
A Genetic Algorithm for Assembly Sequence Planning

Carmelo Del Valle
1
, Rafael M. Gasca

1
, Miguel Toro

1
, and Eduardo F. Camacho

2

1Dept. Lenguajes y Sistemas Informáticos, Univ. Sevilla,

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
{carmelo, gasca, mtoro}@lsi.us.es

2Dept. Ingeniería de Sistemas y Automática, Univ. Sevilla,

Camino de los Descubrimientos s/n, 41092 Sevilla, Spain
eduardo@cartuja.us.es

Abstract. This work presents a genetic algorithm for assembly sequence plan-

ning. This problem is more difficult than other sequencing problems that have

already been tackled with success using these techniques, such as the classic

Traveling Salesperson Problem (TSP) or the Job Shop Scheduling Problem

(JSSP). It not only involves the arranging of tasks, as in those problems, but

also the selection of them from a set of alternative operations. Two families of

genetic operators have been used for searching the whole solution space. The

first includes operators that search for new sequences locally in a predetermined

assembly plan, that of parent chromosomes. The other family of operators in-

troduces new tasks in the solution, replacing others to maintain the validity of

chromosomes, and it is intended to search for sequences in other assembly

plans. Furthermore, some problem-based heuristics have been used for generat-

ing the individuals in the population.

1 Introduction

Genetic Algorithms have been used to solve a variety of optimization problems with

some success. Combinatorial problems are a class of problems particularly difficult to

solve, sequencing problems included. Many of them have been studied using evolution-

ary techniques, such as TSP and JSSP, well known as NP-complete problems [1] [2].

This paper presents an application of genetic algorithms to the problem of selecting

and sequencing assembly operations. This is a more difficult planning problem than

TSP and JSSP. It involves not only the optimal arrangement of tasks, as in those prob-

lems, but also the selection of them from a set of alternative operations, and taking

into account the constraints imposed to build a feasible assembly plan.

Assembly planning is a very important problem in the manufacturing of products.

It involves the identification, selection and sequencing of assembly operations, speci-

fied by their effects on the parts. The identification of assembly operations has been

tackled by analysing the product structure, either using interactive expert systems [3]

[4] or, through planners working automatically from geometric and relational models

[5] and from CAD models and other non-geometric information [6] [7].

The identification of assembly operations usually leads to the set of all feasible as-

sembly plans. The number of them grows exponentially with the number of parts, and

depends on other factors, such as how the single parts are interconnected within the

whole assembly. In fact, this problem has been proved to be NP-complete [8].

An optimum assembly plan is now sought, selected from the set of all feasible as-

sembly plans. Most approaches used for choosing an optimal one employ different

kind of rules in order to eliminate assembly plans including difficult tasks or awkward

intermediate subassemblies [9] [10].

The criterion followed in this work is the minimization of the total assembly time

(makespan) in the execution of the plan. To meet this objective, the algorithm takes

into account the information about each assembly task (robot and tool needed and es-

timation of assembly time) [11]. This approach allows applying the results to different

stages of the process planning, from the design of the product and of the manufactur-

ing system, to the final execution of the assembly plan.

The rest of the paper is organized as follows: Section 2 describes the problem of

selection and sequencing of assembly tasks. The proposed genetic algorithm is de-

scribed in Section 3, and some of the results obtained are presented in Section 4.

Some final remarks are made in the concluding section.

2 Assembly Sequence Planning

And/or graphs have been used to represent the set of all feasible assembly plans for a

product [12]. In this representation, the Or nodes correspond to sub-assemblies, the

top node corresponds to the whole assembly, and the leaf nodes correspond to the in-

dividual parts. Each And node corresponds to the assembly task joining the sub-

assemblies of its two final nodes producing the sub-assembly of its initial node. In the

And/Or graph representation of assembly plans, an And/Or path whose top node is the

And/Or graph top node and whose leaf nodes are the And/Or graph leaf nodes is asso-

ciated to an assembly plan, and is referred to as an assembly tree. An important ad-

vantage of this representation, used in this work, is that the And/Or graph shows the

independence of assembly tasks that can be executed in parallel. Figure 1 shows an

example of this representation. And nodes are represented as hyperarcs.

The problem is focused on searching an optimal assembly sequence, an ordering of

an assembly plan (one of the And/Or trees of the And/Or graph). The evaluation of

solutions implies a previous estimation for the times and resources (robots, tools, fix-

tures...) needed for each assembly task in the And/Or graph. Another factor consid-

ered here, is the time necessary for changing the tools in the robots, which is of the

same order as the execution time of the assembly tasks and therefore cannot be disre-

garded as in Parts Manufacturing. ∆cht(M, C, C') will denote the time needed for in-

stalling the tool C in the robot (machine) M if the tool C' was previously installed.

Notice that any change of configuration in the robots can be modeled in this way.

Another issue is the transportation of parts and sub-assemblies, that could affect

the total assembly time. Ideally, it would be supposed a well-dimensioned system,

with a perfect planning when executing the assembly plan, so that, when a part would

be required in a robot for executing an assembly operation, it will be present there.

But the same cannot be guaranteed for an intermediate subassembly, because it could

be built in a robot and required immediately in another one to form another subas-

sembly. ∆mov(SA, M, M') will denote the time needed for transporting the subassembly

SA from robot M to robot M'.

3 The Genetic Algorithm

Genetic Algorithms (GAs) have been used to solve a large variety of combinatorial op-

timization problems with some success [1] [2]. The nature of the Assembly Sequence

Planning problem entails a great difficulty in applying GAs: a sequence of tasks forms a

correct solution if all of them belong to an assembly plan, i.e. an assembly tree of the

And/Or graph, and they are ordered according to the precedence constraints imposed by

the plan. An assembly task is defined by the subassemblies used to form a greater sub-

assembly, and by the resulting assembly. Thus, the presence of a task in a solution is

strongly conditioned by the presence of tasks related to these subassemblies. There will

be little chance of constructing a new solution from significant parts of any two solu-

tions. It will be necessary to add (probably not a few) other tasks to complete the solu-

tion, and delete some others.

The first issue in applying GAs is the chromosomal encoding. A natural way of rep-

resenting a solution is through a sequence of tasks, compatible in order with the con-

straints imposed by the And/Or graph (ordering and assembly plans). So, not all the

tasks sequences form a legal solution. Figure 2 shows how a chromosome is decoded to

produce a schedule. A schedule builder transforms the chromosome into a legal assem-

bly schedule, taking into account the precedence constraints and the shared resources to

be used (machines and tools). This translation is made directly because of the simplicity

of that representation. The result could be visualized as a Gantt chart, and it allows the

fitness function (the makespan) to be calculated. Note that, depending on the assignation

of resources to tasks and their durations, different chromosomes could be mapped into

an only schedule. It will happen when tasks do not share the same resources and could

be executed in parallel.

A B C D E

A B C D

A C D

A B A C A D C D B E

A B C D E

Fig. 1. And/Or graph of product ABCDE.

Two families of genetic operators have been defined for searching the whole solu-

tion space. The first includes operators that search locally for new sequences in a pre-

determined assembly plan, that of parent chromosomes. These operators, referred to

below as Re-Ordering Tasks operators, are similar to those used for other sequencing

problems, such as TSP and JSSP, in the literature [1] [2], but obviously result to be

insufficient to find the optimum. The other family of operators is intended to search

for sequences in other assembly plans, and are referred to as Re-Planning operators.

This is basically made by introducing a new task in a solution, and substituting certain

tasks for others in order to maintain the soundness of the chromosomes.

3.1 Re-Ordering Tasks (ROT) Operators

This kind of operator is intended to search for new sequences in a predetermined as-

sembly plan. Because of the improbability of two sequences of the same assembly

plan coinciding in a population, they are implemented as mutation operators. They

operate in a chromosome by selecting a random task in the sequence and attempting

to move it to another random position. Their predecessor or successor tasks might be

also involved in the movement, so that they may keep in their positions or move with

the selected task. Those possibilities give us four different genetic operators. The

transposition of tasks is performed so that the resultant individual is legal.

3.2 Re-Planning (RP) Operators

This kind of operator is intended to search for sequences in other assembly plans. The

resultant individuals will contain new assembly tasks, coming from another individual

present in the population (crossover operators) or generated randomly (mutation op-

erators). Some other new tasks are required in order to complete a correct chromo-

time

OP-10 OP-7

OP-9 OP-4

OP-11OP-1 OP-5

OP-11OP-9 OP-10OP-5 OP-7 OP-1 OP-4

And/Or

Graph

Times &

Resources

of Tasks

M1

M2

M3

Schedule

Builder

Fig. 2. The Schedule Builder.

some, so that they substitute some others. The sequences generated by these genetic

operators will maintain the position of tasks they had in the parents, and the new task

will fill the blanks, at some compatible order with the precedence constraints.

RP Crossover (RP-C) operators take two individuals (parents) and generate two

children, trying to merge genetic information from the two parents. Because of the nature

of Assembly Planning there will be little chance of constructing a new solution from

significant parts of any two solutions. The generation of children is made by selecting

one task in one of the parents, so that their successor tasks in that parent are also

selected. The remaining tasks in the new individual will be selected from the other

parent, whenever possible, or randomly, in order to complete a legal chromosome. This

is done in different ways, depending on the distance of the search for a predecessor task

of the selected task in the And/Or graph.

RP Mutation (RP-M) takes an individual and modifies it by changing a random sub-

tree of the assembly plan for another, selected randomly and according to the

constraints imposed by the And/Or graph. The positions of the new tasks in the

sequence will be the same that held the substituted tasks.

3.3 A heuristic for generating solutions

An estimation of the time needed for the execution of each task and their successors

in the And/Or graph have been used in order to generate the solutions in the initial

population. An optimistic way of doing this estimation is done by the heuristic func-

tion ht, defined by the equations below:

1 2
() () max(min ((,)), min ((,)))

i j

i j
T Or T Or

ht T dur T htc T T htc T T
∈ ∈

= + (1)

() ()()(,) () max , (), () , (), (), ()i i i mov i ihtc T T ht T T M T C T sa T M T M Tτ= + ∆ (2)

()
()1

, (), if ()
(, ,)

max 0, (, ,) if ()

cht M C T C M M T
T M C

T M C M M T
τ

τ
! ∆ =∀= # ≠∀∃

(3)

() ()() ()()
1 2

1 2 2, , max min , , , , min , , ,
i j

i j
T Or T Or

T M C T T M C T T M Cτ τ τ
∈ ∈

% &= ∋ () ∗
 (4)

() () ()2 , , , , , () ()i i iT T M C T M C ht T ht Tτ τ= − − (5)

This calculations for ht(T) take into account not only the duration dur(T) of each

task T and the precedence constraints defined in the And/Or graph for the tasks, but

also the delays corresponding to the change of tools (configurations) in the machines

and to the transportation of intermediate sub-assemblies between different machines.

A solution is built by ordering the tasks of a tree of the And/Or graph. In order to
construct a tree, an And node is selected randomly from the set of alternative task for

each Or node, so that the probability of selection is inverse to the value of ht for the

tasks. The sequence of tasks is formed selecting consecutively a task which its imme-

diate predecessor have been introduced in the sequence. When a set of candidate tasks

may be selected, a probability directed proportional to ht is used for a random selec-

tion, so that the tasks (and its successors) with more estimated time will have more

chance of being selected.

4 Experiments and Results

A hypothetical product has been used in order to evaluate the genetic operators de-

scribed in the previous section. That product is formed by 30 parts, and the number of

connections among them is the minimum. The product includes in its And/Or graph

various alternative tasks for each Or node, and contains 396 Or nodes and 764 And
nodes. There are about 1021 possible individuals. Note that the number of different

schedules depends not only on the number of sequences, but also on the distribution

of shared resources (and their number) and durations among all tasks. Thus, various

individuals could be transformed in an unique schedule.

The values corresponding to the higher part of figures 3 and 4 represent the aver-

age of 25 trials. The lower part represents the best result in all trials. Moreover, all
values represent the average of 10 different distributions of durations and shared re-

sources among the tasks. They show the best solution found until the number of

evaluations indicated. The graphics include also the value of the optimum solution

(OPT) and the performance of a random algorithm (RND).

Figures 3 and 4 show the operation of the specific genetic operators. The high dif-

ficulty for merging genetic information from two any individuals could explain the
relatively poor results obtained by RP-C in comparison with those expected from

typical crossover operators. In fact, RP-M obtains slightly better results, maybe be-

cause it preserves more genetic information in the individuals. Moreover, ROT opera-

tors improve more quickly at first. At last, their performance is conditioned by the as-

sembly plans generated in the initial population. A last curve is generated in Fig. 6. It
shows the results obtained by a GA with all referred operators working together

(ALL). A quite improvement can be observed. This reflects the combination of the

two effects: ROT operators optimize assembly plans that have been generated, and RP

operators obtain new assembly plans.

The influence of having an initial population that have been generated randomly or

using any other informed method can be seen comparing the two figures. Figure 3
shows how the GA works when starting from a random initial population, and figure

4 when the initial population is generated using the heuristic ht presented in section

3.3. The curve RND in figure 4 corresponds to the use of ht in a probabilistic algo-

rithm that continuously generates new solutions, which substitutes the random algo-

rithm used in figure 3. We can see that the probabilistic algorithm improves the ran-

dom one, and the average best solutions are near the solutions obtained by some of
the genetic operators working alone. The results are better in general in figure 4, but

the improvements are different for each operator. For example, RP-C operators work-

ing alone obtain similar results, RP-M improves slightly, and ROT operators im-

proves more, because of the influence of the initial population in his behavior. The

GA with all the operators working together also improves the solution, but only a lit-
tle for the best trial.

The use of more heuristic methods, such as the heuristic presented, but also during
the search, is expected to improve the GA, so that a natural extension of this work

must be in that sense.

5 Conclusions

A genetic algorithm has been presented for solving the assembly sequence planning

problem, a much more difficult problem than other sequencing problems that have

75

80

85

90

95

100

105

110

0 5000 10000 15000 20000 25000 30000
Evaluations

M
ak

es
p

an

RND
ROT
RP-C
RP-M
ALL
OPT

Fig. 3. Results for random initial populations.

75

80

85

90

95

100

105

110

0 5000 10000 15000 20000 25000 30000
Evaluations

M
ak

es
p

an

RND
ROT
RP-C
RP-M
ALL
OPT

Fig. 4. Results for heuristic initial populations.

already been tackled using similar techniques, such as TSP and JSSP, because it in-

volves also the selection of assembly operations that will form the assembly plan from

a set of alternatives. Two families of genetic operators have been used in order to

search through the whole solution space. RP operators have been proposed for gener-

ate new assembly plans (with different assembly tasks) from others. On the other
hand, there is the ordering of assembly tasks in the sequence to obtain a good sched-

ule. ROT mutation operators have been used for this goal.

Although the genetic information used by these operators could seem insufficient,

the combined operation of them has been quite satisfactory. The behavior of the GA

algorithm has been improved by using a initial population that have been generated

using a heuristic corresponding to an estimation of the time needed for executing each
task and its successors in the And/Or graph of the product to be assembled.

References

1. T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, C. Whitley (1991). A
Comparison of Genetic Sequencing Operators. Proceedings of the Forth Intl. Conf.

on Genetic Algorithms, ICGA-91, pp. 69-76. Morgan Kaufmann.

2. G. Syswerda (1990). Schedule Optimization Using Genetic Algorithms. In L. Davis,

ed.. The Handbook of Genetic Algorithms, pp. 332-349. Van Nostram Reinhold.

3. Bourjault, A. (1984). Contribution à une Approche Méthodologique de

l'Assemblage Automatisé: Elaboration Automatique des Séquences Opératoires.
Thèse d'état, Université de Franche-Comté, Besançon, France.

4. De Fazio, T.L. and D.E. Whitney (1987). Simplified Generation of All Mechanical

Assembly Sequences. IEEE J. Robotics and Automat., Vol. 3, No. 6, pp. 640-658.

Also, Corrections, Vol. 4, No. 6, pp. 705-708.

5. L.S. Homem de Mello and A.C. Sanderson. A Correct and Complete Algorithm for
the Generation of Mechanical Assembly Sequences. IEEE Trans. Robotic and

Automation.Vol 7(2), 1991, pp. 228-240.

6. B. Romney, C. Godard, M. Goldwasser, G. Ramkumar (1995). An Efficient Sys-

tem for Geometric Assembly Sequence Generation and Evaluation. Proc. 1995

ASME International Computers in Engineering Conference, pp. 699-712.

7. T. L. Calton. Advancing design-for-assembly. The next generation in assembly
planning. Proc. 1999 IEEE Int. Symp. on Assembly and Task Planning, pp. 57-62.

8. Wilson, R.H., L. Kavraki, T. Lozano-Pérez and J.C. Latombe (1995). Two-Handed

Assembly Sequencing. International Jour. Robotic Research. Vol. 14, pp. 335-350.

9. Homem de Mello, L.S. and S. Lee, eds. (1991b). Computer-Aided Mechanical As-

sembly Planning. Kluwer Academic Publishers.

10.M.H. Goldwasser and R. Motwani (1999). Complexity measures for assembly se-
quences. Intern. Jounal of Computational Geometry and Applications, 9:371-418.

11.C. Del Valle and E.F. Camacho (1996). Automatic Assembly Task Assignment for

a Multirobot Environment. Control Eng. Practice, Vol. 4, No. 7, pp. 915-921.

12.Homem de Mello, L.S. and A.C. Sanderson (1990). And/Or Graph Representation

of Assembly Plans. IEEE Trans. Robotics Automat. Vol. 6, No. 2, pp. 188-199.

	A Genetic Algorithm for Assembly Sequence Planning
	Introduction
	Assembly Sequence Planning
	The Genetic Algorithm
	Re-Ordering Tasks (ROT) Operators
	Re-Planning (RP) Operators
	A heuristic for generating solutions

	Experiments and Results
	Conclusions
	References

