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Resumen

La inestabilidad genómica es una patología celular asociada a múltiples enfermedades 

genéticas, incluido el cáncer (Aguilera & García-Muse, 2013). Fallos en procesos metabólicos 

que ocurren en el ADN, tales como la replicación o la reparación de daños, son una fuente 

de inestabilidad. Otra fuente importante de inestabilidad es la transcripción, ya sea porque 

impida la progresión de la maquinaria de replicación o porque genere estructuras nocivas 

como los bucles R (R-loops) (Santos-Pereira & Aguilera, 2015). Éstos están constituidos por 

un híbrido de ARN-ADN y la cadena sencilla de ADN desplazada, y se forman generalmente 

durante la transcripción por hibridación de la cadena de ARN naciente con la cadena molde 

de ADN. Aunque estas estructuras son intermediarios naturales de diversos procesos 

biológicos, su acumulación puede ser una fuente importante de inestabilidad genómica 

(Santos-Pereira & Aguilera, 2015). La relevancia biológica de los fenotipos de inestabilidad 

genética que presentan las células que acumulan R-loops nos hace plantearnos en esta tesis 

el estudio de los mecanismos o elementos celulares que están implicados en la formación de 

dichas estructuras. 

El ADN no está desnudo dentro de las células sino asociado a histonas y otras proteínas 

estructurales, formando la cromatina. La cromatina puede constituir una barrera para los 

procesos que ocurren en el ADN, por ello la célula ha desarrollado distintos mecanismos para 

solventar estas situaciones. Las modificaciones postraduccionales de las histonas favorecen el 

reclutamiento de remodeladores de la cromatina y chaperonas de histonas, facilitando el acceso 

al ADN (Tessarz & Kouzarides, 2014).  Por lo tanto, cabe la posibilidad de que la cromatina 

sea un factor regulador de la formación de R-loops, controlando la accesibilidad del ARN al 

ADN. El objetivo principal de este trabajo es dilucidar si la cromatina tiene algún papel en la 

formación de R-loops y la inestabilidad genómica asociada, y si  así fuera, explorarlo. 

En esta tesis hemos  escrutado una colección de mutantes puntuales no esenciales 

de las histonas H3 y H4 en el organismo modelo Saccharomyces cerevisiae, para identificar 

mutaciones que alteran la formación de R-loops. Hemos identificado mutantes de ambas 
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histonas que aumentan la inestabilidad de forma dependiente de AID y sensible a RNasa H, 

siendo  el AID una enzima que actúa en la cadena sencilla desplazada del R-loop deaminando 

las citosinas y cuya acción incrementa la recombinación en levaduras con altos niveles de 

R-loops (Gómez-González & Aguilera, 2007). El análisis genético y molecular de estos 

mutantes confirma la acumulación de R-loops en los mismos, poniendo de manifiesto que la 

estructura de la cromatina ejerce un papel en prevención de la formación de híbridos de ARN-

ADN. Los mutantes identificados no presentan  defectos ni en replicación ni en transcripción, 

a diferencia de otros mutantes que acumulan R-loops, tales como hpr1∆, rnh1∆, sen1-1, etc 

(Huertas & Aguilera, 2003; Mischo et al., 2011). Por lo tanto, en esta tesis se describe por 

primera vez que los R-loops por sí mismos no suponen una amenaza para la integridad del 

genoma, ya que los mutantes de histonas identificados acumulan R-loops y no presentan 

fenotipos de inestabilidad. A nivel molecular observamos que los mutantes de histonas no 

acumulan histona H3 fosforilada en la serina 10 de la histona H3, una marca de cromatina 

condensanda, al contrario de los mutantes que acumulan R-loops y presentan inestabilidad 

genómica, tales como hpr1∆ o sen1-1 (Castellano-Pozo et al., 2013; Mischo et al., 2011). De 

hecho, los altos niveles de histona H3 fosforilada en la serina 10 y los fenotipos de inestabilidad 

presentes en los mutantes hpr1∆ o sen1-1 son suprimidos por las mutaciones de histonas 

seleccionadas, que impiden dicho incremento en fosforilación. Los datos sugieren que esta 

modificación postraduccional es necesaria para que el R-loop sea una fuente de roturas del 

ADN y, por tanto, de inestabilidad. 

En conclusión, los resultados obtenidos en esta tesis nos llevan a proponer que para que 

los R-loops causen inestabilidad genómica se requiere un paso adicional en el que el R-loop 

induciría cambios en la cromatina, tales como la fosforilación de la serina 10 de la histona 

H3. Esta tesis, por tanto, sugiere una explicación para la diferencia entre los R-loops que se 

consideran “buenos” y “malos”, y abre nuevas vías de investigación para comprender el papel 

de los R-loops y las modificaciones de la cromatina en el origen de la inestabilidad genómica. 



Introduction





7

Introduction

1 Sources of genome instability

The DNA is the molecule where genetic information is stored, as well as the transmission 

system of this information to the following generations. DNA is susceptible of being damage, 

since it is continuously exposed to many agents, both endogenous and exogenous, that could 

cause genome instability. Metabolic processes occurring on the DNA are important sources 

of endogenous DNA damage, being failures in replication or DNA damage response (DDR) 

the most common causes. Exogenous agents, such as chemical agents, ultraviolet (UV) light 

or ionizing radiation, could also induce genome instability. Genetic instability is a large and 

unspecific term that covers a variety of genetic alteration depending on the cellular machinery 

implicated, such as mutations, including point mutations and microsatellite contractions and 

expansions, variations in chromosome number, gross chromosomal rearrangements (GCRs), 

copy number variants, hyper-recombination and loss of heterozygosity (Aguilera & García-

Muse, 2013). This instability is crucial to generate genetic variation, being even associated with 

regulated processes, such as immunoglobulin diversification. However, genome instability 

is a mayor threat to cell survival and the origin of multiple pathological disorders, being 

associated in humans with premature ageing, predisposition to various types of cancer and 

inherited diseases (Aguilera & Gómez-González, 2008). 

Cell proliferation implicates a coordinated machinery to preserve genome integrity 

and faithful genome duplication. For that purpose, cells have developed multiple biological 

responses to DNA damage, differentiating mechanisms in DNA damage tolerance or DNA 

repair. Tolerance to DNA damage involves several mechanisms to prevent replication stalling 

by promoting the bypass of DNA lesions through specific DNA polymerases. DNA repair 

comprises a number of pathways, such as base-excision repair (BER), nucleotide-excision 

repair (NER), mismatch repair (MMR), homologous recombination (HR) or non-homologous 

end-joining repair (NHEJ), that restore DNA integrity. DNA repair pathways are activated 

after the recognition of DNA alterations, through activation of the checkpoints. Checkpoints 
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consist of a complex set of DNA damage sensors, signal mediators, transducers and effectors. 

S. cerevisiae have three DNA damage checkpoints: G1/S, intra-S and G2/M. Checkpoint 

activation promotes a transient arrest in cell cycle progression to allow repair of lesions that 

could originate genetic instability (Hoeijmakers, 2001).  

1.1 Replication as a cause of genome instability      

Replication is the crucial biological process where from a DNA molecule two identical 

replicas are produced. Replication could be an important source of genome instability. If 

the replisome encounters obstacles, such as DNA adducts, secondary structures or bound 

proteins, replication fork (RF) could stall. RF stalling could consist on a transient pausing or 

a longer delay. If the obstacle is removed the RF could restart, but if the blockage remains it 

can lead to replisome disassembly, ssDNA gaps and DSBs formation that could compromise 

genome integrity. 

Due the complexity of the replication process, S-phase is the most susceptible of the 

cell cycle phases. DNA damage during S-phase or replication impairment activates intra 

S-phase checkpoint that coordinates cell cycle to DNA repair and RF restart preventing RF 

collapse (Aguilera & Gómez-González, 2008; Aguilera & García-Muse, 2013). In S. cerevisiae, 

S-phase checkpoint activation triggers the recruitment of the protein kinase Mec1. Mec1 is 

activated in response to stalled RFs and other DNA damage that causes RPA-coated ssDNA 

accumulation. Mec1 kinase phosphorylates effectors, such as the protein kinase Rad53, Sgs1 

and Mrc1. Mrc1 forms a complex with Tof1 and Csm3, that together with the Sgs1 helicase 

associates to the RF and prevents replisome disassembly and collapse (Katou et al., 2003). 

Rad53 phosphorylation deactivates origin firing, prevents late origin firing, stabilizes the RF 

and prevents formation of aberrant replication intermediates (Aguilera & Gómez-González, 

2008; Aguilera & García-Muse, 2013). In case of detecting a DSB, Mec1 also phosphorylates 

the C-terminal tail of the histone H2AX (γH2AX). This chromatin modification spreads 
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around the DSB, amplifying the DNA damage signal and recruiting chromatin-remodeling 

complexes that favors repair (Pardo et al., 2009). 

Mutations in S-phase checkpoint genes compromise maintenance of the replisome 

and, consequently genome integrity. In the presence of replication inhibitors mutations in 

Rad53 cause RF collapse and accumulation of replication intermediates (Sogo et al., 2002). 

Moreover, mutations in yeast S-phase checkpoint, such as Rad53, Mec1 and other transducer 

proteins, cause a high increase in the frequency of GCRs, while mutations in G1 and G2 

checkpoints have a smaller effect (Myung et al., 2001; Cobb et al., 2005). Therefore, S-phase 

checkpoint is essential for maintaining genome integrity.

1.2 Transcription-associated genome instability

Transcription is the initial step in gene expression where genomic information is 

copied to RNA molecules. Transcription not only plays a role in gene expression, it is also 

an important source of genome instability. Transcription of a DNA sequence enhances 

its frequency of mutations and recombination, processes called transcription-associated 

mutation (TAM) or transcription-associated recombination (TAR), respectively, and 

transcription-associated genome instability (TAGIN) all together. TAGIN could be caused 

by different sources such as DNA melting, topological changes, transcription-replication 

collision or R-loop formation. 

Although TAR and TAM are resolved differently, the processes could be initiated by 

the same intermediate, the formation of ssDNA by DNA melting. During transcription the 

two complementary DNA strands are separated allowing the RNA polymerase (RNAP) to 

copy one of the strands, forming a transcription bubble inside the RNAP. The template strand 

(TS) is paired with the RNA while the non-transcribed strand (NTS) stays as ssDNA. TAGIN 

phenomena is understood by the fact that ssDNA is more vulnerable to nucleases and DNA 
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damaging agents than dsDNA (Gaillard et al., 2013; Gaillard & Aguilera, 2016; Aguilera & 

Gómez-González, 2008). Consistently, genotoxic agents such as methyl methanesulphonate 

causes a synergistic increase in recombination at transcription regions in yeast (García-Rubio 

et al., 2003). 

In addition, the process of transcription triggers topological changes due to the 

accumulation of positive supercoils ahead of the elongating RNAP and negative supercoils 

behind it. This torsional stress leads to DNA opening that may induce transient ssDNA 

formation behind the RNAP, causing the TAGIN phenomena. These supercoils are resolved 

by the action of topoisomerases, that relax superhelical stress in duplex DNA (Gaillard et 

al., 2013). In eukaryotic cells two major topoisomerases are found: topoisomerase I (Top1) 

and topoisomerase II (TopII). Both topoisomerases can relax positive and negative torsion, 

being able in most cases to substitute for each other. However these proteins differ in their 

catalytic way of action, Top1 depend on a ssDNA cleavage and Top2 on a DSB (Wang, 2002). 

In the absence of Top1 and Top2 torsional stress are accumulated at transcribed regions (El 

Hage et al., 2010; Schultz et al., 1992). Yeast lacking topoisomerases (Top1 and Top2) show 

high rates of TAR (García-Rubio & Aguilera, 2012). Moreover, top1∆, whose wildtype protein 

is involved mainly in resolving negative supercoils in transcription, is responsible for the 

majority of TAM events in yeast (Lippert et al., 2011). 

Furthermore, TAR has also been related to RF impairment. Either transcription 

blockage by DNA adducts formed during replication (Scicchitano et al., 2004) or the collision 

of transcription and replication machineries might cause TAGIN (Wellinger et al., 2006). In 

S. cerevisiae TAR is detected only in S-phase, suggesting that a collision between RNAPII 

and RF is the main origin of TAR (Prado & Aguilera, 2005). RF blockage by collisions with 

the transcription machinery has been described in RNAPI (Takeuchi et al., 2003), RNAPIII 

(Deshpande & Newlon, 1996) and also in RNAPII highly transcribed genes (Prado & Aguilera, 

2005). RF progression through protein obstacles is facilitated by helicase activities, being in 
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S. cerevisiae Rrm3 the most studied. An accumulation of Rrm3 in highly transcribed genes 

has been observed a genome-wide scale (Azvolinsky et al., 2009), supporting the idea that 

transcription is an obstacle to replication. Definitively, TAR is linked to the ability of the 

transcription machinery to impede RF progression by physically obstructing or promoting 

lesions that block DNA synthesis, and can cause genome instability (Aguilera & Gómez-

González, 2008). 

Finally another cause of TAGIN is the mRNA production itself. In eukaryotes, 

transcription is coupled to mRNA processing (5’-end capping, splicing, mRNP formation 

and 3́ -end processing) and export to the cytoplasm. Nascent mRNA from RNAPII is bound 

by nucleoproteins to build an export-competent mRNA particle (mRNP) which leaves the 

nucleus through the nuclear pore complex. Co-transcriptional processing, in addition to 

increasing the efficiency of mRNA processing, prevents the accumulation of naked RNA 

that could re-anneal with the template DNA forming a structure known as R-loop, hence 

deficiencies in mRNP assembly can stimulate R-loop formation. R-loop is formed by and 

RNA:DNA hybrid and the displaced NTS that stays as ssDNA. Accumulation of these 

structures is linked to an increase of genome instability (Kim & Jinks-Robertson, 2012; 

Gaillard et al., 2013).

2 R-loop formation and genome instability

As previously mentioned, an R-loop is a nucleic acid structure formed by a RNA:DNA 

hybrid and a displaced ssDNA, identical to the RNA molecule. This structure is more stable 

than dsDNA, thus, R-loop removal is not an effortless process. R-loops are commonly by-

products of transcription where the nascent RNA transcript synthesized by RNAP anneals 

back as soon as it exists to the transcribed DNA strand (Santos-Pereira & Aguilera, 2015). 

R-loops formation and stabilization depend on different features, such as DNA 
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supercoiling, GC content, cleavage of the DNA template or the formation of G-quartets (four 

intra-strand Gs paired) in the ssDNA. Negative supercoiling accumulated behind the RNAP 

might lead to a short-term unwinding of the DNA strands, which establishes the conditions 

for nascent RNA hybridization to template DNA outside the polymerase. G clusters at the 

NTS favour R-loop initiation while the G content of the RNA is involved in stabilization and 

elongation of the RNA:DNA hybrid. In addition, a high G content in the ssDNA displaced 

might favour R-loop stabilization by promoting the formation of G-quartets. Therefore in 

a G-rich NTS, G-quartets leave the TS accessible to the RNA. Finally, the presence of DNA 

nicks increase RNA ability to hybridize to DNA probably increasing DNA accessibility 

(Santos-Pereira & Aguilera, 2015; Aguilera & García-Muse, 2012). 

In vivo R-loops are intermediate structures in important biological processes such 

as immunoglobulin diversification, initiation of mitochondrial DNA replication or plasmid 

replication in E.coli. However, their uncontrolled formation can be a significant cause of 

genome instability, causing also replication stress, chromatin alterations or even gene 

silencing. (Aguilera & García-Muse, 2012). 

2.1 Mechanisms that prevent R-loop formation

Increased formation of R-loops is a threat to genome stability. For this reason, cells 

have evolved several mechanisms to prevent or limit cotranscriptional R-loop formation. 

Dysfunction of any of these activities causes R-loop accumulation, genetic instability and 

might alter replication. 

 

2.2.1 Ribonucleases and helicases

RNase H is the most studied enzyme in the context of R-loop removal (Figure 
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I1A). It is commonly used to verify the presence of these structures by suppressing hyper-

recombination or hypermutation phenotypes. RNase H degrades specifically the RNA strand 

of the RNA:DNA hybrid eliminating the R-loop. There are two different types of RNase H 

enzymes, RNase H1 and RNase H2. Although they have different structure both remove 

RNA:DNA hybrids. RNase H1 has a hybrid domain conferring processivity and affinity for 

the substrate. RNase H2 is composed of three different proteins, the catalytic subunit and two 

other subunits that have yet unknown functions, but are necessary for catalysis (Cerritelli & 

Crouch, 2009). The activity of RNase H1 is regulated at a step after hybrid recognition and 

it is region-specific, whereas RNase H2 has a global function (Zimmer & Koshland, 2016).

R-loops can also be removed by RNA:DNA helicases that unwind the hybrid or limit 

their formation. A good example is the helicase Sen1 in S. cerevisiae and its human homolog 

senataxin (SETX), that are implicated in resolving R-loop formation (Figure I1A). The sen1-1 

mutant, with the helicase activity inactivated, accumulates R-loops in highly expressed genes 

(Mischo et al., 2011). Moreover, a sen1 mutant presents RF blocks and accumulates R-loops 

at regions where replication and transcription converge (Alzu et al., 2012). SETX depletion 

causes an increase of R-loops at transcription pause sites present at the 3’ end region of several 

genes, suggesting that SETX role in the dissolution of R-loops is stronger during transcription 

termination (Skourti-Stathaki et al., 2011). Other helicases involved in removing R-loops are 

the human RNA helicase aquarius (AQR) (Figure I1A) and human DNA helicase RECQ5 

(Sollier et al., 2014; Li et al., 2015). The human DHX9 helicase unwinds DNA- and RNA-

containing forks, DNA- and RNA-containing displacement loops (D- and R-loops), and 

also G-quadruplexes; acting preferentially on the R-loops and DNA-based G-quadruplexes 

(Chakraborty & Grosse, 2011). In S. cerevisiae the member of the DEAD-box RNA helicase 

superfamily Sub2 was suggested to function in preventing the accumulation of transcription‐

mediated replication obstacles, including R‐loops (Gómez-González et al., 2011).
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2.2.2 Accurate mRNP biogenesis 

Defects in assembling nascent RNA into a functional mRNP favor RNA hybridization 

to template DNA and formation of R-loops. This may occur when mRNP biogenesis and 

processing factors are deficient, although not all mutants exhibit equally strong defects. The 

observations that RNA metabolic functions prevent R-loops was first described in mutants of 

the THO/TREX complex (Huertas & Aguilera, 2003) (Figure I1B). THO/TREX is a nuclear 

multiprotein complex, conserved from yeast to human, that binds to the nascent mRNA 

during elongation. THO complex in S. cerevisiae is formed by 5 subunits (Hpr1, Tho2, Mft1, 

Thp2 and Tex1) that interact strongly. The mRNA transport factors Sub2 and Yra1 interact 

with THO forming a large complex called TREX (Peña et al., 2012; Sträßer et al., 2002). 

Mutations in THO impair transcription elongation, and induces TAM and high levels of TAR 

(Chávez et al., 2000; Jimeno, 2002; Sträßer et al., 2002). TAR is partially suppressed by RNase 

Sen1/SETX

RNase H

TOP1

AQR?

A  Removal of R-loops

B  Prevention of R-loops

RNA Pol II

RNA Pol II

THOSub2/UAP56

SRSF1
Pcf11

Exosome
TRAMP

Trf4Rrp6/EXOSC10
Rrp40/EXOSC 3

RNA biogenesisRNA surveillance

Figure I1. Mechanisms controlling R-loop accumulation. 
(A) R-loops can be removed by: RNase H enzymes that degrade the RNA moiety of the RNA:DNA 
hybrid; helicases, such as Sen1 in yeast and senataxin (SETX) or Aquarius (AQR) in humans that 
unwind R-loops. (B) Processes preventing formation of R-loops are: Topoisomerase I (TOP1) that re-
solves the local negative supercoiling formed behind the elongating RNA polymerase II; RNA-binding 
proteins involved in  RNP biogenesis (including THO complex) or in RNA surveillance (including the 
TRAMP complex) that limit free RNA able to hybridize with DNA. Figure adapted from (Santos-Perei-
ra & Aguilera, 2015).
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H1 overexpression, suggesting a direct connection between genome instability and R-loop 

formation (Huertas & Aguilera, 2003). These results were also confirmed in other model 

systems, such as human cells and C. elegans (Domínguez-Sánchez et al., 2011; Castellano-

Pozo et al., 2012). 

Other mRNP biogenesis factors that preclude R-loop accumulation are: transcription 

termination and mRNA 3’-end processing factors (Pcf11, Rna14…), the TRAMP complex; 

splicing factors like the human ASF/SF2 protein and Npl3 (Figure I1B). The yeast mutants 

in Trf4, the polyadenylation polymerase of the TRAMP complex (Trf4, Air2 and Mtr4p) 

involved in mRNP quality control, accumulate R-loops (Gavaldá et al., 2013). Depletion 

of ASF/SF2 causes genomic rearrangements suppressed by RNase H1 overexpression and 

a mutation profile when DNA is treated with sodium bisulfite, compatible with R-loop 

formation (Li & Manley, 2005). Finally, it is important the role of the mRNA export factors 

such as the multifunctional yeast protein Npl3, in preventing R-loop-mediated genome 

instability (Santos-Pereira et al., 2013).

Additional evidences indicating that the structure of the nascent mRNP is essential for 

R-loop prevention come from screenings for genes controlling DDR in yeast. This screening 

scored for several factors involved in RNA metabolism including transcription and 3’-end 

processing factors, that preserves the genome by inhibiting R-loop formation (Wahba et al., 

2011; Stirling et al., 2012). All together these observations argue that R-loop accumulation is 

prevented by particular mRNA processing and transcription factors, but each one acts on 

different steps and has different impact on genetic stability. 

2.2.3 Topoisomerases

As mentioned earlier, R-loop formation is facilitated by transcription-mediated DNA 

topological changes (Figure I1B). Negative supercoiling accumulated behind the RNAP 
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loses pairing of the DNA strands, probably facilitating the access of nascent RNA. This was 

suggested studying the effects that mutations in topoisomerases caused on R-loop formation. 

In S. cerevisiae R-loop accumulation is increased at the rDNA region in a top1∆ top2∆ 

strain, being enhanced in the absence of RNase H1 (El Hage et al., 2010). This causes RNAPI 

stalling and accumulation of truncated fragments of rRNA precursors (El Hage et al., 2010). 

In mammalian cells, TOP1-deficient cells present stalled RFs and DSBs in highly transcribed 

genes. These phenotypes are suppressed by RNase H1 overexpression, suggesting the role of 

TOP1 in avoiding R-loop accumulation (Tuduri et al., 2009). 

2.2 Roles of R-loops in transcription

Different studies suggest that R-loops might have a role in transcription activation and 

termination. Genome-wide analyses indicate that R-loops localize preferentially to promoters 

and termination regions in human genes, especially at non-methylated-CpG islands (Ginno 

et al., 2012). CpG islands are short DNA interspersed regions rich in CpG sequences that are 

usually unmethylated and localized at the 5’-end of genes, functioning as promoters (Deaton 

& Bird, 2011). A bioinformatic analysis of these promoters shows an asymmetric distribution 

in the GC content with a C-rich DNA template, a characteristic that favors R-loop formation 

(Ginno et al., 2012). Indeed, R-loops are detected in CpG-rich promoters by the S9.6 antibody 

that specifically binds to RNA:DNA hybrids and by the bisulfite treatment technique. R-loop 

formation protects from the action of the DNA methyltransferase 3B1 (DNMT3B1) which 

silences genes by the novo methylation of cytosines, contributing to promoter activation 

(Ginno et al., 2012). Thus, CpG islands containing R-loop present chromatin modifications 

associated to transcription initiation or elongation, such as H3 lysine 4 trimethylation, H4 

lysine 20 methylation and H3 lysine 79 dimethylation (Ginno et al., 2013). 

Another mechanism of R-loop-mediated transcription activation is based in non-

coding RNAs. In the human vimentin gene (Boque-Sastre et al., 2015) antisense transcription 
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at promoter generates an R-loop structure. These R-loops activate sense transcription by 

favouring chromatin opening, since they show a decreased nucleosome occupancy, and 

recruitment of transcription factors (Boque-Sastre et al., 2015). R-loops can also play a 

repressive role in transcription. At the COOLAIR antisense gene stabilization of an R-loop 

that covers the promoter inhibits its transcription. Antisense COOLAIR is a negative regulator 

of FLOWERING LOCUS C (FLC) expression. Thus reduced COOLAIR expression in turn 

increases FLC transcription (Sun et al., 2013). Therefore R-loops generated from antisense 

transcripts at promoters could play a dual role in transcription either activating or silencing 

the expression. 

Several studies have directly related the role of R-loops in termination. R-loops form 

at the 3’ ends of human genes with a high GC content (Ginno et al., 2013). In yeast, a genome-

wide technique for mapping hybrid-prone regions showed that R-loops also peaked at the 

3’-end of the ORFs even though these regions are AT rich (Wahba et al., 2016).  These R-loops 

formed at the 3’ end are required for transcription termination (Ginno et al., 2013; Skourti-

Stathaki et al., 2011). 

RNAPII terminates transcription by two different mechanisms: the poly(A)-

dependent pathway and the Nrd1-dependent pathway (Porrua & Libri, 2015). The first one is 

carried out by most protein-coding genes, and it is coupled to cleavage and polyadenylation of 

the nascent transcript. In this process transcription of the poly(A) site is followed by RNAPII 

pausing and cleavage and polyadenylation of the nascent transcript. RNAPII pausing is 

mediated by R-loops either directly slowing down the polymerase or inducing a repressive 

chromatin at termination regions. Cleavage of nascent RNA generates a free 5’ end that is the 

substrate of specific nucleases such as Rat1 in yeast or XRN2 in human cells. Degradation 

of the RNA still attached to RNAPII induces termination by an still ill-defined mechanism 

(Kim et al., 2004; West et al., 2004). Helicases like Sen1 in yeast or its homologue SETX 

in humans aid nucleases in this process (Mischo et al., 2011; Skourti-Stathaki et al., 2011). 
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They function removing secondary structures in the RNA and DNA:RNA hybrids formed at 

pausing regions facilitating exonucleases action (Proudfoot, 2016). 

2.3 R-loops and genome instability

Although R-loops work as intermediates in important biological processes, 

accumulation of these structures is toxic for the cells, as they are a source of genome instability.  

2.2.1 R-loop-mediated mutagenesis

The ssDNA motif of the R-loop is more susceptible to DNA damage than dsDNA, 

since it is more accessible to exogenous or endogenous DNA-damaging agents. In human 

cells, depletion of splicing factors like ASF/SF2 show a high spontaneous mutagenicity as a 

consequence of R-loop formation (Li & Manley, 2005). ssDNA is also the substrate of enzymes 

that induce mutations by modifying nucleosomes as activation-induced cytidine deaminase 

(AID) (Figure I2A). AID deaminates cytosines into uracil in actively transcribed DNA, with 

preference for cytosines present in WRC (W equals A or T and R equals A or G) motives. AID 

plays an important role generating immunoglobulin diversification. At immunoglobulin 

genes, AID acts on the ssDNA motif of the R-loops formed during transcription inducing 

somatic hyper-mutation (SHM) and class switch recombination (CSR) (Maizels, 2005). AID 

can act on R-loop formed in non-Ig genes when it is exogenously expressed (Gómez-González 

& Aguilera, 2007; Sohail et al., 2003). This has been used as a tool to detect R-loops in the 

cell. In yeast R-loop accumulating mutants, AID expression increases mutation frequency in 

transcribed genes following the same pattern of mutations than showed Ig genes (Gómez-

González & Aguilera, 2007). Chemicals like sodium bisulfite that also deaminates cytosines 

present in ssDNA converting them to uracil, are used to detect R-loops in vitro too (Li & 

Manley, 2005) (Figure I2A). In this case since such conversion can be detected by PCR 
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amplification followed by DNA sequencing (Yu et al., 2003). 

In addition, R-loops could be a source of mutations by initiating replication 

independently of replication origins (Figure I2B). In R-loops formed during transcription, 

the RNA motif hybridized to DNA can prime replication at ectopic sites in E. coli (Maduike 

et al., 2014) and in S. cerevisiae (Stuckey et al., 2015). R-loop-mediated replication increases 

the mutation rate in the rDNA region in top1 and rnase H mutants in yeast (Stuckey et al., 

2015). Moreover, in yeast break-induced repair (BIR), a cellular process that mimics normal 

DNA replication but initiated at a DSB which was proposed to resolve breaks induced by 

R-loops, is strongly mutagenic (Deem et al., 2011). 

2.2.2 R-loop-mediated DNA breaks as a source of genome instability

R-loop-mediated genome instability is originated mainly by DNA breaks (Aguilera, 

2002). Genetic instability phenotypes as TAR were described in several mutants related with 

Figure I2. R-loops as a source of mutations.
(A) R-loops increase accessibility to DNA generating ssD-
NA that is attacked by the AID enzyme, to endogenous 
genotoxic metabolites or chemicals like sodium bisulfite. 
(B) R-loops can prime mutagenic DNA replication. Figure 
from (Aguilera & García-Muse, 2012).
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RNA biogenesis or DNA metabolism, as explained before in section 2.2, that were later on 

described to accumulate R-loops. Although still not much is known about how the R-loops 

generate ssDNA gaps or DSBs, elucidating the mechanism is decisive in understanding how 

R-loops lead to genome instability. 

The most important source of DNA breaks in the cell is replication stress (Aguilera 

& García-Muse, 2013). Hence, the major cause of R-loop-mediated genome instability might 

due to R-loop ability to stall RF progression. In yeast THO mutants the RF is blocked when 

the high GC content lacZ gene is transcribed. Blockage is partially restored through the 

cleavage of the nascent mRNA, suggesting that R-loops mediate RF stalling (Wellinger et al., 

2006). Genome-wide analyses in mutants that accumulate R-loops show an over-recruitment 

of the Rrm3 DNA helicase in active genes. Accumulation of Rrm3 is reduced by RNase H1 

overexpression. These replication defects correlate with an increased recombination and with 

checkpoint activation (Santos-Pereira et al., 2013; Alzu et al., 2012; Gómez-González et al., 

2011). 

 

The mechanism by which an R-loop produces the collision between transcription and 

replication is still unclear. First, unrepaired lesions in the displaced strand may represent an 

obstacle to the replisome or generate a break (Aguilera & García-Muse, 2012) (Figure I3A). 

Second, an R-loop itself (Figure I3B) or an RNAP that is arrested by the R-loop could be the 

roadblock (Figure I3C). Third, the supercoiling accumulated in front of an R-loop might lead 

to RF reversal, producing recombinogenic structures (Figure I3D). Finally, DNA structures 

formed in the ssDNA motif of an R-loop, such as G-quadruplexes or hairpins, might also 

hinder the progression of the replisome (Aguilera & García-Muse, 2012). 

 

In human cells, the tumor suppressor and DNA repair genes BRCA2 and BRCA1 

prevent R-loop built up (Bhatia et al., 2014; Hatchi et al., 2015). BRCA2 is a member of the 

Fanconi anemia pathway, a DNA repair pathway that works at lesions that block replication. 
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BRCA2 and the Fanconi anemia pathway are required for restoration of RF stalled probably 

removing R-loops, supporting the idea that R-loop-mediated genome instability is mainly 

mediated by the interference with replication (García-Rubio et al., 2015; Bhatia et al., 2014). 

3 Chromatin structure and modifications

DNA is not naked inside the nucleus of eukaryotic cells, it is associated with a wide 

variety of proteins, most of which are histones, forming the chromatin. Therefore, chromatin 

is the structure where the whole genome is packaged. The basic unit of chromatin is the 

nucleosome, consisting of approximately 146 base pairs of DNA, wrapped around a protein 

octamer formed by two copies of histones H3, H4, H2A and H2B (Figure I4). Each histone is 

composed of a highly structured globular domain and an unstructured N-terminal tail that 

expands from the octamer. The globular domain mediates interactions between histones and 

between them and DNA. The N-terminal domain is responsible for the interactions between 

nucleosomes and for recruiting distinct non-histone proteins such as, for example, chromatin 

remodelers. The nucleosomes are separated from each other by a linker DNA fragment that 

is variable in length (aprox. 10-90 bp), to which is attached a fifth type of histone, called 

Figure I3. R-loop-mediated replication fork collision. 
An R-loop might block or collapse replication fork progression by (A) favouring DNA damage by gen-
erating ssDNA, (B) acting as a roadblock, (C) retaining the RNAP at DNA (D) generating torsional 
stress that could cause RF reversal. Figure from (Aguilera & García-Muse, 2012).
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histone H1, near the entry and exit site of DNA to nucleosome (Ushinsky et al., 1997) (Figure 

I4B). The DNA wrapped tightly around a nucleosome is less accessible than the DNA at 

the linker regions. Thus, the exact positioning of nucleosomes is critical for proper genome 

functioning. Mapping studies have shown that the majority of nucleosomes (about 80%) in 

S. cerevisiae are highly positioned or phased at the same position in virtually all the cells 

of population (Yuan et al., 2005; Lee et al., 2007). Nucleosome positioning is different to 

nucleosome occupancy, which refers to the fraction of cells from the population in which a 

particular region of DNA is occupied by a histone octamer

Although nucleosomes constitute the first level of chromatin compaction, chromatin 

is further organized into higher order structures (Woodcock & Ghosh, 2010) (Figure I5). A 

graded system has been proposed for classifying chromatin structure (Woodcock & Dimitrov, 

2001), in which primary structure post-nucleosomal is essentially the nucleosomal array, also 

called “beads-on-a-string”. Secondary structure is referred as the 30-nm chromatin fiber, 

involving inter-nucleosomal contacts and interactions with linker histones and non-histone 

chromosomal proteins. The tertiary structure is formed by interactions between elements of 

the secondary structure, consisting of long-distance contacts oR-looped chromatin domains 
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Figure I4. Nucleosome structure. 
(A) Structure of a nucleosome core particle. Histones are shown in light grey, and the DNA helix is 
shown in dark grey with a pink backbone. Lysine and arginine residues of the DNA are shown in blue 
to emphasize the electrostatic contacts between the DNA phosphates and the histones. (B) A sche-
matic of DNA wrapped around a nucleosome with examples of histone tail modifications. Arrows in-
dicate the replacement of canonical histone with histone variants. Figure from (Jiang & Pugh, 2009).
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that build an entire chromosome (Woodcock & Ghosh, 2010). Additionally, chromosomal 

regions are packaged in chromatin with different condensation levels and transcriptional 

potential, being classified into heterochromatin and euchromatin. Heterochromatin 

constitutes a condensed structure and euchromatin is less condensed and contains the 

transcriptionally active regions (Woodcock & Ghosh, 2010). 

The study of histone function is simpler in yeast than in higher eukaryotes, since yeast 

genome has only two copies of each of the major histone genes, while in higher eukaryotes 

there are multiple copies (10 to 20) (Hentschel et al., 1981). S. cerevisiae genome contains 

four loci encoding the H3, H4, H2A and H2B histones, consisting each locus of a set of two 

genes that are divergently transcribed from a central promoter (Osley, 1991). Two of these 

loci, HHT1-HHF1 and HHT2-HHF2, correspond to genes for H3 and H4 histones, being 

Figure I5. Chromatin structure. 
DNA is wrapped around a histone octam-
er to form nucleosomes. Nucleosomes are 
connected by linker DNA forming the “Beads 
on a string” structure. This structure is fold-
ed into a fiber-like structure of about 30 nm 
in diameter. These 30-nm fibers are further 
compacted into higher-order structures. Fig-
ure from (Jansen & Verstrepen, 2011).
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identical the proteins encoded in both of them. The others, HTA1-HTB1 and HTA2-HTB2, 

correspond to genes for H2A and H2B histones and encode slightly different isoforms. 

Although histone genes are essential, strains with only one set of each are viable (Smith & 

Stirling, 1988). This together with the easy genetic manipulation of S. cerevisiae, allows the 

study of histone mutations. 

To form the chromatin, nucleosomes need to be assembled in the DNA. The majority 

of chromatin assembly occurs immediately following DNA replication, in the S phase where 

all histone are expressed (Spellman et al., 1998). The passage of the replication machinery 

disrupts the nucleosomes. The parental nucleosomes disassemble and histones are distributed 

randomly between the two new DNA duplexes, mixing with histones synthesized de novo. 

First histones H3 and H4 assemble followed by the incorporation of two histone H2A-H2B 

dimers, completing the nucleosome. This process required chromatin assembly factors 

and histone chaperons, that are not only important for de novo deposition of nucleosomes 

in replication but also for nucleosome disassembly/reassembly during transcription, 

recombination or DNA repair (Tyler, 2002). 

Chromatin may constitute a barrier to many processes occurring on the DNA, 

including transcription, replication and DNA repair. Histones modulate the accessibility of 

the machineries carrying out the different cellular DNA-based processes. The three essential 

mechanisms by which chromatin structure varies are: posttranslational modifications of 

histones (Figure I4B), the action of chromatin remodeling complexes and the insertion of 

non-canonical histone variants (Figure I4B) (Kouzarides, 2007; Tessarz & Kouzarides, 2014). 

3.1 Histone posttranslational modifications

Posttranslational modifications, mainly at the unfolded N-terminal tails but also 

at the globular domain, are detected in 60 different residues in the four different histones. 
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These covalent and reversible modifications influence nucleosome dynamics by disrupting 

intra-nucleosome or inter-nucleosome contacts or by affecting the interaction of chromatin 

with non-histone proteins, such as chromatin remodelers, histone chaperones and 

specific factors, that facilitate or restrict access to DNA. Posttranslational modifications 

include lysine acetylation, lysine and arginine methylation, serine, threonine and tyrosine 

phosphorylation, lysine ubiquitination, lysine sumoylation, glutamic acid ADP-ribosylation, 

arginine deimination and proline isomerization (Bannister & Kouzarides, 2011) (Figure I6). 

Acetylation is one of the most well-characterized histone modifications. Although 

histone acetylation has related roles in DNA repair and other biological processes, its role 

as a transcriptional regulator is the most important. This lysine modification is regulated by 

the action of two families of antagonistic enzymes, histone acetyltransferases (HATs) and 
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Figure I6. Histone modifications in yeast. 
Summary of posttranslational modifications that could be presented in the different histones. The 
globular histone domains of each core histone are represented as coloured ovals. The modifica-
tions include acetylation (ac), methylation (me), phosphorylation (ph) and ubiquitination(ub1). Figure 
adapted from (Bhaumik et al., 2007).
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histone deacetylases (HDACs). The HATs remove the lysine positive charge, thereby reducing 

the interaction between histone and the negatively charged DNA, making the nucleosome 

assume an “open” structure (Strahl & Allis, 2000). Broadly, the HATs modify multiple sites 

in the histone N-terminal tails, such as H3K9, H3K14, H3K18, H3K23, H4K12 or H4K16, 

among others (Millar & Grunstein, 2006). Additional acetylation sites located in the histone 

globular domain, such as H3K56 alter histone –DNA interactions. H3K56 is placed at the 

entry-exit point of the DNA on the nucleosome and its acetylation influences nucleosome 

stability enhancing the unwrapping of the DNA (Xu et al., 2005). HATs are usually part 

of multiprotein complexes, that favours recruitment into the substrate. On the other hand, 

HDACs reverses lysine acetylation enhancing histones to DNA interaction. HDACs are 

characterized by a low specificity, being able to deacetylate multiple residues. They normally 

form part of multiple protein complexes, even with other HDACs, making it difficult to 

determine their direct targets and their particular cellular effect (Bannister & Kouzarides, 

2011).

Methylation is the most frequent posttranslational histone modification in human 

cells, occurring at specific lysines and arginines. In yeast, this modification has only been 

described at lysine residues (Kouzarides, 2007). Methylation does not change the histone 

charge, in contrast to phosphorylation and acetylation, but can create binding sites for 

chromosomal proteins. This modification can have different forms, more concretely the 

mono-, di- or trimethyl modification in lysines; and the mono- or dimethyl modification in 

arginines. In S. cerevisiae it has been described three methyltransferase that methylates only 

a single histone residue: Set1 (H3K4), Set2 (H3K36) and Dot1 (H3K79) (Millar & Grunstein, 

2006).  

Histone phosphorylation is a highly dynamic modification. Phosphorylation, as 

acetylation, has the potential to alter DNA-histone or nucleosome-nucleosome contacts 

through electrostatic mechanisms by increasing the negative charge of histones (Kouzarides, 
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2007). Unlike acetylation and methylation, histone phosphorylation appears to function by 

serving as a platform for effector proteins, leading to a downstream cascade of events. This 

modification is controlled by the action of kinases and phosphatases.  Most phosphorylations 

occur at the N-terminal tails, although it can also occur within the core of the histone (Bannister 

& Kouzarides, 2011). For example, mutations that mimic or inhibit phosphorylation in the 

H3T118 are lethal in yeast and the heteroallelic strain with one wild-type and one mutated 

H3 copy shows defects in transcriptional regulation and DNA repair (Hyland et al., 2005). 

Histone modifications control the accessibility to DNA through two mechanisms: 

modificating contacts between nucleosomes and regulating recruitment of proteins to 

histones. As previously mentioned, acetylation and phosphorylation changes histone charge 

disrupting electrostatic interactions between adjacent histones and between histone and 

DNA. Thus acetylation in the H3 and H4 N-terminal tails is associated to transcription 

activation and acetylation of H4K16 modify higher-order chromatin, impeding the ability of 

chromatin to form cross-fiber interactions (Shogren-Knaak et al., 2006). 

Posttranslationally modified histones recruit specifically chromatin-associated 

factors necessary to accomplish cellular processes as transcription, replication or DNA repair, 

by interacting with specific binding domains. In S. cerevisiae, acetylation is recognized by 

bromodomains, which are usually found in HATs and chromatin remodelling complexes 

(Mujtaba et al., 2007); phosphorylation is identified by the 14-3-3 protein family; and 

methylation is recognized by chromo-like domains of the Royal family and PHD fingers. 

Remarkably, methylation could be recognized by a greater variety of domains and several 

domains can identify the same methylation residue, indicating the importance of this 

modification (Bannister & Kouzarides, 2011; Kouzarides, 2007). 

Besides the complexity given by the great variety of modifications existing, another 

factor that increases the complexity is the cross-talk between different modifications on the 
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same histone tail or on different ones (Bannister & Kouzarides, 2011). We can distinguish 

different cross-talk effects: competition between different modifications occurring on the 

same residue; cooperation between modifications in different residues; dependency when a 

modification depends on  a previous one; repression when modification of a residue inhibits 

modification of a different one; changes in the affinity caused by modification of an proximal 

residue. 

3.3.1 Genomic localization of histone modification

The degree of chromatin compaction/organization is not homogenous thoughout 

the genome.  Chromatin can be divided into two different environments, heterochromatin 

and euchromatin. Heterochromatin is associated with highly condensed regions, such as 

centromeres and telomeres, contains mostly inactive genes and is not subjected to changes 

during the cell cycle. On the other hand, euchromatin is related to less condensed regions, 

contains most of the active genes and suffers cyclical changes during the cell cycle. These 

environments are characterized by a different set of modifications. Euchromatin is enriched 

in acetylation, methylation and phosphorylation at transcriptionally inactive genes 

(Kouzarides, 2007). Actively transcribed genes are related with high levels of acetylation, and 

the residues H3K4 and H3K36 are trimethylated. Heterochromatin is marked with histone 

modifications associated to silencing. In S. cerevisiae, the core histones are hypoacetylated 

and H3K4 and H3K79 are hypomethylated (Bi, 2014). Although there are areas that can 

overlap between different regions, demarcation between the environments is stablished by 

boundary elements. These elements recruit enzymes to modify the chromatin, playing a role 

in maintaining the distinction between regions (Bannister & Kouzarides, 2011). 
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3.2 Chromatin remodeling complexes 

Chromatin remodelers are ATP-dependent multiprotein complexes that use the 

energy of ATP hydrolisis to remodel nucleosomes (Clapier & Cairns, 2009). These remodeling 

enzymes disrupt histone-DNA interactions promoting nucleosome “sliding” and partial or 

total nucleosome displacement. Chromatin remodelling complexes are classified attending to 

the ATP-ase subunit in four classes: the SWI/SNF (switch/sucrose-nonfermentable), INO80 

(inositol-requiring), ISWI (imitation switch), and CHD (chromo-helicase/ATPase-DNA-

binding). All remodeler catalytic subunits share a conserved ATPase subunit that provides 

free energy to facilitate DNA translocation, but present different remodelling activities 

(Clapier & Cairns, 2009). The SWI/SNF family can promote nucleosome repositioning, 

SWR1 insert the histone H2A variant H2A.Z, CHD remodelers slide or eject nucleosomes 

and the ISWI family moves nucleosomes along the DNA. 

3.3 Histone variants

Histone variants differ from the canonical histone in its sequence. Some variants have 

profound differences, such as their time of expression and incorporation into chromatin, the 

structure (sequence, N- or C-terminal extensions or truncations) and their specific function 

in transcription, DNA repair or chromosome segregation (Malik & Henikoff, 2003). The yeast 

H2A is homologous to the H2A.X variant of higher eukaryote. Both contain an extension 

at the C-terminus which includes a serine at position 139 that, in response to DNA double-

strand breaks (DSBs), is phosphorylated (Sarma & Reinberg, 2005). The variant H2A.Z 

substitutes the canonical H2A in extensive genomic regions, being enriched in promoter 

regions (Li et al., 2005). All eukaryotes present a centromere-specific H3 variant involved in 

chromosome segregation. In S. cerevisiae  it is similar to the canonical H3 with the exception 

of their N-terminal tails (Sarma & Reinberg, 2005). 
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4 Role of chromatin in DNA-based processes

Chromatin remodeling and histone modifications play a key role in controling cellular 

processes where DNA is involved, modulating the accessibility of different machineries to 

DNA. Although the complexity of the modifications makes difficult to establish a code, the 

term “histone code” groups a series of modifications that occur in a certain biological process.

4.1 Chromatin regulates transcription

Chromatin is an obstacle to RNA polymerases that is overcome by the coordinated 

action of chromatin modifying and remodeling enzymes. At promoters of most yeast genes 

there is a nucleosome free region (NFR) flanked on both sides by two highly positioned 

nucleosomes, termed –1 and +1, respectively (Mavrich et al., 2008) (Figure I7). Both of them 

often contain the histone H2A variant H2A.Z (Raisner et al., 2005) involved together with 

H3.3 variant in nucleosome eviction upon activation to allow RNAPII recruitment and the 

expression of the genes (Venkatesh & Workman, 2015). Transcription activators also recruits 

HATs (SAGA and NuA4) that acetylate histone H4 (K5, K8, K12 y K16) and histone H3 (K4) 

introducing electrostatic repulsion that facilitates DNA access (Li et al., 2007). 

Chromatin modification is not only needed for initiation but throughout elongation 

too. Downstream of the strongly +1 positioned nucleosome, each nucleosome is gradually 

less precisely localized than the previous upstream one but they still constitute a barrier 

for RNAPII progression, although at the 3’ exists a positioned nucleosome that precede 

another nucleosome free region (Figure I7). Methylation in H3K4, H3K36 and H3K79 is 

required for efficient transcription elongation. These modifications are distributed differently 

across genes with H3K4me3 accumulating at transcriptional start site (TSS) and H3K36 

throughout the transcribed region. This profile is established by the differential recruitment 

of the methyltransferases. In S. cerevisiae, Set1 H3K4 methyltransferase binds to the serine 5 
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phosphorylated CTD of the RNAPII, the state of the polymerase at the 5’ region of the genes 

(Ng et al., 2003). However, Set2 H3K36 methyltransferase binds to the serine 2 phosphorylated 

CTD of the RNAPII, the elongating form (Xiao et al., 2003). Via H3K4 trimethylation, 

H3K14 residues are hyperacetylated by NuA3 HAT. Moreover, H3K36me3 allows recruiting 

the Rpd3S HDAC complex, which deacetylates histones after the passage of the polymerase, 

avoiding the cryptic transcription (Carrozza et al., 2005). This system is an example of how 

antagonistic activities are complementary in biological processes. The passage of RNAPII 

though the body of the gene is accompanied of disruption of the chromatin structure. H2A-

H2B dimer is removed by the histone chaperone complex FACT and repositioned behind 

RNAPII facilitating transcription progression. Loss of the H3-H4 dimer during elongation is 

rare in yeast but occurs in higher eukaryotes (Venkatesh & Workman, 2015).

The most relevant modifications in transcriptional regulation are acetylation and 

methylation, although other modifications like phosphorylation also play a prominent role. 

Phosphorylation of histone residues have been linked to the activation of gene expression 

(Baek, 2011). For instance, phosphorylation of H3S10 is recognized by the 14-3-3 family of 

proteins (Macdonald et al., 2005) that are present on specific genes (Pokholok et al., 2006) 

whose expression depend on phosphorylation. 

Figure I7. Nucleosome architecture of a yeast gene. 
A nucleosome-depleted region (5’NFR) is surrounded by the highly localized and histone variant 
H2A.Z-enriched +1 and -1 nucleosomes, containing most functional cis-regulatory sequences. The 
+1 nucleosome is located just upstream of the transcription start site (TSS). Downstream of the +1 
nucleosome, each nucleosome is gradually less precisely localized than the previous upstream nu-
cleosome. Beyond aprox 1 kb from the TSS, consensus spacing from the TSS dissipates. At the 3’ 
end, a positioned nucleosome precedes the 3’ NFR. Figure from (Jansen & Verstrepen, 2011).
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4.2 Chromatin modifications connected to DNA replication and repair

Replication could be modulated by several chromatin modifications, at the level of 

origin recognition and throughout replication by chromatin assembly at the newly synthesized 

DNA. For instance, in human cells the HBO1 acetyltransferase binds to the MCM proteins 

at replication sites, and acetylate residues in N-terminal tail of H4, being this action required 

for S phase initiation (Kouzarides, 2007). 

 

Posttranslational modifications have also an important role in incorporation of the 

newly synthesized histones during replication. Almost all organism present acetylation 

of H4K5 and H4K12 on newly synthesized histones (Sobel et al., 1995) performed by the 

histone acetyltransferase HAT1 (Parthun, 2007). These modification are not essential for 

histone deposition in vitro, but might be marking a transient chromatin state (Shibahara et 

al., 2000). In S. cerevisiae, H3K56 is acetylated in newly synthetized histone H3 (Masumoto 

et al., 2005). H3K56 is located in the DNA entry/exit point of the nucleosome contacting with 

DNa through the major groove. H3K56 acetylation debilitates histone-DNA interactions. 

Indeed, mutations that mimic an acetylated state (H3K56Q)  result in increased sensitivity 

to micrococcal nuclease digestion (Masumoto et al., 2005). H3K56 acetylation is mediated 

by the HAT Rtt109 together with either  ASF1 or Vps75 chaperones (Han et al., 2007). It 

promotes the assembly of nucleosomes during S phase (Li et al., 2008)  and increases access 

of the repair machinery to stalled replication forks and DSBs (Han et al., 2007; Celic et al., 

2008). In mammals, the role of this modification is unclear, since it is very low abundant (Xie 

et al., 2009). It may be present but very unstable being quickly deacetylated after deposition.  

Chromatin influences DNA repair by helping to recognize the lesion and favoring 

recruitment of the repair factors.  Phosphorylation of the histone variant γ-H2AX is the 

best characterized modification occurring in response to DNA damage in mammalian 

cells (Fillingham et al., 2006). This phosphorylation marks the injury, spreading around the 
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damage. DSBs repair via NHEJ involves two phosphorylation: residue S129 of H2A mediated 

by Mec1 (Downs et al., 2000) and H4S1 mediated by Caesin kinase II (Cheung et al., 2005). 

Another modification associated to DNA repair is acetylation of H3K56. As mentioned 

earlier, in S. cerevisae H3K56 is acetylated during S phase and deacetylated in G2 phase. 

In presence of DNA damage Hst3 and Hst4, the two HDACs that deacetylate H3K56, are 

downregulated in a checkpoint-dependent manner, maintaining the modification. Although 

this situation benefits DNA repair H3K56 acetyl group need to be removed as the loss of the 

two HDACs leads to DNA damage and replication stress (Celic et al., 2006; Celic et al., 2008). 

4.3 Chromatin condensation

Chromatin condensation is an important regulated process occurring during cell 

cycle. During mitosis, histone modifications play an important role in condensation. H3T3 

phosphorylation, which is mediated by the Haspin kinase (Dai et al., 2005), recruits the 

chromosomal passenger complex (CPC) that orchestrates proper chromosome segregation 

with cytokinesis (Figure I8). The CPC includes the kinase Aurora B in human cells and Ipl1 

in yeast, that phosphorylates the H3S10 (Kelly et al., 2010; Yamagishi et al., 2010; Wilkins 

et al., 2014). H3S10 phosphorylation is a marker of mitosis and was linked to chromosome 

condensation (Hendzel et al., 1997). Aurora B mutation generates cellular polyploidy (Ke et al., 

2003), an incomplete condensation of the chromosomes and lack of chromosome alignment 

in the metaphase plate (Goto et al., 2003). During the cell cycle, H3S10 phosphorylation levels 

are at their maximum degree in the G2/M phases when the chromosomes are in their most 

condensed state. Dephosphorylation, mediated by Glc7 in yeast and PP1 in mammals, begins 

during anaphase and is completed in telophase (Hendzel et al., 1997). 

H3S10 phosphorylation triggers recruitment of the H4K16 deacetylase Hts2p (Prigent 

& Dimitrov, 2003) (Figure I8). Removal of H4K16 acetylation permits that the N-terminal 

tail of H4 contact the negatively charged H2A-H2B dimer interface on the neighboring 
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nucleosome (Robinson et al., 2008). This interaction is crucial for formation of higher-order 

chromatin structures and heterochromatin (Johnson et al., 1990). Moreover, cells with 

H3S10 mutated to alanine, which can not be phosphorylated, showed a relevant reduction in 

H2A-H4 contact, whereas a phospho-mimetic mutation had no effect (Wilkins et al., 2014). 
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Figure I8. Cascade of histone mod-
ifications that mediate chromatin 
condensation. 
Chromatin condensation depends on 
a histone modification cascade that in-
cludes H3T3-P (mediated by the Haspin 
kinase), H3S10-P (mediated by chromo-
somal passenger complex, CPC) and 
H4K16 deacetylation (mediated by the 
deacetylase Hts2p). 
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5 Chromatin changes and R-loop formation

Numerous studies link R-loops formation to changes in the chromatin structure. 

On one hand, R-loops are associated with marks related with active transcription such as 

H3K4me1, H3K4m3, H3 acetylation and H3K36me3 (Sanz et al., 2016; Chen et al., 2015).  

Moreover, sequences off-targets of the AID enzyme, that acts on the ssDNA formed in 

R-loops, present modifications like H3K4me1, H3K27ac, H3K36me3 and high transcription 

rates (Chédin, 2016). The connection between R-loops and active transcription marks could 

be just the result of R-loop needing transcription to be formed. However R-loops correlate 

also with chromatin decondensation and lower nucleosome occupancy (Powell et al., 2013). 

In fact, R-loops prevent nucleosome wrapping in vitro (Dunn & Griffith, 1980).

A link has also been defined between the formation of R-loops and chromatin 

condensation or heterochromatin. This connection was established in yeast THO mutants, 

where defects in mRNP assembly cause genome instability and increased R-loop formation 

(Huertas & Aguilera, 2003), correlating this increase in R-loop formation with higher levels 

of H3S10 phosphorylation and a less accessible chromatin structure (Castellano-Pozo 

et al., 2013) (Figure I9).  This link is conserved, since it was also observed in human cells 

and Caenorhabditis elegans (Castellano-Pozo et al., 2013). As mentioned earlier H3S10 

phosphorylation is a mitosis marker involved in chromatin condensation. Although evidences 

link H3S10 phosphorylation with R-loop formation, it is still unknown the chromatin 

structure formed. R-loops has been also related to methylation of H3K9 and heterochromatin 

mark  (Groh et al., 2014; Skourti-Stathaki et al., 2011). Therefore there are evidences in the 

literature that associate R-loops with either active or repressed chromatin marks. 

Regardless the state of chromatin triggered by R-loops, chromatin itself can modulate 

formation or stability of this structure. In this sense, it is interesting that the histone chaperone 

complex FACT is required to preclude R-loop accumulation (Herrera-Moyano et al., 2014), 
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suggesting that R-loop formation could be prevented by an appropriate transcription-coupled 

nucleosome re-deposition and that chromatin structure influences R-loop formation.

R-loop formation

Chromatin condensation

Replication-fork stalling

RNA Pol II

Replication-fork breakage

Genome instability

  Figure I9. Replication-mediated R-loop-induced genome instability.
Co-transcriptional R-loops could trigger H3S10 phosphorylation and chromatin compaction or con-
densation, which would contribute to replication fork stalling and is responsible for genome instability. 
Figure adapted from (Santos-Pereira & Aguilera, 2015).
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Objectives

The main aim of this thesis is to understand the role of chromatin in the formation of R-loops. 

To this end, we have pursued the following objectives:

 – To search for histone mutants that are involved in precluding R-loop formation.

 – To characterize the effect of the identified residues on genome stability, as well as 

analysing their implication in transcription and replication

 – To gain new insights into the role of chromatin structure and histone modifications 

in R-loop-mediated instability.
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1 Growth media and conditions

1.1 Yeast culture media

The following culture media were used for yeast:

 – Rich medium YPAD:  1% yeast extract, 2% bacto-peptone, 2% glucose, 20 mg/L 

adenine.

 – Minimum medium SD:  0.17% yeast nitrogen base (YNB) without amino acids nor 

ammonium sulphate, 0.5% ammonium sulphate, 2% glucose.

 – Complete medium SC: SD medium supplemented with amino acids leucine, 

tryptophan, histidine, lysine, methionine, aspartate and threonine and the nitrogen 

bases adenine and uracil at concentrations described in (Shermann et al., 1986). The 

absence of one or more of the requirements is specified when required. 

 – Complete medium SGal: identical to SC but containing 2% galactose instead of glucose 

as carbon source. Filter-sterilized galactose was added to autoclaved media without 

carbon source. 

 – Complete medium SRaff: identical to SC but containing 2% raffinose instead of glucose 

as carbon source. Filter-sterilized raffinose was added to autoclaved media without 

carbon source. 

 – Complete medium SG/L: identical to SC but containing 3% glycerol and 2% sodium 

lactate instead of glucose as carbon source. Glycerol was autoclaved separately and 

added to the rest of the components after they had been autoclaved. 

 – Sporulation medium (SPO): 1% potassium acid, 0.1% yeast extract, 0.005% glucose, 

supplemented with a quarter of the concentration of requirements described for SC 

medium.

Solid mediums were prepared adding 2% agar before autoclaving. 
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1.2 Bacteria culture media

 – Rich medium LB: 0.5% yeast extract, 1% bacto-tryptone, 1% NaCl. LB was supplemented 

with 75 µg/ml ampicillin when it was necessary for plasmid selection. 

 – SOB medium: 0.5% yeast extract, 2% bacto-tryptone, 0.005% NaCl, 2.5 mM KCl, 10 

mM MgSO4, 10 mM MgCl2.

1.3 Growth conditions 

Yeast strains were incubated at 30°C, except when we used sen1-1 strains, that were 

incubated at 26ºC.  Bacteria strains were incubated at 37°C in all cases. Liquid cultures were 

incubated on horizontal orbital shakers at 200rpm. Diploid yeast strains were sporulated at 

26°C in SPO medium for 4-5 days.

2 Antibiotics, drugs, inhibitors, enzymes and antibodies

2.1 Antibiotics

 – Ampicillin (Sigma): β-lactam antibiotic that inhibits cell division in E. coli, preventing 

the cell wall synthesis. It was used for plasmid selection in E.coli. Concentration 100 

µg/ml in liquid media and 75 µg/ml in plates.

 – Geneticin, G418 (USB): aminoglycoside antibiotic that inhibits protein synthesis by 

binding to the ribosome. It was used in yeast strains to select, follow and maintain the 

kanamycin resistance marker KanMX (a hybrid gene consisting of a bacterial kanr 

gene under control of the strong TEF promoter from Ashbya gossypii). Concentration 

100 µg/ml.

 – Hygromycin B (Roche): aminoglycoside antibiotic from Streptomyces hygroscopicus 
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that inhibits protein synthesis. It was used in yeast strains to select, follow and 

maintain the hygromycin resistance cassette HhpMX4 (php gene from K. pneumonia 

under the strong TEF promoter from Ashbya gossypii). Concentration 250 µg/ml.

 – Nourseothricin (Werner BioAgents): aminoglycoside antibiotic from Streptomyces 

noursei. It was used in yeast strains to select, follow and maintain the nourseothricin 

resistance NatMX4 cassette (nat gene from S. noursei under the strong TEF promoter 

from Ashbya gossypii). Concentration 100 µg/ml.

 – Cycloheximide (Sigma): is an antibiotic produced by S. griseus. Its main biological 

activity is translation inhibition in eukaryotes resulting in cell growth arrest and cell 

death. Cycloheximide (CHX) is used for selection of CHX-resistant strains of yeast

2.2 Drugs and inhibitors

 – Phenylmethanosulfonyl fluoride (Sigma): inhibitor of serine (trypsin and chymotrypsin) 

and cysteine proteases. Concentration 1 mM.

 – Complete Protease Inhibitor cocktail (Roche): mix of several protease inhibitors 

including serine, cysteine and metalloproteases. Used according to manufacturer’s 

recommendations.

 – Chymostatin (Sigma): inhibitor of many proteases, including chymotrypsins and 

cathepsins. 

 – Diethyl pyrocarbonate (Sigma): RNAses inhibitor.  

 – Phosphatase inhibitor cocktail (Sigma): mix of inhibitors of acid and alkaline 

phosphatase as well as tyrosine protein phosphatases. Contains sodium vanadate, 

sodium molybdate, sodium tartrate, and imidazole.

 – Hydroxyurea (USB): inactivates ribonucleoside reductase by forming a free radical 

nitroxide that binds a tyrosyl free radical in the active site of the enzyme. This blocks 

the synthesis of deoxynucleotides, which inhibits DNA synthesis.

 – Methyl methanesulfonate (Sigma): is an alkylating agent that acts as a mutagen by 
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altering DNA, adding methyl groups to DNA at 7-guanine preferentially, but also 

3-adenine and 3-guanine.

2.3 Enzymes

 – Spermidine (Sigma): polyamine involved in cell metabolism. It binds and precipitates 

DNA and protein-bound DNA. Concentration 0.5 mM.

 – Spermine (Sigma): polyamine involved in cell metabolism present in all eukaryotic 

cells. It binds nucleic acids and contributes to stabilize the helix structure. 

Concentration 0.15 mM.

 – Klenow (Roche): major fragment of the E. coli DNA polymerase I, with 5’-3’ polymerase 

and 3’-5’ exonuclease activities. Used for labelling radioactive probes. 

 – Alkaline phosphatase (Roche): hydrolyzes 5’-monophosphate groups from DNA 

ends generated after an enzymatic cut. Dephosphorylation hampers religation of cut 

vector, favouring insertion of the fragment of interest. 

 – T4 phage DNA ligase (Roche): it catalyzes the formation of phosphodi-ester bonds 

between neighbouring 3’-hydroxyl- and 5’-phosphate ends in dsDNA. 

 – Expand® High-Fidelity DNA polymerase (Roche): mix of Taq (from Thermus aquaticus) 

and Pwo (from Pyrococcus woesei) polymerases. It was used for high fidelity PCRs 

with 5’-A overhang ends.

 – Phusion® High-Fidelity DNA polymerase (Finnzymes): a Pyrococcus-like polymerase 

fused with a processivity-enhancing domain. It was used for high fidelity PCRs with 

blunt ends.

 – Go-Taq® Flexi DNA polymerase (Promega): it was used for DNA probes and checking 

PCRs.

 – iTaq™ Universal SYBR® Green Supermix (Biorad): mix for quantitative PCR 

amplification that contains the ampliTaq Gold® DNA polymerase and the LD DNA 

polymerase, dNTPs with a dUTP/dTTP mixture and the ROX fluorochrome, used as 
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passive reference, in an optimized buffer for the qPCR reaction.

 – Pronase (Sigma): Streptomyces griseus proteases.

 – Proteinase K (Roche): serine protease from Pichia pastoris.

 – Restriction enzymes (New England Biolabs and Takara): sequence-specific DNA 

endonucleases.

 – RNase A (Sigma): endonuclease that degrades single-stranded RNA.

 – RNase H (New England Biolabs): endoribonuclease that specifically hydrolyzes the 

phosphodiester bonds of RNA which is hybridized to DNA. This enzyme does not 

digest single or double-stranded DNA.

 – Zymolyase 20T (USB): mix of enzymes from Arthrobacter luteus used to digest S. 

cerevisiae cell wall. 

 – Lysozyme (Sigma): enzyme from chicken egg white that hydrolyzes bacterial 

peptidoglycans. 

 – Protein A Dynabeads (Life Technologies): magnetic beads with recombinant Protein 

A coupled to its surface. Protein A binds to the Fc region of IgG, IgA and IgM 

immunoglobulins. It was used for immunoprecipitation assays. 

 – Micrococcal nuclease (Thermo Scientific): is an endo-exonuclease that digests single-

stranded and double-stranded DNA and RNA.

2.4 Antibodies

Antibodies used in this thesis are listed in Table M1 and Table M2. 

Table M1. Primary antibodies used in this thesis.

Antibody Source Epytope Reference Use

H3SS10P Rabbit Histone H3 Serine 10 06-570 
(Millipore)

WB (1:2000) BO 
0.01% Tween-20 
ChIP (20 µl) 

Histone H3 Rabbit 

Synthetic peptide conjugated to 
KLH derived from within residues 
1- 100 to the C-terminus of human 
histone H3

ab1791 
(Abcam)

WB (1:2000) 
TBS-T 5% milk  
or BO 0.01% 
Tween-20 ChIP 
(5 µl)
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Antibody Source Epytope Reference Use

Anti-FLAG M2 Mouse N-Asp-Tyr-Lys-Asp-Asp-Asp-Asp-
Lys-C

F3165 (SIG-
MA-Aldrich) ChIP (3 µl)

Rad53 (yC-19) Goat C-terminal 

sc-6749 
(Santa Cruz 
Biotechnol-
ogy) 

WB (1:300) BO 
0.01% Tween -20

Histone H4 Rabbit 

Synthetic peptide conjugated to 
KLH derived from within residues 
1-100 to the C-terminus of human 
histone H4

ab7311 
(Abcam)

WB  (1:500) 
TBS-T 5% milk 
ChIP (5 µl)

Histone H2A 
(phospho S129) Rabbit

Amino acids 100-200 of S. cerevi-
siae Histone H2A, phosphorylated 
at S129

ab15083 
(Abcam)

WB (1:100)  BO 
0.01% Tween-20 

RNA Pol II 
(8WG16) Mouse 

C-terminal heptapeptide repeat 
present on the largest subunit of 
Pol II

MMS-126R 
(Covance) ChIP (20 µl)

β-Actin Mouse 
Synthetic peptide conjugated to 
KLH derived from within residues 
1-100 of human β-actin 

ab8224 WB (1:200) BO 
0.1% Tween-20

S9.6 Mouse DNA-RNA hybrids 
Hybridoma 
cell line HB-
8730

DRIP (10 μg)

Table M2. Secondary antibodies used in this thesis

Specificity Conjugation Reference Use

Rabbit Peroxidase A6154 (Sigma) WB (1:2000)

Mouse Peroxidase A4416 (Sigma) WB (1:2000)

Rabbit IRDye 800CW 925-32211 (LI-COR) WB (1:10000)

Goat IRDye 680RD 925-68070 (LI-COR) WB (1:5000)

Mouse IRDye 680RD 925-68074 (LI-COR) WB (1:10000)

3 Strains

All experiments with E. coli were carried out using the DH5α strain: F- endA1 gyr96 

hsdR17 ∆lacU169(f80lacZ∆M15) recA1 relA1 supE44 thi-1 (Hanahan, 1983).

Table M1 (Continued)
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Histone mutant screening and other experiments were performed using the Non 

Essential Histone H3 & H4 Mutant Collection from Open Biosystems (Dai et al., 2008), with 

exceptions. Other yeast strains used are shown in Table M3 and were obtained from the 

referenced sources. Single, double and triple mutants were obtained by crosses and tetrad 

dissection (SINGER MSM 200 micromanipulator) or by PCR-mediated gene replacement 

using the short flanking homology (SFH) method (Wach et al., 1994). 

Table M3. Yeast strains used in t his thesis  
Strains Genotype Source

BY4741 Mat a his3∆1 leu2∆0 met15∆ ura3∆0 Euroscarf

H3WT-B MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[H3]-URA3 bar1ΔHyg This study

K9-23A-B
MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 
can1::MFA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[K9-23A]-URA3 
bar1ΔHyg

This study

∆1-28-B MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[∆1-28]-URA3 bar1ΔHyg This study

H4WT-B MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[H4]-URA3 bar1ΔHyg This study

K31Q-B MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[K31Q]-URA3 bar1ΔHyg This study

H3WT-W
MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[H3]-URA3 GAL1pr::YL-
R454w (TRP1)

This study

K9-23A-W
MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[K9-23A]-URA3 GAL-
1pr::YLR454w (TRP1)

This study

∆1-28-W
MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[∆1-28]-URA3 GAL-
1pr::YLR454w (TRP1)

This study

H4WT-W
MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[H4]-URA3 GAL1pr::YL-
R454w (TRP1)

This study

K31Q-W
MAT a his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[K31Q]-URA3 GAL-
1pr::YLR454w (TRP1)

This study

W303-1A Mat a ade2-1 can1-100 his3-11,15 leu2-3,112 rad5-535 trp1-1 ura3-1 R. Rothstein
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Strains Genotype Source

WMk-1A W303-1A mft1∆::KanMX4 (Chávez et al., 
2000)

BY4742 Mat α his3∆1 leu2∆0 lys2∆0 ura3∆0 Euroscarf

YML062C BY4741 mft1∆::KanMX4 Euroscarf

YCL061C BY4741 mrc1∆::KanMX4 Euroscarf

WP30-8D Mat α pol30-52 trp ade his leu ura A. Aguilera

YDR138W BY4741 hpr1Δ::KanMX4 Euroscarf

YOL006C BY4741 top1Δ::KanMX Euroscarf

YML032C BY4741 rad52Δ::KanMX4 Euroscarf

YDR007W BY4741 trp1Δ::KanMX4 Euroscarf

YIL015W BY4741 bar1Δ::KanMX4 Euroscarf

344115B leu+ Mat α his3-513::TRP1::his3-537 ura3-52 trp1 A. Aguilera

SEN1-R Mat a sen1-1 leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15  
bar1∆ M. SanMartin

AWI2C Mat α hpr1Δ::TRP1  ade2 leu2 ura3 trp1 A. Aguilera

YHPW-6D MAT a his3 leu2 trp1 ura3 met15Δ0 hht1-hhf1::NatMX4 bar1ΔHyg This study

YHPH-6B MAT a his3 leu2 trp1ade2 ura3 lys∆0 hht1-hhf1::NatMX4 bar1ΔHyg  
hpr1Δ::TRP1 This study

YHPK9-15D MAT a his3 leu2 trp1 ura3 ade2 met15Δ0 lys∆0  hht1-hhf1::NatMX4 
bar1ΔHyg hht2-hhf2::[K9-23A]-URA3 This study

YHPK9-15B MAT a his3 leu2 trp1 ura3 lys∆0  hht1-hhf1::NatMX4 bar1ΔHyg hht2-
hhf2::[K9-23A]-URA3 hpr1Δ::TRP1 This study

YHP28-2D MAT a his3 leu2 trp1 ura3 ade2 hht1-hhf1::NatMX4 hht2-hhf2::[∆1-
28]-URA3 This study

YHP28-2C MAT a his3 leu2 trp1 ura3 ade2 hht1-hhf1::NatMX4 hht2-hhf2::[∆1-
28]-URA3 hpr1Δ::TRP1 This study

YHPK31-16A MAT a his3 leu2 trp1 ura3 ade2 hht1-hhf1::NatMX4 bar1ΔHyg  hht2-
hhf2::[K31Q]-URA3 This study

YHPK31-2B MAT a his3 leu2 trp1 ura3 ade2 met15Δ0 hht1-hhf1::NatMX4 hht2-
hhf2::[K31Q]-URA3 hpr1Δ::TRP1 This study

YSNS-11C MAT a his3  leu2 lys2 trp1 ura3 met15 can1::MFA1pr-HIS3 hht1-hh-
f1::NatMX4 bar1ΔHyg This study

YSNK9-14C MAT a his3  leu2 lys2 trp1 ura3 met15 can1::MFA1pr-HIS3 hht1-hh-
f1::NatMX4 hht2-hhf2::[K9-23A]-URA3 sen1-1 bar1Δ This study

Table M3 (Continued)
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Strains Genotype Source

YSNK31-1A MAT a his3  leu2 lys2 trp1 ura3 met15 can1::MFA1pr-HIS3 hht1-hh-
f1::NatMX4 hht2-hhf2::[K31Q]-URA3 sen1-1 bar1ΔHyg This study

YHTH3-14B MAT a  leu2Δ0 lys2Δ0 ura3Δ0 hht1-hhf1::NatMX4 his3-
513::TRP1::his3-537 This study

YHTK9-3B MAT a  leu2Δ0 lys2Δ0 ura3Δ0 hht1-hhf1::NatMX4 hht2-hhf2::[K9-
23A]-URA3 his3-513::TRP1::his3-537 This study

YHT28-16D MAT a  leu2Δ0 lys2Δ0 ura3Δ0 hht1-hhf1::NatMX4 hht2-hhf2::[∆1-
28]-URA3 his3-513::TRP1::his3-537 This study

YHTH4-14C MAT a  leu2Δ0 lys2Δ0 ura3Δ0 hht1-hhf1::NatMX4 his3-
513::TRP1::his3-537 This study

YHTK31-17A MAT a  leu2Δ0 lys2Δ0 ura3Δ0 hht1-hhf1::NatMX4 hht2-hh-
f2::[K31Q]-URA3 his3-513::TRP1::his3-537 This study

YBYMR-1D Mat α his3∆1 leu2∆0 ura3∆0 met15∆ mrc1∆::KanMX4 This study

YBYTP-3B Mat α his3∆1 leu2∆0 ura3∆0 met15∆ lys2∆0 top1Δ::KanMX This study

YRD28-3C MAT α his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 
can1::MFA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[∆1-28]-URA3 This study

YRDK9-
13C

MAT α his3Δ200 leu2Δ0 lys2Δ0 ura3Δ0 met15Δ0 hht1-hhf1::Nat-
MX4 hht2-hhf2::[K9-23A]-URA3 This study

YRDK31-3A MAT α his3Δ200 leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 hht1-hhf1::Nat-
MX4 hht2-hhf2::[K31Q]-URA3 This study

YML032C BY4741 rad52Δ::KanMX4 Euroscarf

YTPK9-18D MAT α his3Δ leu2Δ0 lys2Δ0 ura3Δ0 met15Δ0  hht1-hhf1::NatMX4 
hht2-hhf2::[K9-23A]-URA3 top1∆Kan This study

YTP28-15D MAT α his3Δ leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 hht2-hhf2::[∆1-28]-URA3 top1∆Kan This study

YTP31-1D MAT α his3Δ leu2Δ0 lys2Δ0 ura3Δ0 met15Δ0 can1::MFA1pr-HIS3 
hht1-hhf1::NatMX4 hht2-hhf2::[K31Q]-URA3 top1∆Kan This study

YTP31-5B MAT α his3Δ leu2Δ0 lys2Δ0 ura3Δ0 met15Δ0 trp1Δ63 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 top1∆Kan This study

YTP28-4B MAT α his3Δ leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0  hht1-hh-
f1::NatMX4 This study

YRDK31-
17C 

MAT a his3Δ leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 hht1-hhf1::NatMX4 
hht2-hhf2::[K31Q]-URA3 This study

YRDK31-
4A

MAT a his3Δ leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 hht1-hh-
f1::NatMX4 hht2-hhf2::[K31Q]-URA3 rad52∆Kan This study

YMRK9-1C MAT a his3Δ leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 hht1-hh-
f1::NatMX4 hht2-hhf2::[K9-23A]-URA3 This study

YRD28-4D MAT a his3Δ leu2Δ0 lys2Δ0  ura3Δ0  hht1-hhf1::NatMX4 hht2-hh-
f2::[∆1-28]-URA3 This study

Table M3 (Continued)
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YRDK9-5C MAT a his3Δ leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 can1::M-
FA1pr-HIS3 hht1-hhf1::NatMX4 rad52∆Kan This study

YRDK9-3D MAT a his3Δ leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 met15Δ0 hht1-hh-
f1::NatMX4 hht2-hhf2::[K9-23A]-URA3 rad52∆Kan This study

YRD28-13D MAT a his3Δ leu2Δ0 lys2Δ0 trp1Δ63 ura3Δ0 hht1-hhf1::NatMX4 
hht2-hhf2::[∆1-28]-URA3 rad52∆Rad52 This study

YPLK31-
18C

MAT a his ade leu2 trp ura3 met15Δ0 can1::MFA1pr-HIS3 hht1-hh-
f1::NatMX4 hht2-hhf2::[K31Q]-URA3 pol30-52 This study

YPL28-9C MAT a his leu2 trp ura3 met15Δ0 hht1-hhf1::NatMX4 hht2-hh-
f2::[∆1-28]-URA3 pol30-52 This study

YPLK9-14D MAT a his leu2 trp ura3 lys2Δ0 hht1-hhf1::NatMX4 hht2-hhf2::[K9-
23A]-URA3 pol30-52 This study

4 Plasmids

Plasmids used in this thesis are listed in the Table M4.

Table M4. Plasmids used in this thesis.

Name Description Source

pLZGAID
YCp pSCH204 containing into the NaeI site the 
PvuII-PvuII fragment from p414GALAID (GAL::AID 
fusion)

This study

pRS317GALRNH1
YCp pRS317 containing into the SalI-SpeI site 
the SalI-SpeI fragment from pRS315GALRNH1 
(GAL::RNH1 fusion)

This study

pRS315GALRNH1 YCp pRS315 containing the RNH1 gene under the 
GAL1 promoter

(Huertas & Aguilera, 
2003)

pRS317 YCp vector based on the LYS2 marker (Sikorski & Boeke, 
1991)

pSCH204

YCp pRS314-LB containing the L-lacZ recombination 
system under the LEU2 promoter  with the 3Kb-frag-
ment BamHI from lacZ inserted between the two leu2 
direct repeats

(Chávez & A Aguil-
era, 1997)

p414GALAID YCp pRS414 containing the GAL1p::AID fusion (Gómez-González & 
Aguilera, 2007)

pRS414 YCp vector based on the TRP1 marker (Sikorski & Hieter, 
1989)

Table M3 (Continued)
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pRS414GAL YCp pRS414 with the GAL1 promoter and the 
CYC1-terminator

(Mumberg et al., 
1994)

pRS413GAL YCp pRS413 with the GAL1 promoter and the+ 
CYC1-terminator

(Mumberg et al., 
1994)

pRS413GAL-AID YCp pRS413 containing the GAL1p::AID fusion (Gómez-González & 
Aguilera, 2007)

pWJ1344 YCp containing the RAD52::YFP fusion (Lisby et al., 2001a)

pLY YCp pRS313-L with the plasmid YIp5 integrated in 
the BglII site inserted between the direct repeats

(Prado & Aguilera, 
1995a)

pRSGALlacZ YCp pRS416 with the lacZ gene under GAL1 promot-
er

(Mumberg et al., 
1994)

pRS-
414GALAID-FLAG

YCp p414GALAID with the FLAG epitope adding in 
AID C-terminus protein M. García-Rubio

pRS315 YCp vector based on the LEU2 marker (Sikorski & Hieter, 
1989)

pRS315GALAID YCp pRS315 containing the GAL1p::AID fusion This study

YIplac204-GAL1- 
YLR454W

YIplac204 containing the GAL1 promoter flanked 
downstream by the first 300 bp of the YLR454w 
coding region.

(Sträßer et al., 
2002)

  

The pLZGAID plasmid was generated by cloning the PvuII-PvuII fragment from 

p414GAL:AID (Gómez-González & Aguilera, 2007), containing the GAL::AID fusion into 

NaeI digested pSCh204 (Chávez & A Aguilera, 1997). The pRS317GAL:RNH1 plasmid was 

generated by cloning the SalI-SpeI fragment from pRS315GAL:RNH1 (Huertas & Aguilera, 

2003), containing the GAL:RNH1 fusion into SalI-SpeI digested pRS317 (Sikorski & Boeke, 

1991). The pRS315GALAID plasmid was generated by cloning the PvuII-PvuII fragment 

from p414GALAID (Gómez-González & Aguilera, 2007) containing the GAL::AID fusion 

into PvuII-PvuII digested pRS315 (Sikorski & Hieter, 1989).

Table M4 (Continued)
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5 Yeast methodology

5.1 Yeast transformation

Yeast transformation was performed as previously described (Gietz et al., 1995) using 

the lithium acetate method.

5.2 Yeast transformation in 96-plates

Yeast transformation was performed as previously described (Gietz et al., 1995) using 

the lithium acetate method, but adapted to 96-well plates. Cells were inoculated in 200 µl 2X 

YPAD in a 96-well plate with flat bottom using a 96-pin replicator and grown for 2 days at 

30ºC shaking. Cells were diluted into fresh 2X YPAD media in a 96-well plate with round 

bottom. Cells were incubated 3-4 h at 30ºC with shaking, centrifuged 5 min at 2000 rpm 

and washed with 150 µl 0.1 M LiAc/10 mM TE. Cells were resuspended in 100 µl prewarmed 

transformation mix (500 ng plasmid DNA, 90 µl 50% PEG, 100 mM LiAc, 1x TE, 2 µl salmon 

sperm DNA 6 mg/ml), treated 30 min at 30ºC and 20 min at 43ºC. Cells were washed with 

sterile water and resuspended in 150 µl SC-trp medium. After 2 days at 30ºC, 7 µl culture was 

transferred from the plate into solid selective media. 

5.3 Genotoxic damage sensitivity assay

Mid-log cultures were grown in YPAD or SC medium. Drops of 3 or 7 µl of 10-fold 

dilutions in sterile water were plated on solid YPAD or SC medium, respectively, containing 

the drugs at the concentrations indicated in the figures. For UV irradiation, drops were 

dry before we irradiated them. Plates were incubated during 2-6 days (in the dark for UV-

irradiated plates) at the indicated temperature. 
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6 Recombination assays

Recombination frequencies were calculated as the median value of six independent 

colonies. The average of three independent transformants is plotted. Recombinants were 

obtained by platting appropriate dilutions in applicable selective medium. To calculate total 

number of cells, they were plated in the same media as the original transformation used. All 

plates were grown for 3-5 days at 30ºC, except sen1-1 cells that were performed at 26ºC. 

6.1 Plasmid LY system

This system is based on leu2∆3’ and leu2∆5’ truncations of the LEU2 gene that share 

600 bp of homology. The LY system has the complete BamHI-digested YIp5 vector inserted. 

Recombinants are selected in plates without leucine (Prado & Aguilera, 1995b) (Figure M1A). 

LEU2p CYCt

LEU2leu2Δ3’ leu2Δ5’

LEU2p CYCt

Recombination

LEU2p CYCt

LEU2

lacZ

leu2Δ3’ leu2Δ5’

LEU2p CYCt

Recombination

A

CEN
GALp AID CYCt

LEU2p CYCt

LEU2
CEN

GALp AID CYCt

leu2Δ3’ leu2Δ5’

LEU2p CYCtlacZ

Recombination

C

B

Figure M1. Recombination systems in plasmid.
Schematic representations of the LY (A), L-LacZ (B) and pLZGAID (C) recombination systems in 
plasmid with the outcome of the recombination event.



Ph.D. Thesis - Desiré García Pichardo

142

6.2 Plasmid L-lacZ system

Starting with an LY backbone, the sequence of the 3 kb long lacZ gene from E. coli 

was cloned between the direct repeats, resulting in the L-lacZ system. Recombinants are 

selected in plates without leucine (Chávez & Andrés Aguilera, 1997) (Figure M1B). 

6.3 Plasmid pLZGAID

Plasmid with the direct-repeat recombination system L-lacZ (Chávez & A Aguilera, 

1997) combined the AID gene under the GAL1p inducible promoter. Recombinants are 

selected in plates without leucine (Figure M1C). 

6.4 Chromosomal his3-513::TRP1::his3-537 system

This system is based in a duplication at the HIS3 locus on the right arm of chromosome 

XV of a 6.1-kb EcoRI-SalI DNA fragment containing the HIS3 gene. One copy of this sequence 

carries the allele his3-513, generated by mutation of the KpnI at the 3’ site of HIS3 coding 

region, and the other copy carries the allele his3-537 generated by mutation of a HindIII site 

his3-513 his3-537
pBR322

ARS1TRP1

HIS3 his3-537
pBR322

ARS1TRP1

HIS3

his3-513 HIS3
pBR322

ARS1TRP1

Figure M2. Recombination chromosomal system.
Schematic representations of the his3-513::TRP1::his3-537 system with the different possible out-
comes.



143

Materials and Methods

distal to the KpnI site. Between the duplications, it is located the pBR322 plasmid containing 

yeast ARS1-TRP1 sequence at the unique EcoRI site. This system allows to measure gene 

conversion and recombination between the repeats. Recombinants are selected in plates 

without histidine (Aguilera & Klein, 1988) (Figure M2). 

7 Detection of Rad52-YFP foci

Spontaneous Rad52-YFP foci from mid-log growing cells carrying plasmid pWJ1344 

were visualized and counted by fluorescence microscopy in a Nikon Eclipse NI-E microscope, 

as previously described (Lisby et al., 2001b). More than 100 S/G2 cells where inspected for 

each experimental replica.

8 Plasmid loss assay

Three independent transformants carrying the pRS414 (TRP1) plasmid were striked 

out in SC-trp. Then six colonies were grown overnight at 30ºC in 5 ml of non-selective rich 

medium until the same optical density, as previously described (Chávez & A Aguilera, 1997). 

Total and plasmid-maintaining cells were determined by plating the appropriate dilutions 

on YPAD and SC-trp plates, respectively. The data obtained represent the mean values of six 

independent colonies from three independent transformants. 

9 Mutation analysis 

Cells were grown in SC or SGAL medium plates for 3 or 5 days. Colonies of 

independent transformants were grown overnight in SC or SGAL medium, diluted and 

plated in SC with or without 3 mg/L cycloheximide. The data obtained represent the mean 

values of six independent colonies from three independent transformants. 
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10 Cell cycle synchronization and FACS analysis

For cell cycle synchronization, overnight cultures were diluted to an OD600nm of 0.2 and 

grown until mid-log at 30ºC in rich (YPAD) or synthetic medium. Cells were synchronized 

in G1 adding 0.125 μg/ml of α-factor (Biomedal) for bar1∆ mutants and 3 μg/ml for BAR1. 

After 2.5 h, cells were released from G1 in the present or not of 20 mM HU. Samples were 

taken at the indicated times.

For FACS analysis, cells were processed as previously described (Moriel-Carretero 

et al., 2011). Briefly, 1mL of the culture was centrifuged and washed with 1 ml 1x PBS, 

resuspended in 1 ml 70% ethanol and stored at 4ºC. Cells were washed with 1 ml 1x PBS, 

resuspended in 100 µl 1x PBS-RNase A 1 mg/ml and incubated overnight at 37ºC. Next day 

they were washed again with 1x PBS and resuspended in 1 ml of 5 µg/mL Propidium Iodide 

in 1x PBS, incubated in the dark for 30 min, sonicated 5 s at 10% amplitude and scored in a 

FACScalibur (Becton Dickinson, CA).

11 Polymerase chain reaction (PCR)

11.1 Non-quantitative PCR

DNA amplification with temperature-stable polymerases for probe generation, strain 

verification or cloning were performed following standard protocols with the polymerases 

described in Materials and Methods 4.2.3. 

11.2 Real-time quantitative PCR (qPCR)

This technique allows the measurement of the DNA quantity present in a sample 

during the reaction thanks to the fluorescence emitted by the SYBR® Green reactive. For this 
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thesis, real-time qPCRs were performed using the iTaq™ Universal SYBR® Green Supermix 

(Biorad). Reactions were set with 6 µl H2O, 2 µl primer mix (0.1 mM each), 2 µl template 

and 10 µl SYBR®. Runs were always performed with the following program: 1 cycle (10 min 

95ºC), 40 cycles (15 s 95ºC and 1 min 65ºC) with a final dissociation stage (15 s 95ºC, 1 

min 65ºC, 15 s 95ºC and 15 s 60ºC). Samples were run in 7500 Fast Real-Time PCR system 

(Applied Biosystem) Results were analyzed with 7500 System Software V2.0.6. A calibration 

curve with five 10-fold serial dilutions of a standard DNA sample was calculated for absolute 

quantification. Real-time qPCR primers were designed using Primer Express 3.0 Software 

(Applied Biosystems). Primers used in this thesis, for non-quantitative and quantitative PCR, 

are described in Table M5. 

12 Chromatin immunoprecipitation (ChIP)

12.1 Chromatin extraction

 Asynchronous or G1-synchronized mid-log cultures grown in YPAD or synthetic 

medium at 30ºC were used. Sample were processed as described (Hecht et al., 1999) with 

some modifications. 50 ml of the cultures were cross-linked in 1% formaldehyde shaking 

at low speed for 15 min at RT. Reaction was stopped adding glycine to a final concentration 

of 125 mM for 5 min, washed twice with cold PBS and stored at -80ºC. For cell extract 

preparation, pellets were resuspended in 500 µl of lysis buffer (50 mM HEPES-KOH pH 7.5, 

150 mM NaCl, 1 mM EDTA pH 8, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS) 

supplemented with protease inhibitors (1x Complete Protease Inhibitor Cocktail (Roche) and 

1 mM PMSF). Next, 1 volume of glass beads were added in 2 ml tubes and cells were broken 

in an orbital shaker (Vibrax VXR basic, IKA) for 45 min. Samples were separated from the 

beads and centrifuged at 4000 rpm for 15 min to eliminate soluble proteins. The precipitate 

was resuspended in 1ml of lysis buffer supplemented with protease inhibitors and sonicated 

using Bioruptor (Diagenode) alternating 1 min high intensity and 20 s rest pulses for 15 min. 
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Samples were centrifuged for 15 min at 13000 rpm to eliminate cell debris. 30 µl were used as 

a control of total DNA (Input) and 300 µl was processed for immunoprecipitation. 

12.2 Immunoprecipitation

 The immunoprecipitation was performed overnight at 4ºC using Dynabeads Protein 

A (Life Technologies) previously incubated with the antibody for 4 h at 4ºC rotating at low 

speed. Samples were washed with 1 ml of lysis buffer with 275 mM NaCl, 1 ml of lysis buffer 

with 500 mM NaCl, 1 ml of buffer III (10 mM Tris-HCl pH 8, 1 mM EDTA pH 8, 250 mM 

LiCl, 0.5% IGEPAL, 0.5% SDS, 0.5% sodium deoxycholate) and 1 ml TE (10 mM Tris-HCl, 

1 mM EDTA pH8). Proteins were eluted in 250 µl elution buffer (50 mM Tris-HCl pH 7.4, 

10 mM EDTA, 1% SDS) at 65ºC for 10 min. Samples were treated with 6 µl of 50 mg/ml 

pronase for 1 h at 42ºC to remove proteins and decrosslinked for 5 h at 65ºC. Quiagen DNA 

purification kit was used to clean DNA that was eluted in 100 µl of bidistilled water. 

13 DNA:RNA Hybrid Immunoprecipitation (DRIP)

13.1 DNA extraction

For nucleic acid extraction, asynchronous, G1 or S synchronized mid-log cultures 

growing in YPAD were collected and washed with chilled water and resuspended in 1.4 ml 

spheroplasting buffer (1 M sorbitol, 10 mM EDTA pH 8, 0.1% β-mercaptoethanol, 2 mg/

ml Zymoliase 20T) and incubated at 30ºC for 30 min. The pellets were rinsed with water 

and homogeneously resuspended in 1.65 ml of Buffer G2 (800 mM Guanidine HCl, 30 mM 

Tris-Cl pH 8, 30 mM EDTA pH 8, 5% Tween-20, 0.5% triton X-100) before adding 10 µl 

10 mg/ml RNase A and incubated for 30 min at 37ºC. Next, samples were treated with 75 

µl of 20 mg/ml proteinase K (Roche) 1 h with gentle shacking. DNA was extracted gently 

with chloroform:isoamyl alcohol 24:1. Precipitated DNA was spooled on a glass rod, washed 
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2 times with 70% EtOH, resuspended gently in TE and digested overnight with 50 U of 

HindIII, EcoRI, BsrGI, XbaI and SspI, 2 mM spermidine and BSA. For the negative control, 

half of the DNA was treated with 3 μl RNase H (New England BioLabs) overnight 37ºC.

13.2 Immunoprecipitation

DRIP was performed mainly as described (Ginno et al., 2012) with few differences. 

Both samples were bound to 10 μl of S9.6 antibody (1 mg/ml) in 500 μl binding buffer (10 mM 

NaPO4 pH 7.0, 140 mM NaCl, 0.05% triton X-100) in TE, overnight at 4ºC. Hybrid-antibody 

complexes were immunoprecipitated using Dynabeads Protein A (Invitrogen) during 2 h at 

4ºC and washed 3 times with 1x binding buffer. DNA was elute in 100 μl elution buffer (50 

mM Tris pH 8.0, 10 mM EDTA, 0.5% SDS) treated 45 min with 7 μl proteinase K at 55ºC and 

purified with Quiagen DNA purification kit (QUIAGEN).

14 ChIP and DRIP data quantification and normalization

Sample quantifications were performed by quantitative PCR (qPCR) as described 

in Material and Methods Section 11.2. Means and SEMs were calculated from at least 3 

independent experiments. Sample quantifications by qPCR were performed in triplicate. 

 – ChIP experiments: 2 µl of 1:100 and 1:10 dilutions of the Input and the IP respectively 

were typically used. IP/INP ratios in the different regions were calculated. In some 

experiments the no antibody control (NO) was included as the background control. 

In this case the NO signal was subtracted to IP before dividing it by INP.

 – DRIP experiments: 2 µl of a 1:25 dilution for Input or the undiluted sample for IP were 

used for qPCR. The relative abundance of DNA:RNA hybrid immunoprecipitated in 

each region was normalized to the Input signal obtained.  
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15 Pulse-Field gel electrophoresis (PFGE)

For DNA extraction, mid-log cultures grown in YPAD were centrifuged and washed 

with 5 ml EDTA 50 mM pH 8. Each sample was resuspended in 180 µl CPES (40 mM citric 

acid pH 6, 120 mM sodium phosphate pH 6, 20 mM EDTA pH 8, 1.2 M sorbitol, 1 mg/

ml zymoliase 20T), and mixed with 300 µl 2% low-melting-point agarose dissolved in CPE 

(40 mM citric acid pH 6, 120 mM sodium phosphate pH6, 20 mM EDTA pH 8). This mix 

was poured into molds and allowed to solidify for 10 min at 4ºC. Plugs were subsequently 

incubated as follows: overnight in 5 ml CPE with 1% v/v β-mercaptoethanol at 30ºC, then 

overnight in 3 ml buffer L (0.1 M EDTA pH 8, 0.01 M Tris-Cl pH 7.6, 0.02 M NaCl, 0.5 mg/

ml proteinase K, 1% w/v sarkosyl) at 50ºC, and finally washed twice 1 h at 50ºC in 10 ml TE 

pH 7.6 containing 40 µg/ml PMSF, and 1h at RT in 10 ml TE pH 7.6. 

Electrophoresis was performed at 12ºC in a Bio-Rad CHEF Mapper, using a voltage 

gradient of 5.5 V/cm, switch times from 5 to 30 s, switch angle of 115º, in 1% agarose gel in 

0.5X TBE for 30 h, as previously described (Cha & Kleckner, 2002). Gels were treated and 

transferred to a Hybond XL membrane (GE Healthcare) by standard procedures. 

 

16 Electrophoresis of DNA topoisomers

Cells were culture in SG/L medium and transferred for 1 h to glucose or galactose 

2%-containing medium for analysis of transcription. 

For one-dimensional electrophoresis, DNA isolation was extracted essentially as 

described (González-Barrera et al., 2002) with few differences. DNA was extracted gently 

3 times with phenol:chloroform:isoamyl alcohol 25:24:1, 1 time with chloroform:isoamyl 

alcohol 24:1 and was precipitated with isopropanol. Pellet was treated with 0.5 µl 10 mg/ml 

RNase A and incubated for 30 min at 37ºC. Finally, DNA was cleaned with chloroform:isoamyl 
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alcohol 24:1, precipitated with isopropanol, washed with 70% ethanol and resuspended in 

TE. Electrophoresis were carried out in a 0.7% agarose gel at room temperature, loading 30 

µg of DNA, in TPE buffer (50 mM tris-phosphate pH 7.2, 1 mM EDTA, 25 mM phosphoric 

acid) plus 4 µg/ml chloroquine at 40 V for 48 h. DNA was blot-transferred to a membrane 

Hybond XL (GE Healthcare) and probed with a 32P-labeled DNA. 

For two-dimensional electrophoresis, DNA was isolated as described previously  

(Roca, 2009). 50 ml cell culture were centrifuged, fixed adding 50 ml cold toluene solution (20 

mM Tris-HCl pH 8, 95% ethanol, 3% toluene, 10 mM EDTA, chilled to -20ºC) and wash with 

TE. Pellet was resuspended in 1 ml spheroplasting solution (1 M sorbitol, 100 mM Tris-HCl 

pH 8.8, 20 mM EDTA, 0.1% β-mercaptoethanol, 1 mg/ml Zymoliase 20T) and incubated at 

37ºC for 15 min. The spheroplasted cells were centrifuged at 2000g for 5 min and resuspended 

in 300 µl TE. Cells were lysed adding 30 µl of 10% SDS mixing the suspension, incubating 5 

min at room temperature, and adding 200 µl of 5 M potassium acetate to the lysate. DNA was 

precipitated adding 1.2 ml ethanol and incubating at -20ºC for 10 min. After centrifuging at 

13000 rpm 10  min, the pellet was dissolved in 100 µl TE, treated with 10 µl 10 mg/ml RNase 

A for 30 min at 37ºC and precipitated with 2.5 volumes of ethanol. The pellet was dissolved in 

25 µl TE. Electrophoresis was carried out in a 0.6% agarose gel at RT, loading 40 µg of DNA, 

in TBE (0.09 M Tris-borate, 20 mM EDTA) buffer plus 1 µg/ml chloroquine at 45 V for 22h 

for the first dimension (top to bottom), and TBE buffer plus 5 µg/ml chloroquine at 40 V for 

14 h (left to right) for the second dimension. After the first dimension, the gel was soaked in 

the second electrophoresis buffer for 1h shaking. DNA was blot-transferred to a membrane 

Hybond XL (GE Healthcare) and probed with a 32P-labeled DNA. 

17 MNase assay

MNase assay was performed mainly as described (Nag et al., 2008) with few differences. 

Mid-log cultures grown in 100 ml YPAD were centrifuged and washed with 20 ml 1 M 
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sorbitol. Samples was washed in 1 ml 1 M sorbitol and chaged to microcentrifuge tubes. Each 

sample was resuspended in 1 ml YLE buffer (10 mg/ml zymoliase 20T in 1 M sorbitol, 5 mM 

β-mercaptoethanol) and incubated 20 min at 30ºC. The spheroplasted cells were centrifuged 

at 4000 g for 3 min, washed two times with wash buffer (1 M sorbitol, 1 mM PMSF, 2 mM 

β-mercaptoethanol),  resuspended in 1.5 ml digestion buffer (1 M sorbitol,  50 mM NaCl, 

10 mM Tris-HCl pH 7.5, 5 mM MgCl2, 1 mM CaCl2, 1 mM β-mercaptoethanol, 0.5 mM 

spermidine, 0.075% v/v NP-40), divided into 200 µl and digested with varying concentrations 

of MNase (10 U/µl) for 10 min at 37ºC. The reaction was stopped adding 20 µl stop solution 

(5% SDS, 250 mM EDTA), mixing by inversion. DNA was treated with 10 µL RNase A 10 mg/

ml for 30 min at 37ºC and with 20 µl proteinase K 20 mg/ml for 1 h at 55ºC. Samples were 

extracted once with phenol:chloroform:isoamyl, 25:24:1, once with chloroform:isoamyl 24:1 

and isopropanol precipitated. DNA was washed with 70% ethanol and resuspended in 20 µl 

TE. Electrophoresis was performed on 1.2% agarose gel with ethidium bromide and the DNA 

signal was read using a FLA-5100 Imager Fluorescence Analyzer (Fujifilm). 

18 Protein analysis 

18.1 Protein extraction TCA

For protein extraction, 10 ml of mid-log yeast culture were centrifuged and kept in 

ice. Pellets were resuspended in 200 µl of cold 10% TCA and 200 µl of glass beads, and cells 

were broken by vortexing 7 times 20 seg each time at 4ºC. Supernatant was recovered and 

beads were washed twice with 200 µl of cold 10% TCA. Samples were centrifuged 10 min at 

3000 rpm and supernatant discarded. The remaining pellet was resuspended using 100 µl 

of 2x Loading Buffer (62.5 mM Tris-HCl pH 6.8, 25% glycerol, 2% SDS, 0.01% water-diluted 

Bromophenol Blue, 5% β-mercaptoethanol) supplemented with protease inhibitors (1 mM 

PMSF, 66 µg/ml chymostatin), 50 µl of water and 50 µl of 1M Tris (not-adjusted pH). Prior to 

gel loading samples were boiled for 5 min and centrifuged 10 min at 3000 rpm at RT.
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18.2 Protein extraction TCA for RAD53 detection 

For protein extraction from mid-log yeast culture (107 cell/ml) 10 mL of each strain 

culture were recovered and kept in ice. Proteins were extracted from pellets by adding 200 µl 

of cold 20% TCA and 200 µl of glass beads, then vortexing 5 min, 3 min on ice and another 

3 min on the vortex at 4ºC. Supernatant was recovered from beads to a fresh tube, and beads 

were washed with 600 µl 5% TCA, pipetting liquid off, and recovered to the new tube (aprox. 

results in 600 µl in 10% TCA). Samples were centrifuged 5 min at 9000 rpm and supernatant 

discarded. The remaining pellet was resuspended using 100 µl of freshly prepared Laemmli 

buffer 1x (from 3x Laemmli buffer [150 mM Tris, 6% SDS, 30% glycerol, bromophenol Blue], 

fresh β-mercaptoethanol to 15% and water to adjust) and 50 µl 1M Tris Base pH 8. Prior to gel 

loading samples were boiled for 5 min and centrifuged 5 min at 13000 rpm at 4ºC.

18.3 SDS-PAGE

Proteins were separated in 29:1 acrylamide:bis-acrylamide gels with concentrations 

appropriate to the molecular size of the proteins of interest. SDS-PAGE was performed 

according to previously described method (Laemmli, 1970). For Rad53 detection a 4-20% 

gradient SDS-PAGE CriterionTM TGX TM Precast Gels (BioRad) were used. Electrophoreses 

were performed in a Mini-PROTEAN 3 Cell or in a Criterion Cell (BioRad) with Running 

Buffer (25 mM Tris base pH 8.3, 194 mM glycine, 0.1% SDS buffer) at 100 V. Page RulerTM 

(Fermentas) was used as a protein marker.

18.4 Western Blot Analysis

For Western blot, proteins were wet-transferred using Trans-Blot system (Biorad) for 

2 h at 400 mA in Transfer Buffer (6 g/l Tris base, 28.8 g/l glycine and 0.5% SDS plus 20% 

methanol).  
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 – Non-fluorescent WB: Proteins were transferred to a nitrocellulose membrane 

(Hybond-ECL, GE Healthcare). Membranes were blocked with 1x TBS + 0.01% 

Tween 20 5% milk for at least 3 h. Primary antibodies were incubated during 2 to 

3 hours at RT as indicated in Table M1. After 3 washes with 1x TBS + 0.01% Tween 

20 of 10 min each, membranes were incubated with the corresponding secondary 

antibodies conjugated with the horseradish peroxidase for 2h and washed again. 

Finally, SuperSignalR West Pico (Pierce) or Immobilon Western Chemiluminescent 

HRP Substrate (Millipore) was used for chemiluminescence detection depending on 

the expected strength of the signal.

 – Fluorescent WB: A PVDF membrane with low fluorescence background (Inmobilon-

FL, Millipore) was used. This membrane was first activated in methanol for 30 s and 

equilibrated in transfer buffer before the transference. Commercial Odyssey Blocking 

Buffer (LI-COR Biosciences) was used to block the membrane for at least 3 h at RT. 

Primary antibody was prepared to the appropriate dilution (see Table M1) in blocking 

buffer + 0.01% Tween 20 and incubated for 3 hours. Three washes of 10 min were 

performed with 1x TBS + 0.01% Tween 20 followed by incubation of 35 min with 

IRDye secondary antibodies. Finally, membranes where washed again 3 times, rinsed 

in 1x TBS and immediately scanned or left drying. Image acquisition was performed 

in an Odyssey CLx Imager (LI-COR Biosciences).

19 RNA analysis: Northern Blot

Yeast cell were grown in SG/L medium and transferred to galactose 2%-containing 

medium for GAL1 gene activation.  RNA was extracted from mid-log cultures using acid 

phenol (Köhrer & Domdey, 1991) and northern blot was performed following standard 

procedures. The DNA probes used in the hybridization experiments are listed in Table M5. 
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20 DNA analysis: Southern blot

Yeast genomic DNA was digested, separated in an agarose gel and transferred to 

Hybond-N or –XL nitrocellulose membranes (GE Healthcare), which were hybridized with 

32P-labelled DNA probes. The DNA probes used in the hybridization experiments are listed 

in Table M5.

21 Statistical analyses 

Statistical tests (Student’s t-test and Mann-Whitney U-test) were calculated using 

GraphPad Prism software. In general, a p-value<0.05 was considered as statistically significant.

22 Primers and Probes

Primers used in this thesis, both for non-quantitative and quantitative PRC, are 

described in Table M5.

Table M5. DNA primers used in this study. 

Non-quantitative PCR primers

Primers Sequence 5’ to 3’ Use

GAL1 Reg1 Fwd TGCACCGGAAAGGTTTGC
GAL1 probe

GAL1 Reg2 Rev CTCTTGTGAATTCTTCGCGAGAA

LacZ400 Fwd TGTACGGTACCATGGCGATTACCGTTGATG
LacZ probe

LacZ400 Rev TAGTAGGATCCTTATTTTTGACACCAGACC

SCR1 up AGGCTGTAATGGCTTTCTGG
SCR1 probe

SCR1 low GTTCAGGACACACTCCATCC

ADE5,7-5 TACCTAAGCGTTAAGAAATCGTCTA
ADE5,7 probe 

ADE5,7-3 AGAGACACCTGAGTCTGCGTATGTG
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Non-quantitative PCR primers

Primers Sequence 5’ to 3’ Use

GCN4 Mid Fwd CGATGTTTCATTGGCTGATAAGG
GCN4 probe

GCN4 5' Rev GATACATTTTCGTTGGTTGATTTAGAAC

pdcFa CAGCAACTGGCTTGTAACCC
PDC1probe

pdcRb CCCCAATGGGTAAGGGTTCC

HYG-up TGCCTGAACTCACCGCGACG
HYG probe

HYG-down TATTCCTTTGCCCTCGGACG

sen1473HDIIIFw CTCGCAACAATGGGTATTAAATTTGATACG Primers to check 
sen1-1 strainssen1-1 comp rev CCGTCGATTGTATTGAAATCGATTGA

GAL1P-up CAACCATAGGATGATAATGCGATTAG Primers to generate 
GAL1p:YLR454W 
strains YLR454W-dw CTGACGGTACCATCTTCTAAGG

BAR1C TTAGAGATGCGTTGTCCCTG Primers to generate 
bar1∆ strains BAR1D CGTCATCCTAAACGTCCGTA

H3 UP TTGCTTTGAGGACGTCCCAC Primers to check 
H3WT strainH3 DOWN CCACCTTGTCCTTAGGACAC

K9-23A UP TGCATGGCCTTACAGGTCTG Primers to check 
H3K9-23A strainK9-23A DOWN CCGCAGATGAAATGTGAGCA

∆1-28 UP ATAACCGAGGTGAAGTGATC Primers to check 
H3∆1-28 strain∆1-28 DOWN GCCTGCACCAAATCTTGAAA

E105Q UP AAATTGGTCGTAATGCGTCG Primers to check 
H3E105Q strainE105Q DOWN ACGGACCTTGTACGCGATCT

H4 UP TTGCTTTGAGGACGTCCCAC Primers to check 
H4WT strainH4 DOWN CCACCTTGTCCTTAGGACAC

K5R UP CAGCATGTATCAAGTACGAC Primers to check 
H4K5R strainK5R DOWN CAGCATGTAGAACGACGGAC

K31Q UP GCTGTAATCGCTTGTAATGG Primers to check 
H4K31Q strainK31Q DOWN GATAGACTGATCCGCAGATG
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Quantitative PCR primers

Primers Sequence 5’ to 3’ Use

GCN4 5' Fwd CAGCCAAGTTTATTTGCTTTAAATCC ChIP/DRIP. 5' region 
of the GCN4 geneGCN4 5' Rev GATACATTTTCGTTGGTTGATTTAGAAC

TPD3 Fwd GGCCAAATCCTACGCTGTGATA ChIP/DRIP. 3' region 
of the TPD3 geneTPD3 Rev TTGCAATGAGGGTAAAATTGTGTT

PDC1 F GAAGGTATGAGATGGGCTGGTAA DRIP. 5' region of the 
PDC1 genePDC1 R CCTTGATACGAGCGTAACCATCA

lacZ T1 Fwd  GCGCCGTGGCCTGAT ChIP. Middle region of 
the lacZ genelacz T1 Rev GTGCAGCGCGATCGTAATC

GAL1 Reg2 Fwd AAACAGGGCTTTAGTGTTGACGAT ChIP. 3' region of the 
TPD3 geneGAL1 Reg2 Rev CTCTTGTGAATTCTTCGCGAGAA

GAL1 Prom Fwd CACTGCTCCGAACAATAAAGATTC
ChIP. GAL1 promoter

GAL1 Prom Rev GGCCAGGTTACTGCCAATTTT

YLR454W 5’ Fwd GATGTTTCCGATTAATGTTCTACTGTACAA ChIP. 5' region of the 
YLR454W geneYLR454W 5’ Rev GCTCCATAAGAAAGTCACTGCAAA

YLR454W middle Fwd TGTGGCATTGAAAATATTCCAAAC ChIP. Middle region of 
the YLR454W geneYLR454W middle Rev GCATCGGAATCATAATCGAATATTC

YLR454W 3’ Fwd GGCAAAGGAAAGATGAGATTGG
ChIP. 3' region of the 
YLR454W gene

YLR454W 3’ Rev AAAGTTTGGTTGGACAATCTTAAAGT

PMA1 Fwd Prom CGATGGTGGGTACCGCTTAT ChIP. Promoter of the 
PMA1 genePMA1 Rev Prom CTATTGGTGTTATAGGAAAGAAAGAGAAAA

PMA1 Fwd 5' AAGAAGTACGGTTTGAATCAAATGG ChIP. 5' region of the 
PMA1 genePMA1 Rev 5' GAATTGGACCGACGAAAAACA

PMA1 Fwd middle TGTTCCGACAAAACCGGTACT ChIP. Middle region of 
the PMA1 genePMA1 Rev middle TCGTCTGGAGAAACACCTTCAAC

PMA1 Fwd 3' ATCGCTATTTTCGCTGATGTTG ChIP/RT/qPCR. 3' 
region of the PMA1 
genePMA1 Rev 3' CGGGCTTTGGAGAGTAAGGA
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Quantitative PCR primers

Primers Sequence 5’ to 3’ Use

PMA1 Fwd pA GATATTAAGACGTAGTATTCGATGATTGAA ChIP. pA region of the 
PMA1 genePMA1 Rev pA GATGCGATTAACCGGCAAA

V1 up TGTTCCTTTAAGAGGTGATGGTGAT ChIP. Non-transcribed 
region at positions 
9716-9864 of ChrVV1 down GTGCGCAGTACTTGTGAAAACC

RPB4 3' up ACACAGCTGATGAAGCAAAGACTT RT/qPCR. 3' region of 
the RPB4 gene. RPB4 3' down TTTCTAGGTTTGACAATTCCTTTAGTATCC

 

22.1 Radioactive signal quantification

Radioactive signals were acquired using a FLA-5100 Imager Fluorescence Analyzer 

(Fujifilm) and were quantified using the MultiGauge 2.0 analysis software (Science Lab).

 – Northern blot analysis: Signals were normalized to the SCR1 gene, transcribed by the 

RNAPIII and whose transcripts are very stable. Signal was plotted as arbitrarily units 

(A.U.). 

 – PFGE analysis: The signal in each well divided by the signal in the whole lane was 

plotted as percentage.

23 Miscellanea

Standard molecular biology techniques were carried out following common procedures 

for bacterial transformation, yeast DNA and RNA extraction and other standard molecular 

biology techniques were carried out following common and manufacture’s procedures. 

Table M5 (Continued)
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