
Universidad de Sevilla

Departamento de Ingenieŕıa de Sistemas y
Automática

Doctoral Thesis

Integration of Service Robots

in the Smart Home

Author:
Javier Ramı́rez de la Pinta

Supervisors:
Dr. Eduardo Fernández Camacho

Dr. José Maŕıa Maestre Torreblanca

It is no measure of health to be well

adjusted to a profoundly sick society.

Jiddu Krishnamurti

No es saludable estar bien adaptado a

una sociedad profundamente enferma.

Jiddu Krishnamurti

Acknowledgements

In first place, I would like to express my sincere gratitude to professors

Eduardo Fernández Camacho and José M. Maestre Torreblanca for the con-

tinuous support and guidance of my Ph.D study and research. During these

years they have been very supportive and have taught me how to become a

true researcher.

There have been many other researchers that have helped me with this

work. I would like to thank all my colleagues in Seville. Working in the

Systems and Automation Department and with people over there has been

a great privilege.

In addition, I would like to thank my family, particularly my parents for

their patience during my study life and I hope they will be proud about this

thesis.

Last but not the least, I would like to thank my wife, Montse, for all the

years she has been waiting me while I had been studying.

Javier Ramı́rez de la Pinta

Seville, January 2016

Contents

1 Introduction 1

1.1 A Brief History of Interoperability 2

1.2 Objective of the Thesis . 3

1.3 Thesis outline . 5

2 Interoperability Systems 7

2.1 Interoperability evolution . 10

2.2 Interoperability technologies 12

2.3 CORBA . 13

2.3.1 Components . 14

2.3.2 Services . 15

2.3.3 Application Examples 17

2.4 Jini . 17

2.4.1 General Features . 17

2.4.2 Specific Features . 19

2.4.3 Organization of the Jini Architecture 22

2.4.4 Application Examples 24

2.5 RMI . 24

2.5.1 Architecture . 25

2.5.2 Components . 25

2.5.3 Application Examples 26

2.6 OSGi . 27

2.6.1 General Features . 27

2.6.2 Specific Features . 27

2.6.3 Organization . 30

2.6.4 Application Examples 34

2.7 UPnP . 34

2.7.1 General Features . 35

2.7.2 Specific Features . 36

2.7.3 Protocols . 36

i

ii CONTENTS

2.7.4 Components of a UPnP Network 39

2.7.5 UPnP Operation . 42

2.7.6 Application Examples 56

2.8 DLNA . 57

2.8.1 General Features . 58

2.8.2 Specific Features . 64

2.8.3 Application Examples 68

2.9 Web Services . 70

2.9.1 Components . 71

2.9.2 Application Examples 73

2.10 Semantic Web Services . 73

2.10.1 Required Functionalities 74

2.10.2 Main Technologies . 74

2.11 Military Standards . 75

2.11.1 JAUS . 75

2.11.2 Other Military Standards 80

2.12 Other Technologies . 82

2.12.1 Salutation . 82

2.12.2 Service Location Protocol 82

2.12.3 Ad hoc Developments 83

2.12.4 URBI . 83

2.12.5 DH Compliant . 84

2.12.6 ROS . 84

2.12.7 OROCOS . 86

2.12.8 OpenJAUS . 86

3 Integration of Service Robots in the Smart Home by means

of the Universal Plug and Play Protocol 89

3.1 Smart Homes and Robots . 91

3.1.1 Roomba Robot . 96

3.1.2 Rovio Robot . 99

3.2 UPnP Virtual Devices Development 102

3.2.1 Step 1: Creation of the Service Description 103

3.2.2 Step 2: Creation of the UPnP Stack 104

3.2.3 Step 3: Implementation of the Actions 105

3.2.4 Step 4: Operational Testing and Validation of the Device106

3.3 UPnP Gateways for Robots 107

3.3.1 Roomba Gateway . 107

3.3.2 Rovio Gateway . 112

3.4 Experiments . 117

3.4.1 Robots in a UPnP Network 118

CONTENTS iii

3.4.2 Roomba tests . 118

3.4.3 Rovio tests . 120

3.4.4 Rovio Robot Tracking a Ball 122

3.4.5 Rovio Robot Tracking a Roomba Robot 123

3.4.6 Garbage Detection . 124

3.5 Conclusion . 125

4 Collaborative Tasks between Robots based on the Digital

Home Compliant Protocol over UPnP 127

4.1 The DH Compliant protocol 128

4.2 DHC-Groups operation . 130

4.3 The Roomba vacuum cleaner: from Roomba UPnP to Roomba

DHC . 134

4.4 Experiments . 135

4.4.1 Implementation . 135

4.4.2 Experimental results 137

4.5 Conclusion . 141

5 Cloud Robotics 143

5.1 From Cloud Computing to Cloud Robotics 144

5.2 Integration of Rovio in a home network through Vera 146

5.2.1 Rovio . 146

5.2.2 Vera . 147

5.2.3 Creation of a basic Rovio interface for Vera 147

5.3 Cloud capabilities . 150

5.3.1 Rovio, home and cloud interaction 151

5.3.2 User interaction . 153

5.4 Experimental Results . 155

5.4.1 Teddy bear search experiment 156

5.4.2 New object for search service experiment 156

5.4.3 Z-wave + Rovio integration experiment 156

5.5 Conclusion . 157

6 Conclusions 159

6.1 Conclusions . 160

6.2 Future research . 161

6.3 Publications derived from this thesis 162

A Resumen en castellano 165

A.1 Sistemas de Interoperabilidad 166

A.2 Objetivos de la Tesis . 168

iv CONTENTS

A.3 Estructura de la Tesis . 169

A.4 Contribuciones . 170

Chapter 1

Introduction

The home automation market is just beginning to heat up, and it is very much

still in its infancy. This trend will change the life-style of the inhabitants of

such homes. With the widespread of the smart home more and more people

have “intelligent” devices like thermostats, lighting or TVs, that either run

automatically or are controlled from a smartphone.

To date, new products have been developed from a wide range of com-

panies and few of them are compatible with each other. This lack of nor-

malization makes very difficult to establish a solid home automation in the

humans’ life since both manufacturers and consumers can not settle a com-

mon framework to integrate new devices or equipment. This issue is known

as interoperability problem. The lack of interoperability is one of the most

important problems that hinders the take-off of the smart home market.

It is clearly necessary a more open set of products and services based

on a standardized platform that is not restricted to certain manufacturers.

The emergence of novel and integrative technologies, such the Zigbee wireless

communication protocol or a more closed wireless home control platforms,

including Z-Wave, is a good signal for home automation.

Interoperability deals with the integration of different devices from dif-

ferent vendors and with different technologies and architectures in the same

network. There are systems that work properly with certain technologies,

however, they are not compatible with other systems.

In the home automation market have emerged many technologies, nev-

ertheless, they have not taken care about interoperability with the existing

technologies. In addition, the inclusion of service robots in the smart home

complicates, even more, the interoperability problem since they involve many

different technologies.

This thesis focuses on the interoperability between service robots and the

1

2 Introduction

digital home. It aims to introduce the reader to the exciting world of the

interoperability in the smart home. A large number of systems proposed

to manage the interoperability problem are analyzed in this work. This

integration problem is addressed with particular developments and proposals

which are presented in this thesis.

This chapter presents the approach to the interoperability problem and

the attempts to solve this issue. Section 1.1 surveys chronologically the most

relevant systems which supposed a breakthrough for interoperability that can

be found in the literature. In Section 1.2 the main goals of this thesis are

presented. Finally, section 1.3 provides the outline of this thesis.

1.1 A Brief History of Interoperability

Interoperability is a key issue to face the digital home challenges. An ideal

smart home should emerge from the integration of different technologies based

on different fields: home automation, telecommunication, surveillance, energy

management, health-care, digital entertainment... One of the biggest problem

for the smart home is the great amount of digital home market vendors,

which causes a lack of interoperability due that not all manufacturers create

compatible devices with other systems.

Several proposals, whose objective is to interconnect all consumer elec-

tronic devices in a digital home, have been emerged in order to solve the in-

teroperability problem. The first attempt was the Common Object Request

Broker Architecture (CORBA) which appeared in the early 90s. CORBA is

a distributed object oriented architecture that allows integrating distributed

objects in an application that is implemented in workstations with differ-

ent hardware architectures, operating systems, and with objects defined in

different programming languages [1]. Unfortunately for CORBA, the lack

of standardization on its early stages avoided a better deployment of this

system.

At the end of the 90s, several important organizations proposed the Uni-

versal Plug & Play (UPnP) technology [2]. UPnP is an open and distributed

architecture that provides mechanisms of interoperability among heteroge-

neous devices. The success of UPnP has been big enough to be considered

a de facto standard in digital entertainment applications. For example, the

Digital Living Network Alliance (DLNA) initiative, which is specifically in-

tegrated for the exchange of multimedia content, is based on UPnP [3].

The Open Services Gateway initiative (OSGi) is also a remarkable at-

tempt to solve the interoperability problem within a Java context. It pro-

vides a service-oriented architecture, which enables applications to discover

1.2. OBJECTIVE OF THE THESIS 3

and collaborate among them dinamically.

Finally, it is also interesting to highlight the Web Services as a remark-

able technology to solve the interoperability problem. It consists of a set of

open protocols that provide interoperability between different software ap-

plications, running on a variety of platforms and frameworks.

Each interoperability technology has its own features and there are im-

portant differences between the other initiatives. For example, a UPnP or

DLNA network is composed of physical or virtual devices which have an

URL associated to present their features. CORBA services are provided by

distributed objects, and Web Services has defined the figure of agents which

contain the implementation of the service. Another difference is the language

in which the services are described: UPnP uses XML to this end, whereas

Web Services and CORBA use WSDL and IDL respectively. All the mid-

dleware technologies push in the same direction: to reach the transparent

interoperation between devices or software applications. Most of them have

been use in a smart home context [4][5][6][7], but the significant differences

between these middleware technologies and the fact that none of them has

been settled only demonstrate the complexity of the interoperability problem.

Chapter 2 provides deeper details of these and many more systems.

1.2 Objective of the Thesis

As will be seen throughout the thesis, the inclusion of new advanced services

in the digital home makes more necessary than ever to enhance the interoper-

ability between the different areas and systems available in the market. This

is the main objective of the work carried out in this thesis. The first step

in this work consists of knowing the most outstanding technologies in this

sector, in order to know the advantages and the drawbacks of each system,

in order to enhance the most interesting aspects of our proposals.

The lack of interoperability becomes more evident with the inclusion of

service robots in homes around the world. In this sense, it would be in-

teresting to control robots remotely and coordinate all robots to perform

complex tasks and reduce the time to complete them. For this reason, the

goal of achieving full interoperability between consumer electronics devices

and service robots is becoming increasingly important.

In this context, all efforts are focused on reaching a common and accepted

standard that allows interconnecting all devices in the home automation.

Another interesting approach is to use an existing interoperability system

(intermediate standard) to interoperate with the rest of the systems so that

everything is interconnected through this intermediate system.

4 Introduction

During this work, we have analyzed some of the most widespread middle-

ware initiatives to provide interoperability. Existing protocols and systems

for communicating heterogeneous platforms are described. The technologies

studied and detailed in this work are the following: CORBA, Jini, RMI,

OSGi, UPnP, DLNA, Web Services, Semantic Web Services, Military Stan-

dards, Salutation, Service Location Protocol, Ad hoc Developments, URBI,

DH Compliant, ROS, OROCOS and OpenJAUS.

In general, previous interoperability solutions have been focused on im-

proving available capacities. This implies that many systems are not com-

patible with the other systems available in the market. One of our most

important objectives during this work has been to present a procedure to in-

tegrate different devices, and robots in particular, in the digital home. In this

work, it has been demonstrated that any device is capable of being integrated

into a home through the UPnP standard.

This thesis is based on a consolidated interoperability initiative, which has

been one the most successful at a home level up to date: UPnP. According

to this research, multimedia is going to be the core of the digital home, and

no standard eases the integration of multimedia as UPnP. Likewise, UPnP is

a mature technology and there are several devices already in the market that

provide some kind of UPnP functionality. We considered also other reasons:

UPnP is designed to work in small networks, such as domestic ones; it works

with physical devices, such as robots, sensors or actuators; UPnP operation

is based on events; UPnP has good development tools and a good learning

curve; and finally, the drawbacks of UPnP are well known and they were

considered less than the advantages of this technology.

The penetration of service robots in the digital home which are capable

of interoperating with other systems in the digital home is a challenge that

needs to be solved. This thesis attempts to provide mechanisms to integrate

service robots into the digital home, reducing time and developments costs

and maximizing the benefits originally proposed by UPnP. We have proposed

solutions to integrate into the digital home different and heterogeneous sys-

tems and robots. As has been noted throughout the thesis, interoperability

is a very important issue in the digital home as its lack is the biggest obstacle

that prevents the penetration of digital home technologies in the market. It

is true that the multimedia market has progressed a lot in recent years, how-

ever, the continued appearance of new protocols to reach a solution to share

and transmit content from one device to another is still booming. Again, the

problem of interoperability prevents multimedia devices from interoperating

with each other in any environment and situation.

During this thesis, some robots have been integrated into UPnP networks

1.3. THESIS OUTLINE 5

and the capacities of such protocol have been enhanced as a result of the re-

search carried out during the DH Compliant project. We have developed a

protocol to transparently interoperate with each device in the home. This

protocol, with the objective of maintaining backward compatibility, uses an

existing and popular standard, and proposes the use of UPnP entities with

double behavior (control point and device), allowing the exchange of infor-

mation and cooperation between entities. On the contrary, the development

of more complex logics is necessary.

In addition, as part of this thesis, research about providing existing com-

puting services from cloud environments to robots available in households

have been accomplished. This study aims to transparently provide services

with high computing needs to the digital home environment.

In resume, the trend has been to use an existing protocol and to enhance

its capabilities, as well as to propose gateways to integrate other devices

totally independent to the protocol. In this way, service robots have been

included, a new protocol has been developed based on the original and fully

compatible with it, and also for processes that require high power computing

has been proposed to be solved in the cloud.

1.3 Thesis outline

As it has been seen in the literature review, there is a large number of in-

teroperability initiatives. This thesis tries to provide interesting mechanisms

to integrate the robots in the smart home, reducing timing costs, develop-

ments and maximizing the benefits that UPnP originally proposed. Some

robots are integrated in UPnP networks and the UPnP capabilities are im-

proved as a result of the DH Compliant consortium researches. In addition,

we have investigated about how to provide computation services from cloud

environments to the robots available at homes.

The outline of the rest of the thesis is detailed below:

• Chapter 2: Interoperability Systems. The lack of interoperability

is a problem that has always been attached to the digital home. This

chapter presents a very large list of interoperability initiatives. Special

emphasis has been placed on UPnP which is the base system of this

thesis.

• Chapter 3: Integration of Service Robots in the Smart Home

by means of the Universal Plug and Play Protocol. The inte-

gration of robots in the smart home brings a more comfortable life for

6 Introduction

its inhabitants. Nowadays, there are robots that works more or less in-

dependently in the home, a good example is the vacuum cleaner robots

which are widely spread and accepted in homes around the world. In

this chapter, the integration of two robots, the Roomba vaccum cleaner

robot and the Rovio surveillance robot, in a UPnP network is pre-

sented. In addition, different scenarios developed using these robots

are detailed.

• Chapter 4: Collaborative Tasks between Robots based on

the Digital Home Compliant Protocol over UPnP. This chap-

ter presents a novel interoperability protocol: Digital Home Compliant

(DHC) which is focused on the solution of the interoperability problem

between domotic and robotic devices. In particular, the DHC-Groups

module has been implemented for Roomba, which allows a robot group

(hive) to perform collaborative tasks. Different experiments are shown

in order to test the DHC-Groups module and to show its possibilities.

• Chapter 5: Cloud Robotics. Basic concepts of cloud computing

and cloud robotics are presented in this chapter. A cloud development

is also detailed, as well as the scenarios carried out with it.

• Chapter 6: Conclusions. The thesis ends with a chapter that an-

alyzes the most relevant contributions and, additionally, points out

future research lines in the field of interoperability in the smart home.

Chapter 2

Interoperability Systems

Interoperability deals with the integration of heterogeneous devices in the

same network regardless of their architecture, operating system, program-

ming language or their location in the network.

The problem of the lack of interoperability arises when there are different

devices that comply with a certain system but these devices are not com-

patible with other technologies in the smart home, so it is not possible to

make all devices and technologies work together. This fact is not new. Ac-

tually it is one of the biggest handicaps of the smart home market. Real

interoperability is necessary to make possible a future in which homes detect

automatically user needs and satisfy them. The lack of interoperability causes

that different systems and devices can not interoperate with each other and

hinders the take-off of the current smart home. For example, in the home

automation market many technologies have emerged but none of them wor-

ried about providing interoperability mechanisms with previous technologies.

Many factors that concurred explain the situation: new technologies usually

come with new possibilities that did not exist before, compatibility implies

higher development costs and a risk of clients buying devices to other man-

ufacturers, very strong lack of standardization in the sector... The list of

causes is almost endless and helps to identify mistakes that should not be

repeated in the future. Nevertheless, it does not help too much to solve the

interoperability problem that we have to face nowadays. In particular, it is

possible to identify the following areas that work more or less independently

and that have to be integrated in the future smart home:

• Home automation: it arrived at homes 30 years ago with the arrival

of X-10, which despite of its “antiquity” is still one of the most used

systems. For this reason it has become a de facto standard. There are

other systems that have enjoyed enough success to establish themselves

7

8 Interoperability

as solid options in their market segments. This is the case, for example,

of KNX and LonWorks, both of them supported by international stan-

dards. Apart from these systems there is a constellation of proprietary

systems with good future perspectives such as Z-Wave or Ingenium.

• Access and Surveillance systems.

• Digital entertainment: this is the field in which interoperability is

closer to become a reality. The success of UPnP for this kind of appli-

cations has greatly simplified the access to multimedia content shared

among the computers of a network. In this sense, new protocols take

advantage of this as DLNA.

• Assistive Computing and Healthcare.

• Energy management.

• Advance telecommunication services: probably it is easier to un-

derstand what we mean with advance service with an example: IP-

Domo, which is a Spanish home automation system with many ca-

pabilities in this sense, allow to deviate the incoming calls from the

entryphone to the mobile phone when the user is not at home. The

future smart home must be able to support advanced services like this

one, that demand a strong degree of interoperability.

• Service robots: they are a reality in many homes thanks to robots

like the vacuum cleaning robots. Right now the integration of robots

in the smart home is far away from becoming a standard. The most

advanced robots from the interoperability point of view include some

port to receive external commands or a server with a page to receive

commands.

• Electrical appliances and current consumer electronics: it is not

possible to walk to the future without using the bridge of the present.

Nowadays homes are filled with many useful devices that are closed

systems. In the case of the appliances, almost always it is possible to

use a relay to control the plug that feeds the devices. This allows a small

grade of integration. There are other devices such as air conditioning

systems or DVD players, to name a few, that open a small door for a

more advanced interoperability through a wise use of infrared.

However, the operation of all these devices, systems or robots does not

really require them to “think” as they are simply programmed to perform

Interoperability 9

a series of repetitive tasks. If anything interferes with the pre-programmed

task, they would malfunction since none of them is able to sense the interfer-

ence and “think out” a solution. As service robots are in greater proximity

to humans, the technology involves more safety concerns over the human-

machine interaction. Therefore, it remains a great challenge today for us to

build smart homes and intelligent robots that can “think” like we do.

To achieve such a goal, scientists and engineers have been trying hard to

capture the essence of human intelligence in our homes and robots to make

them intelligent to function well in the real world. This is a challenging

and ambitious task since the robot or home intelligence must cope with var-

ious noises, uncertainty and dynamic changes in the real world. Like human

beings, smart homes and intelligent robots should be able to sense their en-

vironments, reason and make decisions and respond to tasks and unexpected

events quickly.

In general, intelligent robots and smart homes are broad, interdisciplinary

subjects that involve many different technologies such as sensor integration,

data fusion, wireless sensor networks, map building, embedded computing,

navigation, planning and artificial intelligence.

For each individual smart home or robot, the “thinking” process takes

place at many different levels. At its lowest level,“thinking” needs to be fast

to respond quickly to unexpected events. At higher levels, “thinking” enables

the homes and robots to handle a dynamic and uncertain world. By contrast,

“thinking” should exhibit an adaptation and learning capability at its highest

level. Moreover, a close interaction among smart homes and robots should

be realized for achieving the common goal cooperatively.

In all emerging markets the compatibility between systems plays a crucial

role for the success of the market itself. The digital home market is like the

dog that chases its own tail in this sense: as there is no ideal system between

the existing ones, the market is guided by the offer and not by the demand,

but how is there going to be a strong demand for devices and services when

there is no simple way of combining them? It is necessary a solid commitment

towards interoperability from all the actors of the smart home industry if they

want to speed up the penetration of advanced services to the end users.

In this chapter we present some background for the research addressed

in this thesis and review several systems that can be found in this field.

Section 2.1 presents an introduction to the evolution of the interoperability

systems and the approaches to solve the interoperability problems. Next,

section 2.2 provides an introduction about interoperability systems that will

be detailed in subsequent sections. Specific systems that try to solve the

interoperability problem are deeply analyzed in sections 2.3, 2.4, 2.5, 2.6,

10 Interoperability

2.7, 2.8, 2.9, 2.10, 2.11 and 2.12 which detail CORBA, Jini, RMI, OSGi,

UPnP, DLNA, Web Services, Semantic Web Services, some military stan-

dards (JAUS, 4D/RCS and NANO STANAG 4586), and other interesting

technologies (Salutation, Service Location Protocol, Ad hoc Developments,

URBI, DH Compliant, ROS, OROCOS and OpenJAUS) which have not had

enough success in the digital home market.

2.1 Interoperability evolution

Nowadays there are several initiatives and different standards available whose

objective is to interconnect all consumer electronic devices in a digital home.

However, none of them seems to be the definitive interoperability system.

The lack of interoperability between the proposed systems and the lack of

commitment from vendors to make devices that comply with such systems

hinder the take-off of the smart home in new buildings.

Over the past few decades there has been an exponential growth in service

robots and smart home technologies, which has led to the development of ex-

citing new products in our daily lives. Service robots can be used to provide

domestic aid for the elderly and disabled, serving various functions ranging

from cleaning to entertainment. Service robots are divided by functions, such

as personal robots, field robots, security robots, healthcare robots, medical

robots, rehabilitation robots and entertainment robots. A smart home ap-

pears “intelligent” because its embedded computers can monitor so many

aspects of the daily lives of householders. For example, the refrigerator may

be able to monitor its contents, suggest healthy alternatives and order gro-

ceries. Also, the smart home system may be able to clean the house and

water the plants. The lack of interoperability becomes more evident with the

inclusion of such service robots in homes around the world. In this sense, it

would be interesting to control the robots remotely and coordinate all the

robots to perform complex tasks and reduce time to complete them. For this

reason, the goal of achieving full interoperability between consumer electronic

devices and service robots becomes more and more important.

All efforts are focused on achieving a common and accepted standard

which allows to interconnect all devices in a digital home (Figure 2.1). An-

other interesting approach is to use an existing interoperability system (inter-

mediate standard) to interoperate with the rest of the systems, in such a way

that everything is interconnected through this intermediate system (Figure

2.2).

The continuous evolution of computers together with lowest prices in con-

sumer electronics has allowed a wide deployment of the digital home. The

2.1. INTEROPERABILITY EVOLUTION 11

Figure 2.1: Interconnection through a common standard

Figure 2.2: Interconnection through an intermediate standard

12 Interoperability

next revolution in the smart home is expected to come from the world of

robotics. At present, the use of robotics is limited to industrial areas, al-

though service robots that assist us in routine tasks such as cleaning the

house, mowing the lawn or even preparing meals are becoming common.

In recent years, the number of robotic standards has increased, and this

progress has encouraged the integration of service robots in the smart home

and the emergence of different communication protocols. Nevertheless, dif-

ferent problems have to be solved before service robots become as popular as

computers. In particular, interoperability between the different systems that

may exist in future homes is an ongoing issue.

2.2 Interoperability technologies

When looking through history from distributed systems to interoperability,

it is important to recognize a need for cooperation and expansion of networks

that are already in use. The beginning is the concept of middleware. Middle-

ware is connectivity software that offers a group of services that make possible

the running of distributed applications over heterogeneous platforms.

The idea of middleware, as an abstract layer of software, is to encapsulate

all the available resources on a network, which can comprise all kinds of

devices (from embedded processors to super processors, laptops, PDAs and

mobile phones) and interconnect them in a transparent way. In other words,

give an API (Application Programming Interface) to the programmers for

the use of distributed applications.

There are some works related to the design and implementation of mid-

dleware generic distributed systems. For example [8], which represents an

approximation to the design of a configurable system, based on the concept

of reflection. The usefulness of this component’s engineering is also important

when giving a system the ability to configure.

These concepts are also commented on by [9]. These authors also talk

about the link to the application layer by using this component’s technology.

They suggest the development of a model (OpenORB, based on the model

CORBA) independent of the platform and the language of programming.

They also define meta-structures and meta-data to give intelligence to the

protocol so it can apply reason to its own interpretations, so the system’s

(re)configuration will be easier.

The idea that the reader must have in mind during this chapter is in-

teroperability. Interoperability is the key component to solving the smart

home jigsaw puzzle. Thus, in this chapter, we will place special emphasis on

the interoperability aspects of the different standards. In addition, different

2.3. CORBA 13

research projects on the interoperability and control of robotic systems and

unmanned vehicles will be surveyed. Behind all these standards and projects,

there are stories of success and failure, and many valuable lessons about the

complex world of interoperability. At this point, it is difficult to know if any

of these alternatives will prevail and become a consolidated standard for the

integration of robots in the digital home. However, what we know for sure is

that any succeeding standard will have learnt from all that will be presented

here.

In this chapter, different standards that could be used for the integration

of mobile robots and unmanned vehicles in the digital home will be detailed.

These standards have been proposed within different contexts. On the one

hand, standards have been developed for military purposes such as JAUS

or 4D/RCS, which is logical given that the control of autonomous vehicles

has many potential applications in this field. On the other hand, standards

have been developed in a computer science context, where interoperability

between the different agents that may interact in a networked environment is

a major problem. This chapter is mainly based on the tw chapters published

in the Springer’s book “Service Robotics within the Digital Home” [10][11].

Some of the most-used middleware initiatives to provide interoperability

in the smart home are analysed. The protocols or existing systems used to

communicate among heterogeneous platforms will be described.

2.3 CORBA

CORBA (Common Object Request Broker Architecture) is a standard that

provides a platform for the development of distributed systems. CORBA

is defined by the Object Management Group (OMG), which defines APIs,

communication protocols and all necessary items to ensure interoperability

between different applications running on different platforms. CORBA uses

an IDL to specify the interfaces through their functionality. This is a way to

indicate how CORBA data types must be used in implementations of client

and server.

All this means that CORBA is a kind of middleware (platform of dis-

tributed services, independent of the operating system) that guarantees suc-

cess in the transit of data across different platforms and applications. It is

applied in RTS and is efficient enough for any kind of problem. The main

features of this standard are:

• It is a distributed object standard.

14 Interoperability

• It specifies the architecture the system should have, is flexible and het-

erogeneous.

• Interoperability.

• Scalability.

• Transparency, facilitating client-object communication [12].

• Naming service.

• It sets a minimum object model.

• Each object implements an interface.

- The definition of interfaces is made through the IDL, making it inde-

pendent of the programming language.

- The reuse in software is achieved through interface inheritance.

- Multiple inheritance.

- The details of an object’s implementation cannot be accessed.

2.3.1 Components

• The Object Request Broker (ORB) is the CORBA object manager and

is part of its core. It allows for the invocation of static and dynamic

objects [12]. It can operate without the services and facilities provided

by CORBA. It handles the invocation and search for remote objects

using dynamic methods for the invocation. It is responsible for giving

back the object attributes of the object accessed through the IDL of

the object. Locally, it also collects information on the objects to pass

to other ORBs and handles local computer security (Figure 2.3).

• IDL, Language for defining interfaces. Since it is a declarative language

and not a programming language, it defines interfaces independent of

the implementations of objects.

• Dynamic Invocation Interface (DII). Generic Stub. Client side.

• Dynamic Skeleton Interface (DSI). Generic skeleton. Server Side.

• Both DII and DSI are based on the interface repository, which is a

CORBA object that contains information on the object’s interfaces

and their types. It allows applications to access this information in a

static or a dynamic way. The main advantage is the support given to

the dynamic calls.

2.3. CORBA 15

Figure 2.3: CORBA architecture

• The implementation repository is required when the objects are persis-

tent. Most general purpose ORBs provide a repository of implementa-

tions that supports indirect connections for persistent references. This

characteristic solves the problem of direct connections for persistent

references. It has also a bad point; it slightly reduces the good working

of the first invocation from client to server. It also offers various modes

for the automatic activation of server objects [13].

• The object adapter is the bridge between the ORB and CORBA object

implementations. This allows it to make requests to an object with-

out knowing its interface, since the object adapter adapts the object’s

interface to that expected from the object making the request.

• Communication protocols between ORBs. CORBA is based on the

protocols GIOP (General Inter-ORB Protocol) and the standard pro-

tocol IIOP (Internet Inter-ORB Protocol). GIOP specifies the types of

messages and the format to transport requests between ORBs. IIOP

specifies the way TCP/IP is implemented over GIOP. Thanks to these

protocols, ORB can be integrated even if it comes from different devel-

opers.

2.3.2 Services

There is a large set of standard services offered by CORBA [14]. These

services are added to the ORB interface to complete it; however, they are

optional. The most important include:

• Concurrency Service. Mediates concurrent access to an object such

that theconsistency of the object is not compromised when accessed by

16 Interoperability

concurrently executing processes.

• Event Service. This defines two roles for objects: the supplier and

the consumer. Consumers process information in the events that are

produced.

• Naming Service. This is the main mechanism for objects that will

be invoked by most customers from an ORB-based system.

• Persistent State Service. Replaces the persistent object service.

These are interfaces that provide persistent information, namely data

objects stored in databases.

• Property Service. Can attach dynamic properties to objects outside

the static IDL-type system.

• Security Service. The security service of CORBA provides various

security policies to cater for different needs that lead to a secure archi-

tecture. CORBA’s security can be used in a wide range of systems. It

also allows the reuse of its own security protocols. These include:

- Authentication and identification of objects or users (i.e. verifying

that they are who they seem).

- Access control and authorization.

- Security audits.

- Secure communication between objects.

- Non-repudiation policy

The CORBA security service is included in the safety process of OMG.

Among the OMG security specifications, we can find:

At an API level:

- ATLAS (Authorization Token Layer Acquisition Service)

- RAD (Resource Access Decision Facility)

In CORBA’s infrastructure:

- CSIv2 (Common Secure Interoperability, version 2)

- CORBA Security Service

• Time Service. Allows an object to ascertain the time along with an

estimated error associated to it.

• Trading Object Service. Facilitates the search for objects, services,

features, functionalities and so on.

2.4. JINI 17

2.3.3 Application Examples

Some frameworks exploit the features of CORBA for telerobotic systems,

whereas some applications may be based on the manipulation of complex

systems remotely [15].

CORBA is commonly used in telecommunication robots in real time as

well as to keep track on them. At the University of Auckland, researchers

tested the LEGO Mindstorm and Khepera models to demonstrate the relia-

bility of a design for the distributed control of robots using CORBA [16].

The Institute for Computer Design and Fault Tolerance at the University

of Karlsruhe in Germany presented a distributed software architecture based

on CORBA for the autonomous service robot Albert2. The development was

focused on the modularity and integration of learning aspects [17].

The research group there proposed a system for controlling a humanoid

robot based on CORBA. Using this architecture in a distributed environment

such as a local network, it is possible that various humanoid robots all over

the world can share their own modules via the Internet [18].

CORBA has been used to integrate a distributed system of multiple mo-

bile robots in a simulated environment that offers the possibility of a collab-

orative control [19].

2.4 Jini

Jini is an architecture that provides an infrastructure for defining, publishing

and search services on a network. It was developed with Java classes [20].

The main feature of Jini is the service discovery in multicast mode or search

mode for specific services (similar to the idea of UPnP). It uses the multi-

platform feature of the Java platform to provide universal services, registering

each one as serialized objects with their own interfaces. A diagram of Jini’s

architecture is shown in Figure 2.4.

The main aims of Jini’s platform are the immediate availability of ser-

vices, the hardware abstraction on the Java environment, the service-based

architecture and simplicity.

2.4.1 General Features

This is an easy protocol [22] (Figure 2.5). When a device connects, it registers

in the lookup service of the Jini network. After that, the service sends a file

with the bytecode that a customer needs to use its services.

• The lookup service stores this file in a special table and puts similar

services together in groups. When a client asks the search service to use

18 Interoperability

Figure 2.4: Layers model of a Jini system [21]

Figure 2.5: Diagram of the sequence events of Jini [21]

2.4. JINI 19

a device, it responds with a list of devices that provide these services.

• The client responds with the identifier of the specific device to be used

and the search service responds with the bytecode mentioned above.

• The client will now be able to use the bytecode (during a specific time,

in a shared way or in an exclusive one).

2.4.2 Specific Features

The purpose of the Jini architecture is to put devices and software into groups

inside a distributed and dynamic system. This simplifies the access, manage-

ment and maintenance services offered by each point separately, keeping the

flexibility and control offered by a personal computer.

Services

The most important concept within the Jini architecture is the service. A

service is an entity that can be used by one person, one program or another

service. It may be a calculation, saved data, a communication channel with

another user, a software filter, a hardware device or another user. As an

example, we can mention the printing services of documents.

Members of a Jini system share access to services. A Jini system should

not be considered a set of clients and servers, users and programs or even

programs and files. Rather, it consists of a set of services used to perform a

particular task.

The services may use other services, and the customer of a service can

be a service itself for other customers. The dynamic nature of a Jini system

enables services to be added or removed, at any time, from a set, according to

demand, need or the changing demands of the working group. Jini systems

provide mechanisms for service construction, lookup, transfer and use in a

distributed system. The services may be:

• Devices, such as printers, screens and discs.

• Software, such as applications or utilities.

• Information, such as access to databases or/and files.

• Users of the system.

Services communicate with each other using a service protocol (set of

interfaces written in Java). All these protocols are undefined. The groundings

of the Jini system define a small number of these protocols, which in turn

define the interactions among critical services.

20 Interoperability

Lookup Service

Services are found and resolved by a lookup service. This service is the central

mechanism for the system to boot and the main point of contact between the

system and users. In other words, it is a mapping service made up of lookup

interfaces that indicates the functionality provided by a service to groups of

objects that implement the lookup service. In addition, descriptive entries

associated with a service allow finer lookup services, based on properties

understandable by a human being.

The content of a lookup service may include other search services, pro-

viding hierarchical searches. In addition, this kind of service may contain

objects that encapsulate other names or service directories, providing a sys-

tem of pointers that connects Jini lookup services with other search services.

Thus, references to a Jini lookup service can be mixed with these names and

directory services, providing the customers of these services with a way to

access a Jini system.

A service is added to a lookup service by a pair of protocols called discov-

ery and join. First, the service locates an appropriate lookup service (using

the discovery protocol) and then joins (using the protocol join).

Java Remote Method Invocation (Java RMI)

Communication between services can be performed using Java RMI. This

infrastructure is not a service itself, but is rather part of the Jini technology

infrastructure. RMI provides mechanisms to locate, activate and perform

the garbage collection of Java objects. This method will be deeply detailed

and presented as a different system for interoperability in the next section

(Section 2.5).

RMI is a Java extension to traditional mechanisms for RPC. RMI not

only allows data to pass from one object to another through the network,

but also whole objects can be sent and received, including their codes. Much

of the simplicity of the Jini system is because of this ability to move code

through the network, encapsulated in an object.

Security

The design of the Jini security model is based on the concepts of a master list

and an access control list. Jini services are accessed by an entity - the prin-

cipal - which generally refers to a particular user in the system. The services

themselves may request access to other services, providing the identifier of

the object that implements the service. The access of an object to a service

depends on the content of an access control list associated with the object.

2.4. JINI 21

Leasing

Access to many of the services in the Jini system environment is based on

the concept of lease or loan. A loan is a grant of guaranteed access to a

service for a certain period of time. Each loan contract is negotiated between

the service user and provider, as part of the protocol service: a service is

requested for a certain period of time and access is granted for the same

time period (probably taking into account the time span taken to make the

application). If a contract is not renewed before it is released - because the

resource is no longer necessary, the client or the network fails or the contract

cannot be renewed - both the user and the resource provider may agree that

the resource can be released.

Leases are exclusive or non-exclusive. The first ensures that no one else

can have a contract on the resource during the contracted period, whereas

non-exclusive leases permit multiple users to share the same resource.

Transactions

A series of transactions, in a single service or spanning multiple services,

may be involved in a transaction. The Jini transaction interfaces provide

the service protocol needed to coordinate a two-phase commit. The respon-

sibility for deciding how to implement transactions - and the semantics in a

transaction - is left to the services themselves using these interfaces.

Events

Jini supports distributed events. An object may allow other objects to reg-

ister in the events of an object and receive a notification with their histories.

This allows event-distributed programs to be written with a great variety of

liability and scalability guarantees.

General View of Components

The components of a Jini system can be divided into three categories: infras-

tructure, model of programming and services. The infrastructure is the set of

components that builds a Jini system, whereas services are the entities inside

it. The programming model is a set of interfaces that allows the construction

of reliable services, including those that are a part of the infrastructure and

those that are a part of the whole.

These three categories, although disjunct, are intertwined in a way that

makes distinctions between them confusing. It is also possible to build sys-

tems with some of the features of the Jini system with variants on the cate-

22 Interoperability

Table 2.1: RMI components

Infrastructure Programming

model

Services

Basic Java JVM API Java JNDI

RMI JavaBeans Enterprise Beans

Java security - JTS

Java + Jini Discovery/Join Leasing Printing

Distributed security Transaction Transaction

manager

Lookup Events JavaSpaces

services

gories or without any of them. By contrast, the main feature of Jini is that it

is a system built with a particular infrastructure and described programming

models, based on the concept of service.

The separation of the segments in the architecture means that only a

slight change is needed in the inherited code to be used in a Jini system.

However, the power of a Jini system is only available for services built using

the integrated model from the beginning. A Jini system can be considered as

an extension of the network’s infrastructure, programming model and services

that made Java technologies popular in the case of a single machine. These

categories, along with the components for the Java application environment,

are shown in the Table 2.1.

2.4.3 Organization of the Jini Architecture

Infrastructure

The infrastructure defines the basic core of this technology. It includes:

• A distributed system for security, integrated in the RMI, which

extends the security model from Java to the world of the distributed

systems.

• The discovery and join protocols, service protocols that allow other

services (hardware or software) to discover and announce the services

offered to the other members of the group.

• The lookup service, which is used as a backup for the services. The

entries in the lookup service of objects are written in Java, and they

can be downloaded as a part of a search operation and work as local

proxies for the service that sets the code in the lookup service.

2.4. JINI 23

Programming Model

The infrastructure enables the programming model and makes use of it at the

same time. The contracts made in the lookup service have a limited lifetime.

This fact allows the lookup service to precisely check the set of available

services at a specific moment. When the services binds to or separates from

the lookup service, the events are notified about it, and the objects that have

already shown an interest in receiving this information are updated about

these new or defunct services.

The programming model is based on the ability to move the code, sup-

ported by the infrastructure. Both the infrastructure and the services that

use it are calculation entities that live in the physical environment of the

Jini system. However, services also constitute a set of interfaces that de-

fine the communication protocols used by services and the infrastructure to

communicate between them.

These interfaces together form the distributed extension of the standard

model in Java programming, which constitutes the Jini programming model.

Among the interfaces that make up the Jini model are:

• The leasing interface, which defines a way to allocate and release re-

sources through a model based on the renovation of their lifetime.

• The event and notification interfaces, which are extensions of the event

model used by JavaBeans components for distributed environments.

This feature allows event-based communication between services en-

abled by the Jini technology.

• Operation interfaces, which enable entities to cooperate so that all

changes occur in the group or none take place.

Services

The technology infrastructure and the Jini programming model are designed

to enable the services to offer themselves and to be found on the network.

These services make use of the infrastructure to call and discover each other

and announce their presence to other services and users.

The services appear as objects written in Java, perhaps made up of other

objects. A service has an interface that defines the operations that may be

requested of it. Some of these interfaces are intended to be used by programs,

whereas others are intended to be administered by the client to enable the

service to interact with a user.

24 Interoperability

The kind of service determines the interfaces of which it is composed

and defines the set of methods used to access the service. A service can be

implemented only by other services. Some of the Jini services are:

• A printing service, which can print from Java applications.

• A service of JavaSpaces, which can be used for simple communication

and storing groups of objects written in Java.

• A transaction administrator, which allows groups of objects to partici-

pate in the Jini transaction protocol defined by the model of program-

ming.

2.4.4 Application Examples

There have been various initiatives to implement Jini as a form of com-

munication between devices. In this regard, we underline the Ronin Agent

Framework [23], an environment based on Jini’s distributed agents. This

implementation attempted to improve the initial protocol, making it inde-

pendent of the domain (so external devices could communicate with the local

network), among other advances.

[24] and [25] described the implementation of a SOA (architecture ori-

ented to services [26]), ICENI, using the Jini platform, among others. This

environment is based on an independent specification of SOA.

The integration of different service platforms is not easy. [27] integrated

Jini with UPnP, but it is important to note that these two protocols are

incompatible by themselves. This new platform allows UPnP services to

use Jini devices and vice versa by making just a few configuration changes.

However, these authors do not answer several of the questions referring to the

limitations encountered when working with these two architectures together.

In addition, for devices that do not have enough capacity to run a Java

Virtual Machine (JVM), Jini offers the possibility of using a surrogate host.

This is just another device capable of supporting a JVM, which works as a

bridge between the original device and the Jini network architecture.

2.5 RMI

RMI (Remote Method Invocation) emerged from the need to communicate

among different objects, and it is implemented on different machines as hap-

pens on distributed systems. Therefore, this technology is a remote invoca-

tion of Java objects. The initial version of Java RMI required a JVM in both

the origin and destination machines [28].

2.5. RMI 25

After the RMI-IIOP was developed, it was added to the RMI, providing

it with the best features of CORBA. RMI is pure Java and since it does not

support other languages, CORBA emerged. The adaptation to a distributed

system has not prevented the continued development of RMI as a secure

system. The main characteristics of RMI are:

• Simple, easy to write and easy to maintain.

• Transparency, because the distribution of objects and parameters pass-

ing is transparent to the programmer.

• Pass an object by value (as parameters of methods).

• The definition of interfaces is done directly in Java.

• Implementation in Java.

• Independence of the communication protocol.

• Separation between interface-client and implementation-server.

• Naming service.

2.5.1 Architecture

RMI is a layer architecture made of a stub/skeleton layer, a remote reference

layer and a transport layer. The programmer only interacts with the applica-

tion layer. The RMI system manages the three previous layers (Figure 2.6),

which could be replaced by others with the same function without altering

the rest.

2.5.2 Components

RMI allows the programming of CORBA servers and applications via the

RMI API. It is possible to work entirely in the Java programming language

using the Java Remote Method Protocol as a transport or to work with any

other CORBA implementation using IIOP Java RMI over IIOP.

RMI-IIOP is designed for developers who program in Java and want to use

the RMI interfaces using IIOP as the transport layer. The RMI-IIOP inter-

operability with CORBA objects implemented in other languages is available

only if all the remote interfaces have been previously defined as Java RMI

interfaces [29].

26 Interoperability

Figure 2.6: RMI architecture

2.5.3 Application Examples

At the University of Bielefeld, Germany, one research group has integrated

memory-based software for the development of autonomous robots. This is

an approach to an architecture of autonomous mobile robots operating in

human environments. It replaced the use of data on a closed chain based on

the long- and short-term memory. RMI was used for the exchange of critical

information, such as the module that controls the hardware. RMI also allows

the system to estimate when the configuration has been completed. The

system can then send information on the result of the configuration [30].

[31] focuses on task-level programming and monitoring robots in their

daily operations. It is not a framework limited to robots and it could be

used in other distributed environments. During its development, the au-

thors took advantage of technologies available in Java, such as Jini, RMI and

Java Native Interface. [16] supported Java RMI over Bluetooth, GPRS and

WLAN technologies. As a conclusion of this, the good work of Java RMI

was tested in heterogeneous wireless environments, allowing parallel and dis-

tributed control.

In a study by researchers at the Information and Communications Uni-

versity in Korea, RMI is used to access external ontologies in the development

of a selfexpandable software. This kind of software is useful for intelligent

robots for two reasons. First, they study their environments and then they

decide their appropriate behavior based on what they have learnt about their

surroundings.

2.6. OSGI 27

DEVS/RMI is a distributed, self-adaptive and reconfigurable simulation

environment for engineering studies. It is based on the standard implemen-

tation of DEVS, in which Java RMI supports the synchronization of local

and remote objects. It is designed for the intensive testing of programs, and

this is the reason for it supporting dynamic models [32].

2.6 OSGi

OSGi (Open Services Gateway Initiative [33]) is an independent corporation

that brings together about 40 companies in an alliance responsible for defining

and promoting open specifications for the delivery of managed services in

network environments. It is based on the modularity of the Java environment,

trying to abstract the implementation of components (bundles) using services

to communicate. One of its main aims was to resolve certain development

and deployment conflicts, such as class conflict and the explicit dependencies

[34].

2.6.1 General Features

OSGi is based on a layer model (Figure 2.7) that includes, among others,

the bundles or packages (components developed as jar files), services (which

provide communication between bundles through Java objects), modules and

security layer.

The features of OSGi could be a good alternative for the development of

complex systems because of its versatility and cross-platform feature (only a

JVM resident on each node of the network would be required for the running).

Nevertheless, OSGi has several problems (some delimited, some not) because

of its poor basis of compatibility and poor management of dependencies.

2.6.2 Specific Features

Framework of OSGi

The OSGi framework is a module system for Java that implements a complete

and dynamic model of components, which does not exist in independent envi-

ronments of JVMs. The applications and components (which come in packets

or bundles) can be installed, started, stopped, updated and uninstalled re-

motely without rebooting. The management of Java packages and classes is

carefully specified. Lifecycle management is performed through APIs that

make possible the remote download of management policies. The registry

28 Interoperability

Figure 2.7: Layer model of an OSGi system

allows service bundles to detect if services have been added or deleted and

acts accordingly.

Originally, it was focused on service gateways, but the scope has since

widened. OSGi specifications are now used in applications ranging from

cell phones to the Eclipse development environment (open source). Other

application areas include automotive, automation in industry and buildings,

PDAs, grid computing, entertainment (such as iPronto), fleet management

and application servers. Figure 2.7 shows the hierarchical structure of an

OSGi system.

Specification Process

OSGi specification has been developed by its members in an open process

that is available for the public free of charge under the OSGi specification

license. The OSGi Alliance has a performance program that is open to its

members. In September 2008, the list of certified OSGi implementations

contained five entries.

Architecture

Any framework that implements the OSGi standard provides an environment

for the modularization of applications in small packages. Each package is a

2.6. OSGI 29

Figure 2.8: Lifetime of an OSGi bundle

collection of well-coupled and dynamically loadable classes, jar files and a

configuration that explicitly state their external dependencies (if any). The

framework is conceptually divided into the following areas (see Figure 2.8):

• Bundles: These are jar components with extra headers in a detailed

manifest file.

• Services: The service layer connects bundles dynamically, offering a

model of publication, search and link to plain old Java objects.

• Register services: The API of some management services (ServiceReg-

istration, ServiceTracker and ServiceReference).

• Lifetime: The API for the management of lifetime (install, start, stop,

update and uninstall) bundles.

• Module: The layer that defines the encapsulation and declaration of

dependencies (how a bundle can import and export code).

• Security : The layer that deals with security issues, limiting the func-

tionality of the bundles to predefined capabilities.

• Running environment : This defines what methods and classes are avail-

able on a specific platform. Since they are susceptible to change, there

is no fixed list of running environments. The Java community is creat-

ing new versions and editions of Java constantly.

30 Interoperability

1. Bundles A bundle is a set of Java classes and additional resources

accompanied by a detailed manifest file (MANIFEST.MF) of all

its contents as well as the additional services required to provide

the included group of Java classes more complex behavior until the

point of abstraction, where the whole is treated as one component.

An example of a MANIFEST.MF file, typical of OSGi headers, is

shown below:

Bundle-Name: Hello World

Bundle-Symbolic Name: org.wikipedia.helloworld

Bundle-Description: A Hello World bundle

Bundle-ManifestVersion: 2

Bundle-Version: 1.0.0

Bundle-Activator: org.wikipedia.Activator

Export-Package: org.wikipedia.helloworld;version=“1.0.0”

Import-Package: org.osgi.framework;version=“1.3.0”

2. Lifecycle A lifecycle layer adds bundles that can be installed,

started, stopped, updated and uninstalled dynamically. The bun-

dles trust in the module layer for class loading but they add an

API to manage the runtime modules. The lifecycle layer provides

mechanisms that are not usually part of an application. Some

extensible dependency mechanisms are used to ensure the correct

working of the environment. Lifecycle operations are fully pro-

tected by the security architecture (Table 2.2).

3. Services

The OSGi Alliance has specified many services, all of them by

a Java interface. The bundles can implement this interface and

register it with the service registry. Service clients can find it in the

service registry or detect it when it appears or disappears (Tables

2.3-2.5).

2.6.3 Organization

The OSGi Alliance was founded by Ericsson, IBM, Motorola, Sun Microsys-

tems and others in March 1999 (before becoming a nonprofit corporation

called Connected Alliance).

Among its members (as of May 2007) are more than 35 companies from

different business fields, such as IONA Technologies, Ericsson, Deutsche

Telekom, IBM, Makewave - before it was Gatespace Telematics - Motorola,

2.6. OSGI 31

Table 2.2: Description of the lifetime of an OSGi bundle

State of the bundle Description

Installed The packet has been successfully installed

Resolved Every Java class that needs the bundle is available.

This state indicates that the packet is ready to be

started or stopped

Starting The package is being started; it will call the method

BundleActivator.start, and this one has not finished

yet. When the bundle has an activation policy, it

will remain in the initial state until it is activated,

according to this policy

Active The package has been successfully activated and it

is running. Its starting method, Bundle Activator,

has been called and it has returned

Stopping The packet is being stopped. The method Bundle-

Activator.stop has been called but the stop method

has not returned yet

Uninstalled The packet has been uninstalled. It cannot be

changed to a different state

Nokia, NTT, Oracle, ProSyst, Red Hat, Samsung Electronics, Siemens, Spring-

Source and Telefónica.

The alliance has a board that establishes the governance of the orga-

nization. OSGi officers have different roles and responsibilities to support

the alliance. The technical work is carried out in the expert groups (EGs)

organized by the board of directors, and the non-technical work is carried

out in various working groups and committees. The technical work in EGs

includes development specifications, reference implementations and compli-

ance testing. These EGs have made four versions of OSGi specifications (as

at 2007).

There are EGs dedicated to business areas, mobile phones, vehicles and

central platforms. The Expert Group Company is the latest EG and handles

applications regarding the company/server. In November 2007, the Residen-

tial Expert Group began working on specifications to remotely administer

residential gateways orc homes.

32 Interoperability

Table 2.3: OSGi system services

System services Description

Logging The information register, warnings, debug-

ging and errors are handled through this ser-

vice. It receives log entries and dispatches

others bundles that have already subscribed

to this information

Configuration admin This service allows an administrator to set

and view information about the configuration

of the bundles

Device access This simplifies the detection and connection

of existing devices. It is used in Plug and

Play environments

User admin This service uses a database containing user

information (both public and private) to issue

authentication and authorization

IO connector This service is implemented in the packet

CDC (https://en.wikipedia.org/wiki/

Connected_Device_Configuration), CLDC

(http://en.wikipedia.org/wiki/CLDC),

javax.microedition.io (https://docs.

oracle.com/javame/config/cdc/

ref-impl/cdc1.1.2/jsr218/javax/

microedition/io/package-summary.html)

as a service. This one allows the bundles to

provide new protocol diagrams

Preferences It offers an alternative, friendlier mech-

anism with OSGi to use the default

Java package java.util. Properties

(http://java.sun.com/javase/6/docs/

api/java/util/Properties.html) for

storage preferences

2.6. OSGI 33

Table 2.3: OSGi system services

System services Description

Component runtime The dynamic nature of the services - they can

be opened and folded at any time - makes it

difficult to write software. Runtime compo-

nent specification can make it easier to man-

age these issues, providing a declaration of

XML-based units

Deployment admin This standardizes the access to some respon-

sibilities of the administration agent

Event admin This provides the bundle with a mechanism of

internal communication, based on a publish

and subscribe model

Application admin This simplifies the management of an environ-

ment with different kinds of applications that

are simultaneously available

Table 2.4: OSGi protocol services

Protocol services Description

HTTP service This allows the information to be sent and re-

ceived by OSGi using HTTP

UPnP device service This specifies how OSGi bundles can be

developed to work with UPnP devices

(http://en.wikipedia.org/wiki/Universal_

Plug_and_Play)

DMT admin This defines an API to deal with a de-

vice using concepts of the specifications for

device administration from Open Mobile Al-

liance (http://en.wikipedia.org./wiki/Open_

Mobile_Alliance) (OMA)

34 Interoperability

Table 2.5: OSGi miscellaneous services

Other services Description

Wire Admin This allows the connection between producers

and consumers

XML parser This service allows a bundle to locate a parser

(XML syntax analyzer) with specified prop-

erties and compatibility with JAXP (http:

//en.wikipedia.org/wiki/JAXP)

Measurement and state This allows and simplifies the correct use of

measurements in an OSGi service platform

2.6.4 Application Examples

In October 2003, Nokia, Motorola, IBM, ProSyst and other members of OSGi

formed the Mobile Expert Group, which specifies a service platform based

on MIDP for the next generation of smartphones, dealing with some of the

needs that CLDC cannot handle. MEG joined OSGi at the same time as R4.

Also in 2003, Eclipse selected OSGi as the runtime platform for the plug-

in architecture to be used for the Eclipse Rich Client Platform and the IDE

platform. Eclipse itself includes sophisticated tools to develop OSGi bundles,

and there are some plug-ins for Eclipse to improve the development of OSGi

(for example, ProSyst and Knopflerfish have Eclipse plug-ins available for

OSGi developers).

There is a free software community with activity around OSGi. Some

open source implementations are widely used such as Equinox OSGi, Apache

Felix, the OSGi Knopflerfish project and the editing of embedded server

Equinox (mBedded Server Equinox Edition, BSEE). Now talking about the

support to the system’s development and testing, projects Pax OPS4J pro-

vide a lot of components and useful knowledge.

Some examples of OSGi uses can be found in the literature. [35] discussed

an intelligent system (SOCAM) based on ontologies integrated with OSGi to

build a system that can deliver and manage context-aware services in a smart-

home environment. Meanwhile, [36] fuse UPnP AV, which is used to provide

media services, with OSGi, which manages each UPnP entity as a bundle.

2.7 UPnP

UPnP (Universal Plug and Play) is a group of protocols [37] or a much-

extended architecture suggested by Microsoft [38] and promulgated by the

2.7. UPNP 35

UPnP Forum, which ensures that some network devices can autoconfigure.

The aims of UPnP are making sure that the devices can connect perfectly

and simplifying the implementation of networks at home (exchange of data,

communications and entertainment) and in corporate environments. It is an

open and distributed architecture based on already existing protocols and

specifications, such as UDP, SSDP, SOAP [39] or XML [40].

In addition, it is supported by the Internet protocol family TCP/IP, which

(independent of the company, operating system and programming language)

enables the APIs of the devices connected to a network control to negotiate

and exchange information and data in an easy and transparent way for the

user. This way, the user does not need to be an expert in networks, devices

or operating system configuration. In addition, UPnP technology does not

depend on the physical environment, so it can work on the telephonic line,

the power supply, Ethernet, radio frequency and IEE 1394.

2.7.1 General Features

The main characteristic of the protocol is the transparency of installing a

device that has just been connected to the power supply. All the services of

the installed device are automatically available without the need to configure

anything in the protocol [2]. UPnP notices when a new device is connected

to the net, it gives it an IP address, a logic name and updates the rest of the

devices about their functions and processing ability. As seems obvious, it also

updates the new device about these same features of the others. This way, the

user does not have to worry about the configuration of the net or losing any

time installing new drivers or controllers for the devices. UPnP is dedicated

to all these things each time a new device is connected (or disconnected) to

(from) the net. It also optimizes the configuration of the devices.

Its application for development of a home automation system offers a new

possibility to create distributed control architectures. In other words, robots

have independent activation parts connected by an internal network. Because

of this,UPnP gives more versatility and flexibility to the system. Moreover,

any change in software or any device in the system is easily adaptable in the

system.

A digital home based on UPnP is conceived to include all wire and wireless

networks, entertainment devices, telephonic systems, home control and many

more devices. It will also put some home networks together in a single logic

made by programmable devices [41] (Figure 2.9).

One of the most common uses of this protocol is to enable devices or

programs to open router ports, so they can properly communicate with the

outside world.

36 Interoperability

Figure 2.9: UPnP: network unification technology [41]

2.7.2 Specific Features

Since the (Universal Plug and Play) UPnP model is based on the existence

of two different components, the control point and the device, this protocol

makes identification of the roles of every element in a home automation net-

work possible. The main idea is that every device (a robot, a router, etc.)

can be accessible on a local area network (LAN). Some will announce the ser-

vices they offer to the rest using a protocol such as the SOAP or something

similar.

An XML file with the name of the device and a description of the services

it offers are sent through the network each time a new device plugs into the

network. The file may also include a URL pointing to the website of the

developer. In addition, an external pointer to detailed information about the

services could be included.

This fact gives a clearer idea of the ease of maintenance and transparency

of use that this architecture provides to applications and interfaces. As shown

in the figure above, Dynamic Host Configuration Protocol (DHCP) servers

and/or DNS may be available on the network, so a new device may automat-

ically be configured on the network upon connection. The next step will be

discovering services.

2.7.3 Protocols

Some protocols and standards, which are part of the UPnP architecture, will

be described in this subsection, special focus will be on protocols standard

2.7. UPNP 37

based on the concept of service. Some of the UPnP features related to the

protocols TCP/IP, UDP/IP, HTTP, SOAP and XML are specified below.

TCP/IP

TCP/IP stands for Transfer Control Protocol/Internet Protocol. It is the

grounding on which the development of other UPnP protocols takes place.

TCP/IP is a set of protocols that covers different physical media and provides

compatibility between different developers. It is based on the idea of an

IP address or, in other words, the idea of providing an IP address to each

computer connected to the network.

UDP/IP

The UDP (User Datagram Protocol) is the grounding that supports the

HTTPU and HTTPMU sending of messages (see below). It makes the send-

ing of datagrams possible before communication has been established.

HTTP, HTTPU and HTTPMU

These protocols are basic parts of UPnP. HTTP stands for Hypertext Trans-

fer Protocol. HTTPU and HTTPMU are variants of HTTP, in particular,

HTTP unicast and HTTP multicast. These variants are used for the delivery

of messages over UDP/IP when multicast is used or it is not necessary to

establish a connection ([42]).

SSDP

The Simple Service Discovery Protocol (SSDP) is a protocol that allows

searching for UPnP devices on a network. It detects devices and network

services that use the SSDP, such as UPnP devices. It also detects SSDP

devices and services running on the local computer. Searches are made by

sending a SSDP search request (on HTTPMU). In addition, it can refine

its search to find only devices of a particular type, only certain services or

even a particular device. A message is sent to all the devices on the net-

work through the same channel, so each device must be listening through

the multicast port. When it receives a search request, it checks the search

criteria and, if there is a coincidence, answers by sending a unicast SSDP

message, on HTTPU , with the code “200 OK”, which indicates that the

request was successful. When a device is connected to the network, it sends

several SSDP presence messages announcing the services it offers (delivery

is not guaranteed over the UDP). The messages sent by the device have a

38 Interoperability

link to the location of the document that contains its description, with its

properties and the services it offers. In addition to the SSDP properties, it

provides the device with methods for disconnection notification and updates

the device’s information using timeouts.

A SSDP packet is just an HTTP request with the statement “NOTIFY”

(to announce) or with “M-SEARCH” (to find a service), leaving the HTTP

body empty, and keeping UPnP-specific attributes in its head.

GENA

The General Event Notification Architecture (GENA) allows sending and re-

ceiving notifications using HTTP over TCP/IP and HTTPMU over UDP/IP.

UDP multicast is useful because it allows a single report to be distributed to

a potentially large group of receivers using a single request. GENA defines

the terms of the subscriber and the publisher of the notifications, which en-

able the event’s mechanism used by UPnP to warn of changes in the state of

services. When a subscription to a service takes place, it sends event mes-

sages updating the changes in the status of the device. These event messages

are in XML format. Apart from this, GENA is also used to create presence

messages, which are sent using the SSDP protocol.

SOAP

The Simple Object Access Protocol (SOAP) provides a standard mechanism

for packaging messages. It defines how two objects in different processes can

communicate exchanging XML data. Thus, UPnP makes use of XML and

HTTP to run remote procedure calls (RPCs), sending control messages to

devices and getting the results or the errors in each case. Each control request

is a SOAP message that contains the action invoked and all the necessary

parameters. The response is another message of the same type with the state

or the result of the action requested to the device.

Although many protocols are created to simplify the communication be-

tween applications (RPC from Sum, DCE from Microsoft, RMI from Java

and ORPC from CORBA), the SOAP has received more attention because

of the great support received from the industry. It has been accepted by

almost all large companies. Consequently, it is becoming the standard for

communication based on RPC over the Internet. Some of its advantages are:

• It is not associated with any language.

• It is not strongly associated with any transport.

• It is not tied to any distributed object infrastructure.

2.7. UPNP 39

Figure 2.10: UML (Unified Modelling Language) class diagram of a UPnP

device [41]

• It makes the most of the existing standards in the industry.

• It enables interoperability among multiple environments.

XML

Extensible Markup Language (XML) plays an important role in the exchange

of data. It is similar to HTML, but its main function is to describe data and

not to display them as is the case of HTML. XML is a format that allows

reading data through different applications. Specifically, it can structure,

store and exchange information ([43]). It is used in UPnP for device and

service descriptions, control messages and events.

2.7.4 Components of a UPnP Network

A UPnP network defines various types of components, such as control points,

devices and services. These are detailed below.

Devices

UPnP devices are logical containers for a service or set of services, and some-

times for other devices (embedded devices). Embedded devices can be discov-

ered and used independent of the main container. Each UPnP device can offer

any number of services. By itself, a device merely provides a self-description

40 Interoperability

Figure 2.11: UML class diagram of a UPnP service [41]

of its information, such as developer, model name and serial number. Device

services are those that provide real functionality (Figure 2.10).

There are different categories of UPnP devices, standardized according

to the set of services provided by each device. This information (along with

properties such as those mentioned above) is saved in an XML document

that must be kept in the device until it needs to be sent.

Services

Each service in a UPnP device can contain any number of actions. An action

has a name, a set of input parameters and a return value (optional). Each

argument has a name, a value and an address. The address can be input or

output depending on whether the argument is given to the action or returned

by the action.

A service has a service identifier (URI) that identifies it from all the

others; there cannot be two services with the same identifier. It can keep the

2.7. UPNP 41

Figure 2.12: Control point invoking a service action [41]

variables that represent the current state of the service. These state variables

have a name, type, default value, current value and a range of permissible

values. If a variable sets an event to indicate a state, then it is an event

notification variable.

A service is a state table, a control server and an event notification server.

The state table contains the variables updated when there is any change in

service status. The control server receives action requests and performs them,

updates the state table and returns the result. The event notification server

publishes updates of changes in the state of service (Figure 2.11).

Control Points

A control point is a network entity that invokes the functionality of a de-

vice. It is capable of discovering and controlling other devices. In terms of

client/server in a UPnP network, the control point will be the client and the

server role will be played by the device. Once the control point finds the

device, it is capable of:

• Getting the description of the device and a list of related services.

• Getting the descriptions of the services in which it is interested.

• Invoking actions to control the service.

• Subscribing itself to the service’s events (Figure 2.12).

When the status of the service changes, the event notification server sends

an event to the control point. In short, a control point finds the devices, in-

vokes the related actions to their services and signs up for event notifications.

By contrast, a device responds to the actions invoked by the control point

and sends the events when the variables change state.

42 Interoperability

Figure 2.13: UPnP protocols stack [44]

2.7.5 UPnP Operation

To describe the UPnP way of working, we will show the development in

six basic steps or stages: Addressing, Discovery, Description, Control, Event

Notification and Presentation. The routing stage can be considered step zero.

The representation of the protocol stacks used in each one of the following

steps is shown below (Figure 2.13).

Addressing

Since all UPnP communications are based on the Internet Protocol (IP), a

device must obtain an IP address before it can join to a network that supports

UPnP.

The first step, also known as the zero phase , is based on this; an address

for the control points and devices connected to the network must be obtained.

All the reasoning presented in this phase is valid for both devices and control

points.

Addressing is the process by which a device automatically gets an IP

address. It allows a device to join to the network and be prepared for com-

munication with other devices and control points. The routing protocols

implemented in the UPnP devices enables them to join dynamically to an IP

network and to get an address without being configured by the user.

UPnP devices can use the DHCP, UDP-based, to retrieve an IP address

from a DHCP server. To do this, both devices and control points must have

a DHCP client. Being connected to the network, the first thing to do is to

find a DHCP server that provides them an address. If this server already

2.7. UPNP 43

exists on the network, they must use the address they have been assigned.

If the network does not have a DHCP server, automatic IP addressing

(Auto-IP) must be used to get the IP address. Through this mechanism,

the device takes a random address within the 169.254/16 range to minimize

potential collisions with other devices. This range was established by the

ICANN (Internet Corporation for Assigned Names and Numbers) and the

IANA (Internet Assigned Numbers Authority) for IP self-configuration in

private networks. Once assigned an IP address using Auto-IP, it must be

checked that this address is not used by any other device on the network

using the ARP (Address Resolution Protocol). Each device must periodically

verify the existence of a DHCP server on the network to manage the process

of addressing. In this case, the automatically assigned IP is ruled out and so

they start with the dynamic addresses assignment using the DHCP server.

First, a device or control point tries to contact a DHCP server to obtain

an IP address. If it is unable to locate the server, the device uses Auto-IP,

which allows devices to select addresses without having a server to assign it to

them. It may be necessary to resolve the assignment to IP addresses because

the devices can implement protocol layers higher than UPnP. To obtain this

functionality, devices must incorporate a DNS client and support the DNS

dynamic registration.

Discovery

The discovery phase defines how a device announces its presence and how

control points discover it. A UPnP device is like a mini web server that can

be detected and monitored by a control point. The discovery process allows

control points to find devices and services of interest and obtain information

about them. The devices use the SSDP to announce their services to control

points. These last ones use the SSDP to search for devices. In the tower of

protocols below, you can see certain color codes that match the parts of each

message defined below. These color codes are useful until the operation’s

description of the UPnP technology is finished (Figure 2.14).

Once a device has acquired an IP address, the SSDP announces its services

to all the control points of the network. Similarly, when you add a control

point to the network, the SSDP searches for relevant devices on the network.

They will answer if there is an agreement with the data of the search message.

The message exchanged in both cases is a discovery message that contains

essential details about the device or its services, such as the type of device,

identifier and a pointer to more detailed information (Figure 2.15).

It must be kept in mind that when a control point or device initializes

and connects to the network, it must wait a random time between 300 and

44 Interoperability

Figure 2.14: Protocol stack for discovery

Figure 2.15: Recovery of the descriptions of a service and a device [41]

2.7. UPNP 45

3,000 ms before sending any message of discovery. These ranges are set to

avoid problems when many devices connect to the network at the same time

(300 ms) and to minimize delays in the recovery of a network (3,000 ms) [45].

A URL of the XML document describing the device is included in the dis-

covery and the advertisement responses of every device. This URL provides

the necessary information to the control points to retrieve the descriptions of

the devices and their services. All services contained in a device have three

URLs that provide the necessary information to allow the control points to

communicate with them:

• The URL of control is where the control point sends requests to control

the service. UPnP device manufacturers specify one for each device.

• The URL of subscriptions to events is where control points send

requests to subscribe to events. There is a URL for this kind of service

in each device. If a service does not have event variables, and therefore

no notification of events, the element URL of subscriptions to events

must appear, but it will be empty.

• The URL of description indicates the location of the control points

from which the service description document will be retrieved. The

service description document is returned by an HTTP GET request.

A control point has two possibilities to search for devices. It can pick

up a notification message sent by a device or it can request the response of

the device using a discovery message sent by the control point itself (Figure

2.16).

The devices must refresh their advertisement messages periodically be-

cause they have a limited lifespan. For this reason, they are not obliged to

cancel those sent previously (announcing their capabilities) when they dis-

connect from the network.

There are two ways of discovering devices:

1. Advertisement

Once a device joins to the network, it announces its embedded devices

and its services to control points through NOTIFY messages defined

by GENA. These are multicast messages that use the SSDP. These

messages are sent to the address and port (239.255.255.250:1900). This

default value is indicated by ICANN/IANA to use it with the SSDP.

The control points are supposed to listen to arriving messages in this

port, knowing this way the capabilities that are available on the net-

work. These messages do not require a response. One important fact

46 Interoperability

Figure 2.16: Discovery step [46]

about advertisement messages is the time of validity, which indicates

the period in which the device is available. After finishing this period

without sending an advertisement message, the device will stop being

available on the network.

During the advertisement process and considering that a root device has

d embedded devices and provides k different types of services, a total

of 3 + 2 d + k advertisement messages are sent to the network. This

can be deduced, assuming they are different devices, by interpreting

the number of messages that should be sent by a device:

• A message for each type of service with NT=type of service.

• A message for each type of device (root or embedded) with NT=device

type.

• A message for each device (root or embedded) with NT=UUID of

the device.

• A message regarding the root device with NT=upnp:rootdevice.

2. Search

This procedure is activated when a control point requires a type of

device or a specific service. This is when the control point sends

a multicast message with the address and port specified above, i.e.,

2.7. UPNP 47

Figure 2.17: Protocol stack for description

239.255.255.250:1900. In this case, unlike in the method of advertise-

ment, it will require answers from the devices that fit with the spec-

ifications defined by the control points. A control point must send

multiple M-SEARCH messages since the messages are sent over the

UDP (which does not guarantee delivery). A control point will receive

multiple messages, but some will be duplicates. To filter these replies,

the control point uses the USN header, which provides a unique iden-

tifier to look for answers.

Description

The description enables a device to list all the features it can provide. The

descriptions of the devices and their services are stored in XML documents.

The device summarizes its services and capabilities in a standard format. A

device description document contains device information (such as developer,

make, model and serial number), a list of the services provided by the device

and a list of its embedded devices. A service description document contains

detailed information about the device’s service, the actions that the service

provides, the parameters and values returned by the service (Figure 2.17).

The answers to the search messages received by a control point contain

48 Interoperability

Figure 2.18: Hierarchy in the device and service description [41]

URLs that provide descriptions of the capabilities of the device. Control

points use these description documents to get more information from the

devices, trying this way to get their features and interact with them.

The description of a UPnP device consists of two parts: the device de-

scription, which refers to the physic and logic container, and the service

description, which refers to the capabilities offered by the device. Both de-

scriptions are provided by the developer and are written in XML.

Devices may contain other logic devices apart from services. The UPnP

description document includes a list of integrated devices and a description

of the available services. For each service, its description includes a list of

actions to which the service replies and the arguments for each action. The

service description also includes a list of variables that reflects the state of

the device. These variables are described in terms of their types of data,

ranges and characteristic events (Figure 2.18).

To receive the description of a device, the control point sends an HTTP

request using the GET method to the URL contained in the discovery mes-

sage that had previously been received by the device. When it receives the

request, it replies with an HTTP message that contains the device’s descrip-

tion in the message’s body.

2.7. UPNP 49

The URLs of the device’s description of its services are included in this

description. The information contained in the device description consists of:

• An XML document containing various data from the device.

• The meanings of all nested devices.

• A list of all services supported by the device, including state variables

and actions.

The control point can send another HTTP request containing the URLs

of the service descriptions to reacquire the service descriptions. The format

of the control point’s request is shown below (it is important not to forget

about the blank line at the end of the header):

GET: description route HTTP/1.1

HOST: host:port

ACCEPT-LANGUAGE: control point’s favorite language.

The syntax of the device’s response message is shown below, and the

device’s or service’s description will appear in the body.

HTTP/1.1 200 OK

CONTENT-LANGUAGE: language used in the description

CONTENT-LENGTH: length of the body, in bytes

CONTENT-TYPE: text/xml

DATE: time to answer

For each service that contains a device, the description contains (in ad-

dition to what was stated above) the name and type of service, service de-

scription URL, URL for control and URL for event notification. Finally, the

device description also provides a description of all nested devices and a URL

for presentation (Figure 2.19).

Control

Control is the UPnP phase in which the control points invoke actions to the

services of the devices. Once a control point has all the information about a

device and one of its services through its description, it will be able to control

the service by invoking actions. The protocol stack that supports the control

phase in the running of UPnP is shown in Figure 2.20.

To control the device, UPnP is based on the SOAP, which uses XML and

HTTP to provide web messaging and RPC. XML makes public the content

of the message and HTTP sends the message to its destination. The SOAP

comprises four parts:

50 Interoperability

Figure 2.19: Description step [46]

Figure 2.20: Protocol stack for control

2.7. UPNP 51

Figure 2.21: Control step [46]

• Extensible and required envelope to encapsulate the data. The SOAP

envelope defines a SOAP message, and this is the basic unit of exchange

between SOAP message processors. This is the only obligatory part of

the specification.

• Optional rules for encoding data represent data types defined by the

application.

• Link between SOAP and HTTP. This part is also optional since the

SOAP can be used in combination with any transport protocol or mech-

anism that can transport the SOAP envelope.

• RPC Model. Its purpose is message exchange (request/response). It is

a convention to represent RPC and its responses.

To invoke an action, the control point sends a message to the control

URL that it already knows from the description phase explained above. The

device will respond with the result or the errors obtained after running the

service action. Moreover, this action may change the state of the service and,

therefore, change some of its variables (Figure 2.21).

To invoke a specificaction, the control point must send a SOAP request

using the POST method to the service device. This control message contains

information specific to the manufacturer, name of the action, names of the

arguments and variables that are defined by the UPnP Forum.

Requests for the state variables were considered in UPnP, but this way

of working has been discarded by the UPnP Forum and must not be used

for control points. Instead, the working committees and the manufacturers

52 Interoperability

Figure 2.22: Protocol stack for event notification

define actions that return the variable’s value and that can be invoked by the

control points.

Event Notification

Event notification offers the possibility of notifying a control point when the

state of a device changes. As explained above, a service description contains

a list of variables that model the state of the service. If any of these variables

is likely to be reported as an event, the service publishes updates when any

of these variables are modified. The protocol stack used in this case is shown

in Figure 2.22.

The event notification system uses a publisher/subscriber model in which

the control points can subscribe to events sent by a service. The services

publish event notifications to subscribers. An event is a message sent from

a service to the subscribed control points. The events inform the subscribed

control points about the state changes in the service (Figure 2.23).

A control point that wants to be notified about changes in the state of

the variables subscribes to an event source by sending a subscription request

to the URL of the events, which is contained in the corresponding device de-

scription. The subscription application must include the service to subscribe,

2.7. UPNP 53

Figure 2.23: Subscribing and notifying [41]

Figure 2.24: Event notification step [46]

a URL to send events and a subscription time.

If a service accepts the subscription request, it responds with a unique

identifier of subscription (SID) and the life of the subscription, which indi-

cates its validity period. This unique identifier allows the control point to

refer to the subscription service for future applications to the service, such

as renewing or canceling the subscription (Figure 2.24).

Event messages are sent to all subscribers regardless of the reason for the

change in state variables. These messages contain information expressed in

XML with the names and values of those state variables configured in the ser-

vice as event variables. The event notification protocol is GENA and, as seen

in the previous protocol stack, it is used in the TCP transport, which guaran-

54 Interoperability

tees message delivery to the subscriber. When the subscription expires, the

subscription identifier becomes invalid and the service stops sending events

to the corresponding control point. If this control point attempts to send

any message (renewal or cancellation, but not the subscription), the service

is rejected because the ID is no longer valid.

The control point will send a subscription message to the URL of the

service to receive its events. This message uses the SUBSCRIBE method

defined by GENA and its syntax is:

SUBSCRIBE event route of the service HTTP/1.1

HOST: host:port

CALLBACK: <delivery URL> NT:upnp:event

TIMEOUT: request for the lifetime, in seconds

A blank line must be added at the end of the last header. When this mes-

sage is received, the service establishes a list of subscribers with the following

information for each of them: SID, URL for the event messages delivery, event

counter and length of subscription.

If the subscription is accepted, the service sends a message with the iden-

tifier of the subscription and validity period. This message has the following

syntax. It is important not to forget about the final blank line:

HTTP/1.1 200 OK DATE: request time

SERVER: OS/version UPnP/1.0 product/version

SID: uuid:subscription UUID

TIMEOUT: lifetime of the subscription, in seconds

The first event notification message must be sent after the message above.

It contains the names of the variables and their current values in XML.

In addition, each time that one of these variables, which are set as event

variables, changes the service must send an event message to all subscribed

control points.

These event notification messages are labeled with a different key for

each subscriber to detect errors. In every control point, in the initial event

message, this key is set at zero and increases with each subsequent notification

message. This way, if the subscriber receives a notification with an incorrect

key, it will reply to the service with an error message.

All subscriptions must be renewed periodically for the control points to

go on receiving notifications. To keep a subscription active, the control point

must send a renewal message before the subscription expires. The renewal

message is sent to the same URL as the original subscription message, but

this time it does not include the URL for event message delivery. Instead,

the renewal message includes the subscription identifier received in the initial

message, which confirmed the subscription. We can see this message format

2.7. UPNP 55

Figure 2.25: Protocol stack for presentation

below and, as already mentioned, it must include the blank line:

SUBSCRIBE: service route HTTP/1.1

HOST: host:service port

SID: uuid:susbcription UUID

TIMEOUT: request for the time of subscription, in seconds

The answer to this message is exactly the same as in the subscription mes-

sage case. When a control point does not want to get any more events from

a service, it can call off its subscription by sending a cancellation message:

UNSUBSCRIBE: service route HTTP/1.1

HOST: host:service port

SID: uuid:subscription UUID

The answer to this message is, as in the case above, an HTTP confir-

mation. If the control point abruptly disconnects from the network without

sending the message to cancel the subscription, the service will keep on send-

ing it notifications until the subscription time expires.

Presentation

In a UPnP network, a control point can monitor a device or check its status

through the presentation of an HTML page. A home page can be loaded by

the control point in a browser and this allows users to view and control the

device. The protocol stack required for this is shown in Figure 2.25.

Home pages are not necessary; if a device has no home page, it can still

be controlled through standard control messages. If the device allows a home

56 Interoperability

Figure 2.26: Presentation step [46]

page, its description document contains the URL for the presentation page

on the label <presentationURL>. This label must always be present. If the

device has no home page, the label will be empty.

In the presentation phase, the control point sends an HTTP request using

the GET method to the presentation URL (available in the device descrip-

tion) and the device then returns to the home page. After loading the page in

the browser, the control point can monitor the device or check its variables.

The diagram in Figure 2.26 shows this.

The presentation message for requests includes the field ACCEPT-LANGUAGE,

and the language of the presentation page will be defined by the Content-

Language field, which is defined in the device.

An additional component of a UPnP network is the application layer.

The capabilities of a device are defined by itself and the service models that

provide the framework for the network components (description, control and

events). A device manufacturer can develop these models by itself or work

with other manufacturers inside the UPnP Forum to prepare the standard

for the device and the service models. Currently, the working committee for

UPnP has developed definitions for standard models.

2.7.6 Application Examples

Some modern projects work with UPnP, such as [47], which compares it

with other distributed systems such as CORBA. [48] used UPnP to build

a middleware layer for a home network. It is important to notice that, for

this project, we have used device emulators (TV, fridge, etc.). This will be

important for future implementations of the final solution.

2.8. DLNA 57

[49] demonstrated UPnP protocol integration in a system consisting of

a robot to manipulate objects. This paper described the design of the sys-

tem systematically, the data used to compile the XML document of services

and the definition of actions and control variables. In [5], there were conclu-

sions to develop a flexible and low cost home automation, which has been

implemented using UPnP.

This architecture is also used for sensor networks. [50] studied the design

of a network with an interface between wireless sensor networks and UPnP

via TCP/IP. This application makes possible the communication between

control points and sensors and provides the use of web technologies for the

control interface. By contrast, [51] discussed the few resources that present

the sensing devices using a UPnP agent (BOSS, bridge of the sensors) that

acts as an interface between the PC and the elements not supported by UPnP.

Currently, you can find different solutions in the market for developing

UPnP systems, highlighting initiatives such as CyberLink for Java [52], a

Java implementation that automatically controls all the internal aspects of

the protocol and allows the programmer to focus on the business layers and

the tool’s interface.

2.8 DLNA

The DLNA (Digital Living Network Alliance) is an international and collabo-

rative organization of companies involved in consumer electronics, industrial

computers and mobile devices.

DLNA is a standard that allows different devices from the same network

connected together to share information easily and without complicated con-

figurations [53]. This system works with both wireless and Ethernet networks

and even with the power supply. The DLNA has established a set of stan-

dards for the platforms and infrastructure software to be completely compat-

ible. It focuses on the interoperability among mobile devices associated with

multimedia images, digital audio and digital video.

Thus, assuming that all available devices on the network support this

technology, a copy of the content and the network can be accessed from any

device. In other words, we can listen to music from the files stored on our

computer, watch movies stored on the digital video recorder on our computer

or see photos of our camera on the TV. Figure 2.27 shows a possible scenario

using this technology.

The objectives proposed by this technology are listed below:

• Digital music should be easily captured, stored and accessed from any-

where in the house. Digital photos should be managed, viewed and

58 Interoperability

Figure 2.27: Interoperability between devices using DLNA

printed very easily.

• It must be possible to read content anywhere and enjoy it while trav-

eling by car or walking down the street (there are already projects to

synchronize information).

• It must be possible to save the distributed content to be able to see it

as many times as we want.

2.8.1 General Features

The digital home is an electronic network made up of PC and mobile devices

that cooperate transparently. The aim of DLNA is to become a home network

for all its global customers. This objective integrates the interoperability of

the three digital islands within the home: the Internet, broadband electronic

network and island of mobile devices (Figure 2.28).

The DLNA network must have at least a server and a client to work.

The main objective of DMS (Digital Media Servers) is to provide multimedia

content to DMP (Digital Media Players), which act as clients. These devices

include camcorders, digital cameras, game consoles and mobile phones, but

they need to be certified, that is, they must have integrated the electronics

and configure to the DLNA standard.

DLNA makes use of a part of the technology developed for UPnP that

allows the discovery of other devices on the local network. DLNA is based on

UPnP and IETF (Internet Engineering Task Force) technologies [54]. The

DLNA standard is based on standards established in the industry and devel-

oped by groups such as IETF, World Wide Web Consortium (W3C), Motion

Picture Experts Group (MPEG) and the UPnP Forum. Interoperability be-

tween devices is transparently performed by providing a particular service to

2.8. DLNA 59

Figure 2.28: Objective of DLNA: digital islands at home

the user. This includes the ability of the devices to communicate with each

other and exchange useful information.

The interoperability guidelines require that all devices must support con-

nectivity via Ethernet, Wi-Fi or Bluetooth. It uses TCP/IP for all network

connections and works with HTML and the SOAP for transport and media

management. The required formats to support images, audio and video are

also defined. They are JPEG, LPCM (Linear Pulse Code Modulation) and

MPEG2, respectively.

DLNA is based on a specification created by the working groups of the

UPnP Forum. This specification is the UPnP AV (Audio and Video UPnP),

and it has been the greatest success for these working groups, at least in

terms of digital content (Figure 2.29).

DLNA Model for Devices

The model for devices used by DLNA comes from the UPnP Forum and

consists of devices, services and control points. The devices are network

entities that provide services. These services are the basic control units and

they perform actions to keep a state through its variables. The control points

are network entities used to discover and control other devices on the network.

A group of multiple devices can be controlled by a control point.

In the UPnP standard, interoperability was first between the control point

and a single device. However, with the evolution of the specification of UPnP

AV (and DLNA as well) the basic model of devices was improved. For this

reason, although interoperability between the control point and device still

60 Interoperability

Figure 2.29: DLNA interoperability model

2.8. DLNA 61

Figure 2.30: Categories and kinds of DLNA devices

works, it has been extended to other devices so that they can interact with

each other by exchanging digital content using different communication pro-

tocols (Figure 2.30).

There are 12 kinds of DLNA devices in three different categories. The

category Home Network Device (HND) consists of five classes of devices that

share the same use on the network system, with the same media formats and

connectivity requirements.

• DMS. These are devices that can originate, acquire, record and store

media on the model of interoperability in the digital home. There are

DMS that help to protect the content saved. These devices, in case

a customer is not able to handle a particular format, must be able to

convert the file into another format before sending. Some examples of

these devices include digital video recorders, computers, home cinema

with hard disk drives (such as music servers), devices to capture video

and images and multimedia mobile phones. We can see the protocols

and services of DMS in Figure 2.31.

• DMP. These devices select and play the digital media stored on the

network and include TV monitors, home cinema, PDAs, multimedia

mobile phones, consoles and digital media adapters.

• Digital Media Renderer (DMR). Devices that reproduce the content

62 Interoperability

Figure 2.31: Protocols and services of DMS

received from DMS or their mobile counterparts after being configured

by another device on the HND, such as a Digital Media Controller

(DMC, see below). DMC and mobile DMC devices will be explained

in subsequent studies. Examples of such devices include televisions,

audio/video receivers and remote speakers for music. The services and

protocols of a DMR are show in Figure 2.32.

• DMC. This device has the ability to find content exposed by DMS

and adapt it to the rendering capabilities of a DMR, establishing the

connections between them. It can also send instructions to another

device, such as telling a server to play a particular video on a TV or

sending a photo to a printer. A possible example of a DMC could be a

learning remote control or a multifunctional device such as a multimedia

mobile phone.

• Digital Media Printer (DMPr). These devices provide printing services

to the home network. Some examples are a network printer or an

application running on a PC with a USB-connected printer.

The category Mobile Handheld Device (MHD) consists of five classes of

devices that use the same model as in the HND category, but have different

requirements for media formats and network connectivity. This category

includes the following kinds of devices and features:

2.8. DLNA 63

Figure 2.32: Protocols and services of DMR

• Mobile DMS . Wireless devices that provide and distribute content to

a mobile DMP, DMR or DMPr. Examples of these devices are mobile

phones and music players.

• Mobile DMP . These devices are able to find and play the content

offered by DMS or mobile DMS and play it in a local environment.

An example of this kind of device may be a media tablet, which is a

portable player with Wi-Fi connectivity that can be used as an Internet

browser.

• Mobile Digital Media Controller . A device that finds content of-

fered by a mobile DMS and adapts it to the capabilities of a DMR, es-

tablishing connections between the server (DMS) and renderer (DMR).

A PDA and an intelligent remote control are examples of such devices.

• Mobile Digital Media Uploader . These wireless devices send (load)

a mobile DMS or DMS with an upload functionality. A digital camera

and a phone with an integrated camera are examples of such devices.

• Mobile Digital Media Downloader . This finds and downloads the

content exposed by DMS or mobile DMS and reproduces it after down-

loading. An example is a portable music player.

MHDs interact with stationary devices in the DLNA digital home and

allow a wide variety of uses. Some examples include:

64 Interoperability

• Play images and videos taken from a MHD on a TV.

• Remote control function.

• Uploading images, music and video clips to a media server.

• Download images to a server using its controls.

The category Home Infrastructure Device (HID) integrates two kinds of

devices. These devices are designed to enable MHDs and HNDs to interact.

• Mobile Network Connectivity Function . These devices provide a

bridge function between the network connectivity of MHDs and HNDs.

• Media Interoperability Unit . Devices that make possible the change

of format in multimedia content between HNDs and MHDs.

These 12 kinds of devices enable the sharing of digital content over a

network. The three basic classes that must be in a DLNA network are DMS,

DMP and DMC, and a particular device can do the functions of one or more

of these basic devices.

The ways of working of these devices on the DLNA network, or the phases

that it has to carry out, are similar to those described for UPnP. In the next

picture, we see a representation of how to proceed in DLNA (Figure 2.33).

2.8.2 Specific Features

Nowadays, the IPv4 protocol family is used, but the IETF is standardizing

IPv6 as an enhancement of this version. The use of IP in the digital home

brings us many benefits:

• It allows us to run applications over different means that can commu-

nicate in a transparent way. IP provides the framework that allows

applications to be independent of the transport technology.

• It allows connecting all the devices in the home to the Internet. Using

IP, every digital home device can connect to any other connected to

the Internet.

• IP connectivity is cheap. Its implementation makes sure that IP is

available at a lower cost than that of other technologies. Therefore,

IP support in the current digital home is essential for interoperability

among devices. The Figures 2.34 shows the protocol stack used by

DLNA 1.5.

2.8. DLNA 65

Figure 2.33: DLNA operation

Figure 2.34: DLNA protocols stack [55]

66 Interoperability

The base for DLNA is the TCP/IPv4 protocol. Each device must imple-

ment a DHCP client and look for a DHCP server the first time it connects to

the network. The device must use the IP address assigned by this server and,

in case it does not find any server, the device will use Auto-IP, which means

that it will generate an IP address within the 169.254/16 address range. The

first and last 256 addresses in this range are reserved and cannot be used.

Once it has an address, it must determine whether that IP is available using

ARP. If the device receives a response, it is assumed that the chosen IP is

currently in use on the network and must generate a new one. In addition,

the device must periodically check the existence of a DHCP server.

The technologies for the network connectivity that can be used in DLNA

are Ethernet 10Base-T and 100Base-T (802.3i/802.3u) for wire connections,

Wi-Fi (802.11a/802.11b/802.11g) for wireless connections and Bluetooth for

wireless connections in handheld devices. In future, the idea is to start

working with Ethernet 1000Base-T (802.3ab) and faster Wi-Fi connections

(802.11n). It is also important to know that technologies such as LonWorks,

CeBus, X-10 and Universal Powerline Bus are supported through UPnP

bridges.

To protect digital media devices, DLNA technology makes use of digital

rights management, which restricts the use of the media and devices. To

protect the links (encryption/decryption) it is necessary to include a layer

above all others in the protocol stack. This layer is based on Digital Trans-

mission Content Protection (DTCP)/IP, which is needed to establish secure

interoperability, and WMDRM-ND, which is optional and provides access to

additional content.

DTCP/IP is a technology to protect links and is particularly adapted to

work over IP [56]. It is used to provide security to commercial content. It

allows for the establishment of a secure authenticated channel that supports

data flow (streaming) with limited copying rights: copy once, never copy and

copy-restricted rights.

Media Format

The media format describes the way to encode and the format for each one

of the three kinds of media: audio, video and video with audio (AV). The

term format is equivalent to codec or codec family.

The media format model is intended to achieve interoperability on the

network, while the innovation in the media codec technology goes on. It

defines a set of media formats and a set of optional media formats for audio,

video and AV. DLNA also provides rules for the use of optional formats

between compatible devices and converts optional formats into mandatory

2.8. DLNA 67

Table 2.6: Mobile household appliances

Mandatory

formats

Optional

formats

Mandatory Optional

Media for household for household formats for formats for

Format devices devices mobile devices mobile devices

Image JPEG GIF, TIFF,

PNG

JPEG GIF, TIFF,

PNG

Audio LPCM MP3, WMA9, MP3 y

MPEG4

MPEG4,

AMR,

(2 channels) AC-3, AAC, AAC LC ATRAC3plus,

ATRAC3plus G.726, WMA,

LPCM

Video MPEG2 MPEG1,

MPEG4,

MPEG4 AVC VC1, H.263,

(AAC LC MPEG4 part

2,

Asoc. Audio) MPEG2,

MPEG4

AVC

ones and vice versa. In the following table, we can see both the mandatory

and optional formats for fixed and mobile household appliances (Table 2.6).

Media Transport

Media transport defines how the data move through the network. The

grounding of the DLNA transport for any device that deals with media con-

tent through the network is HTTP 1.1. It is necessary to use this protocol,

but there is also an optional protocol of transport in DLNA, namely the

real-time transport protocol (RTP).

Management of Media, Distribution and Control

Media managing allows devices and applications to identify, manage and

distribute digital content across devices on the network. UPnP technology

AV is the solution for the management and control of devices developed

according to the guidelines for the interoperability of devices on the network.

UPnP AV architecture allows devices to support the entertainment content

in any format and in any transport protocol. The services provided by this

68 Interoperability

technology are:

• Content Directory Service . This service provides a mechanism for

each content server on the network as well as a standard directory

and all its available content to any interested device. It enumerates

the content and presents a logic structure for the multimedia library

available on the server, such as videos, music and images.

• Connection Manager Service . Determines the way content can be

transferred from the media server to a media player device. This service

is used to carry out one of the following actions:

- Match the capacity between the server and player devices.

- Set up and remove connections between devices.

- Find out information about current transfers on the network. When

connections are made, the connection manager service is the interface

between the devices and the TCP/IP stack.

• AV Transport . This controls the flow of audio and video including

the functions of play, stop, pause and search.

• Delivering Control Service . Many devices contain attributes that

can be configured dynamically. They make differences in content deliv-

ery, such as brightness and contrast in video devices or volume, balance

and the equalizer in audio devices. This allows the control point to dis-

cover the attributes that support a device and retrieve, change and

restore the configuration of any of these attributes.

Figure 2.35 shows the typical sequence when reproducing multimedia con-

tent.

2.8.3 Application Examples

DLNA is currently implemented in the home in the usual way, especially with

the appearance of lots of important manufacturers of devices that incorpo-

rate this technology. Among the most common devices using DLNA and

incorporating it into our home are TV sets (with 400 certifications in the

second quarter of 2009), games consoles, mobile phones (such as Nokia N95,

which incorporated this standard), players and even cameras. There were

2,000 certified devices during the first half of 2009. Thus, it seems that this

standard is becoming more and more relevant for the exchange of information

and interactivity between terminals.

2.8. DLNA 69

Figure 2.35: Sequence of actions

70 Interoperability

Attempts have been made to expand the DLNA domain further so a

device will be able to connect to any network. For example, [57] implemented

the DLNA proxy server to service any virtual network [58].

2.9 Web Services

WS (Web Services) is a technology that allows websites to use distributed

applications and offers features such as access to the information and func-

tionalities of any platform. At first, they were created to meet the need

to standardize communication between different platforms and programming

languages because earlier attempts such as CORBA had little success. In the

case of CORBA, this was because there are certain limitations for more com-

plex applications that require a security control or transaction management.

WS provide a standard means of interoperating between different software

applications, running on a variety of platforms and frameworks. WS are

functions or procedures that can be accessed via the web. Regardless of

the programming language of the service and its platform, they enable the

exchange of data and provide services between different applications.

Such a degree of interoperability is only possible using open protocols. WS

are mainly used with HTTP because this is widely used and is rarely blocked

by firewalls. WS are a set of protocols and standards used to exchange data

between applications, and they are used on important websites for tasks

such as e-commerce, web browsers and computer services by companies such

as Google, eBay or Amazon. The W3C is responsible for managing the

specifications. The main features of WS technology and its advantages and

disadvantages are listed below:

• It is supported by any platform and any programming language.

• It is a W3C standard.

• It provides functionality to websites.

• It uses HTTP to transport data.

• It uses standard elements for each of its components (SOAP, UDDI,

Web Services Definition Language (WSDL) and XML).

- One of the main advantages of WS is that they allow applications

to communicate efficiently, regardless of the platforms used, offering

greater interoperability. WS use standards and text-based protocols,

which allows a better understanding and easier access to the data ex-

changed. They also use HTTP to allow the information to pass through

2.9. WEB SERVICES 71

Figure 2.36: WS communication architecture

firewalls without major complications. This fact together with the use

of XML promotes interoperability.

- However, WS are much less efficient than are CORBA or RMI be-

cause they make use of formats based on text, such as XML, which

are not the best options to process tasks. Nevertheless, new WS stan-

dards may define more optimized protocols. Also they are not as devel-

oped as standards such as CORBA. Both HTTP and XML have a high

run-time cost compared with other distributed applications approaches.

Skipping the firewall security can also be seen as a drawback.

2.9.1 Components

WS use text-based standards and protocols, and this involves the components

listed below. Figure 2.36 shows the diagram of the interactions between the

entities and flows of the incoming and outgoing data of each component.

1. WSDL

It is desirable that WS have information on the operations and data

types involved. For this reason, WSDL is used. This is a standard

adopted by the W3C that defines the public interface of WS. It is

structured as follows:

• Ports (<portType>): these describe the operations provided by

WS. Its function is similar to an object-oriented class.

72 Interoperability

• Messages (<message>): these define the data involved in an op-

eration, where each message can have one or more parts. It is

considered one of the parameters used in object-oriented program-

ming.

• Types (<types>): these define the data types involved in WS,

using XML Schema, an XML language that accurately describes

the structures and constraints of the XML file. It has been in the

W3C since 2001.

• Links (<binding>): these describe the message formats and the

protocols for each one of the ports.

• Operations (<operations>): these can be one-way, request-response

(makes a request and waits for a response), request-response (re-

ceives a request and makes a response) or notice.

• Services: these define a set of web service ports.

2. UDDI

In order to register and publish WSDL we use Universal Description,

Discovery and Integration (UDDI). This is a standard developed for

the publication and registration of WS. Its way of working is similar to

a database and has two different parts:

• Registration of business:

- White Pages (Overview)

- Yellow Pages (categories of services)

- Green Pages (business rules)

• Registration of services

3. SOAP

In addition, there was a need to define the way of exchanging data

between different processes on different machines. For this task, we

use the SOAP, which defines the format of the messages to send. It

is independent of the transport protocol. The elements of a SOAP

message are [59]:

• Encapsulation of the message.

• Description of the data coding.

• Body, which contains the specific message of the application.

2.10. SEMANTIC WEB SERVICES 73

Figure 2.37: The emergence of SWS

2.9.2 Application Examples

Websites ask WS for a series of functions. They are currently used in almost

all websites and they provide most logic to the website. Another possible

application of WS is for the control of robots. WS are used to control robots

from anywhere in the world via the Internet through a user interface, which

will provide the services offered by the robot as well as its status [60].

2.10 Semantic Web Services

SWS (Semantic Web Services) were derived from the combination of WS with

the emergence of the semantic web (Figure 2.37). Tim Berners-Lee created

the semantic web states that the “Semantic Web is not a separate web but

an extension of the current one, in which information is given well-defined

meaning, better enabling computers and people to work in cooperation.” WS

meet the requirement of a specified syntax; however, they have a lack of

semantics so they cannot resolve ambiguities. This is solved by using SWS,

optimizing this way the reuse of WS and creating smarter websites, resulting

in the concept of Web 3.0. This simplifies the sharing and integration of web

resources.

To represent knowledge, ontologies that structure information, resources

or services based on the meaning of words emerge. This allows computers to

interpret and process this information to work automatically.

The languages of high-level ontologies are backed by a formal logic, which

makes sure that the ontology can be interpreted by the machines. This means

that the computer and its software can interpret the semantics of the model

without direct human intervention. The ontological software rises to the

level of human conceptual knowledge; humans do not have to descend to the

machine’s levels [59].

SWS are an important line of the semantic web, which aim to describe not

only information but also WS’s functionality ontologies and procedures: its

74 Interoperability

inputs, outputs, conditions for implementation, effects produced or steps fol-

lowed. These machine-processable descriptions will automate the discovery,

composition and implementation of services, as well as the communication

among them. The semantic web has emerged to provide the syntactic web

with semantic intelligence and has the following main features:

• Automatic data interpretation.

• Ontologies as data models.

• Discovery, selection and automatic service composition.

• Service implementation through the web.

2.10.1 Required Functionalities

• Publication of service descriptions.

• Services discovery.

• Service selection.

• Composition of services.

• Resolution of problems caused.

• Implementation of automated services.

• Monitoring of implementation.

• Compensation.

• Substitution of services for similar ones.

• Verification of implementation.

2.10.2 Main Technologies

• Web Ontology Language (OWL-S). This is an ontology based on OWL,

which is a markup language for publishing and sharing data using on-

tologies. It was created by [61], which is part of the US Department of

Defense, where they automate tasks such as the discovery, invocation

and composition of WS.

2.11. MILITARY STANDARDS 75

• Web Service Modeling Ontology (WSMO). This is a conceptual model

for the relevant aspects of SWS and it belongs to the European Se-

mantic Systems Initiative. The WSMO working group includes the

technology of Web Service. Modeling Language, which formalizes the

WS that model the ontology [62]. Its main components are:

- Goals. These are the customer’s aims when they access the web

service.

- Ontologies. A formal description of the semantics used by all compo-

nents.

- Mediator. These are connectors that provide interoperability among

different ontologies.

- WS. These can include the functional and usage descriptions of WS.

- OWL-S has a weak point in the architecture because it is undefined. It

also has little development in comparison with WSMO. Its difficulty is

also higher and less intuitive than WSMO is. However, its groundings

of use are well developed. However, WSMO is not mature in key areas

of use. It has a robust and flexible architecture for the consumer in

contrast to OWL-S. It has defined important aspects such as languages

and mediation. There are also plans to automate the creation of WS

based on WSMO to semi-automate this process, thereby saving money,

time and resources; the same as in the IRS III project.

2.11 Military Standards

2.11.1 JAUS

The JAUS (Joint Architecture for Unmanned Systems) standard was devel-

oped for the US Defense Department [63] by the JAUS Work Group, which

is composed of research groups from the government (US Army ARMDEC),

industry (SSC San Diego, WINTEC Inc., iRobot) and academia (Virginia

Tech, University of Florida). JAUS was defined as an open and scalable

standard that would meet the needs related to the communication of un-

manned systems regardless of the platform used. The development of JAUS

has tried to meet the following six goals [64]:

1. Independence of the vehicle’s platform.

2. Isolation of the mission.

3. Hardware independence.

76 Interoperability

4. Independence from the technology.

5. Independence from the operation.

6. Independence from the connection used.

The JAUS architecture is composed of three levels:

• Level 1 - Inter subsystem: The purpose of this level is to support inter-

operability between subsystems. It is responsible for specifying require-

ments between the subsystems (Robot to Robot, Robot to Controller,

Controller to Controller).

• Level 2 - Inter nodal: The purpose of this level is to support the interop-

erability between nodes. To this end, it specifies requirements between

the subsystems (interoperability between data loads or between the

on-board control and data loads).

• Level 3 - Inter components: The purpose of this level is to provide a

reusable software source. It specifies requirements for each component

(component by component, such as sensors and motors).

In 2004, a process of transition from the JAUS Work Group to the Society

of Automotive Engineers [65] started. This developed the standard through

the AS-4 (Technical Committee on Unmanned Systems) [66]. The following

norms migrated from JAUS to a framework based on the following services:

• JAUS Transport Standard, AS5669 [67]. This is in charge of defining

the creation of packets with the destination and source addresses and

TCP and IP headers and links.

• JAUS Core Service Set, AS5710 [68]. This is responsible for providing

the means for the software entities in an unmanned system to commu-

nicate and coordinate among their activities.

• JAUS Mobility Service Set, AS6009 [69]. This is in charge of making

the migration from the first drivers to the new development platform

of the AS-4.

Today, the main application of JAUS is focused on the use of unmanned

civilian and military vehicles.

2.11. MILITARY STANDARDS 77

Application of Military Unmanned Vehicles

A major center for development of military unmanned vehicles exists at

the SPAWAR Systems Center (SSC) in San Diego (California). There, a

JAUS work team focuses on the development of surveillance systems, such as

MDARS (Mobile Detection Assessment Response System), which are used in

autonomous vehicles for military bases with restricted access.

The US Defense Department uses MDARS to meet security and surveil-

lance needs in hostile environments for humans. In this way, it provides an

integrated solution, where unit patrol vehicles are controlled just by a sin-

gle control operator. Moreover, SSC has developed a distributed processing

system called Multiple Resource Host Architecture [70] which, along with

MDARS, was tested by the JAUS work team in December 2003 to demon-

strate the level of interoperability between control operator units (COUs)

and unmanned systems [71]. In this experiment, COUs were equipped with

a screen capable of displaying the statuses of each patrol vehicle, and thereby

they controlled each one of the unmanned systems [72].

These experiments show how the JAUS architecture provides interoper-

ability for the remote control of unmanned systems while fulfilling the objec-

tives mentioned in the general characteristics section.

Application of Civil Unmanned Vehicles

In 2004, Virginia Tech launched a project to implement simultaneously the

JAUS standard in the following seven unmanned vehicles:

1. MATILDA

This was the first interoperable vehicle designed by Virginia Tech in

2002. It was designed as an evaluation, development and demonstra-

tion platform of the JAUS standard. It had to fulfill some functional

requirements:

• It had to be teleoperable through a COU.

• It had to be capable of driving autonomously via GPS commanded

by a COU.

• It had to interact with other subsystems of JAUS (either vehicle

or COU).

• It had to accept JAUS workloads from other devices.

• It had to allow an easy modification and/or addition of intelligent

software.

78 Interoperability

Figure 2.38: JAUS topology

• It had to ease the demonstration, evaluation and testing of the

JAUS standard.

2. JOHNNY-5

This was developed in 2004 to participate in the AUVSI Intelligent

Ground Vehicle Competition in 2005. Owing to its robustness and its

capability to navigate via GPS, it quickly replaced MATILDA. The

main problems of this model were the failures in the camera interface

and the starting force on the wheels.

3. CADILLAC SRX

Grant Gothing and Jesse Hurdus, researchers from Virginia Tech, man-

aged to implement the JAUS standard on the Cadillac SRX, creating

the first luxury unmanned vehicle in the world [73]. The challenge of

this model depended on development of a JAUS-based vehicle able to

use potential field methods [74] for navigation. The result was the cre-

ation of a software topology, based on operational subsystems, nodes

and components (Figure 2.38).

However, when they launched this vehicle in the Blind Driver compe-

tition [75] they detected some issues that could be improved [76]. For

example, every driver had to know the turn angle of the vehicle and,

according to the control messages of the JAUS specification, only one

controller per component was allowed.

4. GEMINI

Gemini was developed as an extension of Johnny-5. The idea was to

create an articulated robot with four wheels. It won the JAUS Award

at the AUVSI Intelligent Ground Vehicle Competition in 2006 because

2.11. MILITARY STANDARDS 79

of its refined design, the long life of its batteries (5 h), its innovative

mobility and the ability to deal with bigger workloads under the JAUS

architecture.

5. HELIUM RED (Unmanned Ground Vehicle; UGV) and THE RMAX

(UAV)

HeLiUm RED (HElicopter LIfted UnManned Reconnaissance and Ex-

ploration Drone) redefines the traditional notion of collaboration be-

tween UAVs and UGVs (RMAX-HELIUM THE RED). This small un-

manned vehicle is light enough to be carried by the VT Yamaha RMAX

UAV. Initially, the JAUS standard was implemented to simplify com-

munication with the vehicle; however, vehicles are usually treated as

subsystems of the JAUS architecture, but in the project HELIUM RED,

the UGV operates as a single node.

6. ROCKY

This is another example of the vehicles used by Virginia Tech in the

DARPA Grand Challenge. The JAUS implementation in Rocky has

taken place in two stages:

• Teleoperability: Through the primitive driver, they could make

sure that the vehicle was teleoperated making use of the COU,

but nowadays with the use of Global Position/Speed Sensors, the

COU, speed and position can be kept on track and transmitted

through a connection service.

• Portability of the basic code from Cadillac SRX directly to Rocky.

This feature can be seen as a demonstration of the reusability

existing when developing autonomous vehicles under the JAUS

architecture.

Owing to these achievements, Virginia Tech established, as functional

requirements, that their prototypes had to be interoperable with other

JAUS subsystems (applied to both COUs and vehicles). Throughout

this research, they realized the need to integrate some specifications

in the JAUS Service Specification standard that would make use of

messages in charge of waiting for a response that will allow the COU

and the vehicles to make behavior decisions for a better interaction

between them.

With respect to the development of unmanned vehicles, the company

TORC started the ByWire XGV Project [77]. This project is being

80 Interoperability

developed over a Ford Escape Hybrid using the JAUS standard as a

platform to interact with the different parts of the car (steering, throt-

tle, brakes and gear system). The vehicle has an Ethernet interface

installed in a central console that allows for remote control of the vehi-

cle by a COU, making use of the SAE AS-4 (JAUS) architecture. The

use of the JAUS standard makes sure that ByWire XGV is compat-

ible with any other platform developed on JAUS. It is important to

note that the ByWire XGV has maintained speeds of 160 km/h. The

DARPA Urban Challenge [61] checks the utility of unmanned vehi-

cles in traffic environments and assesses how they stick to conventional

rules of the road. This is a challenge for participants to ensure that

unmanned vehicles can perform complex movements such as parking

or taking navigational decisions at intersections. In 2005, the DARPA

Grand Challenge competition, the University of Florida and Virginia

Tech competed with their unmanned vehicle projects based on JAUS.

Applied Research Inc., Virginia Tech, University of Florida, iRobot and

the US Air Force Research Lab showed the importance of interoperabil-

ity in robotics in an experiment [78][79]. To this end, each consortium

member made their COU able to interact with all robots and control

all loads. The benefits of the JAUS standard were successfully proven

after showing the independence of the technology used in unmanned

vehicles and robots.

Sean Baity [80], talking about the future of JAUS, mentions the need to

focus on development of software. This author says that it is a primary

point to take into account to minimize problems in the progress of

UGVs.

2.11.2 Other Military Standards

4D/RCS (Real-Time Control Systems)

The 4D/RCS architecture provides a reference model for military unmanned

vehicles. 4D/RCS is a method of designing, integrating and testing intelligent

systems software for vehicles that have a certain degree of autonomy [81]. It

is an autonomous intelligent control system architecture for vehicles that can

be either teleoperated or fully autonomous.

4D/RCS [48] specifies the way in which software components are dis-

tributed and interconnected, and that is the reason why it became a model

for military unmanned vehicles. The importance of this standard lies in the

way in which unmanned vehicles must manage situations in hostile environ-

ments to complete their missions. As a result of the above features, the

2.11. MILITARY STANDARDS 81

4D/RCS fulfills perfectly the specific needs of the Department of Defense

and US Army standards [82].

4D/RCS architecture was based on the assumption that different knowl-

edge representation techniques may offer greater advantages. The aim was to

cover all of them to create a real-time control system for objects that move

in the real world [83].

The Demo III UGB Program [84] developed and demonstrated advances

in control of unmanned systems, especially small UGVs under supervised con-

trol. That is where the 4D/RCS architecture and its characteristics arose.

This protocol allows intelligent vehicles to adapt to a changing world, to

extract deeper information from a dynamic world and to merge such infor-

mation with previously available information to improve a vehicle’s perfor-

mance.

The intelligent control of a 4D/RCS system is based on three layers of

abstraction:

• A conceptual framework. This is the highest layer of abstraction and

covers the full range of operations that involve intelligent vehicles, from

a simple actuator for some milliseconds to lots of vehicles during long

periods of time.

• A reference model architecture. This defines a hierarchical control

structure and at each level functional processes are included.

• Engineering guidelines. These are the lowest layer of abstraction in

intelligent control. They define how to design intelligent vehicles to

work in groups with other intelligent vehicles.

NATO STANAG 4586

In 1998, a NATO expert team, composed of members of government and

industry [85], started working on the development of the standard STANAG

4586 (Compliant Ground Control System for UAV) [86], which was ratified

by NATO in 2002 for the communication and interoperability of its UAV.

The search for interoperability between unmanned systems is essential

when meeting objectives in military terms. The line of development should be

focused on interoperability between land systems, aerial systems and elements

of control, command, communication, computer and intelligence (C4I) [87].

STANAG 4586 was developed as an interface control definition capable

of defining a common number of data packets for two new interfaces [85]:

• A data link interface among ground control stations and aerial vehicles.

82 Interoperability

• A command and control interface among ground control stations and

C4I systems.

According to [88], STANAG 4586 is the only standard that promotes

interoperability in control networks of UAVs. There are five interoperability

levels defined in this standard [86]:

• Level 1: Reception/transmission of data packets related to UAV.

• Level 2: Received live data about intelligence, surveillance and recon-

naissance.

• Level 3: Control and monitoring of data packets of UAVs in addition to

the reception of intelligence, surveillance and reconnaissance and other

data.

• Level 4: Control and monitoring of UAV, except from launch and re-

covery.

• Level 5: Control and monitoring of UAV including launch and recovery.

STANAG 4586 supports Electro-Optical/Infrared, Synthetic Aperture

Radar, communication transmission and data link interface resources.

2.12 Other Technologies

2.12.1 Salutation

This platform is independent of the architecture, language and operating

system on which it is installed. It is based on the operation of the translation

manager, specific for the Runtime Environment, and the salutation manager,

which provides an API for publishing and search services [89]. For example,

[90] demonstrated the integration of this protocol with Bluetooth Service

Discovery.

2.12.2 Service Location Protocol

This was created for client/server applications and it defines three kinds of

agents: user, service and directory [91]. For more information, many of the

protocols discussed in this chapter are compared and classified in [92] and

[93].

2.12. OTHER TECHNOLOGIES 83

2.12.3 Ad hoc Developments

Before the appearances of concepts related to the automatic installation of

devices in distributed networks, algorithms were developed for specific types

of robots. This is the case for the Multi-Robot System of UNIX, which uses

TCP/IP connections in a client/server architecture.

Standards have also been created for a particular type of technology such

as the service discovery protocol [94]. This protocol can discover information

on existing services in other Bluetooth devices.

2.12.4 URBI

URBI (Universal Robot Body Interface) [95] is an open source software plat-

form written in C++ for robotics, complex and parallel systems. It is based

on the UObject component architecture and on a parallel and event-driven

script (interpreted) language. It is an orchestration script language, known as

urbiscript, to glue the components together [96]. Urbiscript is a programming

language primarily designed for robotics. It is a dynamic, prototype-based,

object-oriented scripting language that supports and emphasizes parallel and

event-based programming by providing core primitives and language con-

structs. The urbiscript language syntax is very close to C++ syntax and is

fully integrated with C++. It allows both a low level operation with motors

and sensors and a high level with complex commands. URBI is not only

available for robotics system, but also for non-robotic purposes. The objec-

tive of Urbi is to help make robots compatible and simplify the process of

developing software and behaviors for those robots.

URBI supports Windows, Linux and Mac OS X [97]. This development

platform for robotics takes into account interesting features to provide par-

allelism, task and event handling, time handling, code tagging, UObject ar-

chitecture (plugins) and Client/Server architecture.

An example [98] of the parallelism and the time handling may be ilus-

trated tak-ing into account the following line executed on an Aibo robot

[99]:

headPan.val = -90 time:2s & tailPan.val = 45 time:2s;

The above line allows to rotate Aibo’s head till the ninety degrees (head-

Pan.val = -90) for two seconds (time:2s), and at the same time (&) it moves

its tail until it ar-rives to forty-five degrees (tailPan.val = 45) during two

seconds (time:2s).

84 Interoperability

2.12.5 DH Compliant

DH Compliant (Digital Home Compliant) [100] is a system providing inter-

operability between all devices existing in a home network. It is based on the

UPnP architecture and is currently under development by the University of

Oviedo, the University of Seville and a consortium of companies composed

of Ingenium [101], Domotica Davinci [102], MoviRobotics [103], Applied Re-

search Associates [104] and the Cartif Foundation [105]. The main goal of

DH Compliant architecture (Figure 2.39) is to integrate consumer electronics

devices, robots, sensors and other interesting components that may be useful

in a home automation framework. The aim of the DH Compliant system is

development and implementation that allows the integration of service robots

within the digital home. This architecture will provide interactions between

robots and digital homes to make life easier, more secure and more com-

fortable. This protocol integrates the intelligence of a UPnP control point

and the functionality of a UPnP device in a single DHC device. This entity

network is managed by other entities that provide new services such as the

localization service, energy-saving service and the service for collaborative

tasks between robots. This interoperability system will be deeper detailed in

chapter 4.

2.12.6 ROS

ROS (Robot Operating System) [107] is an open source robotic operating

system for controlling robotic components from a PC. ROS was originally

released in 2007 by the Stanford Artificial Intelligence Laboratory, but from

2008 until 2013, development was performed primarily at Willow Garage.

It provides libraries and tools to help software developers create robot ap-

plications. A ROS system is comprised of a number of independent nodes,

each of which communicates with the other nodes using a publish/subscribe

messaging model.

The main module in ROS system is the Master node. It allows all other

software nodes to discover and communicate with each other by publishing

and subscribing to events as it is illustrated in 2.40.

A simple example is a sensor implemented as a node. This node pub-

lishes the data from the sensor by sending messages to the subscribed nodes.

This basic coordination may be extended to a complete and more complex

environment. ROS allows to group several specific capabilities from different

nodes in order to reach a common goal. For example, a group of robots

(ROS nodes) create maps of the environment, which are used to navigate by

another group of robots (ROS nodes) that capture images of the environ-

2.12. OTHER TECHNOLOGIES 85

Figure 2.39: DH Compliant architecture [106]

Figure 2.40: ROS coordination

86 Interoperability

Figure 2.41: OROCOS libraries [109]

ment; finally, these images are processed by a computer vision node to find

particular objects in the environment.

2.12.7 OROCOS

Orocos (Open Robot Control Software) is an Open Source C++ software

framework for building real-time component-based applications in automa-

tion and robotics [108]. It is a general-purpose and modular framework for

robot and machine control. The Orocos project supports 4 C++ libraries

(Figure 2.41):

• Orocos Real-Time Toolkit (RTT) provides the infrastructure and

the functionalities to build robotics applications in C++.

• Orocos Components Library (OCL) provides some ready to use

control components (Component management and Components for con-

trol and hardware access).

• Orocos Kinematics and Dynamics Library (KDL) is a C++

library which allows to calculate kinematic chains in real-time.

• Orocos Bayesian Filtering Library (BFL) provides an application

independent framework for algorithms implementation such as Kalman

Filters or Particle Filters.

2.12.8 OpenJAUS

OpenJAUS [110] is a free Open Source middleware implementation for Un-

manned Systems based on the Joint Architecture for Unmanned Systems

2.12. OTHER TECHNOLOGIES 87

Figure 2.42: jROS design [110]

(JAUS). OpenJAUS emerged as the libraries and applications developed at

the University of Florida in the 2005 DARPA Grand Challenge.

OpenJAUS has created jROS, a software library to integrate JAUS and

ROS solutions, which is required to use a JAUS interface for a ROS-based

system or vice versa. jROS is distributed as a set of ROS Packages which

consist of custom ROS Messages for each of the JAUS Service Sets (i.e. Core,

Mobility, Manipulators, etc). Figure 2.42 shows how OpenJAUS uses code

generation to automatically create the jROS bridge.

88 Interoperability

Chapter 3

Integration of Service Robots
in the Smart Home by means
of the Universal Plug and
Play Protocol

The digital home concept has recently emerged. It is characterized by a

network of sensors and actuators which provides services in terms of com-

fort, security and energy management. Moreover, the future points to the

paradigm of ambient intelligence whereby home should automatically adapt

to the needs of its inhabitants.

The emergence of home automation systems was launched in the late

1970s with the development of a system based on X-10 Power Line Carri-

ers. From that moment up to the present, the number of home automation

systems has increased significantly: KNX, Lonworks, Zwave, Delta Dore,

Control4, Cardio, ... In this sense, it is remarkable the situation in Spain,

where the variety of home automation systems is even larger because of its

real estate bubble in the beginning of this century. Because of the large in-

vestments made in this sector new systems emerged, such as IPDomo [111]

or Ingenium [101], which were able to survive despite the subsequent real

estate market drop.

Not only the large number of home automation systems should be con-

sidered, but also the wide variety of consumer electronic devices that can be

integrated within the digital home network. Different interoperability stan-

dards have been proposed in [6], [112] and [113] in order to solve the problems

resulting from the integration of such heterogeneous systems. In this sense

the Universal Plug and Play (UPnP) [114] is the standard that has achieved

89

90 Integration of Robots in the Smart Home by means of UPnP

the greatest success, although with some nuances.

Nowadays, multiple heterogeneous electronic devices coexist at homes.

However, most of these systems are independent and only ad hoc integra-

tions between them are possible. Given that smart home applications are

based on the integration in a same network of a set of sensors and actua-

tors, it is obvious that this lack of interoperability hinders the development

of more advanced services for the home inhabitants and it is a major issue

in the road towards the ambient intelligence paradigm [115]. This problem

is not new, though there have been several attempts to standardize the way

in which heterogeneous systems can be integrated [116]. The first important

attempt to solve this problem in a systematic way was CORBA (Common

Object Request Broker Architecture) in 1991. CORBA is a distributed object

oriented architecture. It allows to integrate distributed objects regardless of

the hardware architecture, operating system and programming language [1].

In 1998 Sun proposed a different standard, Jini, with the goal of setting

the basis for the definition, publication and searching of services in a net-

work [20]. A similar alternative was given by UPnP, which was proposed

by Microsoft [41] in 1998. UPnP has been very successful in the field of

multimedia interoperability. For this reason, there are other interoperability

standards based on UPnP. This is the case for example of DLNA (Digital Liv-

ing Networks Alliance), whose main focus is multimedia interoperability [57].

Another remarkable standard is OSGi (Open Services Gateway Initiative),

which is focused on domestic applications. OSGi defines its own architec-

ture, but it is designed to work together with other protocols such as UPnP

or Jini [117]. Finally, some authors [118] bet on web services as the solution

for the interoperability problem.

Despite the absence of interoperability, the relevance of technology in

our lives has grown significantly during the last decades. In particular, the

evolution of the role played by robotics is remarkable. Despite the fact that

the use of robots has traditionally been associated to military and industrial

applications, it is common to find them now even in domestic environments.

The purpose of UPnP is the integration of new devices within the home

network transparently to the user as many devices that operate on a com-

puter. To that end, the devices in a network exchange information about the

services and their capabilities that may provide to the network. In addition,

these devices must expose their services to be invoked remotely. The most

successful application field of UPnP is the interoperability between multi-

media devices. This fact is confirmed in different studies such as [119] or

[120]. Nowadays, the UPnP features related to audio and video streaming

are widely used by many devices. However, UPnP is not so employed in other

3.1. SMART HOMES AND ROBOTS 91

different fields. Nevertheless, the success of UPnP is greater than other inter-

operability standards that have aslo been proposed, such as OSGi and Jini

[116].

This chapter presents a methodology for creating UPnP virtual devices.

This methodology can be used to ensure real systems interoperability by

means of UPnP gateways working on a computer. In other words, it allows

the creation of hybrid UPnP devices that are capable of translating UPnP

orders into actions performed by real systems. In this chapter we explain how

to design UPnP devices via software to integrate robots in the smart home.

The problem of integrating service robots in the smart home is also addressed

in this chapter, and the integration of two service robots by creating UPnP

gateways is detailed.

The stages for the creation of UPnP devices have been detailed in the

Paraninfo’s book “Home Automation for Engineers” (Domotica para inge-

nieros) [121] written in spanish language. This chapter contains information

extracted from the paper “Robots in the smart home: a project towards in-

teroperability” [44] published in the international journal IJAHUC in which

the Roomba robot and its integration in the smart home is deeply studied.

In this chapter, the Rovio robot and its inclusion in the digital home through

UPnP is also analyzed. This research has been published in the interna-

tional journal RAS with the title “Integration of service robots in the smart

home by means of UPnP: A surveillance robot case study” [122]. We have

developed UPnP applications for each robot and different experiments have

been performed to illustrate the possibilities derived from the integration of

service robots with home automation technologies.

The outline of the chapter is as follows: In section 3.1 Roomba vacuum

cleaner and Rovio surveillance robots are presented. Section 3.2 details how

to create virtual devices based on the UPnP architecture. The next section

explains the UPnP application developed in order to integrate the robots in

the digital home. Some experiments related with the robots were carried out

in the next section. Finally, the conclusions are presented in section 3.5.

3.1 Smart Homes and Robots

Nowadays, the use of service and industrial robots is spreading worldwide.

In general, robots reduce costs and improve the precision in the tasks they

are assigned to do. Moreover, they substitute human beings in many com-

plicated tasks. The take-off of robotics is motivated mainly by the reduction

of production costs.

Service robots are still at a very early stage. Until now, the definition for

92 Integration of Robots in the Smart Home by means of UPnP

service robot was not well defined. The International Federation of Robotics

(IFR) [123] had defined the term service robot as

“a robot which operates semi or fully autonomously to perform

services useful to the well-being of humans and equipment, ex-

cluding manufacturing operations.”

However, it seems that the IFR has specified the definition:

“A service robot is a robot that performs useful tasks for humans

or equipment excluding industrial automation application.”

Other entities as Hisparob [124] defined service robotics as:

“...nowadays industrial robotics extension in which new robots

are being developed to answer the industry needs not directly

linked with the productive tasks...”

The most basic way to interpret these definitions is that any robot that

is not used in manufacturing or production operations is a service robot. For

the purposes of this chapter, this simple definition is enough.

Service robots can be classified into different types. We present a classi-

fication inspired on the one provided by the IFR:

• Professional service robots

This group includes robots (Figure 3.1) capable of collaborating in tasks

performed by humans. These robots are designed to enhance the capac-

ities of people in their jobs. Examples of this type of service robots are:

Communication Robot, developed by AEON MALL [125] in collabora-

tion with Tmsuk Co. [126]; An-9RR created by the Japanese company

ALSOK [127]; da Vinci Surgical System designed by the company IN-

TUITIVE SURGICAL [128], among others.

3.1. SMART HOMES AND ROBOTS 93

Figure 3.1: Professional service robots

• Personal service robots

Personal service robots (Figure 3.2)have become a reality in many

houses. They can solve daily tasks at home. They improve the quality

of life of their users. The Roomba is included in this category. Besides

the Roomba, the following can be included: Asimo, presented by Honda

[129]; Aibo, developed by Sony [99]; Scitos G5 created by MetraLabs

Robotics [130]; Home Assistant Robot is a joint research between Toy-

ota [131] and the University of Tokyo, among many others.

• Defence robots

These robots (Figure 3.3) are prepared for dangerous situations such

as deactivation of explosives or intervention in contaminated areas.

Within this group, we can cite the following robots: Pointman, designed

by Applied Research Associates (ARA) [104] or mSecurit, developed by

MoviRobotics [103].

Service robots will bring a robotic revolution to homes, streets, schools,

hospitals, etc. One company, which has taken some of the steps towards

penetrating service robots into the home, is iRobot Corporation [132], the

creators of the service robot Roomba. Roomba is an autonomous robotic

vacuum cleaner that has sold more than 10 millions of units worldwide.

94 Integration of Robots in the Smart Home by means of UPnP

Figure 3.2: Personal service robots

Figure 3.3: Defense robots

3.1. SMART HOMES AND ROBOTS 95

In this chapter, we are interested in how service robots can be integrated

in the digital home through middleware. The problem is complex because

of the large number of systems available in the home automation market.

The absence of real interoperability between the systems makes the devel-

opment of new services based on the combination of heterogeneous systems

more cumbersome. Given that at the present time there is no ideal choice

between all the technologies that can be installed in the home, the best choice

to develop new advanced services comes from mixing different systems and

technologies in the same installation [133][134].

Given that one of the most important objectives of smart homes is the de-

velopment of new services that make the life of its inhabitants better, service

robots should be easily integrable in a smart home environment. The variety

of robotic and smart home information systems’ companies represents the

main problem for the interoperability approach. The absence of minimum

requirements makes it difficult to assume the existence of systems or services

in the home. The consequence is that difficulties arise for service develop-

ers. At this point, it is needed to emphasise that the interoperability among

systems deviates far from the simple exchange of information. The intercom-

munication among the information systems that support the new services

must satisfy a large number of needs. The use of mark-up standards, consult

services and some web services provide the functionality and interoperability

required but there are also some other important issues, such as the ability

of interaction and parallel implementation tasks, to name a few.

UPnP has been successfully used for home automation, see for example

[5], and it has been considered as a middleware platform to integrate robots

[135]. In addition, UPnP is an important element of other home networking

standards such as the Digital Living Network Alliance [136] (formerly the

Digital Home Working Group) and Intel’s Networked Media Products Re-

quirements (NMPR) specifications. Despite its relative success, UPnP still

has some drawbacks that should be improved to be the ideal middleware

platform, specifically in the case of robot integration. Here, we show a list

with some of the features that have to be improved. The list is based on

works [137][116], and it has been complemented with other deficiencies that

we have found in the standard during our research.

• Lack of priority mechanism for messages.

• Lack of a deterministic time of response for commands.

• Lack of a mechanism for synchronous request and responses.

• Unclear definition for elements in the network that assume functions of

96 Integration of Robots in the Smart Home by means of UPnP

both control point and device.

• Lack of complex data types such as arrays. This problem can be avoided

indirectly by defining an extension of the standard in the XML schemas,

something that is mentioned in the specification. However, it is desir-

able to count also with a standardised version of complex data types.

• Possibility to select a network when there are several available.

• Lack of security mechanisms.

• Absence of directory and proxy services in the network.

• The query mechanism is very basic.

During our experiments, we especially found the first two deficiencies

to be critical. They are particularly important for tasks that involve the

coordination of two or more robots and they could be a potential source

of problems such as collisions. The lack of a directory or proxy services is

also troublesome in case that the UPnP devices are connected in a wireless

fashion. Without a directory, it may happen that a control point cannot

detect one of the devices. In addition, a proxy could save petitions for the

device until connectivity is restored.

In particular, in this chapter we focus specifically on UPnP, which seems

to have had a larger impact than the others in the market of consumer elec-

tronics, especially in multimedia applications. Other works have explored

the use of UPnP for the smart home and the integration of robots. For ex-

ample, different home automation systems and consumer electronic devices

are integrated via UPnP in [5]. In [135] and [137], requisites for the use of

UPnP as middleware to control robots are studied. In this chapter, we do

not only address these issues but also develop software bridges to integrate

the Roomba and Rovio robots in a UPnP environment, and test them in real

homes equipped with the system IPDomo [111], which is natively UPnP. In

addition, we have extended the services offered by the robots by developing

new capabilities such as a basic garbage detection routine for Rovio or an

application which enables Rovio to track the autonomous vacuum cleaner

Roomba. In this manner, it is possible to illustrate the benefits of interoper-

ability in the smart home.

3.1.1 Roomba Robot

The first ancestor of Roomba was the Rug Warrior, a robot developed in 1989

in the MIT Artificial Intelligence Laboratory. Ten years later, its creator,

3.1. SMART HOMES AND ROBOTS 97

J.L. Jones, together with Paul Sandin, proposed to iRobot to investigate the

development of a floor-cleaning robot focused on the home market. As a

result of their investigation, the first prototype of the Roomba was born with

the name of Scamp [138]. Three years later, the first commercial version

of Roomba was released. Nowadays, more than 2 million Roomba units

have been sold and its impact on daily life has been strong; even emotional

relationships have emerged between Roomba and its owners, see [139], [140]

or [141].

Roomba’s commercial spawned many applications that can be found on

the internet and in the literature. For example, in [142], the Roomba is

evaluated and presented as a valuable tool for robotics teaching and research.

There are even books [143] that deeply analyse the Roomba and explain how

to take advantage of all its capabilities. Another good example that shows a

very interesting application of this vacuum cleaner is [144] in which a set of

Roomba are used to implement a real version of the popular PacMan game.

For the above-mentioned reasons, Roomba became the perfect candidate

to be the first service robot that we integrated in the smart home of research.

In particular, the Roomba 560 model has been chosen for the application.

Similar robotic vacuum cleaning technologies, like the ones provided by Infin-

uvo [145] or P3 international [146], might benefit as well from the integration

method used in this chapter. In the rest of the section, we describe Roomba’s

hardware and software.

Roomba is a vacuuming disc-shaped robot as the one presented in Fig-

ure 3.4. According to [138], the microprocessor runs at 16 MHz, has 256 B of

RAM and has 30 IO. It is directed by a behaviour-based programming scheme

composed by many strategies to avoid stuck situations and its cleaning strat-

egy is mainly based on bounce and wall following algorithms. During its

task, Roomba switches between the following cleaning patterns: Spiralling,

Wall Following, Room Crossing and Dirt Detection.

Roomba has several sensors and actuators available to it, which enable

navigation and allow it to realise its work.

• Drive motors: Roomba has two electric drive motors, which allow dif-

ferential steering and speed control.

• Cleaning motors: Roomba uses three motors to control the vacuuming

functions of the Roomba, these motors move the main brush, side brush

and vacuum. Motors speed cannot be controlled.

• Speaker and LEDs for user feedback.

• Wheel encoders: These measure the number of rotations of each wheel.

98 Integration of Robots in the Smart Home by means of UPnP

Figure 3.4: Roomba robot

• Optical interrupters: They provide a mechanism to detect a bump of

the Roomba. When bumper moves, it triggers one or both of these

sensors.

• IR wall sensor : This infrared distance sensor enables Roomba to follow

walls. It allows Roomba to decrease speed automatically and to get

close to the walls.

• IR cliff sensors: The cliff sensors are four infrared sensors. They face

down and detect when Roomba has started to go over a cliff.

• IR receiver : This is a 360 infrared receiver for signals emitted from a

virtual wall, used to confine Roomba in a region, or the home base.

• Microswitches: The three wheels on Roomba are equipped microswitches

that detect when the wheel has dropped (wheel drop sensor).

• Capacitive sensor : It allows Roomba to detect dirt.

• Battery level and motor current sensors.

To ease the external control of the robot, iRobot published the Roomba

Serial Command Interface (SCI) [147], which is nowadays known as the

Roomba Open Interface (ROI). Through this interface, it is possible to com-

mand Roomba and also to extract data from its sensors. The ROI allows

full control of the Roomba with simple commands. The control itself is per-

formed through a Mini DIN 7-pin jack located on top of Roomba and covered

by a circular piece of plastic. Through this port, it is possible to establish

3.1. SMART HOMES AND ROBOTS 99

serial communication at 115200 bps, with 8 bits per character and no parity

and one stop bit. Roomba uses a command-response model and it never

sends data unless requested. This last feature simplifies the structure of the

communication but it is inconvenient because periodic state information of

the Roomba is needed, specifically to know the value of those sensors more

important for the navigation. Finally, the ROI protocol allows users to set

Roomba in one of the five internal modes:

• Sleep (off)

• On: Roomba can be operated only through its buttons.

• Passive: The sensors can be read, but no control can be accomplished.

• Safe: This mode allows the external control of the Roomba. In this

mode, the Roomba will automatically stop for security reasons if it

detects a cliff, a wheel drop alarm or a plug-in power supply.

• Full : Users take total control through the ROI without any security

exceptions.

3.1.2 Rovio Robot

Rovio is a mobile robot equipped with a webcam and manufactured by

WowWee [148]. It has an embedded web server where its control interface is

stored. Through this interface Rovio can be controlled via WiFi by means of

any web-enabled device. Its main applications are surveillance and telepres-

ence. Due to its characteristics, it has been used in different projects in the

literature. For example, in [149] a Rovio was equipped with a laser pointer

and maps a region of space by using this pointer and its camera. In [150]

Rovio was used as a platform to install a recognition agent, Cassie, which

allows a verbal and interactive communication with the robot. In [151] Rovio

is used to map a region of space using its camera. The goal of this work is

to implement SLAM (Simultaneous Localization And Mapping) although it

focuses finally on the identification of some concrete position marks. In [152]

the Rovio API is implemented in the Python programming language. The re-

sult is PyRovio, which is used with the aim of providing robots with cognitive

features using the MGLAIR (Modal Grounded Layered Architecture for Inte-

grated Reasoning) architecture. In [153] Rovio is used to localize and identify

a concrete object: a beer barrel. In this work movement and image analysis

are implemented, using the OpenCV libraries [154]. The robot is intended to

identify a small barrel in an autonomous manner in an unknown environment

but with a recognizable movement direction (a corridor, typically).

100 Integration of Robots in the Smart Home by means of UPnP

Figure 3.5: Rovio general scheme

A general scheme of the Rovio and its charging dock are shown in Fig-

ure 3.5 and figure 3.6.

Rovio is equipped with the following set of sensors:

• Head-mounted moveable VGA camera

• Microphone for 2-way audio

• Infrared sensor for positioning purposes

• Infrared sensor for collision detection

• Battery charge monitor

From all these sensors, the most remarkable one is the infrared sensor for

positioning purposes. Rovio uses infrarred beacons projected on the ceiling

as guiding lights. These lights are projected from its base (Figure 3.6), and

help Rovio to find its dock back and simplify the navigation of the robot by

the definition of waypoints by the user.

In addition, Rovio has the following set of actuators:

• Position controller for the robot neck

3.1. SMART HOMES AND ROBOTS 101

Figure 3.6: Charging dock

102 Integration of Robots in the Smart Home by means of UPnP

• Speaker for 2-way audio

• 3 omni-directional wheels

• Headlight (LED illumination)

The Rovio API [155] is based on the HTTP protocol. In particular, Rovio

works by means of CGI commands within HTTP GET requests. CGI stands

for Common Gateway Interface and is a World Wide Web technology which

allows a web-based client to send and require some data from an application

which is executed in a web server. In this manner, Rovio’s web server passes

user’s request to the CGI application program which controls the robot. Note

that this implies that the only requirement to create a Rovio control appli-

cation is to create a TCP/IP binding with its web server in order to send

the HTTP requests and receive the corresponding responses. Therefore the

communication with Rovio does not depend on any particular platform, pro-

gramming language or operating system.

There are nine categories of CGI commands which can be sent to the

Rovio robot: movement control, camera control, user management, time,

network, MAC address, HTTP server, mail and other commands. For exam-

ple, the command HTTP://192.168.1.2/rev.cgi?Cmd=nav&action=1 corre-

sponds to a HTTP request to the IP address 192.168.1.2 whose argument

is a CGI command to order Rovio to go to its home location in front of its

charging dock. More details about other commands of the Rovio API can be

found in [155].

3.2 UPnP Virtual Devices Development

In chapter 2 we explained the operation of UPnP. The steps to follow in order

to develop UPnP virtual devices are detailed below. Note the emphasis on the

virtual nature of the device, i.e. they are not physical devices. Therefore, it

is possible to define a virtual UPnP device as that which is only implemented

at a software level and is executed on a general purpose computer as a PC.

We have classified UPnP devices in three groups: physical, pure virtual

and mixed virtual. These types of devices differ in how they are implemented.

• Physical: These devices are a physical implementation, i.e., the de-

vice is a printed circuit board (PCB) or a real system that provides a

UPnP interface and must be fed properly. Specifically, a physical UPnP

device is the hardware and software that provide the UPnP function-

ality. Within this group we can include the IPDomo cards for home

automation.

3.2. UPNP VIRTUAL DEVICES DEVELOPMENT 103

• Virtual: This group includes devices implemented at a software level.

An example of a virtual device may be a weather station.

• Mixed: They are characteristic virtual devices that translate orders

from the UPnP network to another physical system, so they are at an

intermediate point between the two previous groups. They are gateways

that provide a UPnP interface and another interface to the correspond-

ing system. On the one hand, it collects data from the UPnP network,

interprets and translates the information into commands known by the

system at the other side which actually perform the action; on the

other hand, it collects data from the agent and provides them to the

UPnP network. In this group we can include the UPnP gateways for

the Roomba or Rovio robots.

As it can be deduced from these devices, both the virtual and the mixed

devices require a computer program to provide support for the connection

in a UPnP network. The development of virtual devices is also useful as the

basis for adapting non-UPnP devices within a UPnP network. To that end, it

is necessary to program a virtual device that works as a gateway between the

equipment you want to provide UPnP functionality and the UPnP network.

In general, the development of virtual devices would be very complex if we

had to write all the code associated with the UPnP protocol. This difficulty

may be avoided using any of the existing development kits for UPnP such

as Allegro [156], Cybergarage [157], GUPnP [158] or the Atinav [159]. In

particular, this chapter explains how to use the Intel SDK for UPnP [160].

This development kit is a suite of programming tools for UPnP which can

be downloaded for free on the Net. The kit generates a code template that

implements the basic features of UPnP, so developers may focus on developing

the code associated with the functionality of the device. The template may

be generated in different programming languages (C, C++, C#). From all

the programming languages, we have chosen C# for the development of the

Roomba and Rovio UPnP gateways.

The design of a UPnP device can be summarized in four main steps or

stages which are described below.

3.2.1 Step 1: Creation of the Service Description

The first step is to create a description file for each of the services the device

will provide. This file contains information related to the actions and the

state variables that characterize the service (Figure 3.7). In this step we will

use the Service Author program which is one of the applications included in

the Intel tools. This program simplifies the definition of variables, actions

104 Integration of Robots in the Smart Home by means of UPnP

Figure 3.7: Creation of the device service description

and arguments that form a given service. Firstly, it is necessary to define the

state variables required. In particular, it is necessary to specify the format

of each variable and if it is evented type or not. When the value of an

evented type variable changes, it generates event notifications to the control

points subscribed to this variable. This is the basis of subscription and event

notification in UPnP.

In order to create the service description file it is also necessary to declare

the actions. Each action may optionally receive input arguments or generate

output results. To that end, some state variables previously defined must be

employed. In particular, the type of each variable must be specified: input,

output or return. Thus, if the state variables are declared as input variables,

they will be arguments or values sent to the device when the user invokes the

actions. On the contrary, if they are declared as output or return variables,

they will be values returned by the device and stored in such variables during

the execution of the action; or as the result of the action.

Once the actions and the state variables are declared, all this informa-

tion is saved in an XML file. Therefore, a device will have as many service

description XML files as services offered. Therefore, a device has so many

XML service description files as services it provides. Note that the actions

and the state variables must be created separately for each service.

3.2.2 Step 2: Creation of the UPnP Stack

The second step employs the service description files created in the previous

step to generate the device UPnP stack (Figure 3.8). The stack contains all

the UPnP protocols as it is illustrated in Figure 2.13, i.e., it contains all the

code responsible for the registration and announcement of the device and its

services, and manages the subscriptions and requests whith the devices in

a UPnP network. The creation of the stack requires the use of the Device

3.2. UPNP VIRTUAL DEVICES DEVELOPMENT 105

Figure 3.8: Creation of the device stack

Builder program which is another tool from Intel. This program supports

the creation of UPnP stacks for both control points and devices. In case

of developing UPnP devices is necessary to import XML service description

files from the previous step. It is possible to customize certain parameters

that characterize the device or control point in the network. For example,

it is possible to edit the Friendly Name of the device that is the name by

which the device will be identified in the network; or the Service Name and

the Service ID attributes of each service, i.e., the name and identifier of each

service. After importing the service description files and editing the attributes

required, the developer must generate the code in the chosen programming

language for the development of the application. This will create all the code

files required for the compilation of the device or the control point. Note that

at this point it is available the source code required to compile and build a

fully functional device at a network level.

3.2.3 Step 3: Implementation of the Actions

Despite the code required to create a UPnP device is available after the previ-

ous step, it is essential to type the code that implements the functionality of

each action defined in the first step. Otherwise, the device does not respond

to any requests made by other entities in the network since it has no code

to do it. Therefore, it is necessary to use an editor and a compiler for the

106 Integration of Robots in the Smart Home by means of UPnP

Figure 3.9: Operational testing

full development of the device. The UPnP gateways detailed in this chapter

have been developed using the Visual C# 2010 Express [161] program. Ob-

viously, the code in this step is custom designed for each application. Also,

note that it is not necessary to implement only the functionality of the UPnP

actions. In other words, the program can be as complex as desired and, even,

a very complex program may provide only a simple UPnP action. Finally,

the resulting code is compiled and an executable file is obtained. From this

moment on, any UPnP control point can control the virtual device.

3.2.4 Step 4: Operational Testing and Validation of the De-
vice

Finally, you should check the correct operation of the device developed. This

procedure could be considered as another step in the design process of UPnP

devices since the device may provide a non-expected functionality or cause

errors during execution. To that end, the application is run and is tested with

any control point. The Device Spy program is an Intel tool that allows to

invoke actions and to subscribe to events. This verifies the proper operation

of our UPnP device (Figure 3.9). If you detect any deficiency in the operation

of the device you should check the code implemented during the third step.

However, if there is a deficit in the services provided by the device, you should

change some details from the first and second steps, and add the appropriate

code associated with the third step.

3.3. UPNP GATEWAYS FOR ROBOTS 107

Figure 3.10: UPnP application for Roomba robot

3.3 UPnP Gateways for Robots

3.3.1 Roomba Gateway

The first gateway developed in this thesis was the UPnP Roomba bridge. It

is an application (Figure 3.10) that offers Roomba’s services and state in a

UPnP network. Specifically, this application is a UPnP virtual device that

works as a bridge intercommunicating the home automation network and the

Roomba (Figure 3.11). Roomba’s service provides the actions programmed

and the necessaries variables to know Roomba’s state. Users may invoke

actions and Roomba will execute them transparently.

Implementation

The first problem to be solved is the physical communication. The virtual

device establishes the communication with Roomba using a Bluetooth mo-

dem, called RooTooth (Figure 3.12). RooTooth is connected into Roomba’s

external serial port. Thus, what the virtual device does is to collect the ac-

tions from the UPnP control points and translate them into Roomba ROI

commands that are transmitted via Bluetooth (Figure 3.13).

Once that communication between the Roomba and the PC is solved, we

can focus on the creation of the UPnP device. This procedure was exposed

previously and during the step of the implementation of the actions, most

108 Integration of Robots in the Smart Home by means of UPnP

Figure 3.11: Roomba UPnP gateway

Figure 3.12: RooTooth

3.3. UPNP GATEWAYS FOR ROBOTS 109

Figure 3.13: Roomba UPnP-Bluetooth bridge stack

hand-written code is dedicated to managing the communication with the

RooTooth and sending via the serial link the command opcodes that will be

obeyed by Roomba. A description of all the opcodes can be found on the

iRobot SCI document [147]. After this step, an executable file is obtained.

From this moment on, any UPnP control point can control the virtual device.

The virtual device works like any standard UPnP device, i.e., it follows the

operational steps shown in Section 2.7:

• It gets an IP address from a DHCP server or the AUTO-IP mechanism

(addressing step).

• It announces its services and control points discover them (discovery

step). Next, the device sends information about itself and its services

to the control point (description step).

• Upon discovery, the control points are able to control Roomba trans-

parently; they have a list with the actions users may invoke and a list

with the variables they may check (control step).

• It is even possible to include evented variables (eventing step). How-

ever, it was preferred not to implement them to reduce the UPnP traffic

in the network. Therefore, to have an updated list of the variables, our

virtual device polls the Roomba periodically and saves the data into in-

ternal variables. Then, when users invoke the proper action, the bridge

will update and return the value of the UPnP device variables.

110 Integration of Robots in the Smart Home by means of UPnP

Actions and State Variables

Once the application is running, it can be detected from a UPnP control

point. The variables and services offered to the network were chosen carefully

as the ROI allows the control of an overwhelming number of options. To keep

the application as simple as possible, the device offers the same basic actions

that can be controlled with the Roomba buttons complemented with some

extra features for the digital home. In Figure 3.14, it can be seen a schematic

representation of the virtual device. As can be seen in the figure, the following

variables were implemented:

• Port (string): Stores the virtual serial port used to connect with the

Roomba.

• Macro commands (string): Stores a path to be followed by the Roomba.

The format is composed of instructions to go forward (U), backward

(B), turn to right (R) or turn to left (L) followed by the time in mil-

liseconds to go in the specified direction. For example, if the string is

“U700L200”, the Roomba will go forward for 700 ms and then it will

spin leftwards for 200 ms.

• Dirt (unsigned 8-bit integer): Stores the dirt level detected by the ca-

pacitive sensor.

• State (string): Stores the Roomba internal mode.

• Battery charge (unsigned 16-bit integer): Stores the charge of Roomba’s

battery in milliamperes-hours (mAh).

• Distance (signed 16-bit integer): Accumulates the relative distance

travelled by Roomba in millimetres (mm) since the device was exe-

cuted.

• Angle (signed 16-bit integer): Provides the relative angle that Roomba

has rotated.

To reduce the network traffic, these variables are not evented. It is needed

to invoke an action so that the application updates the published value of the

variables. Otherwise, the Roomba virtual device would be constantly sending

event messages because the value of the sensors is continuously changing. An

option to lower the network traffic with evented variables would be to imple-

ment a threshold in the change of value of the variables before proceeding to

their update.

The actions we have implemented are:

3.3. UPNP GATEWAYS FOR ROBOTS 111

Figure 3.14: Roomba UPnP virtual bridge scheme

112 Integration of Robots in the Smart Home by means of UPnP

• Connect (input: port): Establishes the link between the RooTooth

and the UPnP virtual device through the virtual serial port used by

RooTooth. A passkey is required to establish the communication.

Then, the function “wakes up” Roomba using several special commands

(see [132] for details); Roomba will not respond to any commands when

it is “asleep”. Finally, it starts the ROI port and finally it puts Roomba

into the Safe Mode.

• Macro Function (input: macro commands): Allows to send macros

with the proper format for Roomba movements using the variable

“macro commands”.

• Clean: Starts the Roomba’s autonomous cleaning mode.

• Seek Dock : Makes Roomba start its seek dock routine.

• Read Data: Retrieves sensor values from the robot through the virtual

device. These data are: mode, dirt level, distance and angle since the

last measurement and the current charge level of Roomba’s battery.

They are received in the variables “state”, “dirt”, “battery charge”,

“distance” and “angle”, respectively.

• Stop: Stops any of the routines started by Roomba.

• Disconnect : The virtual device removes the link with the robot. Also,

this function must be called when the bridge application ends.

3.3.2 Rovio Gateway

The second gateway that enables the interoperability between a robot, in

this case the Rovio robot, and a smart home is presented in this subsection.

This application provides a Rovio interface with a UPnP network. It is a

UPnP virtual device that works as a bridge or gateway between the home

automation network and the Rovio. The UPnP bridge provides the Rovio

API functionality to the UPnP network. In this manner, users may invoke

the existing actions in Rovio’s service and then, the robot will execute them.

We used for this research the aforementioned Tools for UPnP Technol-

ogy provided by Intel which helps to accelerate the developing, testing and

deploying of UPnP compliant devices, including full support to audio and

video distribution.

3.3. UPNP GATEWAYS FOR ROBOTS 113

Figure 3.15: Rovio UPnP bridge (Router-Bridge and Bridge-Rovio connec-

tions).

Figure 3.16: Rovio UPnP bridge (Router-Bridge and Router-Rovio connec-

tions).

Implementation

First of all, a wireless network connection has to be established in order to

control the Rovio from the PC where the UPnP application is programmed.

There are two possibilities at this point: the first one is to connect the robot

directly to the PC by means of an ad hoc network and at the same time

to connect the PC to the UPnP network (Figure 3.15); otherwise the Rovio

robot and the PC have to be in the same network (Figure 3.16). Note that

in the last case, the same network can be used for the UPnP messages and

the Rovio HTTP requests (both protocols use the TCP/IP stack).

Once Rovio is able to receive messages from the PC where the bridge is

implemented, the proper implementation of the UPnP functionality can take

place. The steps accomplished to create the bridge are the previously detailed

for the creation of any UPnP virtual device. During the programming step

of the UPnP device behaviour we have coded the actions to be executed by

114 Integration of Robots in the Smart Home by means of UPnP

the robot. Most handwritten code deals with the translation of the UPnP

commands into HTTP requests for the Rovio. Likewise, the value of the

evented variables is updated taking into account the information submitted

by the robot. Once the application is running, any control point can invoke

the actions offered by the Rovio UPnP bridge.

From this point, the device will work as any common UPnP device,i.e., it

follows the UPnP operation mechanism described in Section 2.7 in a similar

way that the Roomba virtual bridge does.

Actions and State Variables

The Rovio UPnP bridge offers several actions from the Rovio API to the

UPnP network. Likewise, it has several input and output variables which

determine the way in which the communication with the UPnP network is

performed. In this subsection we offer an overview of the actions and variables

which characterize the device. A representation of how actions and variables

are related in this device is illustrated in Figure 3.17. The complete list of

variables is the following:

• User (string): is the variable sent to Rovio which identifies the user-

name.

• Password (string): allows to authenticate the user provided previ-

ously.

• IP address (string): it is the IP assigned to the robot.

• Movements (string): stores a sequence of movements. The variable

must contain the instructions to go in a specific direction followed by

the movement duration in milliseconds. The instructions are: “U” to

go forward, “B” to go backward, “R” to turn right and “L” to turn left.

For example, if the variable is “B1000R500” the Rovio goes backward

for 1 second and then it will turn to right for 500 milliseconds.

• Path (string): identifies a path stored by Rovio.

• Speed (unsigned 8-bit integer): specifies the velocity of the robot.

• Garbage position (string): provides the x and y coordinates where

Rovio have detected garbage.

• State (string): stores the robot state.

• Path list (string): provides the paths saved by Rovio.

3.3. UPNP GATEWAYS FOR ROBOTS 115

Figure 3.17: Rovio UPnP virtual bridge scheme

116 Integration of Robots in the Smart Home by means of UPnP

• Garbage (boolean): is an evented variable that announces when the

Rovio detects garbage.

Next, we list the actions that the device offers:

• Connect (input: user, password, IP address): establishes a commu-

nication between the Rovio and the virtual bridge via WiFi. It is not

possible to send any command to the robot until the connection is es-

tablished. To initialize the connectivity, it is necessary to provide a

user and its related password, and the IP address.

• Macro Movement (input: movements): orders to the Rovio a se-

quence of movements indicated in the “movements” variable. When

the Rovio receives this invocation, it analyzes the instructions and it

performs the proper sequence of movements.

• Run Path (input: path): executes a sequence of movements to follow

a path previously saved by Rovio.

• Set Speed (input: speed): adjusts the speed with which the Rovio

will execute the movements.

• Go Home: sends the robot to a position near the Home Base.

• Docking: sends the robot to dock in the Home Base.

• Garbage Detection: activates the detection garbage system. Rovio

takes pictures periodically with its camera, and it will process the im-

ages in order to detect garbage.

• Get Garbage Position (output: garbage position): gives back the

coordinates of the garbage position detected by the robot. The opera-

tion of these last two actions will be deeply analyzed in the experiments

section.

• Get Status (output: state): provides a report with the state of the

robot.

• Get Path List (output: path list): provides a list with the paths

previously saved by Rovio.

• Surveillance: with the cam in the high position the robot will take

pictures continuously. By subtracting two consecutives images, if the

resulting image has too much information, the robot will consider the

presence of an intruder and from now on it will upload the images files

to a server. This action is justified in next section.

3.4. EXPERIMENTS 117

Figure 3.18: Rovio GUI

• Track Ball: the Rovio will find a ball by means of some image pro-

cessing algorithms and once it has found the ball, the robot will follow

it. This action is explained on detail in 3.4.4.

• Track Roomba: this action is similar to the Track Ball one. The

robot can find and follow the Roomba vacuum cleaner robot. This case

is detailed in 3.4.5.

All the actions and the variables presented before allow the user to control

the Rovio transparently through a UPnP network using a control point. In

addition, the application provides a graphical user interface (GUI) shown in

Figure 3.18 to control the robot regardless of the UPnP standard.

3.4 Experiments

We have carried out different experiments in order to test the UPnP bridges

and to explore some of the new possibilities the Rovio and Roomba robots

may offer into an interoperable digital home.

118 Integration of Robots in the Smart Home by means of UPnP

3.4.1 Robots in a UPnP Network

The first experiment to test the UPnP gateways was to control the robots

through the control point included in the Intel UPnP Tools. In [162] a case of

use with the Rovio robot is shown. It consists of invoking the Connect action,

then the robot state is obtained by invoking the Get Status action. After-

wards, a movement sequence is performed by means of the Macro Movement

action, then the robot speed is changed by invoking the Set Speed action,

and finally the same movement sequence is executed. It worked as it was

expected, the robot offered all the services to the UPnP network and it per-

formed all the actions invoked by the control point. The Roomba robot was

also tested with this tool and every action was executed to check the proper

operation.

In addition, the UPnP devices were tested with a different manufacturer

equipment, in particular, in an installation of IPDomo [111], a native home

automation system. Once the application was proved to work in lab con-

ditions, it was tested in a real smart home. The IPDomo installation was

composed of a PC in which it was installed the IPDomo control point and

several multifunction and security cards. Thanks to this equipment, a to-

tal amount of 4 lights, 4 blinds and different sensors (presence, gas and fire

detectors) were controlled. The main difference between the control points

of Intel and IPDomo is that the second allows the programming of macros

with all the UPnP devices present in the network. The Roomba application

and the necessary Bluetooth stick were installed in the same PC that ran the

control point. Once the Roomba software bridge was executed, the UPnP

device was recognised immediately and some macros were programmed. For

example, cleaning tasks were scheduled in some days if and always if the

condition that there was nobody at home in the moment the cleaning was

fulfilled. In addition, the Rovio UPnP virtual bridge was executed in the

same PC as the IPDomo control point and macros were programmed to test

the operation of the device in the installation. The system was configured

to invoke the Surveillance action in the case that presence sensors detected

something. This is an useful application in order to reinforce the security

at home. As we checked from these tests, the UPnP devices work well in a

common UPnP network and they perform all the actions perfectly.

3.4.2 Roomba tests

Different test were carried out with the Roomba robot:

• Trajectory tests: Although it has not been developed the necessary soft-

ware to calculate the position of the Roomba using the measurements

3.4. EXPERIMENTS 119

Table 3.1: Dirt sensor tests

Dirt Measurement

Chickpeas 2

Beans 51

Star-shaped noodles 128

Lentils 251

provided by the wheel encoders, it is still possible to control the move-

ment of the vacuum cleaner in open loop. The Roomba has shown a

very lineal time-distance relationship when the action Macro Function

is invoked. The repeatability in the behaviour of the robot is good

enough to guarantee that Macro Function can be used to command

Roomba to go to a room.

• Dirt sensor test : The dirt sensor provides a value between 0 and 255 as

a function of the dirt density. This information is useful to determine

the type and degree of dirtiness in the house. The tests consisted of

spreading over a small area typical cooking ingredients on the floor and

the results are shown in Table 3.1. The conclusion that can be extracted

from the experiments with this sensor is that it registers higher values

as the flow of individual elements grows. It is also remarkable that if

the dirt size is equal or greater to chickpeas then jams may occur in

the main brush of the cleaner.

• Distance and angle sensors: We also made some experiments related

to the use of the distance and angle sensors. Our results showed that

there exist linear relations between the distance and angle displace-

ment of the robot and the measurements obtained. The results show a

correlation between the speed of the robot and the quality of the mea-

surements. The faster the Roomba goes the worse performance of the

measurements was obtained. This application also depends dramati-

cally on the reliability of the communication link between the control

point and the Roomba. In case, there are lost packages, the estimated

location of the Roomba can be very wrong. We recommend the inter-

ested reader to see [142] to get more information about location of the

Roomba using only information coming from its own sensors.

120 Integration of Robots in the Smart Home by means of UPnP

Figure 3.19: Tool for statistical measures

3.4.3 Rovio tests

The tool shown in Figure 3.19 facilitates the measuring task and it allows to

study the movements of the Rovio robots.

It is possible to adjust the direction of the movement, the speed and the

movement duration in order to get the displacement and rotation measured

by Rovio’s positioning system.

The statistical operation of this tool is determined by the number of iter-

ations of each test. In each iteration Rovio gets some samples of its position

and the mean and standard deviation is calculated. The robot accomplishes

the movement and the mean and deviation of its position is calculated again.

The tool will ask for manual measures if the corresponding tick box is marked.

Then, a new test iteration will start. After the last iteration the tool provides

the mean and standard deviation of the robot displacement/rotation, and a

relation between the manual measures and that provided by the positioning

system.

In order to get the model of each robot movement, several tests have been

developed. All tests have been performed for three different time intervals

for each direction, and linear interpolation has been used between samples.

The results obtained are illustrated in Figures 3.20, 3.21 and 3.22 and the

3.4. EXPERIMENTS 121

Figure 3.20: Forward

Figure 3.21: Backward

122 Integration of Robots in the Smart Home by means of UPnP

Figure 3.22: Left rotation

Table 3.2: Rovio movements models
Direction Speed Equations of motion

Forward
High y [mm] = 294,46x - 54,3

Medium y [mm] = 266,9x - 37,67

Backward
High y [mm] = 277,63x - 58,41

Medium y [mm] = 253,06x - 25,97

Rotation
High y [radians] = 3,068x + 0,004

Medium y [radians] = 2,07x - 0,125

models are represented in table 3.2.

3.4.4 Rovio Robot Tracking a Ball

In this experiment we have used the Rovio’s webcam to track a ball. We have

implemented this tracking application as the base for the tracking of more

complex objects as it will be shown in the next subsection. In order to detect

the ball, the robot takes periodic pictures using its webcam and processes

these images in real time looking for the ball. When the robot finds it, Rovio

moves in order to maintain a certain alignment and position with respect to

the ball.

The ball-tracking application is based on the x-coordinate of the centroid

and the size of the ball. Each image taken by Rovio is processed, in order to

get the centroid and the radius of the ball, by applying several image filters

available in the AForge [163] and OpenCV [154] libraries:

• HSL: allows to extract objects from the image with similar features

3.4. EXPERIMENTS 123

in hue, saturation and lightness. It has been used to get the ball by

adjusting the saturation parameter.

• Median: is used to reduce noise in the image.

• Grayscale: allows to convert a color image into a gray scale image.

• Gaussian: is similar to the median filter. It is used to blur and smooth

the images and it removes details and noise.

• Circular Hough Transform: detects the presence of circular shapes on

an image. For this application it has been configured to detect one

circle by adjusting the filter parameters. It is the last image processing

and it provides the radius and the centroid coordinates if the ball is on

the image.

Once the application detects the ball, it calculates its centroid and it tries

to align the robot with the ball by performing rotary and lateral movements.

In addition, when Rovio has centered the ball, it tries to keep at a certain

distance from the ball using its radius to measure this distance. If the robot

loses the ball, Rovio tries to find it on the direction that the ball was moving.

On the other hand, if the Rovio is moving and it detects the ball, and it has

disappeared in the following image, it will spin the opposite of its last move.

Finally, after looking for the ball, if the robot does not find it, the Rovio will

move randomly.

As we can see in [164], it has been developed an application for Rovio

that is able to look for the ball, to align with it and to follow it if you move

the ball.

3.4.5 Rovio Robot Tracking a Roomba Robot

In this case we have developed an application that allows the Rovio to follow

the autonomous vacuum cleaner Roomba.

In order to simplify the tracking problem, we added red rectangles around

the Roomba. Thus, the image processing is based on that performed to detect

the ball. First an HSL filter is applied to get red objects by adjusting the

hue and saturation parameters, then, a grayscale filter is applied. Next, the

image processing is a bit different and follows these steps:

• Segmentation: this process allows to locate objects and boundaries.

The contours extracted from the image are filtered with a size filter in

order to remove unwanted red small objects.

124 Integration of Robots in the Smart Home by means of UPnP

• Sobel edge detector: performs a spatial gradient on an image and em-

phasizes regions of high spatial frequency. It detects and remarks the

edge of the objects previously filtered.

• Rectangles validation: this step consists on look for objects that fulfill

some geometrical conditions. The object should be composed of four

vertices, and thus it should have four sides. In addition, two consec-

utives sides should form an angle close to ninety degrees. Once the

rectangles have detected, the average of the centroids and the average

height of the rectangles’ sides are calculated. The mean centroid is

used to determine if Rovio has focused Roomba or not, and the direc-

tion that Roomba is following. The mean height is useful in order to

know if Roomba is too far or too close to Rovio.

The Rovio spins on its axis looking for Roomba. When it identifies some

of the red rectangles included on Roomba, Rovio moves towards or away

from the robot depending on the average height of the sides. If Roomba goes

forward the Rovio will follow it. If the Rovio does not find Roomba during

the pursuit, it will turn in the direction where it was shifting the mean of the

centroid and it will go forward to find it again. The goal of this application

is to follow the Roomba in order to know its position through the Rovio.

Samples of this experiment are available in [165] and [166].

3.4.6 Garbage Detection

Another interesting application in a domotic environment is the detection of

garbage by means of image processing. In this scenario, Rovio is programmed

to patrol the house while looking for garbage. In case of garbage detection,

an UPnP event is generated and the digital home acts consequently. For

example, an autonomous vacuum cleaner robot such as the Roomba [44]

could be sent to clean the area. An example of this is available in [167].

This scenario is a good example of the digital home operation based on the

interoperability between domotic and robotic devices. Rovio acts as a mobile

sensor since it moves and can detect garbage, and the vacuum cleaner robot

has the role of an actuator performing a cleaning task. Both devices are

coordinated by a control point which manages this operation.

It is important to remark that precise detection of garbage in an arbi-

trary floor is in general a very difficult problem which is beyond the scope

of this work. For this reason, we have developed a simplified garbage detec-

tion application which allows the Rovio to detect garbage in some particular

scenarios.

3.5. CONCLUSION 125

Within a testing framework, we have developed an application that looks

for garbage when a control point invokes the Garbage Detection UPnP action

or when the user enables it directly through the GUI. In addition, users may

adjust three parameters in order to detect garbage:

1. The percentage of the bottom of the image to be analyzed.

2. The threshold to binarize the image which processes and transforms it

into a black and white image.

3. The percentage of black pixels after the threshold step that are neces-

sary to consider them as garbage.

If Rovio detects garbage it announces it to the UPnP network by changing

the value of the boolean evented variable (Garbage). Even, it is possible to

invoke the Get Garbage Position UPnP action that returns the position of

garbage in the Garbage position variable.

3.5 Conclusion

We have presented applications to integrate the service robots, Roomba and

Rovio robots, into the smart home. The integration is based in UPnP soft-

ware bridges that are executed in a computer. One of the program controls

the Roomba via Bluetooth, and the other controls the robots using Wifi, and

both of them offer UPnP interfaces so that UPnP control points can com-

mand the Roomba and Rovio robots. Both robots are deeply analyzed in this

chapter as service robots and UPnP is analyzed as a middleware platform for

the integration of service robots into the smart home.

In addition, we have performed several experiments which have shown

that the developed applications can be successfully integrated in a commer-

cial UPnP home automation system. Moreover, we have shown that there are

interesting services which arise from the full integration of robots in smart

homes. For example, we have presented an experiment in which Rovio acts

as a surveillance camera after a presence detector sensor warns the home

automation system. Another interesting example is the application in which

the Rovio’s bridge uses its garbage detection routine and communicates the

control point the coordinates where garbage was detected. After that, the

control point sends Roomba robot to clean the dirty area. These are good

examples which highlight the benefits of interoperability in smart homes. De-

spite that total interoperability seems to be far away due to the large number

126 Integration of Robots in the Smart Home by means of UPnP

of existing systems and the lack of a common standard, the potential bene-

fits of the integration make the necessary efforts worthwhile. The application

presented in this chapter is a contribution to go towards this objective.

The goal of this research is to provide a framework for the integration

of service robots in the smart home. Although the applications has proven

to be useful in a real home automation environment, there are some aspects

that have to be improved and new lines of research that have to be explored.

The new services that emerge from the integration of robots and smart

homes are promising. For example, in this application, we have made possible

that the house control system can send the Roomba to any room. Conse-

quently, it is possible to schedule the cleaning of the rooms or, imagining

a more technological and integrated scenario, if a camera at home would

detect dirty spot the control system could send the Roomba to clean it.

Nevertheless, we have to remark that the home automation market is not

mature enough to incorporate these ideas now, at least not at a mass market

level, but we must not forget that in the long run ambient intelligence is the

paradigm to follow, and it is clear that some of the steps needed to go to-

wards this objective depend on the development of applications like the one

that we have presented in this chapter.

Chapter 4

Collaborative Tasks between
Robots based on the Digital
Home Compliant Protocol
over UPnP

The lack of interoperability is one of most important problems in the smart

home. As a consequence, the integration of heterogeneous devices into the

same system is a very difficult task which usually requires ad hoc solutions.

For this reason, different interoperability standards have been proposed dur-

ing the last two decades.

The Digital Home Compliant (DHC) protocol [100] is an attempt to pro-

vide interoperability between domotic and robotic devices. This protocol is

developed and supported by a consortium comprised of different companies

and public institutions. DHC is an UPnP-based protocol aimed at making

consumer electronic devices and robots work in a collaborative and effective

way, and also to improve their energetic efficiency. Given the novelty of the

protocol, in this chapter we provide a brief description of its architecture.

Nevertheless, we will focus on one particular component, the DHC-Groups

module, which is the DHC core since it allows a group of robots to work

together and provides the necessary mechanisms to perform collaborative

tasks.

Given that this protocol is based on the UPnP architecture, robots work-

ing in accordance with UPnP technology are likely to meet the DHC require-

ments. UPnP has important features which make it a good starting point for

developing a new home automation system for device interoperability. In ad-

dition, several studies have been developed for the implementation of UPnP

127

128 DHC Protocol

in smart homes and the integration of robots. For example, in [5], consumer

electronic devices and home automation systems are developed according to

UPnP, which can also be employed as a middleware for the integration of

robots [137]. Likewise, different gateways between UPnP and other tech-

nologies have been developed previously. A good example is the gateway

proposed in [168], which solves the interoperability problem between X-10

and UPnP. In addition, a ZigBee UPnP gateway is detailed in [169].

To present the DHC protocol we have chosen as a practical example a

common service robot: the Roomba vacuum cleaner [132], which has been

succesfully marketed around the world. for research applications, the Create

robot [170].

Since DHC is intended to be used with several different types of robots,

software adapters specific for each robot must be designed to meet the re-

quirements of the DHC protocol. In the case of Roomba, a DHC adapter

has been developed from the UPnP Roomba adapter presented in [44]. The

specific DHC adapter for Roomba will serve as a basis for explaining how

DHC-Groups works. In addition, other adapters are currently being devel-

oped for robots such as Rovio Mobile WebCam [171], Pioneer Research Robot

[172] or Sacarino Robot [105].

The outline of the rest of the chapter is as follows: Section 4.1 provides a

brief overview of the DHC protocol and its goals . In section 4.2 the DHC-

Groups module is presented. Section 4.3 deals with the Roomba vacuum

cleaner, presenting its main features. The DHC Roomba adapter, which is

based on the Roomba UPnP interface, is also explained in section 4.3. In

section 4.4 some experimental results based on the operation of DHC-Groups

are presented. Finally, section 4.5 provides the conclusions obtained from this

research.

4.1 The DH Compliant protocol

The DHC protocol is designed to make robotic and domotic devices work

together [173]. The DHC architecture (Figure 4.1) consists of a set of modules

which are based on UPnP technology. Every module provides a key feature

of the standard. These modules are:

• DHC-Groups: this is the key module for the performance of collab-

orative tasks by a robot hive. This module provides the mechanisms

required to choose the group of robots that can perform a task and to

choose a leader from among them. The foundations of collaborative

work between robots are given in [174].

4.1. THE DH COMPLIANT PROTOCOL 129

Figure 4.1: DHC Architecture [106]

130 DHC Protocol

• DHC-Localization: this module is necessary to require a robot to

perform a task at given coordinates. It is possible to specify the co-

ordinates where the task must be performed. An external location

system must be used so that the robot can have its own coordinates

and calculate the path to the task point [175].

• DHC-Energy: this module provides features related to the energetic

efficiency in tasks performed by several devices [176].

• DHC-Intelligence: this module is still under development and has

three submodules: DHC-Rules [177], which is useful for specifying cer-

tain rules that devices must follow when performing their tasks; DHC-

Semantics, which deals with the semantic language used on the envi-

ronment of DHC; and the DH-Machine Learning submodule, which is

based on WEKA Machine Learning Services [178].

• DHC-Security & Privacy: this module focuses on the security which

is required for communications using the DHC standard for the digi-

tal home. It deals with issues such as authentication, confidential-

ity, or data integrity [179]. The identification mechanism used by

DHC-Security & Privacy is based on the decentralized digital identity

standard called OpenID, which allows devices to identify themselves

through an URL.

4.2 DHC-Groups operation

The steps that compose the operation of the UPnP standard are an essential

part of the mechanisms on which DHC is based. DHC is an architecture

composed of peer entities that have both control point and device features.

Depending on the situation, DHC entities may behave as either a control

point (for example, invoking actions or processing an event) or as a device

(receiving commands from control points and performing tasks).

This section shows how the DHC-Groups module works. A DHC appli-

cation is structured in three layers (Figure 4.2). The top layer is the human-

machine interaction layer and consists of a graphical user interface (GUI)

that is used to send orders to the robot adapter, which is the bottom layer.

Between the top and bottom layers there are several DHC modules, one of

which is the DHC-Groups module, which receives commands from the user

interface and sends them to the robot adapter. DHC-Groups implements all

the mechanisms required to make a robot group work in a collaborative man-

ner. These three layers base their communication on the changes of UPnP

4.2. DHC-GROUPS OPERATION 131

state variables, which trigger several events. Next, we examine one by one

each of these layers:

• Human-machine interaction: in this layer, a GUI is used to collect and

store important information for the development of the tasks that will

be launched. This information is provided by the user and includes

fields as a task identifier (TaskID), the destination floor and room,

important timing information about the task, the number of robots

that can be used, or the CollaborationKeyword, which clearly indicates

the kind of task that is going to be performed. This last field is chosen

from a list of predefined keywords and determines the type of task to

do and, consequently, the robots that can perform the task. Finally, all

this information is parsed into a set of UPnP variables that are offered

to the network so that the DHC-Groups modules can retrieve them.

• DHC-Groups module: when it is launched, it subscribes to the GUI’s

evented state variable TaskID. When the value of this variable changes,

it means that the user has commanded to perform a new task af-

ter introducing the task parameters in the GUI. Likewise, the DHC-

Groups module obtains the task parameters using several getters to

this end. After that, the DHC-Groups module publishes the informa-

tion regarding the TaskID and CollaborationKeyword so that all the

robot adapters that are subscribed to this service are notified. Those

robots that can perform the task will propose themselves to take part

in the task and also to lead it. The DHC-Groups module will collect

all the proposals received from the available robots and it will decide

which robots will participate in the task and also which robot will lead

it. When the leader has been chosen, the DHC-Groups state variable

Leader changes its value to the ID of the robot that will be the leader.

Every robot adapter is sent an event and the robot whose ID is the

same as the leader ID must start the task. Finally the DHC-Groups

module, by means of notifying messages, provides a list with the IDs

of the robots that will perform the task, and it will subscribe to the

endTask leader’s state variable. Remark: The problem of deciding the

robots in the hive and the leader is open and admits different possi-

ble solutions. During the development of the DHC architecture several

options were considered by the consortium. For example, the simplest

ones consisted almost in random choices based on the proximity of the

robots to the coordinates of the task destination. Other more sophis-

ticated options in the line of auction methods [180] were considered as

well. For example, the quality of service provided by a robot in previous

132 DHC Protocol

executions of the task, the expected cost of the new task, and the energy

level and the load factor of the robot were weighted and used to deter-

mine the robots in the hive and its leader. Given that an assessment

of the validity of the choice depends on the tasks to be performed,

the particular algorithm implemented is kept outside by now of the

specification of DHC-Groups, which simply defines the communication

protocol between the robot adapters and DHC-Groups module. Hence,

the specific algorithm used depends on the particular implementation

of the DHC-Groups module. Remark: The DHC-Groups specification

also defines the case in which a robot rejects to perform a task with

a TaskNACK message. This can happen under different exceptional

circumstances. Examples of this kind of situations are: the destination

cannot be reached by the robot, the energy level of the robot is critical,

or the robot is busy.

• Robot adapter: when the robot adapter is launched, it subscribes to two

DHC-Groups state variables: TaskID and CollaborationKeyword. This

second variable is the key that makes possible to decide whether a robot

can perform a certain task. Every robot meeting the DHC requirements

has a set of CollaborationKeywords that indicates its capabilities. When

a robot adapter is sent an event, it reads the CollaborationKeyword

value, and compares it with every value of its set of keywords. If the

current keyword belongs to the robot set of keywords, it means that

the robot can perform the required task, so that the robot proposes

itself as a candidate to collaborate in the task and also to lead it. The

DHC-Groups module will decide whether the robot takes part in the

task. The way that robot leader coordinates the team depends on its

capabilities and how the adapter has been developed. Nevertheless,

it must be based on the UPnP invocation messages. In this case, we

have developed a simple algorithm on each adapter that divides the

place to clean and assigns a region to each robot. It is possible to

implement more complex algorithms, but this is beyond the scope of

this work. Once the leader has the coordinates for each robot, it invokes

the action CleanAtPoint of every robot in the hive and subscribes to

the corresponding EndTask state variable. Once the robots accomplish

their subtasks, they change the value of their EndTask variable, which

generates a notification event for the leader. Then, if the leader has

finished its own subtask, it modifies its own EndTask variable in order

to notify it to the DHC-Groups module, which is subscribed to this

state variable.

4.2. DHC-GROUPS OPERATION 133

Figure 4.2: DHC-Groups Operation

In Figure 4.2 DHC-Groups operation is summarized:

1. When the DHC-Groups module is launched, it subscribes to the state

variable TaskID. Obviously, the graphical user interface must be launched

as well.

2. When the DHC Roomba adapter is launched it subscribes to the state

variables TaskID, CollaborationKeyword and Leader.

3. The user introduces the task parameters using the GUI.

4. When the TaskID value changes, the GUI generates an event, so that

DHC-Groups is informed.

5. The DHC-Groups module obtains the task parameters and stores them

in state variables. The most important variables are TaskID and Col-

laborationKeyword, which are evented and hence generate the corre-

sponding events.

6. The aforementioned events inform the robot adapters. In our case, the

DHC Roomba adapter compares the CollaborationKeyword and the set

134 DHC Protocol

of CollaborationKeyword associated with the robot. There are as many

CollaborationKeyword as tasks that can be performed. A robot will

have a CollaborationKeyword associated with each task it is capable

of executing. For example, spot and clean are CollaborationKeyword

associated with Roomba or any robot with similar features.

7. If the robot has the corresponding CollaborationKeyword, it will pro-

pose itself to perform the task and to lead a working hive.

8. The DHC-Groups module receives all the proposals and calculates the

working hive and the leader. Then the state variable Leader has a

new value, and an event is generated. In addition, the robots that will

collaborate on the task are notified by several event messages. Finally,

the DHC-Groups module subscribes to the leader’s EndTask event state

variable.

9. When the adapter detects the new value of the variable Leader, it de-

termines whether the leader ID is equal to the robot ID. When the IDs

match, the adapter must send the order to the robot to start the task.

4.3 The Roomba vacuum cleaner: from Roomba

UPnP to Roomba DHC

Roomba is a floor-cleaning, disc-shaped robot developed by iRobot. As it

was designed with the retail home market in mind, Roomba’s hardware is

composed of standard hardware components.

In this work, we have developed an application that offers Roomba’s

services and state according to the DHC protocol. This application has

been built from the adapter previously developed in [44], the Roomba UPnP

virtual device. This adapter acts as a virtual bridge between the UPnP

network and Roomba. The software bridge provides services to the network

that will be performed by Roomba. To this end, the virtual adapter receives

invocations from control points and it translates them into orders recognized

by Roomba via Bluetooth. Once the robot interprets the orders, it executes

the corresponding actions.

DHC Roomba adapters are subscribed to all DHC-Groups variables at

startup. When the user sends one task through the GUI, the working hive

(size of the robot team) and the kind of task to be performed must be speci-

fied. Then, this task is received by the DHC-Groups module and it collects all

information about the task using invocations and UPnP event notifications

4.4. EXPERIMENTS 135

messages. The values of the DHC-Groups variables such as TaskID, Collab-

orationKeyword or WorkingHive change and the DHC Roomba adapters are

in turn informed of these changes through event notifications. In this way,

the DHC adapters have all the necessary information to perform the task.

The adapters receive a notification message with the ID of the selected de-

vices by DHC-Groups in order to perform the task, and they check if their

own ID appears in the ID list or not. If it does, the adapter configures the

corresponding profiles to perform the task. In addition, they receive another

notification in which the task to be performed is indicated (the Collabora-

tionKeyword value) and the adapter invokes an action to be executed by the

robot, working in similar fashion to the UPnP adapter.

As it can be seen, the DHC adapter operation is based on the exchange

of UPnP messages. When DHC-Groups updates its variables, the adapter

saves the information, invokes actions to get the information required to

perform the task, configures its profiles, takes any necessary action based on

information collected and performs the task properly.

4.4 Experiments

In this section we describe briefly how the implemented DHC-Groups module

was developed. In addition, experimental results are presented.

4.4.1 Implementation

We used Visual C# 2010 Express [161] integrated development environment

to develop the adapter. Each of the three layers of Figure 4.2 has been

implemented as a DHC entity relying on UPnP technology. Thus, we have

a GUI device, a DHC device (which includes the DHC-Groups service) and

a Roomba adapter device. To create and develop these devices, we used the

Developer Tools for UPnP Technology [160]. This is a set of tools which are

used in the design, creation and management of devices with UPnP features.

Two of them, the Service Author and the Device Builder are used in the

DHC project.

Since DHC works over UPnP, DHC entities are essentially UPnP devices

with some advanced capabilities. These capabilities have to do with the

mechanisms that allow several entities to work in a collaborative manner. In

addition, in DHC devices a dual behaviour is introduced, which means they

can act as UPnP device or they can have control point features according to

the situation. The development of DHC entities is based on the steps given

to implement UPnP devices:

136 DHC Protocol

Figure 4.3: DH Compliant Network

4.4. EXPERIMENTS 137

1. In the first step the XML service description file is created. This file

contains the actions included in each service provided by the device.

The description file is generated and implemented with the Service

Author tool. It allows the developer to define the variables and the

actions of the service. Every device must have at least one service

description file in order to provide some information about the actions

that the device offers to the network.

2. Once all the services included in the device are defined by means of

their description files, we used the Device Builder to define the device.

This tool allows for specification of the device and properties of services

and generates the associated UPnP stack in the .NET framework.

3. In the third step the code related to the service actions must be devel-

oped in C# in order to implement the real functionality of the device.

The developer must decide the technical complexity of the algorithm

to implement each action. A dual behaviour must be implemented in

the DHC entity, meaning that it can work either as a UPnP control

point invoking actions and subscribing to events or as a UPnP device

offering services and executing actions. It can notify of events as well.

4. Finally, it is necessary to check that the designed DHC entity works

properly. In case that it does not, it may be necessary to repeat and

debug one of the previous steps.

4.4.2 Experimental results

In this subsection we present results from a real experiment in order show

the DHC-Groups module in action (see [100] for videos of the DHC). In

this experiment, the user is provided with a touchscreen that presents the

graphical user interface (GUI) with UPnP features. This is the top layer of

the scheme illustrated in Figure 4.2. The user must specify the task that the

robot team will accomplish. To do this, the user must complete a form where

the task parameters are indicated. The most important parameters are the

following:

• A task identifier.

• Identifiers for the floor and the room where the task will be performed.

• A collaboration keyword which represents the task type to be accom-

plished.

• The number of robots in the working hive.

138 DHC Protocol

• The time when the task should begin.

In this case of use we design a task for a team composed of two Roombas.

They are required to perform a cleaning task which is specified in the collab-

oration keyword value. Once the form is filled, the user can launch the task.

The information about the task is sent through the DHC network and col-

lected by the DHC-Groups module, which is subscribed to the GUI variables.

This module processes the information and establishes a communication by

means of events and subscriptions with the DHC Roomba adapters. When

these adapters receive the task, they send a request for the coordinates of the

room where they are, and how to reach the point where they should go to

accomplish the task. An external localization system is used to exchange this

information with the robot team using the DHC protocol and to guide the

hive to the desired coordinates. In particular, the localization system con-

sists on a zenithal high definition camera and a PC with the OpenCV library

that provides the coordinates and orientation of the robots (see [173, 181] for

more information). Although it is beyond the scope of this work, the DHC

Localization module works as any other DHC entity: it provides an UPnP

service that can be invoked whenever a robot needs to know its current coor-

dinates and orientation. This service is connected to the localization system

and sends the position information back to the adapter as the return value of

the invocation received. Finally, when the robot hive reaches its destination,

they start the cleaning task. This process is shown in Figure 4.4 in which

the following steps are distinguished:

(1) The GUI allows the user to create a new task and send the task param-

eters to the DHC module.

(2) The robot adapters are subscribed to the DHC-Groups module state

variables. As the task received from the GUI changes the values of the

evented DHC state variables, the DHC adapters are notified.

(3) The adapters analyze the evented variables and check the kind of task

to be performed. If the robot has enough capabilities to accomplish the

task, the adapter will propose the robot’s candidancy to perform the

task by invoking a DHC Groups module action.

(4) Once the DHC-Groups module has all the candidancies, it will choose

the robots that will accomplish the task and the leader of the alliance

by updating its state variables. At the end of this step the DHC-Groups

module subscribes to the leader’s EndTask state variable.

4.4. EXPERIMENTS 139

Figure 4.4: Roombas scenario.

(5) Once the leader adapter has divided the cleaning place and has calculated

the coordinates for each subtask, it invokes the CleanAtPoint action of

every robot in the hive. This action performs a cleaning task at a

certain coordinates. Then, the leader subscribes to the EndTask state

variable of every robot.

(6) The adapters involved in the task invoke the DHC-Groups module to

obtain their robot’s current location.

(7) The DHC-Groups module requests the robots’ position from a DHC

localization system. In this particular case, a zenital camera has been

used for locating the robots.

(8) The DHC localization system responds with the current position of each

robot. This information is forwarded to each adapter.

(9) Each adapter guides its robot to the destination point provided with the

CleanAtPoint action in order to start the subtask. This navigation is

performed by the adapters, which can update the robot’s position by

requesting it from the DHC-Localization module.

(10) When the robots accomplish their subtasks, they change the value of

their EndTask variables to send the corresponding event to the leader.

140 DHC Protocol

Figure 4.5: A cooperative task over the DHC Compliant protocol.

Once the leader accomplishes its own subtask and has received the

EndTask event from every robot, it sends a similar event to the DHC-

Groups module so that it knows that the task has concluded.

In Figure 4.5 the behaviour of the DHC Groups entities over time at our

scenario can be seen. The sequence of states is: (1) The GUI is launched; (2)

the DHC-Groups module starts and it subscribes to the GUI state variables;

(3) the DHC-Adapter1 starts and it subscribes to the DHC-Groups state

variables; (4) the DHC-Adapter2 starts and it subscribes to the DHC-Groups

state variables; (5) the task is launched from the GUI and it notifies by

changing its state variable; (6) DHC-Groups notifies the task to the adapters

by means of its state variable and it invokes a GUI action to ask for the task

information; (7) the adapters present their candidacy by invoking the Groups

action; (8) DHC-Groups notifies the leader (DHC-Adapter2 for our particular

case) and the task participants (DHC-Adapter1) and it subscribes to the

leader EndTask state variable; (9) the leader invokes the CleanAtPoint action

of the robots in the hive and it subscribes to the corresponding EndTask state

variable; (10) the DHC-Adapter1 and the leader invoke actions to get their

coordinates from the DHC-Localization through the DHC-Groups; (11) the

DHC-Adapter1 finishes it subtask and it notifies to the leader by changing

its EndTask state variable; (12) the leader finishes its subtask and it notifies

to the DHC-Groups by changing its EndTask state variable.

Finally, we examine the communicational burden of DHC-Groups module,

which is shown in Figure 4.6 for the aforementioned experiment. During the

three minutes of the experiment, 169 messages were sent, with an average

size of 322 bytes. The average bandwidth used by DHC was 305 bytes/s and

the total amount of bytes sent in the scenario was 54395. Notice that the

largest part of this amount was sent during the launch of each entity. It is

4.5. CONCLUSION 141

Figure 4.6: A cooperative task over the DHC Compliant protocol.

important to remark that these amounts are low when compared with the

bandwidth available on modern home networks, which shows that the DHC

architecture is suitable for current smart homes.

According to the results that have been obtained from our tests we

can conclude that DHC-Groups module works properly and allows for the

scheduling and execution of several tasks performed by a robot team. Ad-

ditional performance measurements for the Rovio adapter can be found in

[182].

4.5 Conclusion

In this chapter an implementation of the DHC protocol in the service robot

Roomba is presented. One of the DHC modules (DHC-Groups) is deeply

detailed and is implemented on this robot. DHC is based on UPnP tech-

nology and has a three-tier stack. Devices meeting DHC requirements are

implemented in specific adapters that act as a bridge between DHC and the

robot proprietary technology. In the case of Roomba, its adapter translates

orders received via UPnP into orders that are recognized by the robot and

are transmitted using Bluetooth technology.

As it has been seen, DHC relies on UPnP in order to provide additional

M2M mechanisms to make different types of devices work together (as seen in

Figure 4.3). The standard is composed of different modules which implement

key features, such as collaborative tasks, energy management, localization,

142 DHC Protocol

security and privacy. The chapter deals with the operation of the DHC-

Groups module, which manages the collaboration between different types

of robots to perform tasks. The paticular adapter presented in this chap-

ter, DHC Roomba, allows users to clean a house with a set of cooperating

Roombas.

As a consequence of this first project a new alliance emerged. DH Compli-

ant 2 [183] continued the goal proposed by the previous consortium to develop

a universal protocol for communicating service robots, smart appliances and

digital homes using Web Services.

Chapter 5

Cloud Robotics

This chapter is an adapted copy of a paper sent to Sensors journal, which

is an open access journal published by MDPI, with the title “Off the shelf

cloud robotics for the smart home: empowering a wireless robot through

cloud computing” [184] for the special issue Sensors for Home Automation

and Security.

Nowadays service robots are gradually being introduced at homes. For

example, autonomous vacuum cleaners such as Roomba or Navibot have

become common devices in many homes. Other popular robots are Rovio,

which provides users with telepresence services, and the quadrotor ARDrone,

which has become a successful domestic recreational device. All of them

have contributed to provide a more realistic view of the current capabilities

of service robots, still very far away from the expectations generated by

science-fiction and futuristic movies.

Besides the proliferation of service robots at homes, there are other re-

markable household technologies that are being adopted to improve people’s

lives and to optimize energy consumption. This is the case of smart home

technologies, which provide users with services regarding automation, secu-

rity, or multimedia management. Unfortunately, the lack of standardization

of the smart home market is a major issue that hinders its development [185,

186]: there are many different technologies that offer smart home services

(e.g., the old X-10, Lonworks, KNX, Z-wave,. . .), but none of them has be-

come a true reference for marketeers and developers. For this reason, different

middleware platforms have been proposed to integrate heterogeneous tech-

nologies in the same network, e.g.: OSGi [33], UPnP [45, 37, 41, 187], or

Jini [20], to name a few.

In this chapter, we deal with the integration of service robots in the

smart home. In the literature, different works that deal with this interesting

143

144 Cloud Robotics

problem have been reported. In [44, 122], the service robots Roomba and

Rovio were integrated in a smart home network by means of UPnP adapters.

A more general approach is provided by DH-Compliant [188, 173], which is

an architecture tailored for the integration of home automation systems and

service robots. Other alternatives are: Miro [189], which is an object-oriented

robot middleware that makes the development of mobile robot applications

easier and faster, and promotes the portability and maintainability of robot

software; ROS (Robot Operating System) [107], which is an open source

framework to support modular, tools-based software development; OROCOS

(Open Robot Control Software) [108, 190, 191], which is an open distributed

framework for robot control, consisting of object libraries and components,

and a standard middleware; and RoboMaidHome [192], which consists of a

wireless sensor networks for service robots to provide reliable services.

The integration of service robots and smart home systems allows provid-

ing new services. However, the development of such services may be limited

by the computational power available at home. In particular, the hardware

used by robots and smart home systems typically has little computation

capabilities. For this reason, we rely here on cloud computing whenever

heavy computations must be performed. In order to illustrate the approach,

we present a case study based on the following off-the-shelf components: a

Rovio robot and a Vera controller, which is a controller for Z-Wave networks

with low computing capabilities. In particular, we have integrated Rovio in

a Z-Wave home automation network governed by Vera. The integration of

this robot allows us to offer new services based for example on image pro-

cessing and voice recognition. Given that these services are computationally

expensive, and taking into account that there may not be devices capable of

performing the corresponding computations in the local network, the solu-

tion we propose is to use the cloud. This idea and the whole scenario can be

seen in Figure 5.1.

The rest of the chapter is organized as follows. In Section 5.1, basic

concepts of cloud computing and cloud robotics are introduced. Section

5.2 deals with the integration of the surveillance robot Rovio in a Z-Wave

network. Section 5.3 details the cloud computing implementation developed.

Finally, Section 5.4 shows the results and the last section provides conclusions

and future work.

5.1 From Cloud Computing to Cloud Robotics

Cloud computing has become a very popular topic in the last few years, but

the concept is not new; many old services for e-mailing or file sharing are

5.1. FROM CLOUD COMPUTING TO CLOUD ROBOTICS 145

Figure 5.1: Cloud robotics scenario.

based on the same principle. The main idea is to provide remote compu-

tational resources as services invoked through a network. In this way, it is

possible to provide low-resource devices with the access to a massive amount

of data and computation power, including distributed and parallel processing.

In general, the advantages of cloud computing are [193, 194]:

• Ease of data exchange with external servers.

• Flexible configuration.

• Middleware: cloud computing servers can provide a virtualized plat-

form for each component in the network to collaborate with each other.

• Heavy processes can be handled by a server, so vendors can manufacture

smaller and less expensive and less power consumption components.

• High scalability.

• Maintaining and updating the software and drivers is simpler.

• Services and resources are located in the cloud, not on a particular

address.

146 Cloud Robotics

In [195], the extensive resources of Cloud infrastructure are studied. It

provides a survey of research on cloud robotics and automation based on four

of its features: Big Data, Cloud Computing, Collective Robot Learning and

Human Computation.

The robotics community has also been attracted by these advantages, and

nowadays robots are being prepared to connect to cloud computing infras-

tructures. This approach is called cloud robotics, which is a particular case of

cloud computing that deals only with robots [196]. Cloud robotics allows to

allocate resources in the cloud dynamically in order to support task offload-

ing and information sharing in robotic applications [197]. Moreover, cloud

robotics are expected to enhance robots capabilities such as speech recog-

nition or mapping. It can provide benefits in different applications, e.g.:

SLAM, navigation, voice recognition, weather monitoring, intrusion detec-

tion, surveillance, language translation or communication. In this way, cloud

robotics enables robots to use remote servers to perform the heavier process-

ing, so robots could be designed smaller, smarter and cheaper [198]. However,

there are some important drawbacks that should be considered [199]:

• Robots need a permanent connection to keep full capabilities.

• It is necessary to protect the network to preserve the data privacy and

to avoid robots hacking.

• It is recommended to use on-board processing for strict real-time tasks

such as those related with motion control or path planning.

5.2 Integration of Rovio in a home network through

Vera

In this section we introduce briefly the main elements that compose our case

study – surveillance robot Rovio and home automation controller for Z-Wave

Vera – and how they are integrated in the same network.

5.2.1 Rovio

Rovio is a surveillance robot that has WiFi connectivity and provides an

HTTP interface to control its capabilities. Rovio, that was released in 2008,

has a set of sensors that includes a head-mounted moveable VGA camera,

a microphone for 2-way audio, infrared sensors for positioning and collision

detection and a battery charge monitor. On the other hand, Rovio has the

following actuators: a position controller for the robot neck, a speaker for 2-

way audio, 3 omni-directional wheels, and LED lights for illumination. There

5.2. INTEGRATIONOF ROVIO IN A HOMENETWORKTHROUGHVERA147

exists an API based on the HTTP protocol over TCP/IP that allows users

to send commands to Rovio and to receive data from it. In particular, Rovio

works by means of common gateway interface (CGI) commands within HTTP

GET requests. For example, in order to retrieve the status report from Rovio

it is necessary to send the following command:

http://ip_address/rev.cgi?Cmd=nav&action=1

where ip address is the IP address of Rovio in the network.

Finally, we must remark one of the main features of Rovio: it can navigate

through the home thanks to the use of infrared lights projected on the ceiling

from its base. In order to extend the number of rooms that a Rovio can

navigate autonomously, additional beacons known as Rovio Truetrack Room

Beacon can be used. Each beacon must be set to a unique ID (1-9) using a

selector that identifies each room. It must be remarked that the production

of Rovio has been discontinued, although there are other robots with similar

and higher capabilities available in the market.

5.2.2 Vera

Vera is a controller for Z-wave, which is a wireless home automation technol-

ogy based on IEEE 802.15.4. The role played by Vera is to act as a centralized

controller in the network that offers the following services:

• It provides a platform for the creation of macros and scenarios in the

home automation network.

• It works as a bridge between the Z-wave and Wifi, allowing the user to

command his home automation devices via Wifi.

• It works as any common router: it provides access to the local home

network and to the Internet. In this way a user can control the smart

home network from the Internet. In addition, this also provides a means

to connect to an external cloud computing service.

• It provides a native UPnP interface, which allows integrating UPnP

compliant devices in the smart home network.

5.2.3 Creation of a basic Rovio interface for Vera

As it has been stated previously, one of the contributions of the chapter is the

integration of a service robot in a Z-wave network1, which has been updated

1A basic, and earlier, version of our Vera’s Rovio adapter for UI5 can be downloaded

freely from [200].

148 Cloud Robotics

to the UI7 version for Vera. More specifically, our first goal is to be able to

invoke the basic robot capabilities from Vera so that it can be used as any

other Z-wave device. In this way the robot can be integrated in scenes or

events that can be triggered from Vera depending on user actions, scheduling,

or sensor information. For example, Rovio could be programmed to go to a

certain location to get a picture as a response to a change in the state of a

sensor of the smart home network.

Vera uses an UPnP internal model for each device integrated in the smart

home network, even if the device itself is not UPnP compliant. Hence, if the

device does not have its own UPnP interface, it is necessary to create one.

To this end, three different types of files have to be created2: 1) a device

description file, 2) service description files, and 3) implementation files. The

first two types of files are UPnP compliant description files while the third

type contains the implementation of the services in LUUP (Lua UPnP) or in

JavaScript, which are the programming languages used by Vera.

For the Rovio plugin the files uploaded are:

• The device description file that contains the top level information about

Rovio’s plugin and it is linked to the service files.

• The services description files which list the services (actions and vari-

ables) that the device will provide.

• The implementation files that execute the actions to provide the ser-

vices.

• An interface file in JSON format that allows the user to control the

device using a graphical interface.

Once these files have been created and uploaded to Vera, Rovio is inte-

grated in the Z-wave network.

In Figure 5.2, it can be seen the graphical user interface offered by Vera.

On the top left of the interface there are some buttons available to invoke the

following Rovio movements: forward, backward, left, right (and their respec-

tive diagonals), the clockwise and counterclockwise rotation; and a button to

send Rovio to its dock station. There is also a speed field available that users

can modify to change Rovio’s velocity when it is controlled by using the afore-

mentioned buttons. On the top right of the interface, the image captured by

2There is an optional fourth type of file to provide a graphical user interface for the

device in Vera. In this case, JavaScript Object Notation (JSON) is used to describe the

appearance of the interface and how it interacts with the UPnP actions and variables

defined in the other files. The details of this fourth file are omitted here since they are

irrelevant for the scope of the chapter.

5.2. INTEGRATIONOF ROVIO IN A HOMENETWORKTHROUGHVERA149

Figure 5.2: Vera Control Graphical Interface for Rovio.

Rovio’s webcam is shown. In addition, there is a button that turns on and off

the LEDs installed on Rovio for low light environments. Another interesting

functionality is the possibility to adjust Rovio’s cam position by means of

three buttons (one for each position) on the interface. Finally, there is a

field where a string that represents a function of complex movements, can be

inserted. This string contains several elements, where each element consists

on a letter that indicates the movement direction and a number that rep-

resents the movement duration (in milliseconds). The movement directions

implemented are: F (forward), B (backward), R (right), L (left), Z (coun-

terclockwise rotation), X (clockwise rotation). For example, if the string is

F5000 R2000 B1600 L2000, Rovio goes forward for 5 seconds, it turns right

for 2 seconds, then it goes backward for 1.6 seconds, and, finally, it turns left

for 2 seconds.

The actions provided by Rovio are also available for macros and scenes,

as shown in Figure 5.3. In this figure, it is possible to see how to program

a movement string using the PerformComplexMove function implemented

in the plugin. Likewise, these actions can be seen and invoked from any

UPnP control point in the smart home network due to Vera’s native UPnP

functionality.

The interaction with the device can also be accomplished by simple HTTP

GET requests to the Vera IP address router with the following format:

http://ip_address:3480/data_request?id=device&action=forward&

device=31

150 Cloud Robotics

Figure 5.3: Scene section of Vera for Rovio device.

5.3 Cloud capabilities

The entities that take part in the cloud platform are listed below:

• User: It is the actor that launches the Rovio service and sets the

credentials through a GUI browser. It also interacts with Rovio robot

by commands voice.

• Vera router: It receives HTTP requests to execute actions and sends

HTTP requests to Rovio Web Service using Rovio’s plugin installed.

• GUI Browser: It enables the user to interact with Vera router by

sending HTTP requests.

• Rovio Web Service: It receives requests from Vera router and assigns

a Rovio application in the Cloud to the home to resent the requests.

• Rovio Application: This is the main entity in the Cloud. It receives

the requests originated in Vera, performs advanced and the heaviest

tasks and sends the corresponding orders to Rovio or Vera according

to the individual case.

• Google Cloud Speech API [201]: It is an external Cloud service

that enables the Rovio application to convert audio into text.

• Rovio robot: This robot receives the orders from Rovio application

and it performs tasks, i.e. it moves to an specific location or streams

audio.

5.3. CLOUD CAPABILITIES 151

Once a basic integration of Rovio and Vera is attained, we can focus on

the development of advanced capabilities based on voice recognition. Given

that Vera’s computation power is too low for these tasks, cloud computing is

used to overcome this issue.

5.3.1 Rovio, home and cloud interaction

In order to inter-operate with the cloud, an extension of the original Rovio’s

plugin [200] has been developed, so the new version of the plugin requests

services through Vera by sending a label that identifies the operation and

Rovio’s IP address. In this way, the remote cloud computing server has a

means to exchange information with both Rovio and Vera.

The scenario consists on a Rovio robot and a router Vera with Rovio’s

plugin, which are available locally in the home. On the other side, a cloud

server has been deployed with a Web Service that accepts HTTP requests

for the following services:

• Login Service: it allows the user to get access to the rest of the services

available. It requires the cloud server IP address and the Web Service

URL to send the request, which are saved in a variable of the plugin

for subsequent requests; and the service username and password, which

are sent to the service.

• Rovio Connect Service: it allows the connection with Rovio. It requires

Rovio’s IP address, username and password, which should be previously

set in Rovio’s plugin as variables for Vera. Once this service is invoked,

a Rovio application is launched in the cloud server with the information

provided and the connection is established. The Web Service keeps a

table with pairs of IP addresses from clients and Rovio application ports

in order to manage different clients and future requests.

• Launch Voice Recognition Service: it activates the voice recognition

feature.

• Stop Voice Recognition Service: it deactivates the voice recognition

feature in Rovio application.

• Garbage Detection Service: it allows to enable/disable a garbage detec-

tion algorithm. This service has been created to show the capabilities

of a cloud application to create a very complex algorithm to detect

garbage and use this information in Vera, e.g., to send another robot

to clean the area.

152 Cloud Robotics

Once all the elements are available, the user should send a login request

to the Rovio Web Service in the cloud through the Vera interface. When the

Rovio Web Service receives a login request, it launches a Rovio application

to communicate with each service client using an specific port. Then, a

connection request should be sent to connect the cloud application with the

robot. The Rovio Web Service identifies the request client and sends a request

to the Rovio application using the corresponding port to connect to the robot.

Finally, in order to process command voices, a request to activate the voice

recognition service should be sent to the cloud server. Vera sends a request

to Rovio’s Web Service and it requests Rovio application to collect audio

streaming from the robot. In this way, the remote Rovio cloud application

collects voice data from home and processes it by using the Google Cloud

Speech API, which requires sending requests to an external cloud service.

Once the command is analyzed and recognized, the cloud application sends

the coresponding command to Rovio or Vera to execute the action according

to the command voice.

The operation sequence is detailed below:

• The user logs in Vera and accesses Rovio.

• The user sends the login HTTP request to the Web Service in the cloud

through Rovio’s plugin in Vera. It authenticates the user in the cloud

to get access to the rest of the services.

• The user sends the HTTP request connect to the Web Service with

Rovio’s IP address, the user’s name and the password. The service

launches the cloud application locally with an associated port and stores

the pair port - Vera IP address to identify a home with its corresponding

application. Then, the service sends a request to the Rovio application

with the provided parameters to establish a connection between Rovio’s

application in the cloud and the robot at home.

• The user can send the voice activation HTTP request and the service

acts as a bridge and resends the request to the Rovio application in

the cloud, which starts to collect audio data streams from the Rovio’s

microphone. The application records the audio periodically during two

seconds and processes it by using the Google Cloud Speech API, which

converts audio into text by applying powerful neural networks. The text

retrieved from audio is analyzed to check if it matches the commands

loaded (there are four basic commands that identify four operations

and that are loaded at the beginning). When one of these operations is

recognized, a new grammar is loaded to specify the information for the

5.3. CLOUD CAPABILITIES 153

specific operation. The voice commands are configurable and included

in an xml file whose fields and meanings are described below:

– Move: when the command voice identified by this label is recog-

nized, the Rovio application loads a new grammar which is com-

posed by the paths saved in the robot and by the two default paths

stored on it, dock base and home, which are identified, in the same

order, by the Place labels inside the GoTo section. The user says

the voice command defining the Position label and then the com-

mand that sets the path. Rovio, using its tracking beacons, will

move to the position defined by the path.

– Detect: once this voice command is recognized, the Rovio applica-

tion loads the new grammar with the name of the objects identified

by the Object labels inside the ObjectDetection section. The name

of the object should be previously defined in the application and

a jpg image should be uploaded in order to look for the object.

This application uses a SURF algorithm.

– Action: when the Rovio application recognizes such voice com-

mand, it loads a grammar with the scenes defined in Vera. To

this end, the Rovio application sends a request to Vera to retrieve

the scenes, and then, the application awaits for the voice com-

mand that identifies the scene. When the application detects this

command voice, it sends a request to Vera to execute the scene.

– Cancel: when Rovio the application recognizes any voice com-

mand, it also adds the Cancel option to the grammar loaded.

Then, when this voice command is recognized, the initial gram-

mar is reloaded.

The working sequence described above is illustrated in Figure 5.4. In

this figure, the messages exchanged by the equipments at home, the Rovio

application in the cloud, and the Google cloud are represented as a sequence

diagram.

5.3.2 User interaction

Regarding the user, he interacts with Rovio transparently using the local

plugin installed in Vera.

We have implemented a voice recognition service that allows the use of

voice commands with Rovio. The speech recognition service relies on a list

of possible voice commands that are stored in the cloud server in a XML file.

The orders we have considered are:

154 Cloud Robotics

Figure 5.4: Messages exchange for Rovio and Vera router integration.

5.4. EXPERIMENTAL RESULTS 155

• Follow a default path or one of the recorded paths available in Rovio.

• Begin the search of an object using the image recognition capability

developed.

• Execute one of the scenes previously defined in Vera to trigger events

in the house.

• Cancel a certain action.

The voice recognition service can be activated through the plugin. Once

the user activates it, the plugin on Vera sends the corresponding message

to the cloud server so the remote application can retrieve the information

provided by Rovio’s microphone. There are important applications behind

this service:

• It is possible to use voice commands to trigger events in the house

as long as the user has Rovio available in a room, identified with the

corresponding Truetrack beacon.

• The cloud server application for Rovio retrieves the scenes defined in

Vera by sending a request, therefore the user can simply say a scene’s

name to execute it.

• The cloud server application commands Vera to perform the corre-

sponding action.

• Another example is the activation of the object search algorithm by

means of voice recognition: the user says the corresponding voice com-

mand and the name of the object to be found, and then Rovio starts

to look for the object.

5.4 Experimental Results

We have carried out some experiments to test the cloud robotics implemen-

tation.

The reader should take into account that the experiments have been per-

formed in Spanish but English subtitles have been inserted to clarify the sce-

narios in the videos, where experiments can be seen https://www.youtube.

com/watch?v=Z-jwaY_pUjA&feature=youtu.be, https://www.youtube.com/

watch?v=ZEcCFR_bs0s&feature=youtu.be and https://www.youtube.com/

watch?v=rUDAxxSrGDc&feature=youtu.be.

156 Cloud Robotics

For simplicity, we have used a local computer to act as the cloud server.

The deployment would be similar to a remote one. Moreover, the deployment

of the Web Service and the Rovio Cloud Applications could be distributed

among a remote server farm. In addition, there is another cloud element that

takes part in the experiments, the Google Cloud Speech API, which receives

request to identify the commands voice and sends the results to the Rovio

Cloud Application.

5.4.1 Teddy bear search experiment

The first experiment consists on requesting the robot to look for a teddy

bear, [202]. Using the Vera interface, the user sends a login request to Rovio

Web Service, which launches a Rovio application. Then, a connection re-

quest is sent, and finally the voice recognition algorithm is launched. When

the user says the detect command (Spanish command: detectar), the Rovio

application loads the objects grammar available and then, once the user says

the teddy command (Spanish command: peluche), it guides the robot and

launches the SURF algorithm to look for the indicated object.

5.4.2 New object for search service experiment

The video in [203] shows how easy is to insert a new object in the application.

First, the user includes the object candle (vela in Spanish) in the xml file.

Once the user says the command candle, the Rovio application ignore it

and prints the message ”The pattern image of the object to look for does

not exist” (in Spanish language: ”La imagen patron del objeto a buscar no

existe”), which indicates that the object pattern to compare with does not

exist. In order to identify the object, the user takes a snapshot of the candle

and saves it. Finally, the user tries again with the candle command voice,

and this time, as it is shown in figure 5.5, the Rovio application launches the

SURF algorithm and finds the object successfully.

5.4.3 Z-wave + Rovio integration experiment

Finally, in [204] an integration scenario between Rovio and the smart home

has been carried out. In this scenario, Rovio receives voice commands and

performs the corresponding tasks by executing the scenes previously defined

in Vera. When the Rovio application receives the action command (Spanish

command: accion), it sends a request to Vera indicating the room where

Rovio is located to perform the action. Firstly, the user says the ac-

tion command (Spanish command: accion), and then the turn off command

(Spanish command: apagar), and the Rovio application sends a request to

5.5. CONCLUSION 157

Figure 5.5: Rovio finds candle object.

Vera to turn off the lights in the room where Rovio is located (the bedroom).

Next, the user orders Rovio to go to the living room by saying the commands

voice move and living room (Spanish commands: mover and salón). Once

the robot arrives to the living room, the user says the commands action and

turn on (Spanish commands: accion and encender), and the Rovio applica-

tion sends a request to Vera to turn on the lights in the room where Rovio

is located (the living room). Finally, the user turn off the lights in the liv-

ing room with the voice commands action and turn off (Spanish commands:

accion and apagar), which send a request to Vera to perform the task. Note

that the turn off command executes on Vera two different scenes according

to the room where the Rovio is located. When Rovio was in the bedroom,

the turn off command triggered the scene for the bedroom, and on the other

hand, when Rovio was in the living room, the turn off command triggered

the scene for the living room.

5.5 Conclusion

This chapter shows a practical case study of how new advanced services

can emerge in the smart home by using cloud computing to overcome the

158 Cloud Robotics

limitations of local computational resources. In particular, a Rovio robot has

allowed us to offer services such as object detection and voice recognition.

This is a remarkable achievement because it allows using a low cost off-

the-shelf robot to provide services that are only possible with much more

sophisticated and expensive robots, e.g., Zenbo. Taking into account that we

have developed an interface to integrate the service robot Rovio in a Z-wave

network, which is also a very economic home automation technology, it can

be concluded that users can enjoy the benefits of advanced cloud robotics at

home inexpensively.

The integration of cloud robotics into smart homes may reduce the costs

in robots manufacturing. This fact together with the proliferation of cloud

services and its advantages could promote a new vision for the home automa-

tion systems.

Therefore, the rationale for cloud robotics consists of making the oper-

ating logic as independent from the hardware as possible, or at least the

heaviest tasks.

The following step could be to integrate a smart home with robots com-

pletely in the cloud with a central orchestrator entity which manages the

communications among the cloud and the systems at home. The smart home

will have a single entry point to and from the cloud to orchestrate all the

communications. The orchestrator could send messages to the cloud request-

ing services for different elements in the smart home, and the responses will

be resend to the corresponding smart home units in order to enhance their

capabilities.

Chapter 6

Conclusions

In this thesis we have proposed solutions to integrate different and heteroge-

neous systems and robots in the smart home. As it has been seen, interop-

erability is a very important issue in smart homes since the lack of it is the

major obstacle that hinders the penetration of smart home technologies in

the mass market. It is true that the media market has progressed a lot in the

last few years, however, the continuous appearance of new protocols to come

up with a solution to share and stream content from one device to another

is still booming. Once again, the interoperability problem prevent media

devices to interoperate between them in any place, and in any situation.

The problems derived from the lack of interoperability have been studied

during several decades from different perspectives and with different appli-

cations in mind, but the basic problem is always the same: a machine-to-

machine (M2M) communication mechanism has to be defined to ease the

implementation of services that cannot rely solely on ad-hoc implementa-

tion.

It is worthwhile to stand out that in this thesis a great effort has been

made to integrate different and heterogeneous systems, such as robots and

smart home controllers. Likewise, we have developed a protocol to interoper-

ate transparently with every device at home. Such protocol uses an existing

and popular standard in order to keep backward compatibility. In general,

previous interoperability solutions have been more focused on improving the

capabilities instead. This implies that many systems were not compatible

with the rest of the systems that there were available in the market.

One of our most important objectives during this work has been to reach

a general procedure to integrate different devices, and robots in particular,

in the smart home. Every work presented in this thesis has been developed

around the UPnP protocol which is a consolidated smart home technology.

159

160 Conclusions

In this work it has been demonstrated that any device is susceptible to be

integrated in a smart home through the UPnP standard. Additionally, a

novel protocol which enhance the UPnP capabilities has been developed.

This protocol is backward compatible and works properly with any native

UPnP device. However, it proposes UPnP entities to work with both be-

haviours, control point and device (master and slave), enabling the possibil-

ity to exchange information between entities and to work cooperatively. On

the contrary, it is necessary to develop a more complex algorithmic.

Finally, it is important to stand out that all the systems and techniques

developed throughout this work have been tested, at least, in controlled sce-

narios.

6.1 Conclusions

We present next the main contributions of each of the chapters of this thesis:

• Interoperability Systems. In chapter 2 we have addressed the prob-

lem of the lack of interoperability in general, and in the smart home in

particular. In addition, a literature review of previous systems has been

done from the interoperability point of view, that is, we have detailed a

very large list of interoperability proposals. Special attention has been

paid to the UPnP system which is the base of this thesis.

• Integration of Service Robots in the Smart Home by means of

the Universal Plug and Play Protocol. In chapter 3 we focused on

the integration of service robots in the smart home through the UPnP

protocol. In particular, we have proposed a methodolgy to create UPnP

devices to control the robots. The robots studied in this chapter have

been Roomba and Rovio. Both robots have been described and the

implementation of the UPnP devices has also been deeply detailed. It

is also important to remark that both robots have been integrated in a

real UPnP network and different scenarios have been presented.

• Collaborative Tasks between Robots based on the Digital Home

Compliant Protocol over UPnP. In chapter 4 a novel interoper-

abiliy protocol is presented: the Digital Home Compliant (DHC) pro-

tocol. This protocol is focused on solving the interoperability problem

between robotic and smart home devices keeping in mind the smart

home market state. In particular, we have presented the DHC-Groups

module which allows a group of robots (hive) to perform collaborative

tasks. An adapter to provide DHC-Groups capabilities has been imple-

mented for Roomba robot. In order to test the DHC-Groups module

6.2. FUTURE RESEARCH 161

and to show its capabilities the Roomba was included in a controlled

scenario and different experiments were carried out.

• Cloud Robotics. In chapter 5 the basic concepts of cloud comput-

ing and cloud robotics are explained. Rovio robot is integrated in a

real smart home through a comercial smart home controller. Basic

commands for Rovio robot are locally and directly controlled using

this controller, which also provides a UPnP interface to control the

robot. In order to provide more advanced capabilities to the robot we

have developed a cloud service and a cloud application which receive

requests from the controller, send commands to Rovio robot and, as re-

sult of Rovio responses, send orders back to the smart home controller

to perform actions at home. In addition, different experiments have

been carried out in order to test these developments. These scenar-

ios have been tested in a real smart home network, with a simulated

cloud environment for our developments which uses another real cloud

environment, the Google Cloud Speech API.

6.2 Future research

Although the research of interoperability systems have become a hot issue

in the last years, there are still many interesting topics that will have to be

studied in the future. In this section we enumerate some research lines that

are interesting from our point of view:

• There are many interoperability systems proposed in the smart home

market but none of them has became a de facto standard. The Digi-

tal entertainment area has taken advantage in the smart home market

among other areas and therefore it is necessary to reach a good inter-

operability approach with the most popular technologies in this field.

Thus, an important research line would be to integrate UPnP proto-

col, as large as possible, with different sharing and streaming media

protocols in order to get a relevant position in the market.

• During this thesis there have been developed complex algorithm in

order to provide advanced capabilities to devices. Despite the fact that

the creation of UPnP devices is relatively simple, when it is necessary to

provide advanced services or to control complex devices, developments

become a really heavy task. In this line, another interesting research, or

perhaps a good practice, is to define simple interfaces to control smart

home devices, which will simplify the developments to integrate devices

162 Conclusions

in a smart home network. In particular, each interface should provide

a very specific task. For example, robots should have specific orders

to reach specific location, not just commands to guide the robots. In

the same line, cloud robotics applications should be simple and very

specific, and they should also manage one task for application.

• Cloud Robotics is an important issue to improve the smart home mar-

ket since it could provide valuable services at a very low cost. We

believe that cloud robotics have a great potential to enhance the ser-

vices provided by robots in the smart home. We also believe that there

are strong economical incentives for the development of these services.

On the one hand, it allows simplifying hardware requirements so that

the production costs and retail prices of both robots and smart home

systems can be reduced. On the other hand, cloud services are eas-

ier to update and maintain. It also has to be taken into account that

the novel services that emerge from the integration of heterogeneous

devices also increment the value that users perceive from their smart

homes and service robots, which is one of the drivers of the technology

industry.

• Cyber-Physical Systems (CPS) is also a very interesting research ap-

proach that will become a key issue in the smart home. CPS are inte-

grations of computation and networking elements monitoring and con-

trolling physical entities. CPS is typically designed as a distributed

network which has a tight coupling and coordination between its com-

putational, communication and physical sensors and actuators element.

The continuous evolution of embedded and ubiquitous computing tech-

nologies will increase the adaptability, autonomy, efficiency, function-

ality, reliability, safety, and usability of these Cyber-Physical Systems.

The advances in computation and communication in embedded systems

as well as the emergence of CPS networks will allow them to cooperate,

share information and be active elements of a more complex system.

6.3 Publications derived from this thesis

As it has been seen, this thesis promotes the integration of service robots

in the smart home and the improvement of UPnP capabilities. Basically its

purpose is to increase the interoperability in the digital home. In this section

we will enumerate the major contributions made in this work and the results

from the thesis that have been published in conferences and journals:

6.3. PUBLICATIONS DERIVED FROM THIS THESIS 163

1. “Localización de Robot Móvil Mediante Zigbee” (Robot Mobile Loca-

tion using Zigbee) was a publication for the XXXI Automation Work-

shop in Jaen in 2010.

2. “Robots in the smart home: a project towards interoperability” is a

paper published in 2011 in the International Journal of Ad Hoc and

Ubiquitous Computing

3. “Integration of Service Robots in the Smart Home” was published in

2011 as a chapter of the Springer book “Service Robotics within the

Digital Home: Appications and Future Prospects”.

4. “Interoperabiliy Systems” was published in 2011 as another chapter of

the Springer book “Service Robotics within the Digital Home: Appica-

tions and Future Prospects”.

5. “Smoke Detectors: Development of an Alarm Management System for

UPnP” is a paper published in the Intera Workshop in 2011.

6. “Integration of service robots in the smart home by means of UPnP:

A surveillance robot case study” was published in the international

journal Robotics and Autonomous Systems in 2013.

7. “Collaborative tasks between robots based on the Digital Home Com-

pliant Protocol over UPnP” is a paper published in the international

journal Journal of Intelligent & Robotic Systems in 2013.

8. “UPnP” is a chapter which has been published in 2015 in the book

Domótica para ingenieros.

9. “Integración de robots mediante UPnP” (Integration of robots by means

of UPnP) is a chapter which has been published in 2015 in the book

Domótica para ingenieros.

10. Another paper entitled “Off the shelf cloud robotics for the smart home:

empowering a wireless robot through cloud computing” has been sent

to the international journal Sensors - Open Access Journal (published

by MDPI).

164 Conclusions

Appendix A

Resumen en castellano

La interoperabilidad trata con la integracin de dispositivos heterogéneos en

la misma red independientemente de su arquitectura, sistema operativo,

lenguaje de programación o posición en la red.

El problema de la falta de interoperabilidad surge cuando hay diferentes

dispositivos que cumplen con cierto sistema pero no son compatibles con otras

tecnoloǵıas en el hogar digital, por lo que no es posible hacer que todos los

dispositivos y tecnoloǵıas trabajen juntamente. Este problema no es nuevo,

de hecho ha sido una constante durante la corta historia del hogar digital.

En el mercado para el hogar digital han emergido muchas tecnoloǵıas, pero

ninguna de ellas preocupadas por proporcionar mecanismos de interoperabil-

idad con tecnoloǵıas previas. Hay muchos factores que pueden explicar tal

situación: normalmente las nuevas tecnoloǵıas llegan con nuevas posibilidades

que no exist́ıan antes, compatibilidad implica mayor coste de desarrollo y un

riesgo de clientes comprando dispositivos a otros fabricantes, fuerte falta de

estandarización en el sector La lista de causas es casi interminable y ayuda

a identificar errores que no debeŕıan repetirse en el futuro. Sin embargo, no

ayuda mucho a resolver el problema de la interoperabilidad al que tenemos

que enfrentarnos hoy en d́ıa. En particular, es posible identificar diferentes

áreas que trabajan más o menos de forma independiente y que tienen que ser

integradas en el futuro hogar digital.

Como los robots de servicios están muy próximos a los humanos, la tec-

noloǵıa involucra más seguridad relativa a la interacción hombre-máquina.

Por lo tanto, en la actualidad se mantiene el gran desafo de construir hogares

digitales y robots inteligentes que puedan pensar como nosotros lo hacemos.

Para alcanzar tal objetivo, cient́ıficos e ingenieros han trabajado duro para

capturar la esencia de la inteligencia humana en nuestros hogares y robots

para hacerlos inteligentes para funcionar en el mundo real. Este es una tarea

165

166 Resumen

ambiciosa, ya que robots y hogares inteligentes deben hacer frente a diver-

sos problemas, incertidumbres y cambios dinámicos del mundo real. Como

los humanos, los hogares digitales y los robots inteligentes debeŕıan ser ca-

paces de sentir el entorno, razonar y tomar decisiones, aśı como responder

rápidamente a tareas y eventos inesperados. Esto nos lleva a la necesidad de

impulsar en el hogar digital lo que conocemos como inteligencia artificial.

En general, los robots y hogares inteligentes son elementos que involu-

cran a muchas tecnoloǵıas diferentes, como la integración de sensores, fusión

de datos, redes de sensores inalámbricos, construcción de mapas, sistemas

informáticos embebidos, navegación, planificación e inteligencia artificial.

En todos los mercados emergentes la compatibilidad entre sistemas juega

un papel crucial para el éxito del propio mercado. En este sentido, el mer-

cado del hogar digital es como el perro que se muerde la cola: como no hay

un sistema idóneo entre los existentes, el mercado se gúıa por la oferta y no

por la demanda, pero cómo va a haber una fuerte demanda de dispositivos

y servicios cuando no hay una forma sencilla de combinarlos? Es necesario

un sólido compromiso hacia la interoperabilidad por parte de todos los ac-

tores de la industria domótica si se desea acelerar la penetración de servicios

avanzados a los usuarios finales.

A.1 Sistemas de Interoperabilidad

Hoy en d́ıa hay muchas iniciativas y diferentes estándares disponibles cuyo

objetivo es interconectar todos los dispositivos de electrónica de consumo en

el hogar digital. Sin embargo, la falta de interoperabilidad entre los sistemas

propuestos, la incompatibilidad entre algunos de ellos y la falta de compro-

miso por parte de los fabricantes para hacer que los dispositivos cumplan con

tales sistemas está evitando el despegue del hogar digital en nuevos edificios.

Durante las últimas décadas ha habido un crecimiento exponencial en

robots de servicios y tecnoloǵıas domóticas, lo que ha permitido el desarrollo

de nuevos productos en nuestra vida diaria. Los robots de servicios pueden

ser usados para proporcionar asistencia para la tercera edad y discapacitados,

proporcionando servicios que van desde la limpieza hasta el entretenimiento.

Los robots de servicios están divididos por funciones, tales como robots

personales, robots de campo, robots de seguridad, robots sanitarios, robots

médicos, robots para rehabilitación y robots de entretenimiento. La falta

de interoperabilidad se hace más evidente con la inclusión de tales robots

de servicio en hogares de todo el mundo. En este sentido, seŕıa interesante

controlar robots de forma remota y coordinar todos los robots para realizar

tareas complejas y reducir el tiempo en completarlas. Por esta razón, el obje-

A.1. SISTEMAS DE INTEROPERABILIDAD 167

tivo de alcanzar la interoperabilidad total entre los dispositivos de electrónica

de consumo y robots de servicios se hace cada vez más importante.

Ante este contexto todos los esfuerzos se centran en alcanzar un estándar

común y aceptado que permita interconectar todos los dispositivos en el hogar

domótico. Otro enfoque interesante es usar un sistema de interoperabilidad

existente (estándar intermedio) para interoperar con el resto de los sistemas,

de tal forma que todo quede interconectado a través de este sistema interme-

dio.

Es importante tener en cuenta la necesidad de cooperación y expansión

de las redes que ya están en uso. El principio es el concepto de middleware.

Middleware es la conectividad software que ofrece un grupo de servicios y

que hace posible ejecutar aplicaciones distribuidas sobre plataformas het-

erogéneas.

La idea de middleware, como una capa abstracta de software, es encapsu-

lar todos los recursos disponibles en una red que pueda comprender todo tipo

de dispositivos e interconectarlos de forma transparente. En otras palabras,

dar un API (Application Programming Interface) a los programadores para

el uso de aplicaciones distribuidas.

La próxima revolución en el hogar domótico se espera que proceda del

mundo de la robótica. Actualmente, el uso de la robótica está limitado a áreas

industriales, aunque los robots de servicio que nos ayudan en tareas rutinarias

como limpiar la casa, cortar el césped o incluso preparar comidas son cada

vez más comunes. Sin embargo, se deben resolver diversos problemas antes de

que los robots de servicios lleguen a ser tan populares como los ordenadores.

En concreto, la interoperabilidad entre los diferentes sistemas que puedan

existir en los hogares es un tema que debe resolverse.

Durante este trabajo se han analizado algunas de las iniciativas mid-

dleware más usadas para proporcionar interoperabilidad. Se describen los

protocolos y sistemas existentes para comunicar plataformas heterogéneas.

Las tecnoloǵıas estudiadas y detalladas en este trabajo son las siguientes:

CORBA, Jini, RMI, OSGi, UPnP, DLNA, Web Services, Semantic Web Ser-

vices, Military Standards, Salutation, Service Location Protocol, Ad hoc

Developments, URBI, DH Compliant, ROS, OROCOS y OpenJAUS.

La introducción de los robots de servicios como una nueva área que debe

interoperar con el resto de dispositivos en el hogar digital potencia todav́ıa

más el problema de la falta de interoperabilidad, y se hace necesario disponer

de tecnoloǵıas que abarquen distintas áreas y funcionalidades.

En esta tesis la tendencia ha sido emplear un protocolo en uso y potenciar

sus capacidades, aśı como plantear pasarelas para integrar otros dispositivos

totalmente independientes al protocolo. De esta forma, se han incluido robots

168 Resumen

de servicios, se ha desarrollado un nuevo protocolo basado en el original y

totalmente compatible con éste, y además para los procesos que requieren

alta potencia de computación se ha propuesto resolverlo en el cloud.

A.2 Objetivos de la Tesis

Como se verá a lo largo de la tesis, la inclusión de nuevos servicios avanzados

en el hogar digital hace necesario más que nunca potenciar la interoperabil-

idad entre las distintas áreas y sistemas disponibles en el mercado. Este es

el objetivo principal del trabajo realizado en esta tesis. La primera etapa

que se fija en este trabajo consiste en conocer las tecnoloǵıas más destacadas

en este sector, con el fin de conocer los puntos de interés y las carencias

de cada sistema, para aśı potenciar los aspectos beneficiosos para nuestras

propuestas.

La inclusión de robots de servicios en el hogar digital que sean capaces

de interoperar con el resto de sistemas en el hogar digital es un reto que es

necesario resolver. Esta tesis intenta proporcionar mecanismos para integrar

robots de servicios en el hogar digital, reduciendo costes de tiempo, desarrol-

los y maximizando los beneficios que originalmente propońıa UPnP. Hemos

propuesto soluciones para integrar en el hogar digital sistemas y robots dis-

tintos y heterogéneos. Como se ha hecho notar a lo largo de la tesis, la

interoperabilidad es un tema muy importante en el hogar digital ya que su

falta es el mayor obstáculo que evita la penetración de las tecnoloǵıas del

hogar digital en el mercado. Es cierto que el mercado multimedia ha progre-

sado mucho en los últimos años, sin embargo, la continua aparición de nuevos

protocolos para llegar a una solución para compartir y transmitir contenido

de un dispositivo a otro sigue aún en auge. Una vez más, el problema de

la interoperabilidad evita que los dispositivos multimedia interoperen entre

ellos en cualquier entorno y situación.

Durante esta tesis se han integrado algunos robots en redes UPnP y las

capacidades de dicho protocolo se han potenciado como resultado de las inves-

tigaciones realizadas durante el proyecto DH Compliant. Hemos desarrollado

un protocolo para interoperar de forma transparente con cada dispositivo en

el hogar. Dicho protocolo, con el objetivo de mantener compatibilidad hacia

atrás, usa un existente y popular estándar, y propone el uso de entidades

UPnP con doble comportamiento (punto de control y dispositivo), permi-

tiendo el intercambio de información y la cooperación entre entidades. Por

el contrario, es necesario el desarrollo de lógicas más complejas.

En general, las soluciones de interoperabilidad previas se han centrado en

mejorar las capacidades disponibles. Esto implica que muchos sistemas no

A.3. ESTRUCTURA DE LA TESIS 169

sean compatibles con el resto de sistemas disponibles en el mercado. Uno de

nuestros objetivos más importantes durante este trabajo ha sido presentar

un procedimiento para integrar distintos dispositivos, y robots en particular,

en el hogar digital. En este trabajo ha quedado demostrado que cualquier

dispositivo es susceptible de ser integrado en un hogar a través del estándar

UPnP.

Además, como parte de la tesis, se ha investigado acerca de como pro-

porcionar servicios de computación existentes desde entornos cloud a robots

disponibles en los hogares. Este estudio tiene el objetivo de proporcionar de

forma transparente servicios con altas necesidades de computación al entorno

del hogar digital.

A.3 Estructura de la Tesis

La tesis está organizada como se detalla a continuación:

• Caṕıtulo 2: Sistemas de Interoperabilidad. En este caṕıtulo se

ha abordado el problema de la falta de interoperabilidad en general, y

en el hogar digital en particular. Además, se ha realizado una revisión

de los sistemas existentes hasta al fecha desde un punto de vista de

interoperabilidad, detallando una amplia lista de propuestas de inter-

operabilidad. Se ha prestado especial atención al sistema UPnP debido

a que es la base de esta tesis.

• Caṕıtulo 3: Integración de Robots de Servicios en el Hogar

Digital por medio del Protocolo UPnP. La integración de robots

en el hogar digital proporciona una vida más confortable para sus habi-

tantes. En particular, se ha propuesto una metodoloǵıa para crear dis-

positivos UPnP para controlar los robots. Los robots estudiados en

este caṕıtulo han sido Roomba y Rovio. Ambos robots han sido de-

scritos y la implementación de los dispositivos UPnP desarrollados para

controlarlos también ha sido ampliamente detallada.

• Caṕıtulo 4: Tareas Colaborativas entre Robots basado en el

Protocolo DH Compliant sobre UPnP. En este caṕıtulo se pre-

senta un nuevo protocolo de interoperabilidad: Digital Home Compliant

(DHC), que se centra en resolver el problema de la interoperabilidad en-

tre dispositivos domóticos y robóticos. En concreto, se ha presentado el

módulo DHC-Groups, que permite a un grupo de robots realizar tareas

colaborativas. Además se ha desarrollado y presentado un adaptador

para proporcionar las propiedades de este módulo al robot Roomba.

170 Resumen

• Caṕıtulo 5: Cloud Robotics. En este caṕıtulo se presentan los con-

ceptos básicos de la computación en la nube o cloud computing y de

la computación en la nube para robots o cloud robotics. Se integra al

robot Rovio en un hogar digital real a través de un controlador com-

ercial. Este controlador permite enviar, localmente y de forma directa,

comandos básicos al robot Rovio, y además proporciona una interfaz

UPnP para controlar este robot mediante un punto de control. Final-

mente, y con el objetivo de proporcionar capacidades más avanzadas al

robot, se ha desarrollado un servicio y una aplicación en la nube que

reciben peticiones desde el controlador, env́ıan comandos al robot y,

como resultado de las respuestas de éste, env́ıan órdenes de vuleta al

controlador del hogar digital para que ejecute acciones en el hogar.

• Caṕıtulo 6: Conclusiones. La tesis finaliza con un caṕıtulo que anal-

iza las contribuciones más relevantes y, adicionalmente, señala ĺıneas

futuras de investigación en el campo de la interoperabilidad en el hogar

digital.

A.4 Contribuciones

Una vez ubicada la tesis en el marco de la interoperabilidad, se repasarán en

este apartado las principales aportaciones al estado del arte realizadas y se

señalarán también las publicaciones que se han originado a partir del presente

trabajo.

Esta tesis promueve la integración de robots de servicios en el hogar

digital y la mejora de las capacidades UPnP. Básicamente el propósito ha

sido mejorar la interoperabilidad en el hogar.

El estado del arte y el estudio de los sistemas de interoperabilidad, disponibles

en el mercado y presentados en la tesis, han sido publicados como parte de

dos caṕıtulos de libro [10, 11].

El procedimiento para crear dispositivos virtuales UPnP, resultado de

este trabajo, queda recogido en [205] como caṕıtulo de un libro. En este libro

también se presentan distintos desarrollos de dispositivos UPnP integrados

en una misma red UPnP. Otro dispositivo UPnP que también fue integrado

en la red es el detector de humos publicado en [206].

El primer robot que se integró en el hogar digital fruto de este trabajo

fue el robot aspirador Roomba. El resultado de esta investigación se publicó

en en una revista internacional [44]. Otro robot que, fruto de este trabajo,

quedó integrado en una red UPnP es el Rovio. Como consecuencia de esta

integración, junto con la presentación de varios escenarios de Rovio en la

red UPnP, se publicó un nuevo art́ıculo en otra revista [122]. Durante este

A.4. CONTRIBUCIONES 171

trabajo, la interoperabilidad entre dispositivos domóticos y robóticos estuvo

siempre en mente. En un caṕıtulo de libro [121] ambos robots (Roomba y

Rovio) son profundamente detallados y se revisa y analiza la integración de

ambos en una red digital.

A pesar de que no se obtuvieron los resultados esperados, también es

interesante reseñar la contribución acerca de la estimación de la posición de

robots en interiores mediante balizas ZigBee que se presentó en las jornadas

de automática [207].

Otro aporte muy interesante, realizado dentro del proyecto del consorcio

DH Compliant, es la presentación de una nueva tecnoloǵıa basada en UPnP,

que permite extender el concepto de tareas colaborativas y que se presentó

en otra revista [188].

Finalmente, el planteamiento de realizar procesamientos en la nube de

complejos algoritmos por parte de los robots está siendo evaluado en otro

art́ıculo de revista internacional [184].

172 Resumen

Bibliography

[1] M. Aleksy, A. Korthaus, and M. Schader, Implementing Distributed

Systems with Java and CORBA. Berlin: Springer, 2005.

[2] B. Miller, T. Nixon, C. Tai, and M. Wood, “Home networking with

universal plug and play,” Communications Magazine, IEEE, vol. 39,

no. 12, pp. 104 –109, dec 2001.

[3] M. Saaranen and D. Kalafonos, Technologies for Home Networking.

John Wiley & Sons, Inc., 2007, ch. Mobile Device Connectivity in Home

Networks, pp. 73–92.

[4] D. Cook, M. Youngblood, E. Heierman, K. Gopalratnam, S. Rao,

A. Litvin, and F. Khawaja, “Mavhome: an agent-based smart home,”

in Proceedings of the First IEEE International Conference on Pervasive

Computing and Communications, 2003.

[5] J. M. Maestre and E. F. Camacho, “Smart home interoperability:

the domoesi project approach,” International Journal of Smart Home,

vol. 3, pp. 31–44, 2009.

[6] J. Tu, W.-W. Lin, J.-C. Wang, and Y.-T. Lin, “The scenario imple-

mentation of home networking,” in The 9th International Conference

on Advanced Communication Technology, vol. 3, feb. 2007, pp. 1861

–1863.

[7] T. Perumal, A. R. Ramli, C. Y. Leong, S. Mansor, and K. Samsudin,

“Interoperability for smart home environment using web services,” In-

ternational Journal of Smart Home, vol. 2, no. 4, pp. 1–16, 2008.

[8] G. S. Blair, G. Coulson, P. Robin, and M. Papathomas,

“An architecture for next generation middleware,” in Proceedings

of the IFIP International Conference on Distributed Systems

Platforms and Open Distributed Processing, ser. Middleware ’98.

173

174 BIBLIOGRAPHY

London, UK: Springer-Verlag, 1998, pp. 191–206. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1659232.1659249

[9] G. Coulson, G. S. Blair, M. Clarke, and N. Parlavantzas, “The design

of a configurable and reconfigurable middleware platform,” Distributed

Computing, vol. 15, pp. 109–126, 2002, 10.1007/s004460100064.

[Online]. Available: http://dx.doi.org/10.1007/s004460100064

[10] M. del Pilar Almudena Garca Fuente, J. R. de la Pinta, and A. L.

Garca, Interoperabiliy Systems (Service Robotics within the Digital

Home: Appications and Future Prospects). Springer, 2011, vol. 53,

ch. 1, pp. 1–47.

[11] M. R. F. Alcalá, J. M. Maestre, and J. R. de la Pinta, Integration of

Service Robots in the Smart Home (Service Robotics within the Digital

Home: Appications and Future Prospects). Springer, 2011, vol. 53,

ch. 4, pp. 115–142.

[12] S. Vinoski, “Corba: integrating diverse applications within dis-

tributed heterogeneous environments,” Communications Magazine,

IEEE, vol. 35, no. 2, pp. 46 –55, feb 1997.

[13] M. Henning and S. Vinoski, Advanced CORBA programming with

C++. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1999.

[14] OMG. (1998) Corba services: Common object services specification.

OMG (Object Management Group). [Online]. Available: http:

//www.ing.iac.es/∼docs/external/corba/CorbaServices.pdf

[15] S. Bottazzi, S. Caselli, M. Reggiani, and M. Amoretti, “A software

framework based on real-time corba for telerobotic systems,” in in

IEEE Intl Conf. Intelligent Robots and Systems, 2002, pp. 3011–3017.

[16] E. Woo, B. MacDonald, and F. Trepanier, “Distributed mobile robot

application infrastructure,” in Intelligent Robots and Systems, 2003.

(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference

on, vol. 2, oct. 2003, pp. 1475 – 1480 vol.2.

[17] S. Knoop, S. Vacek, R. Zollner, C. Au, and R. Dillmann, “A corba-

based distributed software architecture for control of service robots,”

in Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings.

2004 IEEE/RSJ International Conference on, vol. 4, sept.-2 oct. 2004,

pp. 3656 – 3661 vol.4.

BIBLIOGRAPHY 175

[18] K. Takeda, Y. Nasu, G. Capi, M. Yamano, L. Barolli, and K. Mi-

tobe, “A corba-based approach for humanoid robot control,” Industrial

Robot: An International Journal, vol. 28, no. 3, pp. 242–250, 2001.

[19] Z. Zhang, Q. Cao, L. Zhang, and C. Lo, “A corba-based coopera-

tive mobile robot system,” Industrial Robot: An International Journal,

vol. 36, no. 1, pp. 36–44, 2009.

[20] K. Arnold, “The jini architecture: dynamic services in a flexible net-

work,” in Design Automation Conference, 1999. Proceedings. 36th,

1999.

[21] R. Gupta, S. Talwar, and D. Agrawal, “Jini home networking: a step

toward pervasive computing,” Computer, vol. 35, no. 8, pp. 34 – 40,

aug 2002.

[22] S. Morgan, “Jini to the rescue [computer network interconnection tech-

nology],” Spectrum, IEEE, vol. 37, no. 4, pp. 44 –49, apr 2000.

[23] H. Chen, “Developing a dynamic distributed intelligent agent frame-

work based on the jini architecture,” Master’s thesis, University of

Maryland Baltimore County, 2000.

[24] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Darlington,

“Iceni: An open grid service architecture implemented with jini,” in

In SuperComputing 2002, 2002.

[25] N. Furmento, J. Hau, W. Lee, S. Newhouse, and J. Darlington, “Im-

plementations of a service-oriented architecture on top of jini, jxta and

ogsi.” in European Across Grids Conference’04, 2004, pp. 90–99.

[26] H. He. (2003, September) What is service-oriented architecture.

[Online]. Available: http://www.xml.com/pub/a/ws/2003/09/30/soa.

html

[27] J. Allard, V. Chinta, S. Gundala, and I. Richard, G.G., “Jini meets

upnp: an architecture for jini/upnp interoperability,” in Applications

and the Internet, 2003. Proceedings. 2003 Symposium on, jan. 2003,

pp. 268 – 275.

[28] C.-W. Chen, C.-K. Chen, J.-C. Chen, C.-T. Ko, J.-K. Lee, H.-W. Lin,

and W.-J. Wu, “Efficient support of java rmi over heterogeneous wire-

less networks,” in Communications, 2004 IEEE International Confer-

ence on, vol. 3, june 2004, pp. 1391 – 1395 Vol.3.

176 BIBLIOGRAPHY

[29] Oracle. (2004) When should i use rmi-iiop? [Online]. Available: http:

//java.sun.com/j2se/1.5.0/docs/guide/rmi-iiop/rmiiiopUsing.html

[30] T. Spexard, F. Siepmann, and G. Sagerer, “Memory-based software

integration for development in autonomous robotics,” in International

Conference on Intelligent Autonomous Systems, 2008.

[31] D. Westhoff, T. Scherer, H. Stanek, J. Zhang, and K. A., “A flexi-

ble framework for task-oriented programming of service robots,” VDI

BERICHTE, 2004.

[32] M. Zhang, B. P. Zeigler, and P. Hammonds, “Devs/rmi-an auto-

adaptive and reconfigurable distributed simulation environment for en-

gineering studies,” ITEA Journal, 2005.

[33] O. Alliance, OSGi service platform: the OSGi alliance. Ios Pr Inc,

2003.

[34] N. Bartlett, OSGi In Practice. Online: amazon.com, 2009.

[35] T. Gu, H. Pung, and D. Zhang, “Toward an osgi-based infrastructure

for context-aware applications,” Pervasive Computing, IEEE, vol. 3,

no. 4, pp. 66 – 74, oct.-dec. 2004.

[36] D.-O. Kang, K. Kang, S.-G. Choi, and J. Lee, “Upnp av architectural

multimedia system with a home gateway powered by the osgi platform,”

in Consumer Electronics, 2005. ICCE. 2005 Digest of Technical Papers.

International Conference on, jan. 2005, pp. 405 – 406.

[37] M. Jeronimo and J. Weast, UPnP Design by Example. A Software De-

velopers Guide to Universal Plug and Play. Intel Press, 2003.

[38] G. A. Olleros, “Domotica: protocolo upnp y hogar digital,”

2007, proyecto Fin de Carrera, Universidad de Sevilla, Sevilla.

[Online]. Available: http://bibing.us.es/proyectos/abreproy/11557/

fichero/Volumen+I\%252F1 \%CDndice.pdf

[39] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,

and S. Weerawarana, “Unraveling the web services web: an

introduction to soap, wsdl, and uddi,” Internet Computing,

IEEE, vol. 6, no. 2, pp. 86–93, March 2002. [Online]. Available:

http://dx.doi.org/10.1109/4236.991449

[40] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. (2000,

October) Extensible markup language (xml) 1.0 (second edition),

BIBLIOGRAPHY 177

recommendation rec-xml-20001006. World Wide Web Consortium.

[Online]. Available: http://www.w3.org/TR/2000/REC-xml-20001006

[41] M. Jeronimo. (2004) It just works: Upnp in the digital home.

The Journal of Spontaneous Networking. [Online]. Available: http:

//www.artima.com/spontaneous/upnp digihome.html

[42] T. Fout. (2001, July) Universal plug and play in windows xp.

Microsoft Corporation. [Online]. Available: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.452.4096&rep=rep1&type=pdf

[43] W3C. (2008) Gúıa breve de tecnoloǵıas xml. World Wide Web Con-

sortium (W3C). [Online]. Available: http://www.w3c.es/Divulgacion/

GuiasBreves/TecnologiasXML

[44] J. de la Pinta, J. Maestre, E. Camacho, and I. Alonso, “Robots in the

smart home: a project towards interoperability,” International Journal

of Ad Hoc and Ubiquitous Computing, vol. 7, no. 3, pp. 192–201, 2011.

[45] U. UPnP Forum. (2001) Universal plug and play vendor’s implemen-

tation guide. [Online]. Available: http://www.upnp.org/download/

UPnP Vendor Implementation Guide Jan2001.htm

[46] U. Members of the UPnP Forum. (2008) Upnp device archi-

tecture 1.1. [Online]. Available: http://www.upnp.org/specs/arch/

UPnP-arch-DeviceArchitecture-v1.1.pdf

[47] S. C. Ahn, J. H. Kim, K. Lim, H. Ko, Y.-M. Kwon, and H.-G.

Kim, “Upnp approach for robot middleware.” in Proceedings of the

2005 IEEE International Conference on In Robotics and Automation

(ICRA’05), 2005, pp. 1959–1963.

[48] D.-S. Kim, J.-M. Lee, W. H. Kwon, and I. K. Yuh, “Design and

implementation of home network systems using upnp middleware for

networked appliances,” IEEE Transactions on Consumer Electronics,

vol. 48, pp. 963–972, 2003.

[49] S. M. Mok and C. Wu, “Automation integration with upnp modules,”

in Electronic Design, Test and Applications, 2006. DELTA 2006. Third

IEEE International Workshop on, jan. 2006, p. 5 pp.

[50] R. Dobrescu, M. Dobrescu, M. Nicolae, and D. Popescu, “Using

upnp services with an intelligent sensor network node,” in Proceedings

of the 7th Conference on 7th WSEAS International Conference

178 BIBLIOGRAPHY

on Applied Informatics and Communications, vol. 7. Stevens

Point, Wisconsin, USA: World Scientific and Engineering Academy

and Society (WSEAS), 2007, pp. 371–374. [Online]. Available:

http://portal.acm.org/citation.cfm?id=1348011.1348077

[51] H. Song, D. Kim, K. Lee, and J. Sung, “Upnp-based sensor network

management architecture,” in Second International Conference

on Mobile Computing and Ubiquitous Networking (ICMU 2005),

2005. [Online]. Available: http://www.ishilab.net/icmu2005/papers/

117390-1-050228235605.pdf

[52] S. Konno, “Cyberlink for java - programming guide v1.3,” Cyber-

Garage, 2004.

[53] S. Fuentes. (2007, September) Qué es dlna: a fondo. [Online].

Available: http://www.xataka.com/musica/que-es-dlna-a-fondo

[54] D. Digital Living Network Alliance. (2007) Dlna overview and vision

whitepaper. [Online]. Available: https://wikileaks.org/sony/docs/05/

docs/DLNA/DLNA white paper.pdf

[55] A. S. D. Corporation. (2006) Networked digital media standards a

upnp/dlna overview. [Online]. Available: http://www.allegrosoft.com/

downloads/UPnP DLNA White Paper.pdf

[56] K. Arruda. (2008, March) Dtcp-ip for dlna.

[57] J.-T. Kim, Y.-J. Oh, H.-K. Lee, E.-H. Paik, and K.-R. Park, “Imple-

mentation of the dlna proxy system for sharing home media contents,”

in Consumer Electronics, 2007. ICCE 2007. Digest of Technical Pa-

pers. International Conference on, jan. 2007, pp. 1 –2.

[58] P. Ferguson and G. Houston, “What is a vpn?” in OPENSIG’98

Workshop on Open Signalling for ATM, Internet and Mobile Networks,

Toronto, October 1998.

[59] M. C. Daconta, L. J. Obrst, and K. T. Smith, The Semantic Web: A

guide to the future of XML, Web services, and knowledge management.

Indianapolis: Ind: Wiley Pub, 2003.

[60] J. Levine and L. Vickers, “Robots controlled through web services: A

technogenesis summer research,” 2001.

[61] DARPA. (2011) Darpa urban challenge. [Online]. Available: http:

//archive.darpa.mil/grandchallenge/

BIBLIOGRAPHY 179

[62] R. Lara, D. Roman, A. Polleres, and D. Fensel, “A conceptual

comparison of wsmo and owl-s,” in ECOWS 2004, ser. LNCS,

vol. 3250. Springer, 2004, pp. 254–269. [Online]. Available:

http://dx.doi.org/10.1007/978-3-540-30209-4 19

[63] W. English, “Joint architecture for unmanned systems (jaugs). refer-

ence architecture specification, volume ii, version 3.3,” 2007.

[64] R. Wade. (2006) Joint architecture for unmanned systems. aviation

and missile research, development and engineering center (amrdec).

[Online]. Available: http://www.dtic.mil/ndia/2006targets/Wade.pdf

[65] SAE. (2011) Society of automotive engineers. [Online]. Available:

http://www.sae.org/

[66] ——. (2006) Jaus history and domain model. architecture framework

committee. [Online]. Available: http://www.sae.org/

[67] ——. (2009) Jaus/sdp transport specification. network environmental

committee. [Online]. Available: http://www.sae.org/

[68] ——. (2011) Jaus core service set. information modeling and definition

committee. [Online]. Available: http://www.sae.org/

[69] ——. (2009) Jaus mobility service set. information modeling and

definition committee. [Online]. Available: http://www.sae.org/

[70] H. Everett, R. Laird, D. Carroll, G. Gilbreath, T. Heath-Pastore, R. In-

derieden, T. Tran, K. Grant, and D. Jaffee, “Multiple resource host ar-

chitecture (mrha) for the mobile detection assessment response system

(mdars). spawar systems technical document 3026, revision a,” 2000.

[71] H. Nguyen, “Overview and highlights of robotics research and develop-

ment at the space and naval warfare systems center.” SPAWAR Systems

Center, San Diego, Tech. Rep., 2005.

[72] D. T. Carroll DM, Mikell K, “Unmanned ground vehicles for integrated

force protection,” in In SPIE Proc. 5422, 2004.

[73] G. Gothing and J. Hurdus, “Implementation of jaus on a 2004 cadil-

lac srx using a potential fields architecture.” in AUVSI’s Unmanned

Systems North America 2006, Orlando, FL, 2006.

[74] B. J. Koren Y, “Potential field methods and their inherent limitations

for mobile robot navigation,” in IEEE International Conference on

Robotics and Automation, vol. 2, 1991, pp. 1398–1404.

180 BIBLIOGRAPHY

[75] N. F. of the Blind. (2011) Blind driver challenge. National

Federation of the Blind. [Online]. Available: https://nfb.org/

nfb-blind-driver-challenge

[76] R. Faruque, “A jaus toolkit for labview, and a series of implementation

case studies with recommendations to the sae as-4 standards commit-

tee,” Master’s thesis, Mechanical Engineering, Virginia Tech, 2006.

[77] TORC. (2011) Bywire xgv - hybrid escape drive-by-wire platform.

[Online]. Available: http://www.torctech.com/

[78] M. Clark, “Jaus implementation: Robots gather for successful interop-

erability experiment,” IEEE Robotics and Automation Magazine, 2005.

[79] ——, “Jaus compliant systems offers interoperability across multiple

and diverse robot platforms,” in Unmanned Systems North America

Conference, Baltimore, Maryland, 2005.

[80] S. Baity, “Development of a next-generation experimentation robotic

vehicle (nerv) that supports intelligent and autonomous systems re-

search,” Master’s thesis, Mechanical Engineering, Virginia Tech, 2005.

[81] J. Albus, H. Huang, and E. Messina, “4d/rcs a reference model archi-

tecture for unmanned vehicle systems, version 2.0,” National Institute

of Standards and Technology (NISTIR 6910), Gaithersburg, MD, Tech.

Rep., 2002.

[82] J. Albus, K. Murphy, A. Lacaze, S. Legowik, S. Balakirsky, T. Hong,

M. Shneier, and E. Messina, “4d/rcs sensory processing and world mod-

eling on the demo iii experimental unmanned ground vehicles,” in In-

telligent Control, 2002. Proceedings of the 2002 IEEE International

Symposium on, 2002, pp. 885 – 890.

[83] C. Schlenoff, J. Albus, E. Messina, and T. B. R. Madhavan, “Using

4d/rcs to address ai knowledge integration,” AI Magazine, vol. 27, 2006.

[84] C. Shoemaker and J. Bornstein, “The demo iii ugv program: a testbed

for autonomous navigation research,” in Intelligent Control (ISIC),

1998. Held jointly with IEEE International Symposium on Compu-

tational Intelligence in Robotics and Automation (CIRA), Intelligent

Systems and Semiotics (ISAS), Proceedings, sep 1998, pp. 644 –651.

[85] C. Systems. (2011) Nato stanag 4586. CDL Systems.

BIBLIOGRAPHY 181

[86] D. U. Magazine. (2007) Stanag 4586 - nato complient ground

control system for uav. [Online]. Available: http://defense-update.

com/products/s/stanag 4586.htm

[87] N. S. 4586, “Standard interfaces of uav control system (ucs) for nato

uav interoperability,” in UAV Interoperability. Brussels: NATO Stan-

dardization Agency (NSA), 2004.

[88] M. Cummings, A. Kirschbaum, A. Sulmistras, and J. Platts, “Stanag

4586 human supervisory control implications,” in Unmanned Vehicle

Systems Canada Conference, Montebello, Quebec, November 2006.

[89] N. Suri, J. Bradshaw, M. Carvalho, T. Cowin, M. Breedy, P. Groth,

and R. Saavedra, “Agile computing: bridging the gap between grid

computing and ad-hoc peer-to-peer resource sharing,” in Cluster Com-

puting and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM

International Symposium on, may 2003, pp. 618 – 625.

[90] B. Miller and R. Pascoe, “Mapping salutation architecture apis to

bluetooth service discovery layer,” Bluetooth Consortium 1.C.118/1.0,

vol. 1, 1999.

[91] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. (1997, June)

Service location protocol. [Online]. Available: http://tools.ietf.org/

html/rfc2165

[92] C. Bettstetter and C. Renner, “A comparison of service discovery

protocols and implementation of the service location protocol,” Pro-

ceedings of the 6th EUNICE Open European Summer School Innovative

Internet Applications, pp. 13–15, 2000. [Online]. Available: http:

//data.bettstetter.com/publications/bettstetter-2000-eunice-slp.pdf

[93] F. Zhu, M. Mutka, and L. Ni, “Classification of service discovery in

pervasive computing environments,” Michigan State University, Tech.

Rep., 2002.

[94] S. Avancha, A. Joshi, and T. Finin, “Enhancing the bluetooth service

discovery protocol,” 2001.

[95] Gostai, “Urbi quick start guide, version 1.5,” URBI, Tech. Rep.,

November 2007.

[96] Urbi. (2011) Urbi official website.

182 BIBLIOGRAPHY

[97] Gostai, “The urbi software development kit,” URBI, Tech. Rep., April

2010.

[98] Urbi. (2011) Urbi walkthrough. [Online]. Available: http://www.

youtube.com/watch?v=uD65ARxyrnw

[99] Sony. (2011) Sony aibo europe official website. [Online]. Available:

http://www.sony-aibo.com/

[100] D. Compliant. (2012) Dh compliant. Available:

http://www.dhcompliant.com/. [Online]. Available: http://www.

dhcompliant.com/

[101] Ingenium. (2011) Ingenium official website. [Online]. Available:

www.ingeniumsl.com

[102] D. Davinci. (2015). [Online]. Available: http://www.domoticadavinci.

com/

[103] MoviRobotics. (2011) Movirobotics official website. [Online]. Available:

http://www.movirobotics.com/SPmsecurit.php

[104] A. R. A. ARA. (2011). [Online]. Available: www.ara.com

[105] C. Foundation. (2011) Cartif official website. [Online]. Available:

http://www.cartif.com/en/

[106] U. of Oviedo Infobotica Research Group.

(2011) Dhcompliant stack architecture v1.1. Avail-

able: http://156.35.46.38/data/files/Architecture/DHCOMPLIANT-

Architecture1.1.pdf. [Online]. Available: http://156.35.46.38/data/

files/Architecture/DHCOMPLIANT-Architecture1.1.pdf

[107] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,

E. Berger, R. Wheeler, and A. Ng, “ROS: an open source robot op-

erating system,” in Proceedings of the 2009 International Conference

on Robotics and Automation, Open-Source Software Workshop, 2009.

[108] H. Bruyninckx, “Open robot control software: the orocos project,” in

Proceedings of the 2001 IEEE International Conference on Robotics

and Automation, vol. 3, 2001, pp. 2523 – 2528.

[109] H. Bruyninckx and P. Soetens. (2007) The orocos project:

Open robot control software. Available: http://www.orocos.org/.

[Online]. Available: http://people.mech.kuleuven.be/∼orocos/pub/

documentation/rtt/v1.8.x/doc-xml/orocos-overview.html

BIBLIOGRAPHY 183

[110] OpenJAUS. (2015) Openjaus official website. Available:

http://openjaus.com/. [Online]. Available: http://openjaus.com/

[111] IPDomo. (2011) Ipdomo official website. [Online]. Available: http:

//www.ipdomo.com

[112] V. Ricquebourg, D. Menga, D. Durand, B. Marhic, L. Delahoche, and

C. Loge, “The smart home concept : our immediate future,” in 1ST

IEEE International Conference on E-Learning in Industrial Electron-

ics, December 2006, pp. 23 –28.

[113] L. N. Hoang, “Middlewares for home monitoring and control,” TKK

T-110.5190 Seminar on Internetworking (Home Networking), 2007,

helsinki University of Technology. Telecommunications Software and

Multimedia Laboratory.

[114] U. UPnP Forum. (2011) Upnp forum official website. [Online].

Available: http://www.upnp.org/

[115] C. Ramos, J. C. Augusto, and D. Shapiro, “Ambient intelligence - the

next step for artificial intelligence,” Intelligent Systems, IEEE, vol. 23,

no. 2, pp. 15 –18, 2008.

[116] S. Dixit and R. Prasad, Technologies for Home Networking. John

Wiley & Sons, Inc., 2008.

[117] S. Zeadally and P. Kubher, “Internet acces to heterogeneous home area

network devices with an osgi-based residential gateway,” International

Journal of Ad Hoc and Ubiquitous Computing 2008 - Vol. 3, No.1 pp.

48 - 56, vol. 3, pp. 48–56, 2008.

[118] V. Miori, L. Tarrini, M. Manca, and G. Tolomei, “An open standard so-

lution for domotic interoperability,” IEEE Transactions on Consumer

Electronics, vol. 52, no. 1, pp. 97–103, 2006.

[119] H. Y. Lee and J. W. Kim, “An approach for content sharing among

upnp devices in different home networks,” IEEE Transactions on Con-

sumer Electronics, vol. 53, no. 4, pp. 1419 –1426, November 2007.

[120] J. Sung, D. Kim, H. Song, J. Kim, S. Y. Lim, and J. S. Choi, “Upnp

based intelligent multimedia service architecture for digital home net-

work,” in The Fourth IEEE Workshop on Software Technologies for

Future Embedded and Ubiquitous Systems, 2006 and the 2006 Second

International Workshop on Collaborative Computing, Integration, and

Assurance. SEUS 2006/WCCIA 2006., April 2006, p. 6 pp.

184 BIBLIOGRAPHY

[121] M. J.M. and de la Pinta J.R., Integración de robots mediante UPnP

(Domótica para ingenieros). Paraninfo, March 2015, ch. 15.

[122] R. Borja, J. de la Pinta, A. Álvarez, and J. M. Maestre, “Integration

of service robots in the smart home by means of upnp: A

surveillance robot case study,” Robotics and Autonomous Systems,

vol. 61, no. 2, pp. 153–160, February 2013. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0921889012001881

[123] IFR. (2011) International federation of robotics official website.

[Online]. Available: http://www.ifr.org/

[124] Hisparob. (2011) Hisparob official website. [Online]. Available:

http://www.hisparob.es/

[125] A. MALL. (2011) Aeon mall official website. [Online]. Available:

http://www.aeonmall.com/en/index.html

[126] Tmsuk. (2011) Tmsuk co. official website. [Online]. Available:

http://www.tmsuk.co.jp/english/robots.html

[127] ALSOK. (2011) Alsok official website. [Online]. Available: http:

//www.alsok.co.jp/en/

[128] I. Surgical. (2011) Intuitive surgical official website. [Online]. Available:

http://www.intuitivesurgical.com/

[129] H. Motor. (2011) Honda official website. [Online]. Available:

http://world.honda.com/ASIMO/new/

[130] MetraLabs. (2011) Metralabs official website. [Online]. Available:

http://www.metralabs.com/

[131] T. M. Corporation. (2011) Toyota motor corporation global website.

[Online]. Available: http://www.toyota.co.jp/en/index.html

[132] iRobot. (2011) irobot official website. [Online]. Available: http:

//www.irobot.com/

[133] H. Wiechman. (2005, December) Interoperability in the multi-

format home network. [Online]. Available: http://www.hometoys.

com/htinews/dec05/articles/ti/networkhome.htm

[134] R. A. Quinnell. (2007, July) Networking moves to home automation.

[Online]. Available: http://www.edn.com/design/consumer/4315885/

Networking-moves-to-home-automation

BIBLIOGRAPHY 185

[135] S. C. Ahn, J.-W. Lee, K.-W. Lim, H. Ko, Y.-M. Kwon, and H.-G.

Kim, “Requirements to upnp for robot middleware,” in Proceedings

of the 2006 IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2006.

[136] D. Alliance. (2011) Dlna official website. Available:

http://www.dlna.org/home. [Online]. Available: http://www.dlna.

org/home

[137] S. C. Ahn, J.-W. Lee, K.-W. Lim, H. Ko, Y.-M. Kwon, and H.-G. Kim,

“Upnp sdk for robot development,” in SICE-ICASE International Joint

Conference, 2006, pp. 363–368.

[138] J. Jones, “Robots at the tipping point: the road to irobot roomba,”

Robotics & Automation Magazine, IEEE, vol. 13, no. 1, pp. 76–78,

March 2006.

[139] J. Forlizzi and C. DiSalvo, “Service robots in the domestic environment:

a study of the roomba vacuum in the home,” in Proceedings of the 1st

ACM SIGCHI/SIGART conference on Human-robot interaction, ser.

HRI ’06. New York, NY, USA: ACM, 2006, pp. 258–265. [Online].

Available: http://doi.acm.org/10.1145/1121241.1121286

[140] J.-Y. Sung, L. Guo, R. E. Grinter, and H. I. Christensen, “”my

roomba is rambo”: intimate home appliances,” in Proceedings of the

9th international conference on Ubiquitous computing, ser. UbiComp

’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 145–162. [Online].

Available: http://portal.acm.org/citation.cfm?id=1771592.1771601

[141] J. Forlizzi, “How robotic products become social products: an

ethnographic study of cleaning in the home,” in Proceedings of the

ACM/IEEE international conference on Human-robot interaction, ser.

HRI ’07. New York, NY, USA: ACM, 2007, pp. 129–136. [Online].

Available: http://doi.acm.org/10.1145/1228716.1228734

[142] B. Tribelhorn and Z. Dodds, “Evaluating the roomba: A low-cost, ubiq-

uitous platform for robotics research and education,” in Proceedings of

the IEEE International Conference on Robotics and Automation, 2007.

[143] T. E. Kurt, Hacking Roomba: Extreme Tech. Wiley, 2006.

[144] J. Elston, C. Dixon, M. Stachura, C. Eheim, and R. Witoff. (2003)

Roomba pacman. [Online]. Available: http://pacman.elstonj.com/

186 BIBLIOGRAPHY

[145] Infinuvo. (2011) Infinuvo official website. [Online]. Available: http:

//www.infinuvo.com/

[146] P. International. (2011) P3 international official website. [Online].

Available: http://www.p3international.com/

[147] iRobot. (2006) Roomba serial command interface (sci) speci-

fication. [Online]. Available: http://irobot.lv/uploaded files/File/

iRobot Roomba 500 Open Interface Spec.pdf

[148] WowWee. (2011) Wowwee group limited official website. WowWee

Group Limited. [Online]. Available: http://www.wowwee.com

[149] S. Fladung and J. Mwaura, “Cs4758: Rovio augmented vision mapping

project,” in CS4758, 2010.

[150] M. Kandefer, “Cassie can speak: A .net interface to a robotic fevahr,”

in Seminar on Cognitive Robotics, Department of Computer Science

and Engineering, University at Buffalo, 2009.

[151] H. Dang, J. Hundal, and R. Nachiappan, “Robot visual mapper,” in

Robot Visual Mapper, 2010.

[152] J. Bona and M. Prentice, “Pyrovio: Python api for wowwee rovio,”

2009.

[153] J. Melville and T. Sams, “Thirsty rovio - autonomous mini-keg locating

robot,” 2010.

[154] OpenCV. (2011) Emgu cv: Open cv in .net. [Online]. Available:

http://www.emgu.com

[155] WowWee. (2009) Rovio api specification for rovio (version 1.3).

WowWee Group Limited. [Online]. Available: http://breckon.eu/

toby/teaching/dip/rovio/Rovio API Specifications v1.3.pdf

[156] Allegro. (2011) Romplug toolkits. [Online]. Available: http:

//www.allegrosoft.com/romplug.html

[157] Cybergarage. (2011). [Online]. Available: https://github.com/

cybergarage/cybergarage-upnp

[158] GUPnP. (2011) gupnp official website. Disponible:

http://www.gupnp.org/. [Online]. Available: http://www.gupnp.org/

BIBLIOGRAPHY 187

[159] Atinav. (2011) Atinav official website. [Online]. Available: www.

atinav.com

[160] Intel. Developer tools for upnp technologies. [On-

line]. Available: https://software.intel.com/en-us/blogs/2011/02/04/

developer-tools-for-upnp-update

[161] Microsoft. (2010) Microsoft visual c# 2010 express. Disponible:

http://www.microsoft.com/express/Windows/. [Online]. Available:

http://www.microsoft.com/express/Windows/

[162] R. B. Pozo, J. de la Pinta, A. Álvarez, and J. Maestre. (2011)

Integration of rovio in an upnp network. [Online]. Available:

http://www.youtube.com/watch?v=K d5BjlMOoA

[163] A. Kirillov. (2011) Aforge.net framework. [Online]. Available:

http://code.google.com/p/aforge/

[164] R. B. Pozo, J. de la Pinta, A. Álvarez, and J. Maestre. (2011) Rovio

tracks a ball. [Online]. Available: http://www.youtube.com/watch?v=

0KMYmeIREgc

[165] R. B. Pozo, J. de la Pinta, A. Alvarez, and J. Maestre.

(2011) Rovio tracks roomba (test 1). [Online]. Available: http:

//www.youtube.com/watch?v=9o41AyeNf 4

[166] R. B. Pozo, J. de la Pinta, A. Álvarez, and J. Maestre.

(2011) Rovio tracks roomba (test 2). [Online]. Available: http:

//www.youtube.com/watch?v=xFqjwwSO8 o

[167] ——. (2011) Service robots integration over upnp scenario. [Online].

Available: http://www.youtube.com/watch?v=qWOWrw8MjYQ

[168] M. Chico, J. Maestre, and E. Camacho, “Upnp x10 sofware bridge,”

in Iadis Multi Conference on Computer Science and Information Sys-

tems., 2008.

[169] R. Lobillo, J. Maestre, and E. Camacho, “Zigbee positioning system:

applications to home automation (in spanish),” in XXIX Jornadas de

Automática, Tarragona, 2008.

[170] J. Snape, J. van den Berg, S. Guy, and D. Manocha, “Independent

navigation of multiple mobile robots with hybrid reciprocal velocity ob-

stacles,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, 2009. IROS 2009, oct 2009, pp. 5917 –5922.

188 BIBLIOGRAPHY

[171] WowWee. (2011) Rovio mobile webcam. [Online]. Available: http:

//www.wowwee.com/en/products/tech/telepresence/rovio/rovio

[172] MOBILEROBOTS. (2011) Mobilerobots official website. [Online].

Available: http://www.mobilerobots.com

[173] I. G. Alonso, O. Á. Fres, A. A. Fernández, P. G. del Torno, J. M.

Maestre, and M. A. G. Fuente, “Towards a new open communication

standard between homes and service robots, the dhcompliant case,”

Robotics and Autonomous Systems, vol. 60, no. 6, pp. 889–900, 2012.

[174] D. Compliant. (2010) Dhc-groups draft specifica-

tion for the teamwork between robots. version 1.0.

Available: http://156.35.46.38/data/files/Collaborative/DHC-

Groups%201.0.pdf. [Online]. Available: http://156.35.46.38/data/

files/Collaborative/DHC-Groups%201.0.pdf

[175] ——. (2010) Dhc-localization draft specifica-

tion for the robot localization. version 1.0.

Available: http://156.35.46.38/data/files/Localization/DHC-

Localization%201.0.pdf. [Online]. Available: http://156.35.46.38/

data/files/Localization/DHC-Localization%201.0.pdf

[176] ——. (2010) Dhc-energy draft specification for en-

ergy management and smart grids. version 1.0. Avail-

able: http://156.35.46.38/data/files/Energy%20Management/DHC-

Energy%201.0.pdf. [Online]. Available: http://156.35.46.38/data/

files/Energy\%20Management/DHC-Energy%201.0.pdf

[177] ——. (2010) Dhc-rules draft specification for checking rules. version 1.0.

Available: http://156.35.46.38/data/files/Intelligence/Rules/DHC-

Rules%201.0.pdf. [Online]. Available: http://156.35.46.38/data/files/

Intelligence/Rules/DHC-Rules%201.0.pdf

[178] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Ma-

chine Learning Tools and Techniques, 3rd ed. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2011.

[179] D. Compliant. (2010) Dhc-security & privacy draft specification for

data protection, user data privacy and access restriction. version

1.0. Available: http://156.35.46.38/data/files/SecurityPrivacy/DHC-

Security&Privacy%201.0.pdf. [Online]. Available: http://156.35.46.

38/data/files/SecurityPrivacy/DHC-Security&Privacy%201.0.pdf

BIBLIOGRAPHY 189

[180] B. P. Gerkey and M. J. Matarić, “Sold!: Auction methods for multi-

robot coordination,” IEEE Transactions on Robotics and Automation,

vol. 18, no. 5, pp. 758–768, oct 2002.

[181] A. A. Fernández, O. A. Fres, I. G. Alonso, and H. Hu, “Visual

localisation of mobile devices in an indoor environment under network

delay conditions,” International Journal of Distributed and Parallel

Systems (IJDPS), vol. 2, no. 2, March 2011. [Online]. Available:

http://arxiv.org/abs/1103.5554

[182] A. A. Vazquez, I. G. Alonso, and M. A. G. Fuente, “Performance anal-

ysis of a upnp/dhcompliant robotic adapter for collaborative tasks de-

velopment,” International Journal of Distributed and Parallel Systems

(IJDPS), vol. 3, pp. 1–14, 2012.

[183] D. Compliant2. (2012) Dh compliant 2. Available:

http://dhcompliant2.com/. [Online]. Available: http://dhcompliant2.

com/

[184] J. R. de la Pinta, J. M. Maestre, I. Jurado, and S. Reyes, “Off the

shelf cloud robotics for the smart home: empowering a wireless robot

through cloud computing,” 2017.

[185] G. Xiao, J. Guo, L. D. Xu, and Z. Gong, “User interoperability with

heterogeneous iot devices through transformation,” IEEE Transactions

on Industrial Informatics, vol. 10, no. 2, pp. 1486–1496, May 2014.

[186] J. M. Maestre, Domótica para ingenieros. Paraninfo, 2015.

[187] Q. G. Services. (2015) Upnp in digital home networking. [Online].

Available: https://www.quest-global.com/wp-content/uploads/2015/

08/UPnP-in Digital Home Networking.pdf

[188] J. de la Pinta, A. Álvarez, J. Maestre, and I. Alonso, “Collaborative

tasks between robots based on the digital home compliant

protocol over upnp,” Journal of Intelligent & Robotic Systems,

vol. 72, no. 3-4, pp. 357–371, 2013. [Online]. Available: http:

//dx.doi.org/10.1007/s10846-012-9801-7

[189] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar, “Miro - middle-

ware for mobile robot applications,” Robotics and Automation, IEEE

Transactions on, vol. 18, no. 4, pp. 493–497, 2002.

190 BIBLIOGRAPHY

[190] H. Bruyninckx, “Orocos: Design and implementation of a robot control

software framework,” in Proceedings of the 2002 IEEE International

Conference on Robotics and Automation, Washington D.C., April 2002,

pp. 1–9.

[191] C. Schlegel, “A component approach for robotics software: Com-

munication patterns in the orocos context,” in Autonome Mobile

Systeme 2003, ser. Informatik aktuell, R. Dillmann, H. Wörn, and

T. Gockel, Eds. Springer Berlin Heidelberg, 2003, pp. 253–263.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-18986-9 26

[192] M. Baeg, J.-H. Park, J. Koh, K.-W. Park, and M.-H. Baeg, “Robo-

maidhome: A sensor network-based smart home environment for ser-

vice robots,” in Robot and Human interactive Communication, 2007.

RO-MAN 2007. The 16th IEEE International Symposium on, 2007, pp.

182–187.

[193] S. Rastkar, D. Quintero, D. Bolivar, and S. Tosunoglu, “Empowering

robots via cloud robotics: Image processing and decision making boe-

bots,” in Conference on Recent Advances in Robotics, Florida, May

2012.

[194] M. Matskin, “Services, clouds and robots,” in In The Sixth Inter-

national Conference on Internet and Web Applications and Services

(ICIW 2011), St. Maarten, The Netherlands Antilles, March 2011.

[195] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research

on cloud robotics and automation,” IEEE Transactions on Automation

Science and Engineering, vol. 12, no. 2, pp. 398–409, April 2015.

[196] J. Quintas, P. Menezes, and J. Dias, “Cloud robotics: Towards context

aware robotic networks.” in In Proc. of the 16th IASTED International

Conference on Robotics, Pittsburgh (USA), November 2011.

[197] G. Hu, W.-P. Tay, and Y. Wen, “Cloud robotics: architecture, chal-

lenges and applications,” Network, IEEE, vol. 26, no. 3, pp. 21–28,

2012.

[198] E. Guizzo. (2011, January) Cloud robotics: Con-

nected to the cloud robots get smarter. Available:

http://spectrum.ieee.org/automaton/robotics/robotics-

software/cloud-robotics.

[199] ——, “Robots with their heads in the clouds,” IEEE Spectrum, 2011.

BIBLIOGRAPHY 191

[200] L. Lopez. (2013, Mayo) Rovio control plugin from z-wave gateway

vera lite. Available: http://domotica4all.com/2013/05/plugin-of-rovio-

control-from-vera-lite/. Authorship of the plugin: Sergio Reyes Cozar.

[201] Google. (2016) Google cloud speech. Available:

https://cloud.google.com/speech/.

[202] J. R. de la Pinta and J. M. Maestre. (2016) Teddy bear search experi-

ment. Available: https://www.youtube.com/watch?v=Z-jwaY pUjA&

feature=youtu.be.

[203] ——. (2016) New object for search service experiment. Available: https:

//www.youtube.com/watch?v=ZEcCFR bs0s&feature=youtu.be.

[204] ——. (2016) Z-wave + rovio integration experiment. Available: https:

//www.youtube.com/watch?v=rUDAxxSrGDc&feature=youtu.be.

[205] M. J.M. and de la Pinta J.R., UPnP (Domótica para ingenieros).

Paraninfo, March 2015, ch. 14.

[206] J. de la Pinta, C. Mart́ın-Macareno, A. Álvarez, and J. Maestre,

“Smoke detectors: Development of an alarm management system for

upnp,” in Workshop International Technology Robotics Applications,

INTERA 2011, Oviedo, February 2011.

[207] S. P. Ruiz, J. de la Pinta, J. Maestre, and E. Camacho, “Localización

de robot móvil mediante zigbee,” in XXXI Jornadas de Automática,

vol. 31, no. 31. Jaén: CEA-IFAC, 2010.

