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In most cases the models for experimentation, analysis, or design in engineering applications 
take into account only quantitative knowledge. Sometimes there is a qualitative knowledge 
that is convenient to consider in order to obtain better conclusions. These qualitative concepts 
can be labels such as ``high,’ ’ ``very negative,’ ’ ``little acid,’ ’ ``monotonically increasing’ ’ 
or
symbols such as ¾; º, etc. . . Engineers have already used this type of knowledge implicitly 
in many activities. The framework that we present here lets us express explicitly this 
knowledge.

This work makes the following contributions. First, we identify the most important classes 
of qualitative concepts in engineering activities. Second, we present a novel methodology to 
integrate both qualitative and quantitative knowledge. Third, we obtain signi®  
cant conclusions automatically. It is named semiqualitative reasoning.

Qualitative concepts are represented by means of closed real intervals. This 
approximation is accepted in the area of Arti®  cial Intelligence. A modeling language 
is speci®  ed to represent qualitative and quantitative knowledge of the model. A 
numeric constraint satisfaction problem is obtained by means of corresponding 
rules of transformation of the semantics of this language . In order to obtain conclusions, 
we have developed algorithms that treat the problem in a symbolic and numeric way. The 
interval conclusions obtained are transformed into qualitative labels through a 
linguistic interpretation. Finally, the capabilities of this methodology are illustrated on 
different problems.

A model is the representation of the relevant aspects of a determined system
constructed for the purpose of answering particular questions. In many
systems, the lack of quantitative information and sometimes, also, the
``excess’’ of quantitative information is frequent. There is the con®rmation
that in certain situations it is possible to obtain signi®cant conclusions from
a purely qualitative knowledge. Qualitative reasoning (QR) is a well-de®ned
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method for dealing with these qualitative models. In the eighties, the main
concepts of the qualitative techniques appeared in the area of Arti®cial
Intelligence (AI), by means of the publication of the systems ENVISION
(DeKleer and Brown 1984), QSIM (Kuipers 1986) and QPT (Forbus 1984).
In the last decade, di� erent monographs have been published (Kuipers 1994;
Piera 1995; Dague 1995; TraveÂ -Massuyes, Dague, and Guerrin 1997; Ortega
2000) that tackle the topics and the di� erent developed techniques in quali-
tative reasoning. This qualitative knowledge is useful to understand, in a
simple way, some of the properties of the models, therefore the simplicity is
its principal property. The qualitative representation of the world and the
attempt to qualitatively reason about the world are not new and have been
used in di� erent engineering tasks, such as diagnosis (Biswas, Kapadia, and
Yu 1999), supervision (Bousson 1993; Moreno 1993), control (Foulloy 1993),
conceptual design (Bozzo et al. 1998), analysis (Aracil and Toro 1993; Gasca
1998; Lee 2000), fault detection (Armengol 2000) and temporal behavior
patterns (Ortega 2000). In most of the approaches to modeling qualitative
reasoning in AI, it is explicitly or implicitly assumed that qualitative models
are obtained directly from quantitative models, or at least could be re®ned to
a quantitative description of such a system. Due to this, it may seem that QR
would compete with di� erent ®elds and scienti®c methods. The question is
then how the results obtained by QR relate to those derived from the cor-
responding quantitative analysis.

In the formalization of QR (Struss 1989), the decisions about how to
describe the qualitative quantities and to manipulate them to obtain results
are:

° A ®nite set of values.
° The set of qualitative values must cover the whole range of the interesting

behaviors.
° An interpretation of the results obtained by the qualitative analysis.
° A natural order of the qualitative values.
° A formalism that expresses the description of the system in terms of

relationships between qualitative variables and operations to obtain the
solutions.

Di� erent approaches have been proposed to apply qualitative reasoning
to problems of engineering. They had important di� culties, since a lot of
importance is given to simple parameters and the relationships among them
are generally rejected. In these problems, apart from signs of quantities, it
also seems convenient to consider the absolute or relative order of mag-
nitude of the quantities. For example, if A is big and B is big, the sum is
easy to infer that its result is big but if the subtraction is carried out,
the result may be big, medium, or small. This fact together with other



considerations has given rise to new approximations to formalize structures
and tools for QR.

The order of magnitude formalisms have been introduced as alternatives
to pure qualitative theories in order to address the problems deriving from
the poor expressivity of qualitative theories, leading to what is known as the
over-abstraction phenomenon (Kuipers 1986). The absolute order of mag-
nitude is based on the sign algebra, where quantities are given by signs. Other
important algebras are qualitative order of magnitude algebras (TraveÂ -Mas-
suyes and Piera 1989; Missier, Piera, and Trave 1989; Piera, Sanchez, and
TraveÂ -Massuyes 1991; Agell 1998) and hybrid sign-real algebra (Williams
1991), that explains how it is possible to do certain algebraic treatments on
constraints in the real algebra, and then map the constraints into the sign
domain for other inferences.

Another approach that o� ers a midway abstraction level between
numerical methods and qualitative formalisms is the relative order of
magnitude reasoning. The qualitative knowledge is represented by bin-
ary relations expressing orders of magnitude between two quantities (e.g.
`close to,’ `negligible,’ `distant of ’). The ®rst attempt to formalize such
reasoning appeared with the formal system FOG (Raiman 1986) based
on three basic relations and 32 rules. Nevertheless, limitations of FOG
have been pointed out in the formalism O(M) (Mavrovouniotis and
Stephanopoulos 1990), which prevents it from its real use in engineering.
O(M) considers seven binary primitive relations between positive
quantities, with interval semantics. Inference strategies are based on
propagation of order of magnitude relations through properties of the
relations, solved or unsolved algebraic constraints. In O(M) there is the
impossibility, at a formal level, to express a gradual change from one
order of magnitude to another, due to the non-overlapping nature of the
orders of magnitude. Then a new formal system ROM(K) (Dague 1993)
is proposed to introduce a new relation `distant from’. Determined
qualitative labels of ROM(K) correspond to the sets Small and Rough
previously de®ned in a set-based general framework (Raiman 1991), that
uses a coarse equilibrium which weighs quantities with a variable level
of precision.

In previous techniques, the two most important problems are the di� -
culty to incorporate quantitative knowledge, when available, and the di� -
culty to control the inference process, in order to obtain valid results in the
real problems. The measure of accuracy of the inferences can solve some
problems. It was proposed ®rst for FOG (Dubois and Prade 1989) and more
recently for ROM(K) (Dague 1993). These extensions may cause a spurious
result produced in the reasoning process. In order to avoid such a problem, a
re®ned de®nition of the negligibility relation was proposed (Dollinger and
Letia 1998). Also, the chance of describing, in a qualitative way, the natural



grading of negligibility obtains a greater precision in particular problems
(SaÂ nchez, Prats, and Piera 1996b).

The ®rst works about the integration of the qualitative and quantitative
knowledge are O(M) and ROM( ) (Dague 1993), but the obtained results,
although sound, are not in general optimal. Later, another reasoning method
proposed to integrate absolute and relative order of magnitude relations in
qualitative models (SaÂ nchez, Prats, and Piera 1996a). The last works are
aiming at formalizing reasoning when we dispose of some real quantitative
data and only dispose of the qualitative descriptions of other ones. Numerical
and qualitative techniques are combined to make more signi®cant inferences
in static systems (Gasca, Toro, and Ortega 1996; Sanchez, Prats, and Piera
1998; Gasca 1998) and in systems that change over time (Berleant and
Kuipers 1997; Gasca 1998; Armengol 2000; Ortega 2000). In this work we
will only study the ®rst systems.

Reasoning on the ranges of values of variables is another type of
reasoning often used in qualitative systems, where there are inaccurate
data or partially de®ned parameters. It can be generalized to a Numeric
Constraint Satisfaction Problem (NCSP). It is a triple (X; D; C) where X
denotes a set of variables, D denotes a set of domains containing all
acceptable values for every variable and C is the conjunction of con-
straints that have to be satis®ed. A natural way of reasoning on the
ranges of values is to propagate the domains of the variables through the
constraints. Then consistency techniques have been applied to NCSP to
detect inconsistent values and delete them. Di� erent techniques have been
proposed in the bibliography (Davis 1987; HyvoÈ nen 1992; Lhomme 1993,
1994; Van Hentenryck, McAllester, and Kapur 1995; Benhamou and
Granvillers 1996; Van Hentenryck, Michel, and Deville 1997; Marti and
Rueher 1997; Jussien and Lhomme 1998). A lot of these techniques have
a major drawback, since they introduce choice points. The e� ciency of
some previous algorithms is analyzed in a recent work (Collavizza,
Delobel, and Rueher 1999).

In this work, our main aim is reasoning in static models, where some
real quantitative data and qualitative descriptions of other ones are
known (semiqualitative models). We integrate several reasoning techni-
ques. The main motivation for integrating several reasoning techniques is
to achieve a synergy which produces results that could not be obtained if
each mode were operating individually. It is possible by means of the
construction of a novel reasoning framework, where we can easily
express these models in a declarative way, what provides a substantial
expressive power. Inference strategies within this framework are sepa-
rated into two steps: symbolic and numerical. They constrain the infer-
ences e� ciently and obtain results which are suitable for many
engineering activities.



SEMIQUALITATIVE REASONING

The representation of qualitative concepts can be selected within
di� erent options. Nevertheless a widely accepted representation of these
concepts may be closed real intervals. For example the colors green,
yellow, and red can be associated to their respective interval wavelengths.
However, this representation has di� culties such as to express the gra-
dual changes of a value towards one another. The approximation of
interpreting the qualitative predicates as an interval may become practical
and useful, but di� erent problems in interval-based reasoning (Struss
1990) were identi®ed.

It is important to establish a mapping between the qualitative descrip-
tions and numerical intervals. This topic has been shortly treated in the
bibliography. In this work the assignment of intervals is suppose to be made
considering the experience of the experts. In complex systems, every interval
must be compatible with the rest of the intervals that are being de®ned in the
model. It is usually a di� cult task, as di� erent experts participate in the
modeling, then iterative processes are required until the intervals are assigned
satisfactorily for all the qualitative labels. Once their representation for the
di� erent variables and relationships is chosen, the equations of the models
can be reduced to a set of constraints between the qualitative and quanti-
tative variables and parameters.

Our reasoning framework obtains conclusions in the previous semi-
qualitative models. Firstly, it is convenient to consider the type of repre-
sentation of qualitative knowledge. These concepts are represented, in this
work, as closed real intervals and their computational treatment can be
accomplished by means of numerical methods. Secondly, we have developed
ad hoc algebraic and numerical methods to improve the e� ciency and pre-
cision of the results. The chosen representation for the qualitative char-
acteristics of a model allows us to de®ne a speci®cation language. The users
of the system can easily introduce qualitative and quantitative description
and what they would like to know of the analyzed system.

The implementation of the reasoning procedures is inspired from well-
known works in AI about Constraint Satisfaction Problem. In Figure 1, we
show that the selection of a semiqualitative model is carried out starting from

FIGURE 1. Diagram of the semiqualitative reasoning.



a certain physical scenario. These models have their foundation in real sys-
tems. A group of experts should inform of the set of constraints and quali-
tative values that represent the reality. A semiqualitative model de®nes a
space of models that includes a set of di� erent precise models of the real
system. These models are generally constituted by a constraint network.
Qualitative elements are transformed into intervals and semiqualitative rea-
soning obtains a space of solutions for the queries.

This investigation begins mainly motivated by the lack of data to build
conventional quantitative models, or because we want to absorb a certain
type of qualitative knowledge from the quantitative knowledge. For example,
the acidity of a solution can be predicted in the analysis of chemical systems,
®nding the concentration of H‡ ions. When the equilibrium of simple acid
dissolved in water is reached, then the concentration of the di� erent species is
governed by the following set of four equations:

Charge balance : [H‡ ] = [A– ] ‡ [OH– ]

Mass Balance : c = [A– ] ‡ [AH]

Acid Equilibrium : Ka[AH] = [A– ][H‡ ]

Water Equilibrium : 10– 14 = [OH– ][H‡ ]

where c is the initial concentration of the acid, Ka is an equilibrium constant
and square brackets stand for the concentration of the species.

For example, in this model we may know the qualitative value of c as
``diluted ’’ and the qualitative value of Ka as ``weak.’’ Semiqualitative rea-
soning consists of the application of a set of techniques to solve queries of
engineers, studying the qualitative and=or quantitative values that satisfy the
speci®ed constraints. The queries may be:

° Boolean Query: Its answer is TRUE or FALSE. The result is true if the
constraint network that represents the semiqualitative model is satis®ed.
For the previous example a boolean query may be: Is the qualitative value
of [H‡ ] similar to the qualitative value of [A– ]?. The boolean operators and
and or may be also used in these queries.

° Qualitative Query: The answer is the qualitative label of a variable, relation
o boolean composition of relations, such that the range of values of the
answer satis®es all the constraints. For the previous example a qualitative
query may be: What is the qualitative value of [H‡ ]?.

This framework for semiqualitative reasoning lets us obtain quantitative
answers as precise real intervals. An appropriate interpretation of these
answers is necessary to obtain the corresponding qualitative label. Next, we



propose a language to express qualitative and quantitative knowledge of a
model and a set of symbolic and numerical techniques to obtain the answers
to the previous queries.

SPECIFICATION OF THE SEMIQUALITATIVE MODELING
LANGUAGE

Modeling language must describe the identi®ed qualitative knowledge of
the models. Also, it must provide a declarative semantics for the solving
process. First, we will describe the abstract syntax of the language and later
its semantics.

Syntax

The used notation of the language is illustrated in the Figure 2 by means of
the corresponding syntactic categories. These syntactic categories, possibly
subscript and=or superscript, stand for instances of them or components of
them. The syntax of the language is de®ned by means of the abstract syntax
illustrated in Figure 3. In this grammar the operator or is represented by
means of `;’ and the operator and by means of `,’. In this work, they are both
represented in the two ways without any distinction.

Syntactic Categories

° Arithmetic Operators represent a set of unary and binary arithmetic
operators. An example of these operators may be: Ba = {‡ ; – ; ¤; =; . . .}.

° Qualitative Operators, U and B, represent a set of unary and binary
operators for every qualitative magnitude of the problem, respectively. For
example Uq = { large; small; medium; negative; short; acid; high; . . . }
and Bq = {much smaller than than; moderately smaller than; slightly
smaller than; exactly equal to; much larger than; negligible; distant from

. . . }.

FIGURE 2. Syntactic categories.



° Functions and Envelope Functions, let be the set of real numbers, then F

represents a set of continuous functions f : ! . These functions are
described by means of the tuple f(x) ² áe(x); I1; I2ñ, where I1 and I2 are
the domain and range of f respectively. An envelope function g represents a
family of functions between two functions f1 2 F and f2 2 F,

g(x) ² áf1(x); f2(x); I1; I2ñ so that 8x 2 I1 : f1(x) < f2(x)

where I1 and I2 stand for the domain and range of g respectively.
° Predicates, represented by P, where each pi can be a unary predicate ui(e),

where ui 2 U, that represents the qualitative knowledge of the expression e,
or a binary predicate bi(e1; e2), where bi 2 B, that represents the qualitative
relationship between the values of e1 y e2.

° Constraints, represented by C, are predicates, or boolean combination of
predicates that satisfy all the values of the model.

° Single Queries, Q where every qi is a query. It may be a unary query, such
as e?, that indicates the qualitative value of the expression e or a binary
query such as e1?e2, which indicates the relative order of magnitude rela-
tion between e1 and e2. The query ? represents a question about the con-
sistency of the model.

° Compound Queries are boolean expressions of queries.

Semantics

The semantics of the language is de®ned by means of a set of rules of
transformation. They transform an initial model into a normalized one. If r
always denotes a new variable and I represents a real interval, the transfor-
mations applied to the initial model are the following:

FIGURE 3. Abstract syntax.



° Rename constants of the model that are intervals: Every constant of the
model is substituted by a variable and a constraint.

C(. . . ; I; . . .) ² C(. . . ; r; . . .); r 2 I

° Semantics of unary predicates: The following transformation is carried out

uq(e) ² e – r = 0; r 2 Iu

where Iu is the corresponding interval to the unary operator u 2 U. This
transformation is carried out to express the qualitative knowledge that
somebody has about the expression. In the bibliography there are di� erent
spaces of qualitative description. One of them uses two landmarks,
denoted as a and b (TraveÂ -Massuye’s and Piera 1989) and the other uses
more landmarks (Agell 1998). It depends on every magnitude of the rea-
soning problem and the level of precision to denote a quantity. This
association between operators and intervals is carried out according to the
knowledge of the expert. The absolute order of magnitude scale for every
quantity of the model must be coherent with the corresponding relative
order of magnitude scale.

° Semantics of binary predicates: These predicates are related to the division
and they have the following semantics

bq(e1; e2) ² e1 – e2 ¤ r = 0; r 2 Ib

Ib is the interval corresponding to symbol b. In the bibliography there are
di� erent spaces of relative order of magnitude description. One of them
uses one tolerance parameter (Mavrovouniotis and Stephanopoulos 1990)
and the other uses two parameters (Dague 1993). This may express a
gradual change from one order of magnitude to another and the ®rst one
may not express it.

° Semantics of functions and envelope functions: According to the de®nition
of these functions, the following transformation is applied

r = f(x) ²
f(x) – r = 0

x 2 I1; r 2 I2

»

r = g(x) ²
g(x) – r = 0

g(x) = r1 g(x) ‡ (1 – r1) ¤ gg(x)

r1 2 [0; 1]; x 2 I1; r 2 I2

8
><

>:



The envelope functions express qualitative aspects, and represent a family of
functions enveloped in an upper function gg : ! and lower one
g : ! . The family of functions is de®ned by the expression:

g(x) = ag(x) ‡ (1 – a)gg(x); a 2 [0; 1]; x 2 I1

Then, if a = 0 ) g(x) = gg(x) and if a = 1 ) g(x) = g(x) and any other
value of a belonging to the interval [0,1] represents a set of values between
g(x) and gg(x).

° Semantics of single query: Depending on the type of query, the following
transformation is carried out

e1? ² e1 – r = 0
r?

n
e1?e2 ² e1 – e2 ¤ r = 0

r?

n

° Semantics of compound query: For all the single queries the previous
transformation is carried out and the boolean operators are not trans-
formed.

Semiqualitative Models

Our language lets us specify the model of the system with qualitative and
quantitative knowledge by means of the following constraint diagram

M0 ²
C = {c1; . . . ; ct}
V = {x1; . . . ; xn}
Q = {q1; . . . ; qm; cq1; . . . ; cqp}

8
<

:

where C is the set of constraints of the model, V is the set of variables of the
constraints, and Q is the set of queries, represented according to the syntax of
the language. Therefore semiqualitative reasoning is considered as the
methodology to obtain values of Q so that all the constraints belonging to C
are satis®ed.

In Figure 4 is shown a countercurrent heat-exchanger. It is commonly
studied in order of magnitude reasoning (Mavrovouniotis and Stephanopoulos
1990; Dague 1993b; SaÂ nchez, Prats, and Piera 1998). The important variables in
the analysis of the device are the molar-heat KH and the molar-fowrate FH of
the hot stream, and the molar-heat KC and the molar-¯owrate FC of the cold
stream. Also, the temperature di� erences have been named DTH = Th1 – Th2,
DTC = Tc1 – Tc2, DT1 = Th1 – Tc1, DT2 = Th2 – Tc2. DTH is the
temperature drop of the hot stream, DTC is the temperature rise of the cold
stream, DT1 and DT2 are the driving force at the left and right end of the device



respectively. In order to make the example clearer, the de®nition of these
temperature di� erences is chosen so that they are positive. Some constraints of
the problem are:

DTH KH FH = DTC KC FC

DTH – DT1 – DTC ‡ DT 2 = 0

The ®rst equation is the energy balance of the device and the second equation
is the result of the de®nition of the temperature di� erences. In a particular
case, the following qualitative relations in order of magnitude and quanti-
tative relations may be known: DT2 is moderately smaller than DT1, DT1 is
much smaller than DTH and KH is 1.1 times larger than KC. The query is the
obtaining of the qualitative relation between FC and FH in this model. The
speci®cation of this problem in the proposed language is:

M0 ²

C ² {DTH KH FH = DTC KC FC;
DTH – DT1 – DTC ‡ DT 2 = 0;
DT 2– < DT1; DT1 ½ DTH;
KH = 1:1KC}

V ² {DTH; KH; FH; DTC; DC;
FC; DT1; DT 2}

Q ² {FC?FH}

8
>>>>>>>><

>>>>>>>>:

In order to improve the computational treatment of the problem, this initial
model M0 is transformed into a new model M1, where the set of variables V is
divided into three sets:

° Y, which represents the set of variables of a well-known range.
° X, which represents the set of variables whose domains we would like to

know and that satisfy all the constraints.
° Z, which represents the rest of the variables whose range we do not know,

nor we are interested in.

FIGURE 4. A countercurrent heat-exchanger.



According to it and the transformation rules of the semantics of the lan-
guage, the model is transformed into the new model M1

M1 ²

C = {DTC FC KC ‡ DTH FH KH = 0;
– DTC ‡ DTH – DT1 ‡ DT 2 = 0;
DT 2 – DT1r1 = 0; DT1 – DTHr2 = 0;
KH – 1:1KC = 0; FC – FHr3 = 0;
r1 2 I– <; r2 2 I½}

V = {Z = {DTH; KH; FH; DTC; DC; FC; DT1; DT2};
Y = {r1; r2}; X = {r3}}

Q = r3?

8
>>>>>>>>>><

>>>>>>>>>>:

This model M1 may be considered as a numeric constraint satisfaction pro-
blem that integrates qualitative and quantitative knowledge. The reasoning
process must use an adequate methodology in order to obtain signi®cant
conclusions.

SEMIQUALITATIVE REASONING FRAMEWORK

A fundamental aspect of this reasoning framework is the inference
methodology. We propose a methodology that uses constraint networks. In
AI, it is known as constraint-based reasoning (Freuder and Mackworth
1994). The proposed modeling language generates a numeric constraint
satisfaction problem. The solving of this NCSP lets us answer the user’s
queries. The answers are qualitative or quantitative, depending on the
user’s interest. Our methodology obtains the interval value or set of values
corresponding to the proposed queries following two well di� erentiated
steps. The general architecture is shown in Figure 5. In the ®rst step,
named Symbolic Processing, we use symbolic techniques to transform the
initial constraint network CN, that represents the model M1, into a new
constraint network CN1. It allows a more e� cient resolution of the pro-
posed queries in the following step. The second step is a numerical treat-
ment of CN1, where we use techniques of interval reasoning until obtaining
the solutions Sol.

In the Symbolic Processing step, we have implemented the following
algorithms of symbolic transformation: algorithms of elimination of con-
straints and substitution of variable, symbolic generation of constraints and

FIGURE 5. Diagram of computational processing for semiqualitative reasoning.



transformation of factored constraints. In the constraint solving step, we
apply branch and prune algorithms with e� cient constraint narrowing
operators, where it should be considered that the speed of convergence
depends, in an important way, on the algebraic ways of constraints (Ratschek
and Rokne 1984). The aim of this treatment is the application of the
appropriate algorithms to increase the e� ciency and to obtain the most
precise ranges of values of the queries. The results of the proposed metho-
dology are the set of answers to the user’s queries.

Symbolic Processing

The previous model M1 could be treated numerically as a numeric con-
straint satisfaction problem, but in a lot of models the obtained results,
although sound, are not in general optimal. Therefore we propose a previous
symbolic processing in order to transform the constraint network into
another which has the same solutions as the previous one. This symbolic
processing is essentially developed to obtain more precise ranges of the
solutions of the model and improve the computational behavior of the
numerical algorithms.

Symbolic Reduction
This algorithm carries out the elimination of determined constraints where

there are non-signi®cant variables. These variables are those whose values
are neither known nor important in the resolution of the problem. Therefore,
this procedure can reduce the number of variables that you have in the model.

The process of symbolic reduction is applied to the constraints of equality
of the model. To take the operational aspects of symbolic reduction into
account we de®ne the following concepts:

° De®nition 1 (Removed Variable) A removed variable is a variable
z 2 Z which appears in a constraint in the following way kz ‡ e(x) = 0,
where k is a real constant. In such cases the symbolic substitution s is
s ² z = – e(x)=k

° De®nition 2 (Removed Constraint) A removed constraint is a con-
straint with removed variables.

° De®nition 3 (Interference of constraint respect to a removed varia-
ble) The Interference of a constraint respect to a removed variable is the
number of constraints where the removed variable is present, except the
considered constraint.

Interference(ci; vi) = N j : j 2 {1; . . . ; n} ° (vi 2 Var(cj) ^ j 6= i)



where N stands for the counter operator and Var is the set of variables of a
constraint.

° De®nition 4 (Interference of a constraint) The Interference of a con-
straint is the sum of the interferences of all removed variables for the con-
straint.

Interference(ci) =
X

vj2Var(cj)^removed(vj)

Interference(ci; vj)

The following algorithm removes determined constraints and variables:

begin
while there are removed constraints

To choose a removed constraint c according to some criterion
To eliminate c of the constraint network
To choose a removed variable v of the constraint c according to some
criterion
To substitute v by the symbolic expression s in the constraint net-
work

endwhile
end

The possible criteria of selection of the constraints to be removed are:

° That the constraint may be removed.
° To choose the constraint that has the minimum interference.
° If the interference is the same for two or more constraints then the ®rstly

written constraint will be removed.

The possible criteria of selection of variable to be removed are:

° To choose the variable with less interference and di� erent of zero in the
®rst place.

° To use the lexicographic sort when two or more variable have the same
interference.

Application to countercurrent heat-exchanger
The previous model M1 was formulated in the section of the speci®cation

language. The variables of the model have been renamed to clarify the dia-
gram. Initially, the domain of the question r3 is de®ned as [– 1; ‡1]. The
model M1 is then:



M1 ²

C ²
x8 – x7r1 = 0; x7 – x1r2 = 0;

x2 – 1:1x5 = 0; x6 – x3r3 = 0

– x4 ‡ x1 – x7 ‡ x8 = 0; – x4x6x5 ‡ x1x3x2 = 0;

8
<

:

V ²
Z = {x1; x2; x3; x4; x5; x6; x7; x8};

Y = {r1; r2};

X = {r3}

8
<

:

D ² {r1 2 I– <; r2 2 I½; r3 2 [– 1; ‡1]

8
>>>>>>>>><

>>>>>>>>>:

In the ®rst iteration of the previous algorithm, the removed variables and
interference of the constraints are obtained. The results are shown in Table 1.
According to previous criteria of selection, the ®rst written constraint is
removed. Table 2 shows the new constraint network and the new interference
of the removed variables and constraints. In the last iteration, a new con-
straint network with an only constraint is obtained.

1:1x1x3x5 – r3(x1 – r2x1 ‡ r1r2x1)x3x5 = 0

and the symbolic simpli®cation is x1(1:1 – r3 ‡ r2r3 – r1r2r3)x3x5 = 0. The
new model M2 is then

M2 ²
C ² {(1:1 – 1r3 ‡ r2r3 – r1r2r3)x1x3x5 = 0}
V ² {r1; r2; r3}
D ² {r1 2 I– <; r2 2 I½; r3; x1; x3; x5 2 [– 1; 1]}

8
<

:

The initial CN has been reduced to a new constraint network with an only
constraint that contains thevariables r1; r2 and the variable r3 that represents the
query. Most of the non-signi®cant variables of the model have been eliminated
and therefore it will improve the obtaining of globally consistent solutions.

In a general case, the application of symbolic reduction will obtain sev-
eral constraints. The application of the same symbolic reduction to the
problem of equilibrium of a weak acid obtains the following results:

Ka(c – [H‡ ] ‡ [OH– ]) – ([H‡ ] – [OH– ])[H‡ ] = 0;

10– 14 – [OH– ][H‡ ] = 0

TABLE 1 First Iteration of Symbolic Reduction Applied to the Model of Countercurrent Heat-exchanger

ci Removed Variables=Interference Interference(ci)

– r1x7 ‡ x8 = 0 {x8=1} 1

– r2x1 ‡ x7 = 0 {x7=2} 2

x2 – 1:1x5 = 0 {x2=1; x5=1} 2

– r3x3 ‡ x6 = 0 {x6=1} 1

x1 – x4 – x7 ‡ x8 = 0 {x1=2; x4=2; x7=2; x8=1} 6

x1x2x3 – x4x5x6 = 0 ;



After this symbolic reduction, a step of generation and addition of new
constraints is applied to the previous constraint networks.

Generation and Addition of Redundant Constraints
The addition of redundant constraints to initial CN is often considered to

improve the prune of the domains of the possible values for some variables in
NCSP. We used it in the polynomial constraints of the models.

In constraint programming languages as CLP(BNR) (Older and
Benhamou 1993), NEWTON (Van Hentenryck, Michel, and Deville 1997)
and C ‡ ‡ class library ILOG SOLVER (Ilog 1999), the solving process is
based on the adequate combination of local applications of narrowing
operators and the propagation of the reduced domains to all the constraints
until reaching a stable state. In continuous domains, enumeration technique
are used to separate di� erent solutions.

The local application of narrowing operators can improve the compu-
tational e� ciency when redundant constraints are added. These additions
may be performed by hand or in an automated way. An automatic genera-
tion of redundancies for polynomial constraints is based on GroÈ bner basis
(Buchberger 1985).

The basic idea of GroÈ bner basis is to transform a set of polynomials into
a certain standard form. Given a system of multivariate polynomial equa-
tions, its GroÈ bner basis is an equivalent system. It is a system that has the
same solutions with the same multiplicities. The GroÈ bner basis are computed
by Buchberger’s algorithm, that is an algorithm that generalizes both
Gaussian elimination for linear multivariate equations and the Euclidean
algorithm for univariate polynomial equations. The use of GroÈ bner basis has
the following advantages:

° A GroÈ bner basis has better computational properties than the original
system. In particular, the easy determination whether the system is solvable.

° In over-constrained problems with redundant equations, a GroÈ bner basis
eliminates the redundant ones.

TABLE 2 Second Iteration of Symbolic Reduction Applied to the Model of Countercurrent

Heat-exchanger

ci Removed Variables=Interference Interference(ci)

– r2x1 ‡ x7 = 0 {x7=1} 1

x2 – 1:1x5 = 0 {x2=1; x5=1} 2

– r3x3 ‡ x6 = 0 {x6=1} 1

x1 – x4 – x7 ‡ r1x7 = 0 {x1=2; x4=1} 3

x1x2x3 – x4x4x6 = 0 ;



° In over-constrained and inconsistent problems, the constraint 1=0 is
obtained. It is obviously inconsistent.

° In under-constrained problems, the new problem gives useful information
in order to solve the problem.

The principal drawback is the complexity of the algorithm. The compu-
tation GroÈ bner basis for relevant parts of the problem (Benhamou and
Granvilliers 1996) and partial GroÈ bner basis (Benhamou and Granvilliers
1997) have shown computational improvement on some benchmarks.

In this framework, we propose to add these redundant constraints when
the performance of the algorithm leads to realistic execution times.

Application of generation and addition of constraint to equilibrium of a weak
acid problem

The application of this Symbolic Processing step allows us to dispose of
the identi®cation of consistency of the constraints and also it ®nds new
constraints that are added to the previous one. In this example, the following
constraints are added:

– [H‡ ] ‡ 1014[H‡ ]3 – Ka – 1014 c[H‡ ]Ka ‡ 1014Ka[H‡ ]2 = 0

1 – 1014[H‡ ]2 ‡ 1014cKa – 1014[H‡ ]Ka ‡ 1014Ka[OH– ] = 0

Factored Constraints
In the analysis of engineering systems there are models where we have

``factored constraints.’’ By ``factored,’’, we mean that an expression is written
in terms that can be multiplied, such as Ui ² (Pkfk = 0). These constraints
are rewritten as Ui ² ORk(fk = 0). That is, each constraint Ui is rewritten by
a tree compound by k constraints with the operator or in the root. It gives a
better domain reduction of the variables for these models.

For example, in the model of countercurrent heat-exchanger the con-
straint obtained in the symbolic reduction step was

C ² {(1:1 – 1r3 ‡ r2r3 – r1r2r3)x1x3x5 = 0}

then, the proposed methodology generates a new constraint network of
model

x1 = 0; x3 = 0; x5 = 0; 1:1 – 1r3 ‡ r2r3 – r1r2r3 = 0

It is the disjunction of four constraints. The later numerical treatment only
will consider the constraints where we have the queries. In this case the last
constraint is only considered.



Constraint Solving

In the numerical processing of the constraint network with interval
domains, the application of classical interval arithmetic (Moore 1966) can
only provide an estimation of the range of the expressions, that is, it only
guarantees the solution to be included in the resulting interval. Also, in some
cases the range of values of a function is not an interval but a union of
intervals. In this work, we use a set of Narrowing Operators and a Constraint
Solver Algorithm in order to reduce the widening e� ect.

Narrowing Operators
In previous works, some di� erent approximations of arc-consistency

have been proposed to obtain better solutions in constraint solving. It states a
simple local condition on a constraint and the set of possible values of its
variables. A ®rst approximation was used on simple constraints and complex
constraints were decomposed in terms of these simple constraints (HyvoÈ nen
1992). The improvement in e� ciency and the correctness have been the main
goals for others approximations of arc-consistency (Hong 1992; Lhomme
1993; Benhamou and Granvilliers 1996; Van Hentenryck, Michel, and
Deville 1997).

In our work the numerical processing is applied to the constraint network
CN1 obtained by Symbolic Processing step. This processing is based on the
de®nition of Interval Extension (Moore 1966), and Narrowing Operators
(Van Hentenryck, Michel, and Deville 1997). The constraints are rewritten as
a Natural Interval Extension. It replaces each relational operation by its
corresponding interval extension, each real operation by its corresponding
interval extension, each variable by an interval variable and each real number
by an interval. The interval extension of the relational operations e1 µ e2 and
e1 = e2 represents the possibility to be equal and less or equals than respec-
tively. In these interval extensions, we use Narrowing Operators based on
box-consistency (Van Hentenryck, Michel, and Deville 1997). It is an
approximation of arc consistency that o� ers a good trade-o� between e� -
ciency and pruning.

The Constraint Solver Algorithm
The previous Narrowing Operators are applied until a ®xpoint is reached

and the correctness follows from the fact that they do not remove any
solutions. The results of the application of the previous Narrowing Operators
are propagated to the constraint network until no pruning takes place. But as
some solutions may have spurious values, then nondeterministic choices are
necessary to enhance the constraint solver. Therefore the key idea is to use a
branch and prune algorithm.



In the proposed methodology, we consider that this algorithm depends
on two parameters E and variable ordering heuristic. E determines the size of
small solutions of the problem. If the operation prune obtains a result that is
considered small, then it is a possible solution.

The operation Branch use the parameter variable ordering heuristic to
split the next variable. The decisions in this ordering signi®cantly a� ect
the e� ciency of the search strategy. Heuristics can be grouped into two
categories:

° Static Heuristic, that establishes an ordering before the search starts and
maintains this ordering throughout all the search.

° Dynamic Heuristic, that makes selections dynamically during search, the
decisions about variable and value orderings are established at each search
node.

A well-known static heuristic considers the most constrained variables in the
®rst place, because they are likely more di� cult to assign. Inconsistencies are
expected to be found at early levels of a tree of potential solutions, where
recovering from mistakes is less costly. This has been often used in the
bibliography.

It is strongly believed that dynamic variable orderings are more e� ective
than static ones. The most used variable ordering heuristic selects the variable
with the minimum number of values in its current domain. However the best
variable ordering depends very much on the nature of the problem.

In a previous work about numeric constraint satisfaction problem is
proposed (HyvoÈ nen 1992) to select a cutset variable by some criterion (e.g.
select the variable with the largest width and split it exhaustively into inter-
vals by some criterion). Another work (Van Hentenryck, Michel, and Deville
1997) used a round-robin heuristic to split the domains of the variables. Our
framework allows the election of di� erent splitting strategies by means of the
parameter variable splitting ordering. The user can choose static orderings or
dynamic orderings, and if the user says nothing then all the variables of the
constraint network will be split and the ordering will be based on considering
®rst the most constrained variables.

Experimental Results

We present here the application of our methodology to simple problems
where reasoning steps can be easily tracked and veri®ed. But, the proposed
framework is most useful when analysis is performed in complex engineering
systems.

The ®rst example involves analysis of an oscillating device. The following
ones show the obtained results in the previous semiqualitative models.



An Oscillating Device Model
° Description of the system:

The experiments may be performed by a torsion-pendulum, a ¯ying wheel
®xed to a certain angular position by a spiral spring, where the deviation
from the linear function between angular position and restoring torque is
obtained by adding an unbalanced weight. This system, in the case of
strong deviations, leads to a point of unstable equilibrium and two stable
equilibria in phase-space (Luchner 1987). Figure 6 shows this oscillating
device.
It is easy to quantify all torques acting: The spring exerts a torque M1 =

– kf (Hooke’s law), and the unbalanced weight exerts an additional torque
M2 = mgrsin(f) º mgr(f – f3=6)). In this example, the sum of the tor-
ques is M = – kf ‡ mgr(f – f3=6). In the equilibrium M = 0 and the
constraint (– k ‡ mgr)f – mgr=6f3 = 0 is held.

° An instance of semiqualitative model:
In a semiqualitative model we may know the following parameters: g is
9.81 m/s2, r is 2 m, k is small and m is large. The representation of this
model in the modeling language is:

M0 ²
C ² {– kf ‡ 2m 9:81(f – f3=6) = 0;

small(k); large(m)}
V ² {k; f; m}
Q ² {f?}

8
>><

>>:

In this problem, according to the experts the intervals corresponding to the
qualitative concepts are: Ismall = [0:1; 0:2] and Ilarge = [0:6; 1]. We would
like to know the qualitative values of f in equilibrium regions. The
semiqualitative model can be then:

FIGURE 6. Torsion pendulum with unbalanced weight.



M1 ²

C = {– r1r3 ‡ 2r29:81(r3 – r3
3=6) = 0;

k – r1 = 0; m – r2 = 0; f – r3 = 0

r1 2 Ismall; r2 2 Ilarge}

V = {Z = {};

Y = {r1; r2}; X = {r3}}

Q = r3?

8
>>>>>>>>><

>>>>>>>>>:

° Application of constraint solving
In this model, the user’s query is r3?. The application of our methodology
obtains three equilibrium regions, represented by the real intervals:

I1 = [– 2:44; – 2:42] I2 = [– 0:000087; 0:000088] I3 = [2:42; 2:44]

The graph of M(f) for this example is shown in Figure 7. This function is
sandwiched exactly between two univariate real functions de®ned by the
bounds of the parameters in an adequate way. The obtained solutions are
represented by means of black boxes. They are very closed to the real
solutions.

Weak Acid Model
In this model, we applied the Symbolic Processing step and obtained a

new constraint network CN1. Now, we apply to it the Constraint Solver
Algorithm. It allows us obtain the interval answers to the query [H‡ ]?: The
result is [0.00125, 0.0174335]. It is complete and its width is within the desired
accuracy in the semiqualitative reasoning.

FIGURE 7. Equilibrium regions for an example of oscillating device.



Countercurrent heat-exchanger Model
The application of Symbolic Processing step generates the model M2. The

network constraint obtained to factored constraint was:

x1 = 0 or x3 = 0 or x5 = 0 or 1:1 – r3 ‡ r2r3 – r1r2r3 = 0

When we apply Constraint Solving step the result is r3 2 [1:089; 1:11647]: This
result is complete and we obtain the qualitative information about the rela-
tive order of magnitude relation r3.

Qualitative Interpretation of the Results

The described methodology allows to obtain interval solutions for the set
of proposed queries. The method of qualitative interpretation of these results
consists on ®nding the qualitative operator or set of qualitative operators
of the previously de®ned ones that minimally cover each of the resulting
intervals. The assignment from the qualitative labels to the di� erent intervals
is carried out using previously developed methods (Riquelme 1996). The
obtained results of the models presented in this work are shown in Table 3.
These semiqualitative answers give a signi®cant information when the qua-
litative and quantitative knowledge is considered.

CONCLUSIONS

This novel framework may be suitable to capture and to integrate the
qualitative and quantitative knowledge of many engineering applications.
The wide set of qualitative concepts of the modeling language permits to
express this type of knowledge easily. The users’ queries allow to derive new
knowledge by means of the proposed framework.

The results of the di� erent applications show that the solutions that we
have obtained are less ambiguous than the ones obtained using other qua-
litative techniques. It is mainly due to the symbolic step of our methodology
and the application of Narrowing Operators. An adequate election of the
heuristic to split variables can improve the e� ciency of the numerical

TABLE 3 Table of Results of the Queries of the Semiqualitative Models

Model Semiqualitative Answers

Weak acid [H‡ ] is medium

Heat-exchanger FC is slightly greater than FH

Oscillating device f is Negative-Great or Zero or

Positive-Great



algorithms. Our reasoning framework permits the explicit description of an
variable ordering heuristic.

In the future, we would like to enrich this language with purely quali-
tative functions and to apply our techniques for semiqualitative analysis of
dynamic systems where it is possible to obtain the stability and bifurcations
regions. Another possible ®eld of applications of our methodology is the
semiqualitative simulation of dynamic systems which must hold a set of
constraints.
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