierra son distribuciones uniformes, debido a la manera en la que se ha redefinido el mallado.

Adicionalmente, nótese que, tras la convolución, aparecen diferencias importantes en términos de desviación típica entre el conjunto de valores obtenido a partir del *ensemble* y el resto de distribuciones. Esto se debe a que, para obtener la función de densidad del tiempo de vuelo total a partir de los distintos modelos de velocidad respecto de tierra, se está asumiendo una hipótesis de independencia de los tiempos empleados en recorrer los diferentes segmentos por separado. Por contra, para obtener el tiempo de vuelo total a partir de los valores del *ensemble*, se están sumando los valores de los tiempos empleados en recorrer cada segmento para un mismo escenario meteorológico. De esta manera, los diferentes tiempos dejan de ser independientes, existiendo entre ellos una cierta correlación.

Una vez halladas las funciones de densidad de t_f , pueden determinarse las funciones de probabilidad acumulada para el tiempo de vuelo total. Dichas funciones son las aparecen representadas en la Figura 4.7, para las rutas hacia el Oeste y hacia el Este, respectivamente, junto con la función de probabilidad acumulada empírica del tiempo de vuelo total.

Figura 4.7: Funciones de probabilidad acumulada del tiempo total de vuelo. Curva azul oscuro: *Ensemble*. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximoverosímil. Curva azul claro: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

A partir de las funciones de densidad obtenidas para t_f , de acuerdo a la expresión (2.56), pueden obtenerse las funciones de densidad de la masa total de combustible consumida para el problema hacia atrás. Dichas funciones de densidad son las que aparecen representadas en la Figura 4.8, correspondientes a cada uno de los modelos partida adoptados para las velocidades respecto de tierra.

Figura 4.8: Funciones de densidad de la masa de combustible consumida para el problema hacia atrás. Barras: histogramas de m_F con m_f fija. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Al igual que en los casos anteriores, en la Tabla 4.8, se presentan los errores numéricos ε , medias μ y desviaciones típicas σ obtenidas para la masa de combustible consumida cuando la masa final es fija.

Tabla 4.8: Errores numéricos, medias y desviaciones típicas para la masa de combustible con m_f fija.

Modelo de partida para las velocidades respecto	Ruta h	acia el C) este	Ruta hacia el Este			
de tierra	ε [-]	$\mu \ [kg]$	$\sigma~[\rm kg]$	ε [-]	$\mu~[\rm kg]$	$\sigma~[\rm kg]$	
Ensembles	-	34110.46	35.6186	-	25521.55	18.3072	
Método de los momentos	$1.7 \cdot 10^{-5}$	34111.07	45.8329	$2.3 \cdot 10^{-5}$	25522.14	22.4975	
Estimador máximo-verosímil	$1.6 \cdot 10^{-5}$	34111.13	59.0145	$1.6 \cdot 10^{-5}$	25522.26	29.9423	
Distribución normal	$1.2 \cdot 10^{-13}$	34110.48	45.8300	$1.2 \cdot 10^{-13}$	25521.55	22.4897	

Como puede apreciarse, en las Figuras 4.6 y 4.8, los histogramas se han representado de manera que el ancho de las barras sea el mismo para las rutas hacia Este y Oeste. De este modo, es posible establecer una comparación entre ambos casos en términos de dispersión.

La existencia de un mayor número de barras para la ruta hacia el Oeste, junto con el hecho de que los valores obtenidos para las desviaciones típicas son apreciablemente elevados con respecto al otro sentido, implican que la incertidumbre es mayor en presencia de vientos de cara. Además, como consecuencia de estos vientos, se tendrá un consumo de combustible que en media es mucho mayor que para el caso en el que la trayectoria se recorre hacia el Este.

Por último, puede apreciarse que el método proporciona resultados muy similares para las tres distribuciones propuestas, siendo la diferencia con los *ensemble* consecuencia de las hipótesis de independencia adoptadas. En la Tabla 4.8, puede comprobarse que las medias obtenidas son similares para todas las distribuciones de partida consideradas. Por otro lado, en lo que respecta a las desviaciones típicas, se obtienen valores muy cercanos mediante la distribución uniforme con el método de los momentos y mediante la distribución normal; las desviaciones típicas obtenidas a partir de la distribución uniforme con el estimador máximo-verosímil son significativamente mayores. No obstante, siendo los resultados obtenidos mediante la distribución uniforme ajustada con el método de los momentos y mediante la distribución normal muy similares, ésta última es mucho más simple y menos costosa desde el punto de vista computacional.

En la Figura 4.9 aparecen representadas las funciones de probabilidad acumulada obtenidas para la masa total de combustible con m_f fija, junto con la función de probabilidad acumulada empírica de la masa de combustible consumida para el problema hacia atrás.

Figura 4.9: Función de probabilidad acumulada de la masa de combustible consumida con m_f fija. Curva azul oscuro: *Ensemble*. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul claro: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

En las Tablas 4.9, 4.10 y 4.11 se presentan, para los diferentes modelos de partida de velocidades respecto de tierra, los percentiles 95, 97 y 99 de las distribuciones resultantes de masa de combustible con m_f fija. Dichos percentiles corresponden a la cantidad de combustible que es necesario cargar para tener un nivel de seguridad del 95 %, 97 % y 99 %, respectivamente. Adicionalmente, se recogen los valores de las masas iniciales que servirán como condiciones iniciales para la resolución del problema hacia adelante.

Tabla 4.9: Percentiles de la distribución de m_F con m_f fija, partiendo de las distribuciones uniformes obtenidas mediante el método de los momentos.

Distribue	Distribución uniforme mediante el Método de los Momentos									
Seguridad	Ruta	hacia el (Oeste	Ruta hacia el Este						
adoptada	adoptada 95 %		99%	95%	97%	99%				
m_F [kg]	34186.07	34195.95	34213.66	25558.63	25563.70	25572.98				
m_0 [kg]	144186.07	144195.95	144213.66	135558.63	135563.70	135572.98				

Tabla 4.10: Percentiles de la distribución de m_F con m_f fija, partiendo de las distribuciones uniformes obtenidas mediante el estimador máximo-verosímil.

	Distribución uniforme mediante el Estimador Máximo-Verosímil										
S a	Seguridad	Ruta	hacia el (Oeste	Ruta hacia el Este						
	adoptada	95%	97%	99%	95%	97%	99%				
	$m_F \ [\mathrm{kg}]$	34208.10	34220.70	34243.10	25571.23	25577.95	25590.20				
	$m_0 [\mathrm{kg}]$	144208.10	144220.70	144243.10	135571.23	135577.95	135590.20				

Tabla 4.11: Percentiles de la distribución de m_F con m_f fija, partiendo de las distribuciones normales.

	Distribución normal										
Seguridad	Ruta	hacia el (Oeste	Ruta hacia el Este							
adoptada	95%	97%	99%	95%	97%	99%					
$m_F \; [\mathrm{kg}]$	34186.02	34196.91	34217.51	25558.59	25563.91	25573.97					
m_0 [kg]	144186.02	144196.91	144217.51	135558.59	135563.91	135573.97					

La resolución del problema hacia adelante, partiendo de los valores para las masas iniciales anteriores, proporciona las distribuciones de masa de combustible consumida con m_0 fija, para cada uno de los niveles de seguridad adoptados.

En la Tabla 4.12, aparecen recogidos los valores para los percentiles de dichas distribuciones que, tal y como puede comprobarse, son idénticos a los percentiles de la distribución de masa de combustible para el problema hacia atrás, de acuerdo a lo demostrado en el Apartado 2.4. Es decir, tomando como ejemplo un nivel de seguridad del 95%, se tiene que el percentil 95 de la distribución de masa de combustible para el problema hacia atrás es igual al percentil 95 de la distribución de masa de combustible para el problema hacia atrás es igual al percentil 95 de la distribución de masa de combustible para el problema hacia adelante, resuelto con un nivel de seguridad del 95%, esto es, tomando una masa inicial $m_0|_{95\%}$.

Tabla 4.12: Percentiles de la distribución de m_F con m_0 fija, partiendo de los diferentes modelos de velocidades respecto de tierra.

Percentiles para la distribución de m_F con m_0 fija [kg]									
Modelo de partida para las velocidades respecto	Ruta	hacia el	Oeste	Ruta hacia el Este					
de tierra	95%	97%	99%	95%	97%	99%			
Método de los momentos	34186.07	34195.95	34213.66	25558.63	25563.70	25572.98			
Estimador máximo-verosímil	34208.10	34220.70	34243.10	25571.23	25577.95	25590.20			
Distribución normal	34186.02	34196.91	34217.51	25558.59	25563.91	25573.97			

En las Figuras 4.10, 4.11 y 4.12, aparecen representadas, para los distintos modelos de partida de velocidades respecto de tierra, las funciones de densidad de la masa de combustible consumida para el problema hacia adelante, adoptando diferentes niveles de seguridad. Junto a estas funciones, también se representa la función de densidad de la masa de combustible con m_f fija, con el fin de establecer una comparativa entre los problemas hacia adelante y hacia atrás.

Además, en las figuras, aparecen con líneas de trazos los valores de los percentiles asociados a cada nivel de seguridad. De esta manera, a derecha e izquierda de dichas líneas, son iguales las áreas encerradas por las funciones de densidad de la masa de combustible para el problema hacia atrás y para el problema hacia adelante resuelto con el nivel de seguridad correspondiente.

Por último, puede apreciarse que, a medida que aumenta el nivel de seguridad adoptado, la función de densidad de la masa de combustible con m_0 fija resultante va desplazándose cada vez más hacia la derecha, es decir, se produce un aumento, en media, de la masa de combustible que se consume.

Figura 4.10: Funciones de densidad de la masa de combustible con m_0 fija, obtenidas a partir de las distribuciones uniformes empleando el método de los momentos. Líneas de trazos: percentiles asociados a los diferentes niveles de seguridad. Curva negra: problema hacia atrás. Curva azul oscuro: problema hacia adelante con $m_0|_{95\%}$. Curva azul claro: problema hacia adelante con $m_0|_{97\%}$. Curva verde: problema hacia adelante con $m_0|_{99\%}$. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Figura 4.11: Funciones de densidad de la masa de combustible con m_0 fija, obtenidas a partir de las distribuciones uniformes empleando el estimador máximoverosímil. Líneas de trazos: percentiles asociados a los diferentes niveles de seguridad. Curva negra: problema hacia atrás. Curva azul oscuro: problema hacia adelante con $m_0|_{95\%}$. Curva azul claro: problema hacia adelante con $m_0|_{97\%}$. Curva verde: problema hacia adelante con $m_0|_{99\%}$. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Figura 4.12: Funciones de densidad de la masa de combustible con m_0 fija, obtenidas a partir de las distribuciones normales. Líneas de trazos: percentiles asociados a los diferentes niveles de seguridad. Curva negra: problema hacia atrás. Curva azul oscuro: problema hacia adelante con $m_0|_{95\%}$. Curva azul claro: problema hacia adelante con $m_0|_{97\%}$. Curva verde: problema hacia adelante con $m_0|_{99\%}$. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

En las Tablas 4.13, 4.14 y 4.15, se recogen los errores ε , medias μ y desviaciones típicas σ para la masa de combustible consumida en el problema hacia adelante. Así mismo, en las tablas se establece una comparación, en términos de media y desviación típica, entre el problema hacia atrás y el problema hacia adelante considerando los distintos niveles de seguridad. De ahora en adelante, a dicho aumento que, en media, se produce en la masa de combustible consumida para el problema hacia adelante, asociado a adoptar un nivel de seguridad superior al 50 %, se le denominará sobrecoste.

Tabla 4.13: Errores numéricos, medias y desviaciones típicas para la masa de combustible con m_0 fija, partiendo de las distribuciones uniformes obtenidas mediante el método de los momentos. Comparación con el problema hacia atrás.

Distribución uniforme mediante el Método de los Momentos										
Seguridad adoptada	Ruta hacia el Oeste			Ruta hacia el Este						
	95%	97%	99%	95%	97%	99%				
ε [-]	$1.7 \cdot 10^{-5}$	$1.7 \cdot 10^{-5}$	$1.7 \cdot 10^{-5}$	$2.3 \cdot 10^{-5}$	$2.3 \cdot 10^{-5}$	$2.3 \cdot 10^{-5}$				
$\mu \; [\mathrm{kg}]$	34125.60	34127.50	34130.91	25527.59	25528.33	25529.70				
$\Delta \mu$ [kg]	14.53	16.43	19.84	5.45	6.19	7.56				
σ [kg]	37.031	37.033	37.036	19.199	19.199	19.200				
$\Delta \sigma$ [kg]	-8.802	-8.8000	-8.797	-3.299	-3.298	-3.297				

Tabla 4.14: Errores numéricos, medias y desviaciones típicas para la masa de combustible con m_0 fija, partiendo de las distribuciones uniformes obtenidas mediante el estimador máximo-verosímil. Comparación con el problema hacia atrás.

Distribución uniforme mediante el Estimador Máximo-Verosímil												
Seguridad adoptada	Ruta hacia el Oeste			Ruta hacia el Este								
	95%	97%	99%	95%	97%	99%						
ε [-]	$1.6 \cdot 10^{-5}$											
$\mu \; [m kg]$	34129.88	34132.30	34136.62	25529.51	25530.50	25532.30						
$\Delta \mu$ [kg]	18.75	21.17	25.49	7.25	8.24	10.04						
σ [kg]	47.685	47.688	47.693	25.551	25.552	25.554						
$\Delta \sigma$ [kg]	-11.329	-11.326	-11.321	-4.391	-4.390	-4.389						
	Distribución normal											
----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	----------------------	--	--	--	--	--	--
Seguridad	Ruta	hacia el	Oeste	Ruta hacia el Este								
adoptada	95%	97%	99%	95%	97%	99%						
ε [-]	$1.2 \cdot 10^{-13}$											
μ [kg]	34125.00	34127.10	34131.07	25526.99	25527.78	25529.25						
$\Delta \mu$ [kg]	14.52	16.62	20.59	5.44	6.23	7.70						
σ [kg]	37.027	37.029	37.033	19.190	19.190	19.191						
$\Delta \sigma$ [kg]	-8.803	-8.801	-8.797	-3.300	-3.300	-3.299						

Tabla 4.15: Errores numéricos, medias y desviaciones típicas para la masa de combustible con m_0 fija, partiendo de las distribuciones normales. Comparación con el problema hacia atrás.

En las tablas puede comprobarse que, efectivamente, cada nivel de seguridad tiene asociado un sobrecoste, que es tanto mayor cuanto mayor es el nivel de seguridad impuesto. Nótese que, además, el sobrecoste es mayor para el caso en que la ruta se recorre hacia el Oeste. Es decir, para un mismo nivel de seguridad, el sobrecoste asociado es mayor cuando se vuela con vientos de cara.

Adicionalmente, se observa que las desviaciones típicas para la masa de combustible consumida en el problema hacia adelante son menores que en el problema hacia atrás, disminuyendo la diferencia entre ambos valores lentamente al aumentar el nivel de seguridad adoptado.

A partir de las funciones de densidad de la masa de combustible consumida para el problema hacia adelante, pueden obtenerse las funciones de probabilidad acumulada de la masa de combustible con m_0 fija, asociadas a los distintos niveles de seguridad considerados. Dichas funciones son las que aparecen representadas en las Figuras 4.13, 4.14 y 4.15, para cada uno de los modelos de partida de velocidad respecto de tierra. Nuevamente, junto a estas funciones, se representa la función de probabilidad acumulada para la masa de combustible con m_f fija, con el objetivo de llevar a cabo una comparación entre los problemas hacia adelante y hacia atrás.

En las figuras, también aparecen con asteriscos los valores de los percentiles asociados a cada nivel de seguridad. Dichos puntos constituyen los puntos de corte entre las curvas que definen las funciones de probabilidad acumulada para el problema hacia atrás y para el problema hacia adelante resuelto con el nivel de seguridad correspondiente, tal y como establece la ecuación (2.66).

Figura 4.13: Funciones de probabilidad acumulada de la masa de combustible con m_0 fija, obtenidas a partir de las distribuciones uniformes empleando el método de los momentos. Asteriscos: percentiles asociados a los diferentes niveles de seguridad. Curva negra: problema hacia atrás. Curva azul oscuro: problema hacia adelante con $m_0|_{95\%}$. Curva azul claro: problema hacia adelante con $m_0|_{97\%}$. Curva verde: problema hacia adelante con $m_0|_{99\%}$. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Figura 4.14: Funciones de probabilidad acumulada de la masa de combustible con m_0 fija, obtenidas a partir de las distribuciones uniformes empleando el estimador máximo-verosímil. Asteriscos: percentiles asociados a los diferentes niveles de seguridad. Curva negra: problema hacia atrás. Curva azul oscuro: problema hacia adelante con $m_0|_{95\%}$. Curva azul claro: problema hacia adelante con $m_0|_{97\%}$. Curva verde: problema hacia adelante con $m_0|_{99\%}$. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Figura 4.15: Funciones de probabilidad acumulada de la masa de combustible con m_0 fija, obtenidas a partir de las distribuciones normales. Asteriscos: percentiles asociados a los diferentes niveles de seguridad. Curva negra: problema hacia atrás. Curva azul oscuro: problema hacia adelante con $m_0|_{95\%}$. Curva azul claro: problema hacia adelante con $m_0|_{99\%}$. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

A continuación, en la Figura 4.16, aparece representado el sobrecoste frente al nivel de seguridad adoptado, para cada modelo de velocidad respecto de tierra y para las rutas hacia Oeste y Este, respectivamente.

Figura 4.16: Curvas de sobrecoste frente a nivel de seguridad adoptado. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

En la Figura 4.17, se representa la decisión frente al nivel de seguridad adoptado, para los distintos modelos de velocidades respecto de tierra y para cada ruta. En esta ocasión, la decisión se entiende como la masa de combustible extra, con respecto a la media de m_F en el problema hacia atrás, que es preciso cargar, o, equivalentemente, el aumento de la masa inicial en el problema hacia adelante, necesario para alcanzar un nivel de seguridad determinado, superior al 50 %.

Figura 4.17: Curvas de decisión frente a nivel de seguridad adoptado. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Por último, en la Figura 4.18, aparece representado el sobrecoste frente a la decisión tomada, para cada modelo de velocidad respecto de tierra y ruta considerada. De esta manera, se está representado el sobrecoste asociado a determinado nivel de seguridad frente al combustible extra que es necesario cargar para conseguir dicho nivel de seguridad.

Figura 4.18: Curvas de sobrecoste frente a decisión. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximo-verosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Como puede apreciarse, las curvas de la Figura 4.18 tienen una pendiente aproximadamente constante. Dicha pendiente representa la masa de combustible adicional que se consume por incrementar en un kilogramo la masa inicial.

De este modo, se propone el empleo de un método simplificado, en el cual la curva de sobrecoste frente a decisión se aproxima por la recta secante que pasa por el origen y corta a dicha curva en el punto correspondiente a un nivel de seguridad del 99.9%. Los diferentes valores de las pendientes de esas secantes son los que aparecen recogidos en la Tabla 4.16.

 Tabla 4.16: Pendiente de las secantes a las curvas de sobrecoste frente a decisión,

 para cada uno de los modelos de partida para las velocidades respecto de tierra.

Modelo de partida para las velocidades respecto	Ruta hacia el Oeste	Ruta hacia el Este		
de tierra	pendiente [-]	pendiente[-]		
Método de los momentos	0.19325	0.14822		
Estimador máximo-verosímil	0.19301	0.14759		
Distribución normal	0.19239	0.14690		

Empleando el método simplificado, se cometen unos errores máximos de 0.088 kg, para la ruta hacia el Oeste, y de 0.056 kg, para la ruta hacia el Este, en ambos casos considerando las distribuciones uniformes ajustadas mediante el estimador máximoverosímil.

De esta manera, dado que los errores cometidos son razonablemente pequeños y puesto que se consigue un ahorro significativo desde el punto de vista computacional, queda plenamente justificado el empleo de este método simplificado para obtener el valor del sobrecoste asociado a cada nivel de seguridad. Así, una vez resuelto el problema hacia atrás, bastará con resolver el problema hacia adelante una única vez, obteniéndose la pendiente de la secante a la curva de sobrecoste frente a decisión. A partir de este valor de la pendiente, será posible determinar el sobrecoste que conlleva adoptar cuaquier nivel de seguridad.

En la Figura 4.19, se muestran las curvas de sobrecoste frente a nivel de seguridad adoptado, representadas con un escalado especial del eje de abscisas, que permite una mejor visualización de la zona de interés, correspondiente a altos niveles de seguridad. Estas curvas se han obtenido para cada uno de los modelos de velocidad respecto de tierra y para las rutas hacia Oeste y Este, respectivamente.

Puede observarse claramente que, para un mismo nivel de seguridad, el sobrecoste asociado es mayor para el caso en el que la trayectoria se recorre hacia el Oeste, cuando los vientos son predominantemente de cara.

Adicionalmente, puede apreciarse que, para altos niveles de seguridad, las curvas obtenidas a partir de distribuciones uniformes tienden a un valor de sobrecoste constante, mientras que las obtenidas empleando distribuciones normales continúan

aumentando. Esto se debe a que el intervalo de m_F en el que una distribución uniforme alcanza valores no nulos está acotado.

Figura 4.19: Curvas de sobrecoste frente a nivel de seguridad adoptado, con escalado del eje de abscisas. Curva roja: distribución uniforme empleando el método de los momentos. Curva verde: distribución uniforme empleando el estimador máximoverosímil. Curva azul: distribución normal. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

Por último, se ha realizado un análisis de sensibilidad ante variaciones en las predicciones meteorológicas. En particular, se han obtenido los vientos correspondientes a la misma ruta para diferentes días de un año completo (los días 5 de cada mes) y se han realizado los análisis anteriores.

En la Figura 4.20, se representa la evolución de las curvas de sobrecoste frente a nivel de seguridad para el conjunto de predicciones meteorológicas consideradas, asumiendo que las velocidades respecto de tierra se distribuyen según una uniforme ajustada mediante el método de máxima verosimilitud. Dichas curvas han sido obtenidas empleando el método simplificado mencionado anteriormente.

Tal y como puede observarse, para la mayoría de los días considerados, el sobrecoste asociado a un mismo nivel de seguridad es mayor en el caso en el que la ruta se recorre hacia el Oeste.

Es importante notar que cada día presenta una predicción meteorológica que puede llegar a ser muy diferente. Lo potente de la herramienta desarrollada radica en que, dada una predicción, es posible cuantificar el sobrecoste asociado a dicho escenario meteorológico.

Figura 4.20: Evolución de las curvas de sobrecoste frente a nivel de seguridad adoptado a lo largo de un año. (a) Ruta hacia el Oeste, (b) Ruta hacia el Este.

En la Tabla 4.17, se presentan los valores extremos de las curvas anteriores, para un nivel de seguridad del 99.9 %. El hecho de que se tenga una mayor diferencia entre los valores máximo y mínimo del sobrecoste para la ruta hacia el Oeste implica que la dispersión es mayor en el caso en el que la aeronave describe la trayectoria en dicho sentido.

Tabla 4.17: Valores extremos para el sobrecoste asociado a un nivel de seguridad del 99.9 %.

Sobrecoste	Ruta hacia el Oeste	Ruta hacia el Este
Valor máximo [kg]	49.05	25.81
Valor mínimo [kg]	15.50	10.88

5. Conclusiones y trabajo futuro

En este último capítulo, se concluye el presente trabajo resumiendo los resultados más relevantes que se han obtenido y exponiendo las principales conclusiones extraidas a partir de ellos. Así mismo, se abren las puertas a posibles líneas de trabajo futuro, con el fin de completar y mejorar el estudio llevado a cabo.

Este trabajo ha permitido estimar el efecto de la incertidumbre del viento sobre el consumo de combustible de la aeronave, a través del modelado como variables aleatorias continuas de aquellas variables del problema sujetas a incertidumbre. Todo el estudio ha estado orientado a proporcionar herramientas que ayuden a la hora de tomar una decisión en lo que respecta a la masa de combustible a cargar en la aeronave, teniendo en cuenta el nivel de seguridad que se pretende alcanzar.

Las principales conclusiones extraidas a lo largo de todo el análisis llevado a cabo son las que se presentan a continuación:

- En primer lugar, se ha observado que la incertidumbre obtenida en el consumo de combustible es mucho mayor en el caso en el que el avión vuela siguiendo una trayectoria en la que los vientos son predominantemente de cara. Esto nos lleva a una importante conclusión: si bien siempre es importante tener en cuenta los efectos de la incertidumbre, en el caso de tener vientos de cara, esto se hace imprescindible.
- Se ha demostrado teóricamente y, posteriormente, se ha comprobado numéricamente que los percentiles de las distribuciones de masa de combustible con masa final fija y con masa inicial fija son idénticos. Es decir, para los problemas hacia atrás y hacia adelante, la masa de combustible que proporciona un mismo nivel de seguridad es idéntica. No obstante, resolver el problema hacia adelante con una masa inicial que lleve implícito el nivel de seguridad adoptado supone un sobrecoste, esto es, un aumento en media del consumo de combustible. Para un mismo nivel de seguridad, se ha observado que este sobrecoste asociado es mayor en el caso de volar con vientos de cara.
- En base a los resultados obtenidos, se ha analizado la necesidad de resolver el problema hacia adelante asociado a cada nivel de seguridad, proponiéndose un método simplificado que permitirá reducir enormemente el coste computacional. De esta manera, una vez resuelto el problema hacia atrás, solo será necesario resolver el problema hacia adelante una única vez, obteniéndose el

valor de la pendiente de la recta secante que pasa por el origen y corta a la curva de sobrecoste frente a decisión en el punto correspondiente a un nivel de seguridad del 99.9%. A partir de este valor de la pendiente, podrá determinarse el sobrecoste asociado a adoptar cualquier otro nivel de seguridad.

• Por último, puede establecerse una comparación entre los resultados obtenidos a partir de los valores del *ensemble* y mediante las diferentes funciones de densidad de la velocidad respecto de tierra. Los resultados obtenidos a partir de las diferentes distribuciones han sido similares, siendo especialmente parecidos para aquellas que presentan la misma media y la misma desviación típica, es decir, para la distribución normal y la distribución uniforme ajustada con el método de los momentos. Sin embargo, proporcionando ambas resultados muy similares, la distribución uniforme es mucho más simple y menos costosa desde el punto de vista computacional.

Además, en cuanto a las desviaciones típicas del tiempo de vuelo total y de la masa de combustible, se han observado diferencias significativas entre los valores obtenidos a partir del *ensemble* y los obtenidos empleando las distintas distribuciones propuestas. Estas diferencias se deben a que, para los casos en los que se trabaja con funciones de densidad, se ha asumido que los tiempos empleados en recorrer los diferentes segmentos por separado son independientes entre sí. No obstante, la manera de proceder con los valores del *ensemble* hace que dichas hipótesis de independencia no sean válidas.

Las líneas de trabajo propuestas con el fin de mejorar y ampliar el estudio llevado a cabo son las siguientes:

- En primer lugar, como continuación inmediata del presente trabajo, se propone el empleo de las herramientas desarrolladas para la optimización de trayectorias.
- Por otro lado, sería interesante llevar a cabo un estudio que tenga como objetivo determinar cúal de las distribuciones es la más adecuada para el modelado de las velocidades respecto de tierra como variables aleatorias.
- Otra línea de mejora consistiría en considerar distintos valores para la altitud y para el número de Mach en los diferentes segmentos que conforman el crucero. Adicionalmente, podría ampliarse el estudio, considerando los efectos de la incertidumbre meteorológica sobre otros segmentos de vuelo, como pueden ser la subida o el descenso.
- Por último, se propone como trabajo futuro la consideración, no ya solo de la incertidumbre del viento, sino también de la incertidumbre en la temperatura. Si se mantienen las condiciones impuestas sobre el crucero, es decir, número de Mach constante y altitud constante, la incertidumbre en la temperatura repercutiría en la velocidad aerodinámica, a través de una velocidad del sonido igualmente incierta.

Bibliografía

- [1] EUROCONTROL EXPERIMENTAL CENTER, User Manual for the Base of Aircraft Data (BADA) Revision 3.12, Brussels: Eurocontrol, 2014.
- [2] CANAVOS, G. C. Probabilidad y Estadística. Aplicaciones y Métodos. México: McGraw-Hill, 1988. p. 168. ISBN 968-451-856-0
- [3] CASELLA, G. y BERGER, R. L. Statistical Inference. 2nd Edition. Estados Unidos: Thomson Learning, 2002. ISBN 0-534-24312-6
- [4] FRANCO ESPÍN, A. y RIVAS RIVAS, D. Analysis of Aircraft Trajectory Uncertainty using Ensemble Weather Forecasts: A Comparative Study.
- [5] MORITZ, H. Geodetic Reference System 1980. Journal of Geodesy, vol. 54, no. 3, pp. 395–405, 1980.
- [6] RIVAS RIVAS, D. Apuntes de Mecánica del Vuelo. Sevilla: Universidad de Sevilla, Escuela Técnica Superior de Ingeniería, 2012.
- [7] VAZQUEZ VALENZUELA, R. Apuntes de Fundamentos de Navegación Aérea. Sevilla: Universidad de Sevilla, Escuela Técnica Superior de Ingeniería, 2016.
- [8] fft- Fast Fourier Transform. The MathWork, Inc. ©1994-2017. Disponible en https://es.mathworks.com/help/matlab/ref/fft.html
- [9] linspace- Generate Linearly Spaced Vector. The MathWork, Inc. ©1994-2017. Disponible en https://es.mathworks.com/help/matlab/ref/linspace.html
- [10] MathWorks Makers of MATLAB and Simulink. The MathWork, Inc. ©1994-2017. Disponible en https://es.mathworks.com/

Anexo A. Datos de vientos

	Viento longitudinal [m/s]				Segn	nento del	crucero			
	Miembro del Ensemble	1	2	3	4	5	6	7	8	9
Π	1	-7.792	-5.489	-16.787	-19.977	-27.012	-46.944	-46.732	-54.805	-50.699
IT	2	-8.216	-4.287	-15.594	-18.854	-25.449	-47.614	-45.783	-56.506	-49.236
IT	3	-9.794	-5.590	-16.885	-20.017	-26.600	-47.032	-45.571	-54.817	-49.265
IT	4	-6.216	-4.189	-15.487	-18.812	-25.848	-47.535	-46.947	-56.487	-50.661
IT	5	-7.884	-5.296	-15.039	-18.557	-26.334	-46.856	-47.042	-55.991	-48.712
IT	6	-8.117	-4.492	-17.326	-20.258	-26.119	-47.711	-45.472	-55.321	-51.220
I	7	-8.269	-4.952	-15.913	-19.086	-26.099	-47.355	-46.567	-55.859	-49.639
Π	8	-7.747	-4.824	-16.460	-19.747	-26.353	-47.213	-45.950	-55.446	-50.292
IT	9	-8.674	-4.755	-16.575	-19.632	-26.459	-47.193	-45.995	-56.481	-48.786
IT	10	-7.346	-5.022	-15.789	-19.187	-25.995	-47.368	-46.517	-54.828	-51.155
IT	11	-7.694	-4.787	-16.523	-19.958	-26.628	-47.913	-47.420	-55.079	-50.641
Ħ	12	-8.317	-4.990	-15.844	-18.857	-25.835	-46.662	-45.089	-56.229	-49.285
IT	13	-7.399	-5.205	-16.971	-20.104	-25.804	-46.466	-44.855	-55.621	-50.092
IT	14	-8.605	-4.572	-15.403	-18.719	-26.652	-48.103	-47.656	-55.685	-49.837
IT	15	-7.840	-5.276	-15.944	-19.613	-25.697	-48.080	-46.011	-54.570	-49.887
I	16	-8.179	-4.501	-16.422	-19.206	-26.757	-46.482	-46.502	-56.742	-50.048
IT	17	-7.624	-3.757	-16.007	-19.333	-25.361	-48.097	-45.769	-56.730	-51.155
IT	18	-8.400	-6.026	-16.362	-19.491	-27.093	-46.468	-46.744	-54.577	-48.784
IT	19	-8.445	-4.943	-15.033	-18.276	-25.274	-47.885	-46.205	-56.684	-50.046
Ħ	20	-7.572	-4.839	-17.331	-20.548	-27.183	-46.675	-46.310	-54.625	-49.889
Ħ	21	-8.183	-4.329	-15.732	-18.913	-27.377	-47.485	-45.950	-53.867	-49.113
IT	22	-7.823	-5.458	-16.633	-19.907	-25.073	-47.079	-46.561	-57.435	-50.826
IT	23	-7.554	-4.654	-16.293	-19.449	-26.223	-46.497	-45.542	-55.754	-51.515
I	24	-8.454	-5.126	-16.080	-19.368	-26.230	-48.072	-46.966	-55.564	-48.429
I	25	-6.658	-4.342	-15.752	-19.156	-26.027	-47.353	-48.444	-56.484	-51.351
IT	26	-9.349	-5.451	-16.617	-19.666	-26.426	-47.208	-44.064	-54.842	-48.577
IT	27	-7.576	-4.713	-16.047	-19.175	-26.497	-47.095	-45.851	-55.760	-49.241
IT	28	-8.442	-5.071	-16.315	-19.648	-25.962	-47.465	-46.658	-55.544	-50.706
IT	29	-7.488	-4.311	-16.069	-19.433	-26.621	-47.274	-46.995	-56.083	-51.398
IT	30	-8.521	-5.467	-16.296	-19.387	-25.834	-47.294	-45.518	-55.237	-48.533
Ħ	31	-8.778	-5.728	-16.011	-19.125	-26.057	-46.422	-45.917	-56.172	-50.151
Ħ	32	-7.235	-4.054	-16.355	-19.695	-26.399	-48.136	-46.597	-55.140	-49.772
Ħ	33	-8.426	-4.850	-16.178	-19.178	-26.192	-47.316	-45.648	-56.898	-49.249
l	34	-7.591	-4.921	-16.190	-19.646	-26.267	-47.251	-46.873	-54.404	-50.677
IT	35	-8.003	-4.889	-16.182	-19.410	-26.231	-47.283	-46.255	-55.656	-49.970

Tabla A.1: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de mayo de 2016.

31

32 33

34

35

-1.946

-0.871

-0.699

-2.122

-1.408

14.572

15.282

15.016

14.836

14.923

15.923

17.382

15.679

17.626

16.649

14.074

15.294

14.033

15.347

14.680

-10.302

-9.931

-9.672

-10.561

-10.121

-18.765

-18.412

-18.666

-18.511

-18.590

-6.141

-5.023

-5.953

-5.212

-5.580

1.016

-0.847

0.683

-0.522

0.083

20.393

20.338

20.822

19.909

20.368

Viento cruzado [m/s]				Segm	ento del c	rucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-1.200	14.929	17.476	15.143	-9.949	-17.801	-5.775	0.405	20.22
2	-1.620	14.915	15.850	14.251	-10.291	-19.372	-5.383	-0.253	20.50
3	-1.175	14.181	16.880	14.614	-9.901	-18.754	-5.281	-0.687	21.15
4	-1.637	15.675	16.423	14.759	-10.338	-18.417	-5.871	0.853	19.56
5	-1.727	15.691	18.013	16.122	-10.032	-18.603	-6.511	1.042	20.40
6	-1.090	14.163	15.292	13.257	-10.210	-18.576	-4.645	-0.884	20.31
γ	-1.359	14.334	16.264	14.644	-10.334	-17.845	-5.442	1.059	18.59
8	-1.467	15.522	17.044	14.737	-9.909	-19.323	-5.717	-0.888	22.12
9	-1.452	15.050	16.378	14.379	-9.948	-18.135	-5.099	0.319	20.77
10	-1.370	14.803	16.926	14.991	-10.286	-19.049	-6.062	-0.169	19.94
11	-2.836	15.262	17.079	14.996	-9.625	-19.458	-4.962	-0.072	19.42
12	0.002	14.600	16.221	14.380	-10.614	-17.714	-6.193	0.234	21.29
13	-1.401	15.706	15.924	13.867	-9.549	-17.907	-6.827	0.444	20.22
14	-1.421	14.151	17.372	15.495	-10.694	-19.270	-4.327	-0.279	20.47
15	-1.650	16.531	17.805	15.791	-9.816	-19.344	-5.243	-0.416	20.65
16	-1.170	13.317	15.491	13.580	-10.424	-17.823	-5.914	0.570	20.06
17	-0.719	15.439	16.266	14.135	-10.171	-19.150	-6.501	-0.742	20.04
18	-2.091	14.415	17.046	15.241	-10.067	-18.023	-4.658	0.896	20.66
19	-0.809	16.189	16.290	14.632	-9.753	-17.953	-5.638	0.868	20.37
20	-2.009	13.661	17.010	14.734	-10.484	-19.218	-5.518	-0.705	20.32
21	-3.017	14.341	16.600	15.060	-10.351	-18.584	-5.406	-0.402	19.04
22	0.202	15.512	16.693	14.307	-9.887	-18.594	-5.756	0.561	21.68
23	-0.410	14.830	16.738	14.769	-10.486	-18.319	-4.024	0.210	20.72
24	-2.419	15.029	16.571	14.609	-9.752	-18.847	-7.132	-0.051	19.99
25	-1.716	14.945	16.789	14.892	-11.050	-18.976	-4.432	0.840	22.05
26	-1.106	14.912	16.516	14.480	-9.195	-18.207	-6.736	-0.682	18.67
27	-0.916	14.795	16.979	15.372	-9.993	-18.686	-5.993	-0.442	18.55
28	-1.913	15.059	16.318	13.995	-10.252	-18.499	-5.171	0.605	22.16
29	-0.279	14.219	16.330	14.355	-10.629	-18.563	-6.240	-0.840	19.01
30	-2.541	15.636	16.979	15.022	-9.610	-18.613	-4.921	1.000	21.70

Tabla A.2: Vientos cruzados para la ruta hacia el Oeste correspondientes al 5 de mayo de 2016.

Viento longitudinal [m/s]				Segr	nento de	l crucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-10.484	-10.514	3.951	4.744	-5.031	-12.478	-16.594	-20.262	-30.130
2	-11.341	-13.069	2.806	4.727	-4.652	-11.909	-15.737	-18.438	-30.811
3	-10.055	-12.016	3.227	3.720	-5.286	-12.393	-16.015	-19.741	-31.111
4	-11.767	-11.566	3.529	5.750	-4.408	-11.988	-16.318	-18.953	-29.829
5	-11.296	-11.195	2.392	3.722	-5.223	-12.222	-16.174	-19.328	-31.241
6	-10.524	-12.385	4.369	5.743	-4.473	-12.159	-16.162	-19.368	-29.697
7	-11.392	-10.541	3.994	4.454	-5.522	-13.528	-15.701	-19.861	-30.742
8	-10.427	-13.034	2.772	5.021	-4.167	-10.857	-16.624	-18.842	-30.205
9	-9.762	-12.466	3.970	4.344	-4.285	-12.247	-16.048	-19.388	-30.866
10	-12.048	-11.111	2.805	5.129	-5.401	-12.133	-16.286	-19.316	-30.070
11	-10.634	-11.819	3.367	5.849	-4.496	-12.037	-15.834	-19.447	-30.536
12	-11.186	-11.750	3.394	3.616	-5.189	-12.341	-16.501	-19.248	-30.409
13	-10.974	-11.986	3.920	4.557	-4.250	-12.130	-16.678	-19.547	-29.607
14	-10.845	-11.586	2.845	4.918	-5.439	-12.259	-15.650	-19.150	-31.327
15	-10.933	-12.230	3.130	4.364	-4.860	-12.593	-15.831	-19.719	-30.150
16	-10.890	-11.347	3.639	5.111	-4.824	-11.790	-16.497	-18.984	-30.794
17	-11.302	-12.933	5.009	5.448	-4.550	-11.858	-15.356	-18.809	-30.099
18	-10.514	-10.646	1.744	4.018	-5.141	-12.520	-16.974	-19.882	-30.833
19	-10.815	-11.540	2.645	4.919	-4.536	-11.301	-16.008	-19.130	-30.418
20	-11.010	-12.033	4.124	4.555	-5.154	-13.091	-16.332	-19.558	-30.520
21	-11.138	-11.495	3.397	4.289	-4.914	-11.860	-15.309	-18.326	-30.204
22	-10.686	-12.077	3.364	5.181	-4.777	-12.519	-17.025	-20.370	-30.737
23	-10.959	-10.847	3.895	4.713	-5.134	-12.446	-15.595	-19.390	-31.217
24	-10.858	-12.725	2.873	4.746	-4.548	-11.937	-16.738	-19.305	-29.716
25	-11.686	-11.218	1.503	4.777	-4.772	-11.954	-15.793	-19.223	-29.275
26	-10.136	-12.354	5.262	4.697	-4.912	-12.437	-16.550	-19.476	-31.659
27	-11.502	-13.115	2.594	4.438	-4.718	-11.682	-16.387	-19.351	-31.029
28	-10.320	-10.459	4.170	5.022	-4.963	-12.711	-15.955	-19.352	-29.919
29	-11.191	-12.095	2.696	4.776	-4.958	-12.524	-16.014	-19.774	-30.076
30	-10.625	-11.492	4.069	4.692	-4.728	-11.862	-16.316	-18.923	-30.867
31	-10.736	-11.234	3.519	4.548	-4.779	-12.587	-16.822	-18.672	-30.747
32	-11.083	-12.338	3.247	4.915	-4.906	-11.797	-15.503	-20.025	-30.195
33	-11.212	-13.712	3.255	5.000	-4.587	-11.772	-16.334	-19.743	-30.656
34	-10.615	-9.860	3.522	4.473	-5.099	-12.617	-16.001	-18.953	-30.286
35	-10.914	-11.785	3.384	4.738	-4.849	-12.198	-16.162	-19.347	-30.468

Tabla A.3: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de junio de 2016.

Tabla A.4: V	/ientos	$\operatorname{cruzados}$	para	la	ruta	hacia	el	Oeste	correspondiente	s al	5	de
junio de 2016.												

Viento cruzado [m/s]				Segm	ento del	crucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-2.164	0.272	18.833	5.248	-8.038	-3.702	-7.734	-37.379	-24.176
2	-2.092	0.813	20.027	4.732	-7.864	-3.575	-6.208	-38.089	-24.601
3	-1.917	1.061	20.050	4.479	-7.547	-3.474	-6.386	-37.656	-24.210
4	-2.338	0.026	18.815	5.502	-8.356	-3.807	-7.555	-37.809	-24.566
5	-1.469	1.136	20.492	5.473	-8.027	-3.829	-6.730	-37.465	-24.023
6	-2.784	-0.049	18.375	4.506	-7.877	-3.442	-7.214	-38.005	-24.776
7	-2.053	1.648	20.269	4.362	-7.669	-3.602	-6.047	-36.543	-24.713
8	-2.210	-0.565	18.605	5.619	-8.232	-3.678	-7.888	-38.917	-24.073
9	-1.677	1.135	19.418	5.587	-7.890	-4.105	-6.659	-36.660	-24.521
10	-2.583	-0.047	19.443	4.386	-8.016	-3.169	-7.278	-38.798	-24.259
11	-3.022	0.091	19.207	5.480	-8.320	-3.780	-7.677	-38.353	-24.491
12	-1.239	0.989	19.653	4.492	-7.587	-3.493	-6.270	-37.106	-24.296
13	-0.914	0.687	18.889	5.072	-7.962	-3.343	-7.170	-38.485	-24.610
14	-3.343	0.395	19.971	4.896	-7.945	-3.939	-6.783	-36.972	-24.183
15	-2.114	0.472	20.108	4.642	-7.872	-3.019	-6.376	-37.103	-24.000
16	-2.141	0.614	18.757	5.331	-8.030	-4.255	-7.558	-38.350	-24.798
17	-1.776	0.041	18.575	4.886	-7.954	-3.511	-6.720	-38.072	-24.299
18	-2.474	1.044	20.288	5.089	-7.944	-3.766	-7.221	-37.389	-24.491
19	-2.456	-0.008	19.543	4.987	-7.674	-4.051	-6.837	-37.110	-24.597
20	-1.809	1.092	19.318	4.991	-8.228	-3.224	-7.113	-38.353	-24.201
21	-1.826	0.266	18.280	3.546	-8.244	-3.889	-7.784	-37.960	-24.491
22	-2.432	0.817	20.581	6.431	-7.662	-3.395	-6.156	-37.502	-24.300
23	-1.950	0.198	19.869	4.614	-7.910	-3.064	-7.004	-38.396	-24.512
24	-2.314	0.884	18.994	5.357	-8.000	-4.217	-6.945	-37.072	-24.276
25	-2.460	0.433	19.547	5.143	-7.769	-3.854	-7.046	-38.193	-24.986
26	-1.796	0.645	19.329	4.832	-8.133	-3.423	-6.902	-37.263	-23.805
27	-2.815	0.640	19.182	4.944	-7.787	-3.205	-6.755	-38.913	-24.213
28	-1.435	0.447	19.686	5.040	-8.121	-4.067	-7.190	-36.551	-24.567
29	-3.196	0.081	18.972	4.713	-7.856	-3.434	-7.379	-37.482	-25.084
30	-1.060	1.005	19.891	5.260	-8.052	-3.843	-6.568	-37.977	-23.697
31	-1.382	1.227	19.705	4.467	-8.350	-3.724	-7.034	-38.174	-24.888
32	-2.868	-0.143	19.160	5.509	-7.560	-3.549	-6.910	-37.285	-23.904
33	-1.607	1.815	20.416	5.494	-8.215	-3.758	-6.573	-38.319	-24.384
34	-2.649	-0.733	18.453	4.480	-7.689	-3.519	-7.375	-37.145	-24.402
35	-2.130	0.539	19.433	4.986	-7.955	-3.639	-6.974	-37.729	-24.391

Viento longitudinal [m/s]				Segm	ento del o	crucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-18.049	-18.295	-5.174	-28.140	-34.518	-23.429	-22.574	-27.986	-39.706
2	-17.690	-15.271	-4.885	-26.595	-35.611	-23.678	-22.511	-29.663	-40.861
3	-17.146	-17.265	-4.800	-26.909	-33.969	-23.706	-23.094	-28.723	-40.001
4	-18.600	-16.315	-5.258	-27.823	-36.167	-23.389	-21.976	-28.921	-40.557
5	-17.664	-16.318	-5.345	-29.455	-36.293	-23.026	-22.605	-30.015	-40.219
6	-18.074	-17.264	-4.715	-25.273	-33.843	-24.081	-22.470	-27.633	-40.341
7	-16.038	-17.336	-4.797	-29.078	-36.286	-24.015	-22.465	-29.513	-41.244
8	-19.707	-16.235	-5.264	-25.641	-33.852	-23.095	-22.618	-28.130	-39.321
9	-16.544	-16.287	-5.024	-28.182	-35.834	-24.081	-21.242	-28.346	-40.055
10	-19.199	-17.285	-5.032	-26.542	-34.293	-23.022	-23.833	-29.310	-40.505
11	-18.931	-16.595	-5.612	-26.181	-33.918	-24.037	-22.077	-28.556	-40.062
12	-16.818	-16.985	-4.452	-28.562	-36.217	-23.071	-23.005	-29.097	-40.503
13	-16.431	-18.043	-4.950	-29.707	-37.889	-22.979	-22.158	-28.418	-40.727
14	-19.315	-15.528	-5.112	-25.031	-32.252	-24.130	-22.927	-29.232	-39.837
15	-19.131	-16.111	-4.899	-27.620	-35.315	-23.006	-22.387	-29.035	-40.122
16	-16.618	-17.455	-5.167	-27.092	-34.821	-24.093	-22.694	-28.613	-40.455
17	-19.218	-18.332	-5.976	-24.212	-35.624	-24.015	-23.331	-29.002	-39.825
18	-16.512	-15.239	-4.081	-30.519	-34.511	-23.095	-21.738	-28.656	-40.744
19	-17.533	-16.473	-6.012	-25.433	-35.202	-23.304	-21.359	-28.499	-40.210
20	-18.217	-17.091	-4.047	-29.301	-34.945	-23.804	-23.709	-29.144	-40.356
21	-18.351	-16.401	-4.202	-28.012	-34.557	-22.855	-22.911	-29.485	-40.292
22	-17.405	-17.177	-5.847	-26.718	-35.579	-24.245	-22.169	-28.152	-40.269
23	-18.492	-16.323	-3.552	-25.725	-34.900	-24.530	-22.383	-28.417	-40.360
24	-17.257	-17.251	-6.513	-29.006	-35.232	-22.571	-22.693	-29.230	-40.205
25	-18.659	-17.062	-5.376	-26.132	-33.695	-24.359	-22.137	-28.210	-41.063
26	-17.079	-16.503	-4.677	-28.587	-36.445	-22.744	-22.939	-29.432	-39.502
27	-21.143	-17.771	-3.930	-27.948	-34.398	-24.005	-21.680	-28.083	-40.213
28	-14.592	-15.808	-6.131	-26.778	-35.734	-23.099	-23.411	-29.564	-40.347
29	-18.958	-16.660	-4.744	-28.727	-35.879	-22.718	-22.095	-28.905	-41.010
30	-16.790	-16.919	-5.322	-26.008	-34.261	-24.385	-22.987	-28.746	-39.557
31	-17.346	-15.585	-4.638	-25.904	-35.814	-22.592	-23.170	-29.003	-40.466
32	-18.397	-17.992	-5.429	-28.827	-34.327	-24.510	-21.899	-28.648	-40.107
33	-17.813	-15.336	-4.950	-28.053	-34.771	-24.216	-24.152	-29.169	-40.497
34	-17.926	-18.240	-5.109	-26.668	-35.359	-22.883	-20.928	-28.487	-40.075
35	-17.875	-16.782	-5.028	-27.364	-35.069	-23.559	-22.535	-28.828	-40.280

Tabla A.5: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de julio de 2016.

Tabla A.	6: Vientos	cruzados	\mathbf{para}	la	ruta	hacia	\mathbf{el}	Oeste	correspondientes	al	5	de
julio de 20	16.											

Viento cruzado [m/s]				Segn	nento del	crucero)		
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	9.481	5.980	-6.133	-2.735	18.047	5.080	-17.402	-33.717	-30.672
2	13.582	5.938	-7.831	-2.002	19.228	8.214	-15.030	-32.762	-30.137
3	10.973	5.746	-6.940	-0.192	20.568	7.355	-16.144	-33.689	-30.487
4	12.103	6.180	-7.021	-4.546	16.712	5.940	-16.289	-32.800	-30.325
5	11.849	6.239	-7.217	-3.296	18.895	6.800	-17.744	-33.398	-30.749
6	11.222	5.679	-6.744	-1.449	18.383	6.493	-14.698	-33.081	-30.050
7	12.553	5.771	-6.873	-4.911	18.745	6.557	-16.338	-33.185	-29.882
8	10.517	6.138	-7.090	0.171	18.538	6.733	-16.097	-33.298	-30.935
9	12.382	7.384	-5.337	-0.650	18.893	7.017	-16.791	-32.753	-30.417
10	10.688	4.536	-8.623	-4.094	18.391	6.276	-15.638	-33.727	-30.393
11	11.381	5.634	-7.098	-1.447	20.759	7.310	-17.103	-33.240	-30.567
12	11.680	6.272	-6.860	-3.285	16.531	5.985	-15.338	-33.251	-30.235
13	12.344	6.330	-7.152	-4.327	18.422	6.046	-16.154	-33.491	-30.366
14	10.744	5.581	-6.815	-0.409	18.873	7.243	-16.287	-32.992	-30.441
15	12.994	5.833	-7.723	-2.278	18.301	7.049	-16.551	-33.213	-30.697
16	10.090	6.078	-6.245	-2.460	18.985	6.243	-15.880	-33.277	-30.113
17	13.027	6.630	-7.073	-0.614	17.589	6.945	-16.122	-32.824	-30.083
18	10.044	5.304	-6.885	-4.136	19.697	6.342	-16.321	-33.663	-30.724
19	10.512	5.861	-7.263	-3.090	16.347	6.344	-15.494	-32.892	-30.739
20	12.558	6.061	-6.699	-1.652	20.929	6.950	-16.953	-33.594	-30.070
21	9.671	4.312	-6.369	-2.953	19.141	5.899	-15.985	-33.255	-30.380
22	13.410	7.612	-7.592	-1.785	18.142	7.401	-16.455	-33.229	-30.421
23	12.191	5.458	-8.308	-2.085	18.506	7.315	-15.234	-33.079	-29.891
24	10.881	6.462	-5.662	-2.651	18.771	5.975	-17.203	-33.399	-30.925
25	11.999	5.357	-8.254	-1.557	19.091	6.591	-14.917	-33.047	-30.457
26	11.065	6.564	-5.716	-3.189	18.185	6.699	-17.517	-33.435	-30.352
27	12.095	4.589	-7.179	-2.667	19.433	6.343	-15.615	-33.037	-30.110
28	10.971	7.326	-6.780	-2.080	17.853	6.943	-16.820	-33.443	-30.694
29	10.799	6.492	-6.453	-2.476	18.075	6.013	-17.319	-33.547	-30.578
30	12.273	5.427	-7.509	-2.269	19.212	7.283	-15.120	-32.931	-30.228
31	11.720	7.037	-7.012	-1.186	17.038	6.901	-15.500	-33.695	-30.217
32	11.360	4.881	-6.955	-3.550	20.253	6.389	-16.929	-32.799	-30.579
33	13.008	5.338	-7.071	-3.627	17.897	7.479	-15.638	-32.714	-30.254
34	10.068	6.586	-6.896	-1.120	19.379	5.816	-16.792	-33.760	-30.545
35	11.540	5.961	-6.982	-2.374	18.645	6.642	-16.218	-33.241	-30.401

Viento longitudinal [m/s]				Segmer	ito del cru	ıcero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-39.064	-28.257	-25.508	-27.027	-17.964	-13.948	-11.198	9.398	3.566
2	-39.537	-28.990	-25.001	-23.776	-18.034	-14.128	-10.402	10.335	1.884
3	-38.173	-30.158	-23.636	-23.056	-17.319	-13.880	-11.251	7.982	1.209
4	-40.425	-27.092	-26.868	-27.757	-18.672	-14.194	-10.355	11.756	4.238
5	-38.032	-27.522	-26.858	-24.616	-18.676	-13.991	-8.887	10.430	3.311
6	-40.551	-29.724	-23.671	-26.192	-17.328	-14.087	-12.723	9.305	2.138
7	-39.804	-29.878	-25.851	-26.385	-17.018	-14.928	-11.093	9.695	1.347
8	-38.789	-27.363	-24.652	-24.420	-18.981	-13.145	-10.514	10.036	4.099
9	-38.558	-28.399	-28.329	-25.872	-19.628	-13.302	-10.239	9.236	2.025
10	-40.038	-28.848	-22.185	-24.941	-16.359	-14.760	-11.361	10.502	3.423
11	-39.716	-28.700	-22.686	-25.926	-16.167	-13.791	-10.694	10.580	3.311
12	-38.877	-28.543	-27.814	-24.873	-19.825	-14.288	-10.917	9.154	2.141
13	-38.724	-28.034	-27.232	-25.800	-18.018	-13.814	-11.596	10.459	4.209
14	-39.873	-29.206	-23.278	-25.022	-17.976	-14.256	-10.006	9.275	1.245
15	-38.242	-27.742	-25.794	-28.408	-17.940	-14.570	-11.004	10.545	3.404
16	-40.352	-29.506	-24.719	-22.407	-18.067	-13.510	-10.599	9.189	2.049
17	-39.978	-29.462	-27.459	-24.732	-17.982	-14.212	-9.942	10.207	3.463
18	-38.619	-27.790	-23.052	-26.070	-18.024	-13.866	-11.667	9.526	1.982
19	-38.400	-28.763	-23.496	-20.727	-16.336	-13.583	-10.884	10.752	3.715
20	-40.199	-28.486	-27.011	-30.080	-19.665	-14.491	-10.729	8.978	1.734
21	-39.203	-29.504	-26.482	-24.057	-18.413	-14.258	-11.348	10.622	1.992
22	-39.393	-27.746	-24.024	-26.750	-17.593	-13.822	-10.253	9.119	3.463
23	-40.413	-28.387	-25.557	-25.639	-18.132	-14.102	-11.550	10.884	3.927
24	-38.182	-28.861	-24.955	-25.161	-17.857	-13.970	-10.049	8.854	1.514
25	-38.389	-27.732	-26.107	-25.635	-18.396	-13.515	-10.442	10.499	3.086
26	-40.206	-29.516	-24.409	-25.174	-17.599	-14.557	-11.164	9.241	2.363
27	-39.662	-29.665	-26.276	-29.673	-17.295	-13.765	-10.993	8.173	0.941
28	-38.936	-27.575	-24.239	-21.135	-18.704	-14.305	-10.618	11.559	4.507
29	-38.966	-28.235	-23.904	-22.788	-19.250	-13.697	-10.653	9.899	2.891
30	-39.627	-29.009	-26.609	-28.021	-16.740	-14.381	-10.956	9.840	2.556
31	-39.704	-28.945	-26.076	-26.551	-18.441	-12.471	-11.255	10.489	2.539
32	-38.898	-28.307	-24.432	-24.240	-17.559	-15.602	-10.352	9.244	2.906
33	-39.126	-30.628	-25.667	-24.427	-16.131	-13.519	-10.258	9.947	1.942
34	-39.473	-26.614	-24.854	-26.380	-19.860	-14.557	-11.343	9.788	3.506
35	-39.299	-28.623	-25.254	-25.402	-17.998	-14.039	-10.802	9.873	2.727

Tabla A.7: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de agosto de 2016.

Tabla	A.8:	Vientos	cruzados	para	la ruta	hacia	el	Oeste	correspondi	entes a	al	5 d	le
agosto	de 20	16.											

Viento cruzado [m/s]				Segme	ento del o	crucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-8.524	-14.399	-0.558	13.493	33.305	5.575	-12.532	-31.458	-16.585
2	-7.857	-13.360	1.421	13.826	30.939	7.120	-12.831	-35.183	-14.585
3	-7.626	-12.952	0.138	12.719	31.401	7.482	-13.066	-32.270	-15.490
4	-8.743	-14.798	0.715	14.597	32.835	5.225	-12.302	-34.368	-15.668
5	-9.931	-17.686	1.200	13.127	33.340	7.053	-14.208	-32.778	-15.770
6	-6.442	-10.066	-0.354	14.183	30.910	5.648	-11.157	-33.866	-15.403
7	-7.848	-14.718	-0.677	13.441	30.003	7.081	-12.982	-33.219	-14.445
8	-8.536	-13.039	1.546	13.873	34.229	5.620	-12.387	-33.418	-16.719
9	-8.626	-13.683	-0.476	12.037	31.806	5.011	-13.149	-33.733	-15.522
10	-7.742	-14.071	1.336	15.280	32.432	7.689	-12.218	-32.911	-15.639
11	-8.309	-13.094	1.373	14.484	33.362	7.249	-13.944	-34.248	-15.881
12	-8.062	-14.664	-0.503	12.832	30.869	5.457	-11.423	-32.399	-15.291
13	-8.023	-12.791	0.187	12.764	33.497	6.390	-12.120	-33.871	-15.518
14	-8.355	-14.973	0.663	14.548	30.743	6.316	-13.237	-32.771	-15.663
15	-8.510	-14.214	-0.020	15.140	32.350	6.110	-13.092	-33.207	-15.195
16	-7.861	-13.546	0.878	12.182	31.888	6.595	-12.272	-33.438	-15.977
17	-7.184	-14.148	1.162	14.167	33.123	6.719	-12.297	-35.108	-16.676
18	-9.187	-13.607	-0.299	13.146	31.113	5.989	-13.074	-31.536	-14.492
19	-7.779	-14.836	1.878	12.858	32.296	6.301	-13.223	-33.745	-14.879
20	-8.598	-12.919	-1.029	14.450	31.941	6.407	-12.139	-32.895	-16.292
21	-8.523	-14.767	-0.218	14.462	32.757	7.153	-12.833	-33.521	-14.786
22	-7.859	-12.995	1.083	12.859	31.484	5.550	-12.540	-33.124	-16.385
23	-7.767	-13.581	1.521	13.855	32.362	6.039	-12.020	-35.242	-15.212
24	-8.603	-14.174	-0.660	13.462	31.884	6.671	-13.342	-31.401	-15.963
25	-7.223	-14.378	0.378	13.741	30.341	4.401	-12.544	-34.433	-13.888
26	-9.156	-13.372	0.483	13.592	33.893	8.308	-12.810	-32.205	-17.282
27	-8.397	-12.683	0.938	13.353	28.726	5.627	-11.881	-32.739	-16.252
28	-7.974	-15.072	-0.081	13.964	35.511	7.076	-13.480	-33.903	-14.924
29	-9.716	-13.937	-0.021	13.070	31.145	5.371	-10.921	-32.703	-15.226
30	-6.661	-13.817	0.877	14.256	33.077	7.341	-14.450	-33.940	-15.951
31	-8.966	-14.472	0.568	13.089	33.481	6.480	-12.338	-32.855	-14.974
32	-7.404	-13.287	0.289	14.243	30.748	6.223	-13.030	-33.785	-16.192
33	-7.676	-12.821	1.407	14.403	31.595	6.530	-12.816	-32.462	-14.747
34	-8.697	-14.937	-0.542	12.920	32.650	6.170	-12.535	-34.169	-16.426
35	-8.189	-13.877	0.432	13.659	32.122	6.350	-12.681	-33.320	-15.580

Viento longitudinal [m/s]				Segmen	to del cru	cero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-21.061	-15.701	-20.846	-31.545	-17.250	-3.095	0.267	-21.317	-6.819
2	-21.037	-15.122	-18.209	-32.380	-17.558	-2.828	1.730	-15.666	-6.609
3	-20.111	-14.853	-21.674	-32.718	-16.818	-2.047	3.362	-19.201	-6.467
4	-21.997	-15.970	-17.382	-31.215	-17.987	-3.875	-1.359	-17.783	-6.931
5	-21.283	-14.840	-18.571	-31.115	-16.614	-2.541	1.530	-16.711	-6.979
6	-20.824	-15.974	-20.495	-32.802	-18.194	-3.381	0.472	-20.273	-6.438
7	-21.650	-15.870	-19.949	-31.237	-18.049	-3.533	0.518	-19.873	-8.198
8	-20.451	-14.946	-19.101	-32.692	-16.761	-2.381	1.480	-17.110	-5.228
9	-20.529	-15.591	-19.575	-32.976	-16.874	-3.301	-0.915	-17.936	-6.240
10	-21.564	-15.218	-19.483	-30.951	-17.938	-2.616	2.916	-19.049	-7.174
11	-21.589	-14.352	-21.293	-32.604	-17.696	-2.639	0.395	-17.742	-5.469
12	-20.519	-16.460	-17.767	-31.332	-17.110	-3.277	1.604	-19.245	-7.952
13	-21.401	-15.735	-19.164	-32.407	-17.102	-3.294	-0.307	-19.898	-7.157
14	-20.708	-15.078	-19.891	-31.524	-17.709	-2.632	2.300	-17.085	-6.258
15	-21.086	-13.632	-19.253	-31.413	-17.230	-2.733	0.915	-18.487	-6.583
16	-21.020	-17.187	-19.808	-32.526	-17.583	-3.185	1.093	-18.494	-6.837
17	-20.909	-14.563	-19.537	-32.757	-17.453	-3.268	2.024	-15.971	-6.896
18	-21.194	-16.252	-19.522	-31.180	-17.362	-2.654	-0.019	-21.012	-6.517
19	-21.294	-15.135	-18.482	-32.659	-17.021	-2.530	2.047	-17.858	-6.859
20	-20.808	-15.679	-20.570	-31.271	-17.794	-3.381	-0.041	-19.123	-6.546
21	-21.061	-15.233	-18.995	-32.021	-17.732	-2.508	1.176	-19.065	-6.204
22	-21.040	-15.580	-20.062	-31.910	-17.078	-3.412	0.819	-17.920	-7.212
23	-21.573	-15.950	-19.396	-31.773	-17.916	-3.966	-1.667	-19.502	-6.737
24	-20.539	-14.870	-19.652	-32.152	-16.893	-1.964	3.664	-17.491	-6.682
25	-20.574	-15.267	-19.634	-32.671	-18.180	-2.984	1.329	-17.883	-7.128
26	-21.519	-15.545	-19.420	-31.251	-16.629	-2.939	0.677	-19.099	-6.296
27	-20.587	-15.985	-19.628	-31.717	-16.819	-3.184	1.321	-18.389	-6.170
28	-21.503	-14.827	-19.431	-32.209	-17.990	-2.732	0.682	-18.596	-7.252
29	-21.480	-14.655	-19.739	-33.075	-18.573	-3.133	0.779	-21.392	-7.340
30	-20.630	-16.164	-19.322	-30.851	-16.234	-2.781	1.212	-15.590	-6.079
31	-21.645	-15.695	-19.145	-31.118	-16.647	-2.403	0.657	-17.472	-6.159
32	-20.463	-15.120	-19.901	-32.811	-18.166	-3.521	1.346	-19.514	-7.260
33	-20.843	-15.139	-17.561	-31.375	-17.340	-3.504	2.889	-17.539	-6.053
34	-21.263	-15.674	-21.497	-32.559	-17.477	-2.420	-0.893	-19.438	-7.359
35	-21.051	-15.406	-19.524	-31.969	-17.406	-2.960	1.003	-18.496	-6.713

Tabla A.9: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de septiembre de 2016.

Tabla A.10:	Vientos	$\operatorname{cruzados}$	para la	ı ruta	hacia	\mathbf{el}	Oeste	correspo	ndientes	al	5 c	le
septiembre de	2016.											

Viento cruzado [m/s]				Segme	ento del o	crucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-19.477	0.584	24.295	44.900	20.231	-29.767	-25.169	-5.439	7.653
2	-19.103	-0.226	24.987	47.925	18.713	-31.192	-24.894	-6.089	9.297
3	-19.194	2.068	21.828	46.405	19.654	-30.368	-25.310	-5.206	8.694
4	-19.381	-1.711	27.455	46.427	19.291	-30.588	-24.749	-6.324	8.266
5	-17.946	-0.175	24.638	46.831	19.318	-30.429	-25.924	-6.036	8.449
6	-20.638	0.528	24.640	45.994	19.623	-30.529	-24.136	-5.495	8.508
7	-19.335	0.501	24.050	45.634	19.403	-30.291	-25.016	-5.801	10.106
8	-19.240	-0.145	25.232	47.192	19.535	-30.671	-25.041	-5.726	6.834
9	-19.886	0.574	24.533	45.800	20.866	-31.178	-24.410	-5.763	7.619
10	-18.698	-0.209	24.753	47.030	18.075	-29.779	-25.648	-5.766	9.329
11	-20.222	-1.210	23.397	47.793	18.840	-29.866	-24.936	-5.364	9.273
12	-18.359	1.577	25.875	45.036	20.102	-31.090	-25.122	-6.169	7.684
13	-19.273	-0.071	25.735	46.302	18.158	-30.328	-25.198	-5.985	9.436
14	-19.300	0.439	23.541	46.526	20.782	-30.636	-24.855	-5.543	7.523
15	-21.655	-0.027	26.160	46.079	18.938	-31.988	-24.246	-5.838	8.115
16	-16.929	0.392	23.131	46.750	20.003	-28.973	-25.811	-5.698	8.830
17	-18.848	-0.341	23.065	45.861	19.394	-29.379	-24.115	-5.540	8.704
18	-19.733	0.711	26.211	46.955	19.547	-31.581	-25.950	-6.007	8.252
19	-18.733	-0.837	25.901	46.217	18.979	-29.875	-25.629	-7.003	8.954
20	-19.845	1.196	23.377	46.614	19.967	-31.093	-24.437	-4.523	8.003
21	-18.362	1.268	25.815	47.033	20.283	-31.006	-24.783	-5.785	8.525
22	-20.215	-0.899	23.471	45.800	18.666	-29.950	-25.279	-5.747	8.423
23	-17.096	-0.540	26.352	47.900	18.630	-30.594	-25.396	-5.988	9.303
24	-21.479	0.902	22.942	44.930	20.307	-30.380	-24.669	-5.544	7.648
25	-20.063	-1.064	23.038	46.645	20.317	-29.973	-24.394	-5.529	8.992
26	-18.518	1.422	26.250	46.178	18.618	-30.997	-25.666	-6.002	7.963
27	-19.357	0.592	25.746	46.609	19.795	-30.212	-25.172	-5.403	8.887
28	-19.226	-0.218	23.540	46.226	19.147	-30.747	-24.888	-6.121	8.060
29	-20.816	-0.738	26.314	46.617	19.431	-30.760	-25.359	-5.501	7.822
30	-17.762	1.091	22.977	46.206	19.508	-30.198	-24.700	-6.039	9.127
31	-18.735	2.346	24.933	47.224	20.332	-31.852	-26.232	-6.369	7.682
32	-19.845	-1.980	24.360	45.603	18.612	-29.113	-23.830	-5.163	9.258
33	-20.131	0.804	24.896	44.863	19.554	-29.768	-24.668	-5.555	8.114
34	-18.445	-0.437	24.396	47.975	19.383	-31.194	-25.392	-5.982	8.842
35	-19.283	0.180	24.641	46.413	19.476	-30.484	-25.024	-5.771	8.477

Viento longitudinal [m/s]				Segme	nto del cr	rucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-10.545	-5.432	-20.449	-26.225	-20.345	-18.351	-8.554	-5.755	-19.440
2	-10.496	-6.506	-15.666	-28.721	-19.762	-19.131	-5.447	-3.770	-18.959
3	-10.165	-5.740	-16.742	-27.562	-19.819	-18.651	-7.430	-3.841	-18.747
4	-10.886	-6.195	-19.375	-27.383	-20.285	-18.835	-6.573	-5.681	-19.669
5	-10.641	-5.141	-16.928	-26.944	-20.401	-18.502	-6.755	-5.691	-18.850
6	-10.417	-6.794	-19.192	-28.015	-19.716	-18.974	-7.235	-3.840	-19.565
7	-9.956	-4.860	-18.865	-29.667	-20.126	-18.848	-6.779	-4.214	-18.746
8	-11.093	-7.068	-17.245	-25.270	-19.984	-18.640	-7.227	-5.315	-19.677
9	-11.753	-7.807	-19.007	-26.848	-20.756	-18.239	-7.076	-5.018	-18.643
10	-9.300	-4.126	-17.104	-28.096	-19.350	-19.251	-6.932	-4.509	-19.773
11	-10.698	-6.920	-16.441	-26.339	-19.814	-18.452	-7.167	-5.655	-19.505
12	-10.345	-5.019	-19.677	-28.602	-20.293	-19.030	-6.843	-3.880	-18.913
13	-9.895	-6.128	-19.077	-27.941	-20.349	-18.658	-7.232	-3.657	-19.308
14	-11.147	-5.807	-17.044	-27.012	-19.758	-18.831	-6.774	-5.865	-19.115
15	-10.664	-4.764	-18.183	-29.537	-20.809	-18.821	-6.400	-4.177	-19.290
16	-10.389	-7.176	-17.940	-25.405	-19.303	-18.665	-7.614	-5.358	-19.115
17	-9.711	-5.556	-18.823	-27.623	-20.434	-18.854	-5.600	-4.974	-19.054
18	-11.342	-6.380	-17.305	-27.318	-19.680	-18.630	-8.388	-4.548	-19.357
19	-12.543	-5.981	-16.942	-27.781	-20.269	-20.176	-8.212	-4.826	-18.948
20	-8.501	-5.950	-19.166	-27.167	-19.841	-17.306	-5.781	-4.694	-19.451
21	-9.955	-5.895	-17.868	-27.857	-19.480	-18.391	-5.560	-3.893	-18.835
22	-11.089	-6.036	-18.243	-27.075	-20.627	-19.103	-8.443	-5.625	-19.581
23	-10.085	-5.860	-17.890	-27.208	-20.204	-18.285	-6.527	-3.410	-19.251
24	-10.969	-6.073	-18.232	-27.742	-19.906	-19.205	-7.474	-6.126	-19.166
25	-10.339	-6.663	-17.960	-25.930	-19.781	-18.266	-5.903	-4.667	-19.776
26	-10.714	-5.272	-18.151	-29.019	-20.328	-19.225	-8.095	-4.866	-18.642
27	-11.041	-4.949	-17.596	-26.174	-20.174	-18.896	-6.972	-4.103	-19.497
28	-10.007	-6.991	-18.522	-28.786	-19.937	-18.589	-7.033	-5.421	-18.915
29	-10.794	-5.789	-18.342	-28.065	-19.496	-19.053	-6.527	-2.527	-18.758
30	-10.259	-6.149	-17.776	-26.889	-20.613	-18.441	-7.473	-7.002	-19.662
31	-10.234	-5.435	-17.060	-27.098	-19.268	-18.475	-8.046	-6.041	-19.366
32	-10.823	-6.497	-19.051	-27.841	-20.841	-19.013	-5.954	-3.490	-19.046
33	-9.805	-6.396	-18.861	-27.492	-19.847	-18.966	-6.304	-5.280	-19.648
34	-11.246	-5.533	-17.257	-27.455	-20.263	-18.523	-7.711	-4.254	-18.760
35	-10.529	-5.965	-18.059	-27.472	-20.056	-18.752	-7.002	-4.763	-19.208

Tabla A.11: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de octubre de 2016.

Tabla A.12:	Vientos	$\operatorname{cruzados}$	para la	ruta	hacia	\mathbf{el}	Oeste	correspo	ndientes	al	5	de
octubre de 20	16.											

Viento cruzado [m/s]				Segr	nento d	el crucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	8.306	-3.668	-4.338	32.521	1.970	-24.723	-27.458	-9.638	-11.809
2	6.951	-4.591	-5.863	33.335	1.055	-26.561	-30.885	-9.935	-10.693
3	7.048	-5.419	-5.645	32.061	1.288	-26.149	-29.368	-9.582	-10.991
4	8.217	-2.836	-4.552	33.817	1.744	-25.141	-28.971	-9.985	-11.505
5	6.285	-4.566	-6.155	33.195	1.533	-24.281	-26.333	-10.629	-11.415
6	8.979	-3.692	-4.054	32.682	1.497	-27.005	-32.018	-8.945	-11.103
7	7.377	-5.207	-5.720	33.565	1.256	-26.250	-30.410	-8.725	-10.798
8	7.882	-3.062	-4.493	32.308	1.773	-25.040	-27.941	-10.835	-11.712
9	7.385	-4.146	-4.347	32.508	1.856	-26.732	-29.449	-10.736	-11.768
10	7.874	-4.102	-5.856	33.371	1.168	-24.560	-28.894	-8.838	-10.737
11	8.114	-4.233	-5.672	34.256	2.055	-26.296	-28.653	-9.080	-11.276
12	7.146	-4.032	-4.536	31.622	0.974	-24.997	-29.678	-10.476	-11.232
13	7.661	-3.479	-4.627	33.177	2.117	-24.910	-28.462	-8.974	-11.245
14	7.601	-4.776	-5.581	32.700	0.909	-26.373	-29.874	-10.593	-11.264
15	8.075	-4.443	-5.063	34.000	2.323	-23.869	-29.388	-9.615	-11.023
16	7.189	-3.817	-5.131	31.881	0.698	-27.421	-28.945	-9.951	-11.480
17	7.537	-3.328	-4.291	31.637	1.862	-25.441	-29.977	-10.744	-11.193
18	7.724	-4.927	-5.918	34.238	1.170	-25.846	-28.344	-8.831	-11.318
19	6.788	-4.848	-5.434	31.927	0.816	-26.573	-31.038	-9.285	-10.732
20	8.465	-3.407	-4.780	33.953	2.218	-24.725	-27.299	-10.279	-11.767
21	8.083	-4.297	-5.226	31.239	0.591	-25.113	-29.650	-11.168	-11.746
22	7.181	-3.957	-4.978	34.632	2.424	-26.179	-28.687	-8.397	-10.765
23	6.425	-4.843	-4.625	32.811	1.764	-25.470	-31.131	-10.061	-11.357
24	8.827	-3.406	-5.584	33.074	1.260	-25.820	-27.209	-9.505	-11.154
25	8.865	-4.134	-4.557	32.587	1.213	-25.442	-31.494	-10.337	-11.082
26	6.399	-4.133	-5.645	33.291	1.816	-25.843	-26.858	-9.237	-11.425
27	7.649	-3.551	-4.748	33.076	0.998	-25.645	-30.154	-8.597	-11.383
28	7.610	-4.711	-5.455	32.813	2.030	-25.644	-28.162	-10.974	-11.116
29	7.918	-5.001	-4.842	32.741	1.491	-26.022	-29.475	-10.268	-11.605
30	7.350	-3.247	-5.368	33.140	1.535	-25.266	-28.876	-9.299	-10.902
31	7.512	-3.246	-5.842	33.800	1.889	-26.402	-27.231	-10.118	-11.364
32	7.759	-5.015	-4.366	32.077	1.133	-24.884	-31.098	-9.457	-11.156
33	8.398	-3.709	-4.798	33.679	1.284	-25.413	-29.829	-10.307	-11.165
34	6.867	-4.543	-5.407	32.201	1.744	-25.873	-28.496	-9.262	-11.340
35	7.630	-4.125	-5.103	32.936	1.507	-25.641	-29.173	-9.777	-11.255

Viento longitudinal [m/s]				Segme	ento del c	rucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-23.135	-14.981	-19.178	-34.686	-33.945	-27.647	-29.450	-19.852	-21.825
2	-23.099	-15.091	-19.759	-33.708	-33.762	-28.428	-29.644	-20.939	-22.428
3	-23.553	-15.111	-19.871	-33.920	-34.025	-29.322	-29.071	-20.658	-21.285
4	-22.686	-14.959	-19.078	-34.487	-33.685	-26.754	-30.027	-20.124	-22.956
5	-23.345	-15.227	-20.206	-35.209	-33.938	-28.559	-29.474	-20.314	-22.766
6	-22.895	-14.850	-18.732	-33.195	-33.766	-27.516	-29.625	-20.473	-21.484
7	-23.416	-14.120	-18.808	-34.384	-33.930	-27.503	-29.951	-20.065	-23.063
8	-22.824	-15.960	-20.126	-34.021	-33.771	-28.575	-29.138	-20.719	-21.198
9	-23.048	-14.729	-19.036	-33.762	-34.197	-28.113	-29.410	-20.166	-21.678
10	-23.181	-15.347	-19.904	-34.647	-33.512	-27.966	-29.691	-20.620	-22.571
11	-22.587	-15.071	-20.125	-34.975	-33.918	-29.475	-29.073	-20.746	-23.654
12	-23.644	-15.003	-18.818	-33.427	-33.786	-26.597	-30.026	-20.038	-20.592
13	-23.588	-13.933	-19.306	-34.745	-32.421	-28.522	-29.303	-20.194	-20.401
14	-22.644	-16.149	-19.625	-33.658	-35.280	-27.547	-29.803	-20.592	-23.852
15	-24.268	-14.584	-18.957	-32.731	-34.401	-28.740	-28.507	-20.650	-21.678
16	-21.975	-15.485	-19.986	-35.669	-33.296	-27.334	-30.580	-20.134	-22.571
17	-22.500	-15.057	-19.500	-34.764	-33.665	-27.674	-28.890	-20.610	-21.783
18	-23.731	-15.012	-19.439	-33.635	-34.038	-28.404	-30.210	-20.174	-22.472
19	-23.988	-15.336	-19.502	-35.560	-33.199	-26.776	-28.521	-20.216	-21.508
20	-22.248	-14.729	-19.438	-32.836	-34.505	-29.294	-30.572	-20.568	-22.744
21	-23.407	-15.193	-18.996	-34.274	-34.303	-28.330	-29.474	-20.281	-22.641
22	-22.821	-14.880	-19.950	-34.127	-33.402	-27.750	-29.634	-20.509	-21.610
23	-22.877	-15.082	-19.504	-32.920	-33.220	-28.887	-30.188	-20.477	-20.881
24	-23.363	-14.992	-19.443	-35.487	-34.484	-27.186	-28.917	-20.312	-23.382
25	-23.239	-16.152	-18.925	-34.951	-33.383	-27.516	-29.772	-20.737	-23.167
26	-22.985	-13.933	-20.010	-33.459	-34.317	-28.557	-29.325	-20.049	-21.083
27	-23.059	-15.115	-18.299	-33.797	-35.414	-28.157	-29.815	-19.869	-22.903
28	-23.177	-14.960	-20.642	-34.608	-32.278	-27.909	-29.279	-20.913	-21.347
29	-23.046	-15.575	-21.188	-33.868	-33.159	-28.537	-30.912	-20.364	-21.659
30	-23.192	-14.502	-17.749	-34.530	-34.541	-27.535	-28.188	-20.423	-22.598
31	-22.109	-15.147	-19.699	-33.295	-34.233	-28.025	-29.753	-20.850	-21.257
32	-24.114	-14.921	-19.238	-35.093	-33.471	-28.042	-29.340	-19.927	-22.981
33	-23.590	-14.503	-19.188	-33.255	-34.362	-27.202	-29.501	-20.808	-23.982
34	-22.638	-15.570	-19.745	-35.141	-33.343	-28.865	-29.596	-19.994	-20.262
35	-23.117	-15.040	-19.473	-34.197	-33.851	-28.032	-29.545	-20.399	-22.115

Tabla A.13: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de noviembre de 2016.

Tabla A	14:	Vientos	$\operatorname{cruzados}$	para l	a ruta	hacia	el	Oeste	corresp	ondientes	al	5	de
noviembi	e de	2016.											

Viento cruzado [m/s]				Segme	nto del c	rucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	24.097	0.424	-31.918	-29.469	0.650	29.567	29.072	-5.485	-21.308
2	20.893	0.049	-33.317	-29.625	1.631	31.178	27.688	-3.749	-22.251
3	21.290	0.432	-33.512	-29.530	2.747	30.865	27.927	-3.607	-22.217
4	23.702	0.040	-31.724	-29.557	-0.462	29.881	28.829	-5.625	-21.343
5	21.763	0.460	-32.229	-29.323	1.272	30.516	28.427	-4.348	-22.399
6	23.226	0.023	-33.001	-29.774	1.016	30.227	28.324	-4.890	-21.156
7	22.336	-0.521	-33.429	-29.465	1.230	31.071	28.814	-4.660	-23.070
8	22.646	0.989	-31.798	-29.622	1.055	29.693	27.942	-4.578	-20.499
9	22.278	0.083	-32.061	-31.096	0.424	30.447	29.378	-4.357	-22.341
10	22.712	0.390	-33.190	-28.013	1.871	30.295	27.374	-4.882	-21.222
11	22.196	-0.309	-32.815	-29.759	-0.381	30.532	28.620	-4.150	-22.062
12	22.794	0.788	-32.420	-29.343	2.663	30.211	28.136	-5.083	-21.509
13	22.460	0.227	-32.804	-29.664	-0.015	29.859	28.306	-5.142	-21.690
14	22.526	0.247	-32.428	-29.430	2.291	30.888	28.448	-4.089	-21.861
15	22.422	0.625	-32.070	-29.736	-0.193	31.128	28.740	-4.288	-21.536
16	22.564	-0.162	-33.168	-29.353	2.475	29.615	28.012	-4.955	-22.047
17	22.154	0.433	-32.460	-29.533	0.275	29.856	28.382	-5.401	-20.325
18	22.823	0.041	-32.772	-29.568	2.004	30.892	28.377	-3.839	-23.249
19	22.393	-0.265	-32.122	-28.937	1.668	29.907	28.331	-4.460	-21.911
20	22.588	0.741	-33.122	-30.161	0.611	30.842	28.425	-4.773	-21.663
21	23.821	-0.465	-32.884	-28.802	2.216	30.875	29.010	-5.432	-21.716
22	21.170	0.940	-32.345	-30.300	0.084	29.860	27.748	-3.802	-21.839
23	22.403	0.203	-32.461	-30.676	0.946	29.483	28.315	-3.910	-22.165
24	22.585	0.274	-32.771	-28.417	1.337	31.260	28.438	-5.335	-21.403
25	22.791	1.258	-31.627	-30.281	1.140	30.313	27.965	-4.733	-19.306
26	22.199	-0.792	-33.612	-28.820	1.141	30.445	28.787	-4.514	-24.266
27	22.646	0.466	-32.211	-29.556	0.303	31.416	28.246	-4.621	-22.507
28	22.336	0.010	-33.027	-29.541	1.967	29.325	28.506	-4.611	-21.060
29	22.554	-0.057	-32.823	-30.830	-0.860	29.647	28.296	-4.689	-23.267
30	22.428	0.528	-32.414	-28.266	3.144	31.106	28.456	-4.549	-20.303
31	22.562	0.625	-33.383	-29.758	2.127	30.662	27.697	-4.983	-19.836
32	22.423	-0.155	-31.857	-29.337	0.149	30.089	29.059	-4.254	-23.740
33	22.705	0.697	-32.774	-28.531	1.137	29.798	28.385	-3.831	-21.866
34	22.287	-0.211	-32.477	-30.559	1.136	30.950	28.366	-5.408	-21.696
35	22.494	0.234	-32.621	-29.550	1.143	30.373	28.377	-4.618	-21.784

Viento longitudinal [m/s]				Segme	nto del	crucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-3.440	-3.306	-15.126	-8.400	2.539	0.928	-5.343	-24.896	-67.200
2	-3.628	-3.278	-15.230	-9.892	2.677	0.378	-6.316	-25.002	-65.034
3	-3.637	-2.758	-15.375	-9.345	3.565	0.416	-5.370	-25.599	-66.226
4	-3.432	-3.830	-14.991	-8.946	1.643	0.904	-6.299	-24.265	-66.012
5	-4.579	-3.200	-15.031	-9.513	2.948	1.049	-5.553	-24.190	-65.150
6	-2.495	-3.389	-15.325	-8.808	2.240	0.256	-6.103	-25.689	-67.093
γ	-3.832	-3.938	-14.916	-8.873	2.723	1.193	-6.280	-25.151	-66.334
8	-3.237	-2.653	-15.438	-9.435	2.479	0.118	-5.381	-24.723	-65.905
9	-3.849	-2.923	-14.851	-8.540	1.479	0.894	-5.995	-25.053	-66.500
10	-3.213	-3.663	-15.507	-9.771	3.722	0.418	-5.660	-24.825	-65.739
11	-4.634	-3.528	-15.219	-9.741	3.302	0.077	-5.682	-24.682	-66.439
12	-2.427	-3.063	-15.144	-8.564	1.901	1.230	-5.974	-25.194	-65.791
13	-4.069	-3.551	-15.182	-9.153	2.525	0.046	-6.098	-25.524	-66.902
14	-2.995	-3.040	-15.172	-9.138	2.682	1.262	-5.567	-24.350	-65.345
15	-2.659	-3.178	-15.433	-9.375	2.404	0.253	-5.557	-25.377	-65.928
16	-4.417	-3.406	-14.938	-8.922	2.799	1.063	-6.086	-24.497	-66.298
17	-3.723	-3.437	-14.728	-9.360	2.027	1.022	-5.180	-25.479	-65.792
18	-3.352	-3.154	-15.629	-8.943	3.179	0.288	-6.480	-24.399	-66.443
19	-3.416	-3.543	-15.416	-8.647	2.871	0.270	-5.672	-24.166	-65.689
20	-3.655	-3.037	-14.949	-9.656	2.329	1.053	-5.982	-25.712	-66.561
21	-2.849	-3.948	-15.445	-9.854	2.917	0.889	-6.108	-24.425	-65.224
22	-4.211	-2.634	-14.918	-8.430	2.290	0.432	-5.553	-25.457	-67.022
23	-3.446	-2.492	-15.158	-8.439	3.234	0.834	-6.169	-24.611	-66.325
24	-3.615	-4.092	-15.197	-9.871	1.947	0.476	-5.484	-25.268	-65.912
25	-3.821	-2.949	-14.728	-8.848	2.806	1.381	-5.596	-25.185	-65.824
26	-3.251	-3.649	-15.628	-9.454	2.391	-0.063	-6.063	-24.691	-66.410
27	-3.378	-3.095	-15.479	-9.568	2.625	0.036	-6.463	-24.612	-66.457
28	-3.700	-3.492	-14.893	-8.719	2.583	1.271	-5.191	-25.266	-65.766
29	-3.161	-4.178	-14.959	-8.610	2.759	-0.139	-5.620	-23.886	-65.072
30	-3.915	-2.410	-15.417	-9.707	2.442	1.449	-6.037	-25.996	-67.159
31	-4.262	-4.361	-16.142	-9.308	2.612	-0.014	-5.613	-24.816	-66.532
32	-2.811	-2.227	-14.213	-8.998	2.599	1.331	-6.045	-25.061	-65.695
33	-3.810	-3.010	-15.496	-9.759	2.783	0.973	-6.180	-25.500	-65.664
34	-3.254	-3.575	-14.864	-8.543	2.420	0.337	-5.475	-24.377	-66.575
35	-3.538	-3.295	-15.183	-9.148	2.602	0.652	-5.827	-24.935	-66.121

Tabla A.15: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de diciembre de 2016.

Tabla A.16:	Vientos	$\operatorname{cruzados}$	para la	. ruta	hacia	el	Oeste	correspo	ondientes	al	5	de
diciembre de 2	2016.											

Viento cruzado [m/s]	Segmento del crucero											
Miembro del Ensemble	1	2	3	4	5	6	7	8	9			
1	-4.461	-2.934	0.294	17.693	24.192	11.625	-11.336	-43.829	-52.057			
2	-4.193	-2.406	-0.156	18.323	23.057	11.552	-12.947	-44.616	-52.708			
3	-3.798	-3.079	0.082	19.021	23.239	11.731	-12.123	-45.290	-52.754			
4	-4.868	-2.269	0.064	16.997	24.009	11.445	-12.168	-43.148	-52.027			
5	-3.676	-2.348	0.435	17.851	23.756	11.548	-12.181	-43.827	-52.354			
6	-4.991	-2.997	-0.297	18.158	23.491	11.629	-12.114	-44.624	-52.420			
7	-3.738	-3.074	-0.805	17.308	24.021	11.705	-12.087	-43.785	-51.688			
8	-4.933	-2.260	0.942	18.707	23.223	11.473	-12.210	-44.658	-53.077			
9	-4.524	-1.816	0.405	17.522	22.839	11.175	-12.301	-44.259	-52.821			
10	-4.143	-3.531	-0.259	18.491	24.416	12.006	-11.987	-44.188	-51.961			
11	-5.226	-2.219	0.821	18.275	24.207	12.804	-12.496	-43.690	-52.086			
12	-3.451	-3.120	-0.695	17.731	23.033	10.362	-11.800	-44.752	-52.685			
13	-5.586	-2.066	0.438	18.103	24.739	12.012	-11.903	-43.747	-52.070			
14	-3.082	-3.272	-0.309	17.917	22.501	11.161	-12.396	-44.688	-52.710			
15	-4.590	-2.838	0.537	19.692	23.368	11.090	-11.876	-44.534	-52.396			
16	-4.071	-2.507	-0.391	16.319	23.881	12.095	-12.416	-43.908	-52.366			
17	-5.009	-2.785	0.710	18.178	23.270	11.583	-12.498	-44.362	-51.900			
18	-3.657	-2.556	-0.576	17.836	23.977	11.587	-11.794	-44.079	-52.871			
19	-3.773	-2.116	0.068	17.928	23.700	11.577	-11.401	-43.684	-52.323			
20	-4.887	-3.223	0.066	18.082	23.544	11.608	-12.894	-44.760	-52.454			
21	-3.425	-2.253	-0.513	17.044	23.622	12.299	-13.451	-44.484	-52.452			
22	-5.235	-3.100	0.648	18.959	23.630	10.882	-10.847	-43.951	-52.323			
23	-3.885	-1.751	0.616	17.800	23.569	12.392	-12.312	-44.271	-52.202			
24	-4.789	-3.604	-0.477	18.205	23.687	10.791	-11.979	-44.169	-52.572			
25	-4.424	-2.671	0.450	17.866	23.469	12.134	-12.059	-44.694	-51.525			
26	-4.239	-2.672	-0.311	18.149	23.793	11.043	-12.237	-43.744	-53.238			
27	-5.177	-3.178	0.248	19.426	24.087	10.908	-12.493	-43.656	-52.751			
28	-3.476	-2.165	-0.104	16.605	23.159	12.267	-11.803	-44.794	-52.025			
29	-4.690	-3.964	0.369	16.739	23.099	11.747	-12.378	-43.537	-52.969			
30	-3.979	-1.379	-0.230	19.277	24.153	11.429	-11.921	-44.905	-51.804			
31	-4.343	-3.764	-0.457	18.694	23.996	11.342	-12.644	-44.711	-53.255			
32	-4.330	-1.587	0.597	17.325	23.256	11.836	-11.651	-43.735	-51.525			
33	-4.199	-3.145	-0.196	17.713	22.994	12.262	-12.213	-44.584	-52.180			
34	-4.464	-2.206	0.333	18.301	24.257	10.916	-12.074	-43.858	-52.600			
35	-4.332	-2.673	0.065	18.006	23.624	11.586	-12.147	-44.222	-52.396			

Viento longitudinal [m/s]	Segmento del crucero										
Miembro del Ensemble	1	2	3	4	5	6	7	8	9		
1	-24.353	-4.627	-4.049	-4.616	-7.570	-27.642	-40.847	-47.512	-45.676		
2	-22.810	-3.226	-5.865	-5.846	-7.720	-28.952	-42.164	-47.534	-47.673		
3	-22.557	-4.586	-5.941	-5.533	-8.333	-28.709	-42.785	-47.604	-47.563		
4	-24.600	-3.261	-3.969	-4.929	-6.955	-27.883	-40.214	-47.442	-45.791		
5	-24.342	-3.930	-5.090	-4.782	-8.418	-28.706	-41.095	-47.284	-46.649		
6	-22.808	-3.926	-4.820	-5.679	-6.870	-27.885	-41.915	-47.766	-46.711		
7	-23.442	-4.478	-6.267	-5.787	-7.613	-30.092	-41.065	-47.364	-46.521		
8	-23.719	-3.371	-3.639	-4.682	-7.672	-26.502	-41.943	-47.679	-46.830		
9	-23.550	-4.259	-5.221	-5.456	-7.845	-28.109	-42.554	-47.528	-46.907		
10	-23.604	-3.593	-4.684	-5.002	-7.446	-28.485	-40.456	-47.514	-46.448		
11	-23.256	-3.548	-4.227	-3.902	-7.179	-28.540	-41.413	-47.001	-46.513		
12	-23.891	-4.295	-5.683	-6.558	-8.110	-28.057	-41.598	-48.047	-46.846		
13	-23.095	-3.884	-3.869	-5.249	-7.767	-29.967	-41.514	-47.072	-46.566		
14	-24.066	-3.969	-6.037	-5.216	-7.521	-26.629	-41.495	-47.976	-46.787		
15	-24.591	-5.187	-4.613	-5.024	-8.324	-28.693	-42.211	-47.708	-46.568		
16	-22.564	-2.667	-5.297	-5.439	-6.973	-27.911	-40.804	-47.333	-46.781		
17	-22.807	-3.790	-4.873	-5.435	-7.018	-28.346	-41.902	-47.907	-46.413		
18	-24.351	-4.062	-5.032	-5.030	-8.271	-28.250	-41.102	-47.142	-46.960		
19	-23.096	-4.071	-5.173	-5.487	-7.240	-28.685	-40.789	-47.565	-46.257		
20	-24.062	-3.782	-4.738	-4.974	-8.058	-27.912	-42.211	-47.482	-47.086		
21	-23.982	-2.633	-4.542	-5.080	-7.142	-28.707	-41.456	-47.205	-45.919		
22	-23.173	-5.220	-5.373	-5.396	-8.150	-27.891	-41.550	-47.841	-47.434		
23	-23.538	-3.586	-4.729	-5.971	-7.720	-27.143	-42.006	-47.951	-46.894		
24	-23.624	-4.263	-5.174	-4.490	-7.570	-29.458	-40.991	-47.091	-46.464		
25	-23.869	-3.240	-4.472	-5.626	-7.360	-26.879	-40.180	-47.472	-47.013		
26	-23.287	-4.608	-5.440	-4.839	-7.920	-29.719	-42.828	-47.564	-46.349		
27	-23.414	-4.315	-5.724	-5.400	-6.707	-27.847	-41.616	-47.607	-46.957		
28	-23.744	-3.534	-4.177	-5.053	-8.582	-28.757	-41.402	-47.441	-46.394		
29	-23.465	-3.560	-4.827	-5.246	-7.566	-27.956	-41.769	-47.856	-46.557		
30	-23.697	-4.295	-5.080	-5.215	-7.722	-28.647	-41.237	-47.182	-46.806		
31	-23.507	-3.951	-6.257	-4.532	-7.575	-27.526	-40.940	-48.339	-46.742		
32	-23.643	-3.897	-3.645	-5.931	-7.714	-29.069	-42.058	-46.706	-46.616		
33	-23.134	-3.779	-5.271	-5.726	-7.198	-28.245	-40.965	-47.552	-46.906		
34	-24.027	-4.071	-4.635	-4.728	-8.080	-28.350	-42.043	-47.493	-46.448		
35	-23.579	-3.919	-4.954	-5.227	-7.643	-28.309	-41.510	-47.522	-46.669		

Tabla A.17: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de enero de 2017.

Tabla A.18:	Vientos	$\operatorname{cruzados}$	para la	. ruta	hacia	\mathbf{el}	Oeste	correspon	dientes	al !	$5 \mathrm{de}$
enero de 2017.											

Viento cruzado [m/s]	Segmento del crucero										
Miembro del Ensemble	1	2	3	4	5	6	7	8	9		
1	-25.366	-1.568	12.430	9.075	-14.481	-13.776	7.509	11.833	-3.274		
2	-27.324	-1.235	13.116	10.982	-15.394	-15.469	9.139	11.680	-3.129		
3	-26.581	-1.735	12.607	10.674	-15.993	-14.913	9.429	11.779	-3.436		
4	-26.105	-1.068	12.933	9.383	-13.874	-14.326	7.222	11.735	-2.966		
5	-25.651	-1.225	12.649	10.258	-15.328	-15.009	9.008	11.858	-2.702		
6	-27.041	-1.586	12.888	9.801	-14.547	-14.227	7.647	11.658	-3.716		
7	-25.700	-1.352	12.846	10.640	-15.269	-14.780	8.497	11.358	-4.081		
8	-26.981	-1.458	12.702	9.415	-14.604	-14.463	8.153	12.156	-2.323		
9	-27.204	-1.774	14.005	9.564	-14.448	-14.290	8.620	12.069	-2.864		
10	-25.482	-1.038	11.543	10.493	-15.429	-14.945	8.024	11.447	-3.545		
11	-26.994	-1.372	12.778	10.322	-15.287	-14.614	8.706	12.476	-3.526		
12	-25.692	-1.432	12.765	9.736	-14.584	-14.631	7.947	11.033	-2.889		
13	-27.688	-1.166	12.897	9.505	-15.269	-13.867	8.280	11.287	-4.020		
14	-25.004	-1.647	12.639	10.561	-14.606	-15.360	8.376	12.226	-2.380		
15	-25.468	-1.321	11.668	10.878	-15.706	-14.402	8.528	11.948	-2.811		
16	-27.234	-1.478	13.875	9.184	-14.167	-14.835	8.130	11.566	-3.590		
17	-27.229	-0.675	12.549	9.885	-14.573	-14.608	7.622	11.927	-2.257		
18	-25.463	-2.133	13.000	10.171	-15.303	-14.624	9.028	11.588	-4.140		
19	-26.200	-1.515	12.184	10.135	-14.809	-14.855	8.296	11.935	-3.730		
20	-26.487	-1.297	13.356	9.917	-15.059	-14.381	8.353	11.578	-2.678		
21	-26.798	-1.305	12.885	10.499	-15.530	-14.112	7.661	11.710	-2.800		
22	-25.896	-1.500	12.659	9.558	-14.347	-15.126	8.998	11.799	-3.605		
23	-26.119	-1.191	11.402	10.405	-15.357	-14.901	8.319	11.842	-3.912		
24	-26.573	-1.615	14.139	9.649	-14.526	-14.339	8.333	11.679	-2.500		
25	-26.314	-2.166	11.899	8.953	-15.262	-14.561	7.945	11.926	-3.224		
26	-26.384	-0.646	13.644	11.099	-14.606	-14.666	8.711	11.598	-3.174		
27	-27.628	-1.214	12.314	9.971	-14.579	-14.779	7.837	11.447	-2.920		
28	-25.064	-1.595	13.226	10.088	-15.300	-14.457	8.811	12.063	-3.476		
29	-27.825	-1.797	13.421	9.378	-15.619	-14.862	8.431	11.408	-3.117		
30	-24.860	-1.009	12.125	10.679	-14.248	-14.370	8.225	12.112	-3.288		
31	-25.055	-1.201	11.877	11.075	-14.592	-15.586	7.785	11.734	-3.050		
32	-27.634	-1.613	13.661	8.981	-15.282	-13.655	8.865	11.785	-3.361		
33	-27.647	-0.859	11.670	10.232	-14.136	-14.880	7.920	12.038	-2.797		
34	-25.044	-1.945	13.879	9.829	-15.737	-14.356	8.729	11.477	-3.605		
35	-26.342	-1.404	12.771	10.026	-14.940	-14.616	8.329	11.754	-3.210		

Viento longitudinal [m/s]	Segmento del crucero										
Miembro del Ensemble	1	2	3	4	5	6	7	8	9		
1	-22.298	-22.018	-37.552	-51.853	-55.426	-37.617	-23.567	-25.643	-33.006		
2	-23.330	-22.983	-38.455	-50.535	-57.302	-37.412	-25.838	-25.447	-34.025		
3	-23.131	-22.043	-37.973	-51.642	-56.888	-38.818	-23.934	-25.842	-33.201		
4	-22.504	-22.960	-38.038	-50.742	-55.842	-36.219	-25.487	-25.263	-33.815		
5	-23.343	-22.734	-37.996	-51.086	-56.655	-36.774	-24.957	-24.711	-33.705		
6	-22.289	-22.254	-38.023	-51.307	-56.082	-38.267	-24.480	-26.392	-33.344		
7	-23.944	-23.180	-37.970	-50.496	-55.499	-38.262	-25.651	-25.398	-33.464		
8	-21.684	-21.817	-38.045	-51.891	-57.228	-36.771	-23.763	-25.701	-33.572		
9	-23.820	-22.563	-38.569	-50.826	-56.134	-38.397	-23.713	-24.459	-32.900		
10	-21.809	-22.429	-37.431	-51.562	-56.600	-36.643	-25.694	-26.642	-34.130		
11	-23.990	-22.551	-39.069	-52.335	-56.523	-37.628	-26.429	-25.823	-33.930		
12	-21.625	-22.432	-36.955	-50.058	-56.198	-37.408	-22.996	-25.283	-33.098		
13	-20.673	-22.423	-38.622	-51.349	-56.279	-37.601	-24.718	-25.684	-33.544		
14	-24.952	-22.569	-37.382	-51.038	-56.446	-37.427	-24.689	-25.409	-33.481		
15	-22.350	-22.702	-38.014	-51.806	-55.757	-36.923	-25.256	-25.854	-34.294		
16	-23.290	-22.287	-38.005	-50.581	-56.962	-38.118	-24.163	-25.255	-32.728		
17	-22.110	-21.780	-38.204	-50.810	-57.509	-36.744	-25.329	-25.434	-33.571		
18	-23.529	-23.220	-37.800	-51.583	-55.210	-38.288	-24.082	-25.667	-33.450		
19	-22.235	-22.327	-37.478	-51.522	-55.554	-37.331	-24.839	-25.546	-33.209		
20	-23.389	-22.666	-38.534	-50.870	-57.195	-37.707	-24.584	-25.546	-33.815		
21	-23.664	-22.204	-37.746	-50.786	-57.542	-37.732	-24.604	-25.794	-33.056		
22	-21.964	-22.772	-38.260	-51.613	-55.186	-37.295	-24.827	-25.304	-33.963		
23	-22.075	-22.293	-38.411	-50.742	-58.094	-37.020	-24.542	-25.010	-33.037		
24	-23.562	-22.697	-37.606	-51.662	-54.648	-38.024	-24.871	-26.091	-33.982		
25	-23.587	-23.403	-38.203	-51.476	-56.890	-38.437	-26.157	-25.267	-33.351		
26	-22.035	-21.578	-37.800	-50.912	-55.840	-36.604	-23.264	-25.835	-33.665		
27	-22.795	-21.797	-37.018	-51.938	-55.730	-37.089	-24.776	-24.846	-34.033		
28	-22.832	-23.188	-38.991	-50.453	-56.999	-37.951	-24.650	-26.252	-32.987		
29	-23.317	-22.588	-37.440	-50.851	-54.756	-37.384	-25.104	-26.298	-33.005		
30	-22.321	-22.412	-38.578	-51.544	-57.977	-37.660	-24.302	-24.800	-34.013		
31	-22.752	-22.243	-37.643	-52.522	-56.276	-37.432	-25.235	-26.275	-32.656		
32	-22.864	-22.741	-38.376	-49.865	-56.449	-37.595	-24.178	-24.830	-34.357		
33	-22.981	-22.601	-38.819	-52.257	-56.746	-37.568	-24.933	-26.100	-33.462		
34	-22.630	-22.393	-37.174	-50.133	-56.000	-37.472	-24.489	-24.980	-33.539		
35	-22.815	-22.496	-37.999	-51.190	-56.370	-37.521	-24.715	-25.558	-33.507		

Tabla A.19: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de febrero de 2017.

Tabla	A.20:	Vientos	$\operatorname{cruzados}$	para l	a ruta	hacia	el	Oeste	correspon	ndientes	al	5	de
febrero	de 201	7.											

Viento cruzado [m/s]		Segmento del crucero											
Miembro del Ensemble	1	2	3	4	5	6	7	8	9				
1	22.040	5.328	-11.829	-13.372	17.398	24.188	-1.342	-27.808	-25.728				
2	20.643	5.285	-12.511	-14.696	18.185	23.274	-0.510	-27.979	-24.794				
3	23.053	5.204	-11.667	-14.326	17.616	24.697	-1.410	-28.129	-25.393				
4	19.635	5.422	-12.665	-13.742	17.973	22.758	-0.448	-27.659	-25.123				
5	20.731	5.289	-12.034	-14.803	18.018	23.856	-1.912	-27.567	-25.255				
6	21.955	5.323	-12.293	-13.264	17.562	23.594	0.058	-28.216	-25.267				
7	20.871	5.428	-12.173	-13.500	17.305	23.701	-0.874	-27.906	-24.966				
8	21.821	5.191	-12.156	-14.556	18.273	23.746	-0.987	-27.888	-25.553				
9	22.206	5.703	-12.897	-14.521	18.475	23.932	1.314	-27.175	-25.147				
10	20.464	4.911	-11.430	-13.544	17.104	23.520	-3.171	-28.612	-25.378				
11	22.195	4.480	-13.063	-14.478	18.306	23.285	-0.656	-28.299	-24.405				
12	20.478	6.142	-11.271	-13.581	17.280	24.167	-1.200	-27.477	-26.112				
13	19.343	5.608	-12.541	-13.094	17.098	23.117	-2.421	-27.346	-25.042				
14	23.343	5.020	-11.790	-14.975	18.486	24.339	0.563	-28.438	-25.475				
15	19.885	5.444	-11.637	-14.253	17.619	22.607	-0.693	-28.439	-25.643				
16	22.791	5.175	-12.697	-13.813	17.976	24.853	-1.168	-27.353	-24.864				
17	22.381	4.631	-12.775	-14.986	19.850	23.018	-1.632	-27.406	-25.548				
18	20.301	5.993	-11.564	-13.087	15.741	24.432	-0.233	-28.382	-24.960				
19	21.169	5.672	-11.519	-13.873	17.114	23.416	-0.596	-28.265	-24.978				
20	21.511	4.947	-12.808	-14.191	18.465	24.034	-1.260	-27.514	-25.543				
21	21.781	6.038	-10.926	-13.057	17.518	23.753	0.240	-27.707	-25.669				
22	20.899	4.580	-13.401	-15.013	18.063	23.704	-2.091	-28.079	-24.854				
23	20.481	4.280	-12.816	-13.999	17.559	23.890	-3.377	-27.795	-25.177				
24	22.216	6.333	-11.515	-14.062	18.027	23.559	1.529	-27.990	-25.338				
25	21.240	5.644	-11.178	-14.370	17.522	23.325	0.400	-28.783	-25.041				
26	21.462	4.974	-13.147	-13.708	18.053	24.125	-2.257	-26.990	-25.468				
27	20.478	5.341	-13.394	-14.962	18.788	23.184	-1.164	-28.588	-25.362				
28	22.208	5.272	-10.935	-13.105	16.791	24.263	-0.695	-27.197	-25.154				
29	22.282	5.922	-12.577	-14.063	17.207	25.031	0.205	-28.801	-25.610				
30	20.392	4.697	-11.753	-14.011	18.374	22.423	-2.057	-26.980	-24.903				
31	22.472	5.745	-11.729	-14.614	18.184	23.918	0.270	-27.444	-24.723				
32	20.203	4.868	-12.607	-13.461	17.390	23.540	-2.131	-28.344	-25.796				
33	21.685	5.376	-12.841	-14.047	17.711	23.620	-0.495	-27.503	-25.621				
34	20.988	5.241	-11.500	-14.014	17.860	23.836	-1.353	-28.262	-24.888				
35	21.342	5.310	-12.168	-14.036	17.789	23.727	-0.927	-27.896	-25.258				
Viento longitudinal [m/s]		Segmento del crucero											
---------------------------------	---------	----------------------	---------	---------	---------	---------	---------	--------	---------	--			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9				
1	-36.359	-56.007	-51.885	-47.100	-36.837	-24.057	-10.211	-5.402	-12.061				
2	-42.048	-57.040	-50.686	-46.366	-36.165	-24.198	-13.857	-9.185	-11.622				
3	-41.303	-59.736	-52.324	-46.646	-35.073	-24.176	-12.548	-6.950	-11.739				
4	-37.101	-53.327	-50.255	-46.823	-37.930	-24.076	-11.514	-7.639	-11.943				
5	-39.594	-57.430	-50.910	-47.215	-36.940	-24.665	-12.987	-6.907	-12.561				
6	-38.809	-55.621	-51.664	-46.259	-36.072	-23.593	-11.076	-7.679	-11.110				
7	-37.334	-55.746	-52.138	-46.512	-37.187	-23.648	-12.028	-7.895	-12.056				
8	-41.079	-57.316	-50.439	-46.960	-35.819	-24.602	-12.032	-6.690	-11.623				
9	-39.137	-56.827	-51.631	-47.658	-37.840	-23.477	-13.632	-6.769	-11.293				
10	-39.256	-56.224	-50.944	-45.816	-35.167	-24.777	-10.436	-7.813	-12.379				
11	-37.630	-57.605	-53.079	-47.078	-36.172	-25.479	-11.528	-7.377	-12.902				
12	-40.775	-55.448	-49.498	-46.390	-36.835	-22.768	-12.531	-7.209	-10.781				
13	-37.255	-57.263	-52.773	-47.627	-36.928	-25.129	-10.612	-5.938	-12.893				
14	-41.173	-55.788	-49.810	-45.846	-36.083	-23.120	-13.451	-8.643	-10.777				
15	-37.857	-55.255	-50.381	-47.093	-36.161	-24.185	-10.579	-7.378	-12.473				
16	-40.554	-57.800	-52.190	-46.385	-36.853	-24.065	-13.475	-7.201	-11.206				
17	-40.049	-57.849	-49.384	-46.234	-36.758	-25.041	-11.436	-8.539	-11.157				
18	-38.358	-55.206	-53.200	-47.238	-36.248	-23.216	-12.624	-6.030	-12.513				
19	-40.808	-55.932	-52.209	-45.778	-37.076	-25.244	-11.762	-5.854	-10.362				
20	-37.596	-57.127	-50.375	-47.703	-35.938	-23.005	-12.305	-8.733	-13.323				
21	-41.005	-58.363	-52.360	-47.133	-37.264	-24.150	-11.151	-8.517	-10.927				
22	-37.406	-54.679	-50.215	-46.329	-35.757	-24.096	-12.923	-6.070	-12.764				
23	-41.001	-59.342	-48.854	-46.710	-35.580	-22.935	-13.531	-7.526	-12.449				
24	-37.404	-53.711	-53.718	-46.775	-37.429	-25.314	-10.529	-7.061	-11.223				
25	-38.867	-57.610	-51.046	-46.794	-36.104	-22.284	-13.721	-7.918	-10.829				
26	-39.540	-55.450	-51.538	-46.675	-36.911	-25.966	-10.336	-6.668	-12.846				
27	-39.574	-54.007	-48.350	-47.319	-36.019	-23.393	-12.341	-7.050	-12.784				
28	-38.828	-59.044	-54.227	-46.146	-36.989	-24.862	-11.728	-7.550	-10.899				
29	-38.423	-53.763	-51.473	-47.567	-36.486	-24.570	-11.149	-6.900	-12.350				
30	-39.994	-59.298	-51.103	-45.915	-36.523	-23.677	-12.916	-7.690	-11.320				
31	-39.005	-53.856	-50.005	-46.347	-37.562	-24.713	-10.787	-8.203	-13.041				
32	-39.389	-59.196	-52.581	-47.128	-35.444	-23.535	-13.274	-6.384	-10.630				
33	-39.979	-55.272	-51.605	-45.984	-36.922	-24.136	-12.777	-8.245	-11.253				
34	-38.430	-57.793	-50.975	-47.480	-36.087	-24.109	-11.286	-6.342	-12.437				
35	-39.205	-56.531	-51.291	-46.737	-36.510	-24.125	-12.032	-7.295	-11.843				

Tabla A.21: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de marzo de 2017.

Tabla	A.22:	Vientos	$\operatorname{cruzados}$	para la	a ruta	hacia	\mathbf{el}	Oeste	correspo	ondientes	al	5 (de
marzo	de 2017	7.											

Viento cruzado [m/s]		Segmento del crucero								
Miembro del Ensemble	1	2	3	4	5	6	7	8	9	
1	-8.666	-0.654	2.775	11.346	19.813	15.235	2.521	-15.894	-34.252	
2	-9.469	1.728	3.719	11.172	19.665	13.880	2.755	-13.895	-32.567	
3	-9.141	0.317	4.360	9.735	19.228	14.278	3.260	-14.575	-32.258	
4	-9.004	0.763	2.121	12.772	20.253	14.846	2.014	-15.222	-34.548	
5	-9.506	1.628	4.106	11.104	20.468	14.449	2.863	-15.054	-34.244	
6	-8.645	-0.551	2.384	11.408	19.017	14.681	2.412	-14.735	-32.557	
7	-10.569	-0.644	4.691	11.633	20.446	14.451	2.022	-14.450	-33.412	
8	-7.576	1.723	1.799	10.872	19.029	14.670	3.258	-15.338	-33.407	
9	-9.697	-0.077	2.356	11.609	20.315	14.767	3.705	-15.073	-33.743	
10	-8.445	1.151	4.143	10.894	19.163	14.362	1.573	-14.710	-33.069	
11	-9.286	-0.411	3.084	10.650	19.600	14.545	3.060	-15.095	-33.220	
12	-8.855	1.488	3.408	11.861	19.878	14.570	2.208	-14.696	-33.583	
13	-11.626	0.035	2.812	12.214	20.556	15.650	2.075	-17.678	-33.997	
14	-6.533	1.039	3.680	10.294	18.921	13.488	3.202	-12.107	-32.811	
15	-7.215	2.261	0.912	11.646	19.159	14.566	2.242	-15.497	-32.981	
16	-10.925	-1.188	5.576	10.859	20.320	14.557	3.041	-14.303	-33.822	
17	-9.874	0.196	3.434	12.747	19.969	14.623	2.826	-13.595	-32.108	
18	-8.279	0.888	3.061	9.757	19.512	14.496	2.452	-16.202	-34.713	
19	-10.166	-0.429	3.058	10.918	19.317	15.155	2.044	-16.398	-34.120	
20	-7.987	1.501	3.432	11.592	20.167	13.976	3.223	-13.394	-32.688	
21	-8.203	0.898	3.672	11.725	19.379	15.457	4.231	-14.281	-34.170	
22	-9.950	0.172	2.822	10.789	20.107	13.670	1.041	-15.515	-32.638	
23	-9.496	1.297	2.796	10.498	20.167	14.878	1.892	-14.717	-33.255	
24	-8.646	-0.208	3.696	12.011	19.311	14.246	3.388	-15.076	-33.559	
25	-8.086	1.165	3.704	11.069	18.781	14.331	4.071	-15.124	-33.388	
26	-10.065	-0.090	2.796	11.448	20.708	14.808	1.209	-14.662	-33.417	
27	-7.614	0.853	5.803	11.297	20.722	14.393	2.584	-15.711	-34.942	
28	-10.527	0.225	0.680	11.211	18.766	14.734	2.690	-14.082	-31.880	
29	-6.958	3.726	3.361	11.536	19.441	14.757	1.119	-15.595	-33.410	
30	-11.190	-2.640	3.121	10.976	20.036	14.367	4.160	-14.205	-33.412	
31	-8.488	0.547	1.175	10.316	18.942	14.095	2.246	-14.367	-33.462	
32	-9.641	0.519	5.314	12.187	20.539	15.034	3.032	-15.415	-33.347	
33	-10.179	0.223	4.417	11.805	19.306	14.159	2.865	-14.156	-34.036	
34	-7.961	0.851	2.080	10.698	20.170	14.964	2.410	-15.636	-32.767	
35	-9.074	0.535	3.242	11.251	19.742	14.560	2.640	-14.896	-33.402	

Viento longitudinal [m/s]				Seg	nento de	l crucero			
Miembro del Ensemble	1	2	3	4	5	6	7	8	9
1	-4.341	-1.805	-4.516	-7.635	-6.448	-9.396	-14.897	-17.527	-33.867
2	-4.033	-0.234	-2.662	-9.015	-7.653	-8.708	-13.890	-16.593	-33.568
3	-4.096	-1.479	-4.258	-8.379	-7.234	-9.233	-14.541	-17.100	-33.820
4	-4.278	-0.563	-2.920	-8.274	-6.878	-8.876	-14.251	-17.009	-33.611
5	-4.364	-1.073	-2.778	-7.998	-6.540	-9.030	-14.326	-17.592	-33.630
6	-4.015	-0.969	-4.394	-8.651	-7.575	-9.088	-14.464	-16.518	-33.783
7	-4.013	-0.825	-3.359	-8.437	-6.541	-9.550	-14.655	-16.699	-33.239
8	-4.366	-1.210	-3.825	-8.213	-7.573	-8.564	-14.142	-17.420	-34.180
9	-4.360	-0.642	-3.708	-8.037	-7.291	-8.505	-14.992	-16.878	-34.058
10	-4.032	-1.395	-3.471	-8.618	-6.817	-9.597	-13.801	-17.237	-33.369
11	-4.164	-0.248	-2.821	-7.612	-7.918	-10.141	-14.499	-16.882	-33.211
12	-4.221	-1.789	-4.365	-9.040	-6.185	-7.972	-14.287	-17.228	-34.217
13	-5.654	-1.241	-3.815	-7.861	-6.710	-8.811	-14.024	-16.339	-33.441
14	-2.720	-0.795	-3.359	-8.784	-7.398	-9.286	-14.763	-17.770	-33.985
15	-3.762	-1.272	-3.667	-9.434	-6.561	-9.948	-15.559	-17.121	-33.257
16	-4.621	-0.764	-3.510	-7.212	-7.546	-8.164	-13.231	-16.991	-34.161
17	-4.588	-1.198	-4.562	-8.718	-6.904	-8.764	-14.796	-16.927	-33.637
18	-3.790	-0.835	-2.626	-7.937	-7.199	-9.345	-13.995	-17.182	-33.790
19	-3.512	-0.963	-4.124	-8.197	-9.163	-9.048	-14.444	-17.248	-33.762
20	-4.862	-1.075	-3.055	-8.451	-4.943	-9.067	-14.343	-16.853	-33.669
21	-4.336	-1.499	-3.929	-9.223	-5.758	-8.759	-14.762	-17.523	-33.262
22	-4.052	-0.539	-3.241	-7.438	-8.359	-9.353	-14.021	-16.590	-34.164
23	-3.879	-0.619	-4.017	-7.975	-6.070	-9.098	-13.970	-17.230	-33.701
24	-4.500	-1.418	-3.164	-8.684	-8.032	-9.026	-14.818	-16.873	-33.716
25	-3.554	-1.264	-3.144	-8.520	-6.668	-8.730	-13.764	-16.836	-34.221
26	-4.823	-0.770	-4.040	-8.135	-7.435	-9.380	-15.020	-17.272	-33.203
27	-2.590	-0.869	-1.410	-8.639	-7.011	-9.070	-13.611	-17.018	-34.322
28	-5.783	-1.164	-5.768	-8.003	-7.101	-9.036	-15.170	-17.093	-33.104
29	-4.396	-0.837	-4.315	-7.555	-6.824	-8.113	-14.207	-16.710	-33.508
30	-3.979	-1.195	-2.863	-9.100	-7.278	-10.002	-14.584	-17.409	-33.913
31	-4.304	-1.475	-3.889	-9.605	-6.731	-8.725	-14.108	-16.578	-33.476
32	-4.075	-0.558	-3.298	-7.048	-7.393	-9.391	-14.686	-17.534	-33.946
33	-4.420	-0.433	-3.296	-7.026	-7.887	-8.459	-14.731	-17.351	-34.082
34	-3.958	-1.600	-3.886	-9.622	-6.218	-9.661	-14.049	-16.761	-33.346
35	-4.187	-1.019	-3.589	-8.324	-7.056	-9.058	-14.391	-17.053	-33.706

Tabla A.23: Vientos longitudinales para la ruta hacia el Oeste correspondientes al 5 de abril de 2017.

Tabla A.24:	Vientos	$\operatorname{cruzados}$	para la	ruta	hacia	el (Oeste	correspon	ndientes	al	$5 \circ$	le
abril de 2017.												

Viento cruzado [m/s]		Segmento del crucero								
Miembro del Ensemble	1	2	3	4	5	6	7	8	9	
1	-14.251	-15.638	-5.058	9.056	28.915	9.288	-18.247	-15.545	-24.224	
2	-12.998	-16.834	-6.440	8.989	28.879	7.556	-17.645	-15.390	-24.489	
3	-13.444	-16.215	-5.986	8.147	28.898	7.999	-17.325	-15.909	-24.555	
4	-13.794	-16.246	-5.516	9.896	28.897	8.842	-18.563	-15.027	-24.165	
5	-13.659	-16.161	-5.299	9.517	28.629	8.567	-17.745	-15.144	-24.646	
6	-13.597	-16.310	-6.202	8.533	29.176	8.277	-18.136	-15.791	-24.070	
7	-13.557	-17.094	-6.940	8.557	28.991	9.594	-18.658	-15.940	-24.532	
8	-13.698	-15.374	-4.565	9.488	28.803	7.243	-17.220	-15.002	-24.180	
9	-12.887	-16.759	-5.022	9.525	29.116	8.809	-17.063	-15.017	-24.061	
10	-14.361	-15.715	-6.484	8.519	28.679	8.038	-18.817	-15.908	-24.660	
11	-14.630	-17.411	-5.353	9.176	28.756	7.647	-17.775	-15.441	-24.450	
12	-12.617	-15.053	-6.148	8.872	29.046	9.194	-18.106	-15.486	-24.263	
13	-14.598	-16.905	-5.220	8.982	28.622	8.215	-18.251	-15.595	-24.592	
14	-12.647	-15.553	-6.275	9.060	29.170	8.623	-17.633	-15.342	-24.118	
15	-13.583	-16.118	-6.690	9.427	29.542	8.009	-17.707	-15.294	-24.473	
16	-13.657	-16.353	-4.812	8.615	28.254	8.828	-18.179	-15.649	-24.244	
17	-13.300	-16.072	-6.314	8.774	28.642	8.279	-17.454	-15.353	-23.837	
18	-13.947	-16.395	-5.187	9.271	29.143	8.568	-18.428	-15.578	-24.883	
19	-13.534	-16.063	-4.889	9.982	28.858	8.654	-18.251	-15.316	-24.483	
20	-13.720	-16.412	-6.612	8.062	28.937	8.188	-17.642	-15.618	-24.240	
21	-14.129	-16.805	-5.976	9.030	30.079	7.513	-17.215	-15.439	-24.688	
22	-13.115	-15.667	-5.532	9.013	27.739	9.323	-18.668	-15.492	-24.024	
23	-13.997	-15.854	-5.426	9.179	30.171	8.768	-17.765	-15.727	-24.013	
24	-13.242	-16.608	-6.078	8.859	27.635	8.069	-18.118	-15.210	-24.705	
25	-13.479	-17.043	-6.148	8.377	30.412	8.860	-17.859	-15.565	-24.767	
26	-13.761	-15.432	-5.357	9.667	27.381	7.977	-18.024	-15.369	-23.946	
27	-13.361	-16.408	-5.449	8.954	29.857	9.376	-18.080	-14.958	-24.019	
28	-13.888	-16.066	-6.053	9.089	27.934	7.465	-17.814	-15.981	-24.694	
29	-14.037	-16.708	-6.446	9.334	28.647	8.602	-18.060	-15.286	-24.920	
30	-13.207	-15.763	-5.050	8.723	29.155	8.233	-17.824	-15.641	-23.792	
31	-12.478	-16.065	-5.595	8.277	28.607	7.601	-18.014	-15.255	-24.435	
32	-14.777	-16.393	-5.909	9.763	29.208	9.237	-17.870	-15.680	-24.291	
33	-13.402	-15.342	-4.806	8.828	27.361	8.409	-17.729	-15.507	-24.033	
34	-13.846	-17.119	-6.691	9.222	30.425	8.431	-18.151	-15.425	-24.672	
35	-13.624	-16.236	-5.749	9.019	28.894	8.422	-17.946	-15.471	-24.360	

Anexo B. Resultados para todos los segmentos del crucero

Tabla B.1: Errores numéricos, medias y desviaciones típicas para las velocidades respecto de tierra en los diferentes segmentos que componen el crucero para la ruta hacia el Oeste. Resultados obtenidos para el 5 de mayo de 2016.

VEL	OCIDAD	ES RESP	ECTO D	E TIERR	A PARA	LA RUT	A HACIA	A EL OES	STE
			Valores	proceden	tes del <i>E</i>	nsemble			
Segmento	1	2	3	4	5	6	7	8	9
$\mu [m/s]$	228.0387	230.6864	219.2768	216.1808	209.6051	188.0342	189.7265	180.3941	185.2017
σ [m/s]	0.68059	0.51077	0.53522	0.48871	0.53018	0.53621	0.82422	0.83555	0.92460
	Dis	tribución	uniforme	e mediant	e el Méto	odo de los	Moment	os	
Segmento	1	2	3	4	5	6	7	8	9
ε [-]	$5.9 \cdot 10^{-14}$	$4.1 \cdot 10^{-14}$	$2.2 \cdot 10^{-14}$	$6.4 \cdot 10^{-14}$	$3.7 \cdot 10^{-14}$	$4.5 \cdot 10^{-14}$	$8.9 \cdot 10^{-15}$	$3.0 \cdot 10^{-14}$	$5.3 \cdot 10^{-14}$
$\mu [m/s]$	228.0387	230.6864	219.2768	216.1808	209.6051	188.0342	189.7265	180.3941	185.2017
$\sigma [m/s]$	0.68059	0.51077	0.53522	0.48871	0.53018	0.53621	0.82422	0.83555	0.92460
	D!-+-	., .,		nodianto	ol Fetimo	dor Mávi	mo-Veros	ímil	
	Distr	ibucion u	morme i	neulante	er Estima	uoi maxi		111111	
Segmento		2	3	4	5	6	7	8	9
ε [-]	$\frac{1}{6.2 \cdot 10^{-14}}$	$\frac{2}{2.2 \cdot 10^{-15}}$	$\frac{3}{4.6 \cdot 10^{-14}}$	$\frac{4}{2.0\cdot 10^{-14}}$	5 1.0.10 ⁻¹⁴	6 3.5.10 ⁻¹⁴	$\frac{7}{3.3 \cdot 10^{-14}}$	$\frac{8}{2.0\cdot 10^{-14}}$	$\frac{9}{2.2 \cdot 10^{-14}}$
$\begin{tabular}{ c c c c } \hline $$ Segmento \\ \hline $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	$ \begin{array}{c} 1\\ 6.2 \cdot 10^{-14}\\ 228.0406\end{array} $	$\frac{2}{2.2 \cdot 10^{-15}}$ 230.6855	$\frac{3}{4.6 \cdot 10^{-14}}$ 219.2797	$\frac{4}{2.0 \cdot 10^{-14}}$ 216.1807	$ 5 1.0 \cdot 10^{-14} 209.6077 $	$\frac{6}{3.5 \cdot 10^{-14}}$ 188.0313	$\frac{7}{3.3 \cdot 10^{-14}}$ 189.7270	$\frac{8}{2.0 \cdot 10^{-14}}$ 180.3988	$\frac{9}{2.2 \cdot 10^{-14}}$ 185.1986
$\begin{tabular}{ c c c c c } \hline ε [-] \\ \hline μ [m/s] \\ \hline σ [m/s] \\ \hline \end{tabular}$	$ \begin{array}{c} 1\\ 6.2 \cdot 10^{-14}\\ 228.0406\\ 1.03229 \end{array} $	2 2.2.10 ⁻¹⁵ 230.6855 0.63644	$\frac{3}{4.6 \cdot 10^{-14}}$ 219.2797 0.67820	$\frac{4}{2.0 \cdot 10^{-14}}$ 216.1807 0.65772	$ 5 1.0 \cdot 10^{-14} 209.6077 0.67085 $			$\frac{8}{2.0 \cdot 10^{-14}}$ 180.3988 1.03000	$ \begin{array}{c} 9 \\ 2.2 \cdot 10^{-14} \\ 185.1986 \\ 0.90896 \end{array} $
	$ \begin{array}{c} 1\\ 6.2 \cdot 10^{-14}\\ 228.0406\\ 1.03229 \end{array} $	$\frac{2}{2.2 \cdot 10^{-15}}$ 230.6855 0.63644	$\frac{3}{4.6 \cdot 10^{-14}}$ 219.2797 0.67820 Dis	4 2.0·10 ⁻¹⁴ 216.1807 0.65772 tribución	$\frac{5}{1.0 \cdot 10^{-14}}$ 209.6077 0.67085 es normal	6 3.5·10 ⁻¹⁴ 188.0313 0.50351	$\frac{7}{3.3 \cdot 10^{-14}}$ 189.7270 1.24864	$\frac{8}{2.0 \cdot 10^{-14}}$ 180.3988 1.03000	$ \begin{array}{c} 9 \\ 2.2 \cdot 10^{-14} \\ 185.1986 \\ 0.90896 \\ \end{array} $
	1 6.2·10 ⁻¹⁴ 228.0406 1.03229	2 2.2.10 ⁻¹⁵ 230.6855 0.63644 2	3 4.6·10 ⁻¹⁴ 219.2797 0.67820 Dis 3	4 2.0·10 ⁻¹⁴ 216.1807 0.65772 tribución 4	$ 5 1.0 \cdot 10^{-14} 209.6077 0.67085 es normal 5 $	6 3.5·10 ⁻¹⁴ 188.0313 0.50351 es 6	γ 3.3·10 ⁻¹⁴ 189.7270 1.24864 γ	8 2.0·10 ⁻¹⁴ 180.3988 1.03000 8	$ \begin{array}{c} 9 \\ 2.2 \cdot 10^{-14} \\ 185.1986 \\ 0.90896 \\ \hline 9 \end{array} $
	$ 1 6.2 \cdot 10^{-14} 228.0406 1.03229 1 1.0 \cdot 10^{-15} $	$ \begin{array}{c} 2 \\ 2.2 \cdot 10^{-15} \\ 230.6855 \\ 0.63644 \\ \hline 2 \\ 1.6 \cdot 10^{-15} \\ \end{array} $	$\begin{array}{c} 3 \\ 4.6 \cdot 10^{-14} \\ 219.2797 \\ 0.67820 \\ \hline \mathbf{Dis} \\ 3 \\ 1.6 \cdot 10^{-15} \end{array}$	$ \frac{4}{2.0 \cdot 10^{-14}} $ 216.1807 0.65772 tribución 4 8.9 · 10 ⁻¹⁶	5 1.0·10 ⁻¹⁴ 209.6077 0.67085 es normal 5 1.2·10 ⁻¹⁵	$ \begin{array}{c} 6\\ 3.5 \cdot 10^{-14}\\ 188.0313\\ 0.50351\\ \hline es\\ 6\\ 6.7 \cdot 10^{-16}\\ \end{array} $		$ \frac{8}{2.0 \cdot 10^{-14}} $ 180.3988 1.03000 8 2.2 \cdot 10^{-16}	$9 \\ 2.2 \cdot 10^{-14} \\ 185.1986 \\ 0.90896 \\ 9 \\ 1.2 \cdot 10^{-15} \\ $
	1 6.2·10 ⁻¹⁴ 228.0406 1.03229 1 228.0406 229.0406 229.0406 228.0406 229.0406 229.0406 228.0406 1.0010 ⁻¹⁵ 228.0387	$ \begin{array}{c} 2 \\ 2.2 \cdot 10^{-15} \\ 230.6855 \\ 0.63644 \\ \hline 2 \\ 1.6 \cdot 10^{-15} \\ 230.6864 \\ \end{array} $	$\begin{array}{c} 3 \\ 4.6 \cdot 10^{-14} \\ 219.2797 \\ 0.67820 \\ \hline \\ \textbf{Dis} \\ 3 \\ 1.6 \cdot 10^{-15} \\ 219.2768 \end{array}$	$\begin{array}{c} 4\\ 2.0 \cdot 10^{-14}\\ 216.1807\\ 0.65772\\ \hline \mathbf{tribución}\\ 4\\ 8.9 \cdot 10^{-16}\\ 216.1808 \end{array}$		$ \begin{array}{c} 6\\ 3.5 \cdot 10^{-14}\\ 188.0313\\ 0.50351\\ \hline es\\ 6.7 \cdot 10^{-16}\\ 188.0342\\ \end{array} $	$ \begin{array}{c} \gamma \\ 3.3 \cdot 10^{-14} \\ 189.7270 \\ 1.24864 \\ \hline \gamma \\ 1.3 \cdot 10^{-15} \\ 189.7265 \\ \end{array} $	$ \frac{8}{2.0 \cdot 10^{-14}} $ 180.3988 1.03000 $ \frac{8}{2.2 \cdot 10^{-16}} $ 180.3941	$ \begin{array}{r} 9 \\ 2.2 \cdot 10^{-14} \\ 185.1986 \\ 0.90896 \\ \hline 9 \\ 1.2 \cdot 10^{-15} \\ 185.2017 \\ $

Tabla B.2: Errores numéricos, medias y desviaciones típicas para las velocidades respecto de tierra en los diferentes segmentos que componen el crucero para la ruta hacia el Este. Resultados obtenidos para el 5 de mayo de 2016.

VEI	VELOCIDADES RESPECTO DE TIERRA PARA LA RUTA HACIA EL ESTE										
			Valores	proceden	tes del Ei	nsemble					
Segmento	1	2	3	4	5	6	7	8	9		
$\mu [m/s]$	244.0506	240.4668	251.6453	255.0030	262.0603	282.5989	282.2394	291.7040	285.1352		
$\sigma [m/s]$	0.68020	0.50296	0.55103	0.50657	0.52587	0.49925	0.83491	0.83536	0.90851		
	Dis	tribución	uniforme	e mediant	e el Méto	do de los	Moment	os			
Segmento 1 2 3 4 5 6 7 8 9											
ε [-]	$4.4 \cdot 10^{-15}$	$2.4 \cdot 10^{-15}$	$4.0 \cdot 10^{-14}$	$6.3 \cdot 10^{-15}$	$7.0 \cdot 10^{-14}$	$8.0 \cdot 10^{-15}$	$5.0 \cdot 10^{-14}$	$1.2 \cdot 10^{-14}$	$4.8 \cdot 10^{-14}$		
$\mu [{\rm m/s}]$	244.0506	240.4668	251.6453	255.0030	262.0603	282.5989	282.2394	291.7040	285.1352		
$\sigma [{\rm m/s}]$	0.68020	0.50296	0.55103	0.50657	0.52587	0.49925	0.83491	0.83536	0.90851		
	Distr	ibución u	niforme r	nediante	el Estima	dor Máxi	mo-Veros	ímil			
Segmento	1	2	3	4	5	6	7	8	9		
ε [-]	$2.0 \cdot 10^{-14}$	$4.4 \cdot 10^{-14}$	$3.4 \cdot 10^{-14}$	$3.8 \cdot 10^{-14}$	$4.9 \cdot 10^{-15}$	$4.5 \cdot 10^{-14}$	$4.0 \cdot 10^{-14}$	$3.9 \cdot 10^{-14}$	$6.3 \cdot 10^{-14}$		
$\mu [{\rm m/s}]$	244.0508	240.4686	251.6404	255.0051	262.0581	282.5961	282.2353	291.7002	285.1324		
$\sigma~\rm [m/s]$	1.03387	0.67392	0.71574	0.65405	0.65936	0.50299	1.28011	1.02981	0.89440		
			Dis	tribución	es normal	es					
Segmento	1	2	3	4	5	6	7	8	9		
ε [-]	$1.2 \cdot 10^{-15}$	$1.0 \cdot 10^{-15}$	$2.2 \cdot 10^{-16}$	$1.4 \cdot 10^{-15}$	$6.7 \cdot 10^{-16}$	$7.8 \cdot 10^{-16}$	$6.7 \cdot 10^{-16}$	$8.9 \cdot 10^{-16}$	$1.1 \cdot 10^{-15}$		
$\mu [m/s]$	244.0506	240.4668	251.6453	255.0030	262.0603	282.5989	282.2394	291.7040	285.1352		
$\sigma [m/s]$	0.68020	0.50296	0.55103	0.50657	0.52587	0.49925	0.83491	0.83536	0.90851		

Tabla B.3: Errores numéricos, medias y desviaciones típicas para los tiempos empleados en recorrer los diferentes segmentos que componen el crucero para la ruta hacia el Oeste. Resultados obtenidos para el 5 de mayo de 2016.

	TIEMPOS PARA LA RUTA HACIA EL OESTE										
			Valores	proceden	tes del E_i	nsemble					
Segmento	1	2	3	4	5	6	7	8	9		
μ [min]	40.5095	57.1936	56.7391	56.3462	58.1140	66.1667	69.5421	84.6777	31.5502		
σ [min]	0.12090	0.12664	0.13849	0.12738	0.14700	0.18869	0.30213	0.39222	0.15752		
	Dis	tribución	uniforme	e mediant	e el Méto	do de los	Moment	os			
Segmento	1	2	3	4	5	6	7	8	9		
ε [-]	$8.4 \cdot 10^{-15}$	$2.7 \cdot 10^{-15}$	$2.0 \cdot 10^{-15}$	$4.2 \cdot 10^{-15}$	$6.7 \cdot 10^{-15}$	$1.2 \cdot 10^{-14}$	$8.7 \cdot 10^{-15}$	$1.6 \cdot 10^{-14}$	$1.1 \cdot 10^{-14}$		
μ [min]	40.5096	57.1936	56.7391	56.3462	58.1140	66.1667	69.5421	84.6777	31.5503		
σ [min]	0.12090	0.12663	0.13849	0.12738	0.14700	0.18869	0.30211	0.39222	0.15752		
	Distr	ibución u	niforme 1	nediante	el Estima	dor Máxi	mo-Veros	ímil			
Segmento	1	2	3	4	5	6	7	8	9		
ε [-]	$7.8 \cdot 10^{-15}$	$2.2 \cdot 10^{-15}$	$1.3 \cdot 10^{-15}$	$9.5 \cdot 10^{-15}$	$1.2 \cdot 10^{-14}$	$3.6 \cdot 10^{-15}$	$2.1 \cdot 10^{-14}$	$2.5 \cdot 10^{-14}$	$1.9 \cdot 10^{-14}$		
μ [min]	40.5097	57.1940	56.7386	56.3465	58.1135	66.1676	69.5436	84.6765	31.5508		
σ [min]	0.18338	0.15780	0.17549	0.17143	0.18599	0.17718	0.45771	0.48348	0.15486		
			Dis	tribución	es norma	les					
Segmento	1	2	3	4	5	6	7	8	9		
ε [-]	$2.3 \cdot 10^{-13}$	$1.2 \cdot 10^{-13}$	$1.5 \cdot 10^{-13}$	$1.3 \cdot 10^{-13}$	$1.6 \cdot 10^{-13}$	$2.1 \cdot 10^{-13}$	$4.8 \cdot 10^{-13}$	$5.5 \cdot 10^{-13}$	$6.4 \cdot 10^{-13}$		
μ [min]	40.5096	57.1936	56.7391	56.3463	58.1140	66.1667	69.5421	84.6777	31.5503		
σ [min]	0.12091	0.12664	0.13849	0.12738	0.14700	0.18869	0.30212	0.39224	0.15752		

Tabla B.4: Errores numéricos, medias y desviaciones típicas para los tiempos empleados en recorrer los diferentes segmentos que componen el crucero para la ruta hacia el Este. Resultados obtenidos para el 5 de mayo de 2016.

	TIEMPOS PARA LA RUTA HACIA EL ESTE									
			Valores	proceden	tes del E_i	nsemble				
Segmento	1	2	3	4	5	6	γ	8	9	
μ [min]	37.8517	54.8674	49.4408	47.7679	46.4815	44.0254	46.7470	52.3653	20.4923	
σ [min]	0.10550	0.11476	0.10826	0.09489	0.09327	0.07778	0.13829	0.14996	0.06529	
	Dis	tribución	uniforme	e mediant	e el Méto	do de los	Moment	os		
Segmento 1 2 3 4 5 6 7 8 9										
ε [-]	$4.2 \cdot 10^{-15}$	$5.1 \cdot 10^{-15}$	$3.1 \cdot 10^{-15}$	$4.0 \cdot 10^{-15}$	$1.1 \cdot 10^{-14}$	$1.9 \cdot 10^{-15}$	$1.8 \cdot 10^{-14}$	$8.9 \cdot 10^{-15}$	$6.0 \cdot 10^{-15}$	
μ [min]	37.8517	54.8674	49.4408	47.7679	46.4815	44.0254	46.7470	52.3653	20.4923	
σ [min]	0.10550	0.11476	0.10826	0.09489	0.09327	0.07778	0.13829	0.14996	0.06529	
	Distr	ibución u	niforme r	nediante	el Estima	dor Máxi	mo-Veros	ímil		
Segmento	1	2	3	4	5	6	γ	8	9	
ε [-]	$1.4 \cdot 10^{-14}$	$1.7 \cdot 10^{-14}$	$6.9 \cdot 10^{-15}$	$1.4 \cdot 10^{-14}$	$1.2 \cdot 10^{-14}$	$2.2 \cdot 10^{-15}$	$2.0 \cdot 10^{-14}$	$2.3 \cdot 10^{-15}$	$6.2 \cdot 10^{-15}$	
μ [min]	37.8521	54.8672	49.4420	47.7677	46.4820	44.0259	46.7482	52.3662	20.4925	
σ [min]	0.16036	0.15377	0.14063	0.12252	0.11695	0.07836	0.21204	0.18488	0.06428	
			Dis	tribución	es norma	es				
Segmento	1	2	3	4	5	6	7	8	9	
ε [-]	$2.0 \cdot 10^{-13}$	$1.1 \cdot 10^{-13}$	$1.2 \cdot 10^{-13}$	$1.0 \cdot 10^{-13}$	$1.0 \cdot 10^{-13}$	$7.9 \cdot 10^{-14}$	$2.2 \cdot 10^{-13}$	$2.1 \cdot 10^{-13}$	$2.6 \cdot 10^{-13}$	
μ [min]	37.8517	54.8674	49.4408	47.7679	46.4815	44.0254	46.7470	52.3653	20.4923	
σ [min]	0.10550	0.11476	0.10826	0.09489	0.09327	0.07778	0.13829	0.14996	0.06530	