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Abstract

Interfering jobs problems (or multi agents scheduling problems) are an emergent topic in

the scheduling literature. In these decision problems, two or more sets of jobs have to be

scheduled, each one with its own criteria. More speci�cally, we focus on a problem in which

jobs belonging to two sets have to be scheduled in a single machine in order to minimize the

total �owtime of the jobs in one set, while the total �owtime of the jobs in the other set

should not exceed a given constant ϵ. This problem is known to be weakly NP-hard, and a

Dynamic Programming (DP) algorithm has been proposed to �nd optimal solutions.

In this paper, we �rst analyse the distribution of solutions of the problem in order to estab-

lish its empirical hardness. Next, a novel encoding scheme and a set of properties associated

to the neighbourhood of this scheme are presented. These properties are used to develop

both exact and approximate methods, i.e. a branch and bound (B&B) method, several con-

structive heuristics, and di�erent versions of a genetic algorithm (GA). The computational

experience carried out shows that the proposed B&B is more e�cient than the existing DP

algorithm. The results also show the advantages of the proposed encoding scheme, as the

approximate methods yield close-to-optimum solutions for big-sized instances where exact

methods are not feasible.

Scheduling interfering jobs two-agent scheduling problem total �owtime single machine

1 Introduction

Interfering jobs problems, or multi-agent scheduling problems, address the decision problem of

scheduling jobs from di�erent sets, each one with its own objective(s), and competing for the same

machines (Agnetis et al., 2004). Multi-agent scheduling problems model many realistic situations

in productive environments. In a recent review on the topic, Perez-Gonzalez and Framinan (2014)

cite a number of real applications in di�erent domains, such as supply chain scheduling (Fan,

2010), rescheduling (Unal et al., 1997; Perez-Gonzalez and Framinan, 2010; Hall and Potts, 2004;

Yuan and Mu, 2007; Yuan et al., 2007; Mu and Gu, 2010), telecommunications (Peha and Tobagi,
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1990; Peha, 1995; Meiners and Torng, 2007; Arbib et al., 2004), and maintenance scheduling

(Khelifati and Bouzid-Sitayeb, 2011; Wan et al., 2010; Kellerer and Strusevich, 2010).

In this class of problems, the inherent di�culty of multiobjective scheduling problems is

emphasized by the need to consider di�erent sets of jobs. For this reason, most literature ad-

dresses the single machine layout (e.g. Ni and Zhao, 2014; Yuan et al., 2013; Agnetis et al., 2013;

Wu et al., 2012), which represents a case base for other multi-agent scheduling problems.

In this paper, we consider a single machine scheduling problem with two disjoint sets of jobs

J A and J B where the objective is to minimize the total �owtime of jobs in set J A, CA
sum, subject

to that the total �owtime of jobs in set J B is lower or equal than a given constant ϵ > 0, i.e.

CB
sum ≤ ϵ. Adapting the notation from T'kindt and Billaut (2002) for multicriteria scheduling

problems, our problem can be denoted as 1||ϵ(CA
sum/CB

sum). In manufacturing scheduling, this

problem arises when the scheduling decision is taken on a rolling horizon basis, i.e.: when a set

of incoming jobs (set J A) has to be scheduled for a given decision interval, but there are jobs

already scheduled in the previous decision interval (set J B) whose schedule should not change

greatly due to the fact that the required resources and raw materials have been already planned.

In such case, it may be natural to minimize the �owtime of the jobs in set J A (thus aiming at

the e�ciency in scheduling the new jobs) while bounding the disruption of the existing schedule

(that of jobs in set J B).

Although the problem 1||Csum is polynomially solvable by the SPT (Shortest Processing

Time) rule, our problem was shown to be binary (or weakly) NP-hard by Agnetis et al. (2004).

The same authors developed a Dynamic Programming algorithm with running time O(nAnBϵ),

although they do not carry out a computational study on its e�ciency. We are not aware of

additional authors addressing this problem.

As we will discuss later, the nature of the problem 1|ϵ(CA
sum/CB

sum)may vary greatly depending

on the speci�c values of ϵ, the number of jobs in the di�erent sets and their processing times.

Therefore it is of interest to analyse the distribution of the solutions depending on these factors

in order to provide e�cient solutions for the di�erent cases. In this paper, we tackle both issues,

i.e.: we analyse the structure of solutions of the problem, and propose new exact and approximate

methods for the problem. To do so, we de�ne a new encoding scheme of the solutions (denoted

binary codi�cation in the following), using a property of the problem by Agnetis et al. (2004)

based on the SPT rule. This codi�cation allows us to reduce the solution space, and it is used

to analyse empirically the distribution of the solutions of the problem depending on the instance

size and on the value of ϵ. The objective of this analysis is to identify the range of values of these

factors that produce instances for which �nding feasible/good solutions is easier or harder. Taking

into account the conclusions of the analysis, we propose some properties of the neighbourhood

structure that we use to develop di�erent algorithms for the problem. More speci�cally, we develop

a Branch and Bound (B&B), seven fast constructive, and three versions of a Genetic Algorithm

(GA). Computational experiments to test the e�ciency of the proposals are carried out in several

test beds designed according to the �ndings gained when analysing the distribution of solutions.
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The results show that the proposed B&B is more e�cient than the DP for small sized problems.

Moreover, the fast constructive heuristics proposed are able to provide approximate high-quality

solutions within negligible computation times. Finally, the results show that the version of the

GA embedding the binary codi�cation performs better than the classical permutation encoding.

The paper is structured as follows: in Section 2 the problem and the proposed binary cod-

i�cation are formally stated. Section 3 presents the distribution of solutions depending on the

parameters of the problem. In Section 4 some properties of the neighbourhood structure ac-

cording to the new codi�cation are proposed. In Section 5, the description of the B&B, the

constructive heuristics and the three versions of GA are given. Based on the analysis conducted

in Section 3, test beds of di�erent sizes and empirical hardness are proposed in Section 6 together

with the computational experiments. Finally, conclusions and future research lines are presented

in Section 7.

2 Problem statement and codi�cation

This paper considers two sets of jobs J A and J B with nA and nB jobs respectively, verifying

that J A∩J B =, and J = J A∪J B with n = nA+nB jobs. The processing times of jobs in JX ,

X = A or B, are denoted pXj , p
X =

∑
j∈JX pXj . Let σ be a complete schedule formed by all jobs

in the system, represented by a vector formed by the n elements of J : σ = [σ1, . . . , σn] where

each σi is in some JX , i = 1, . . . , n. A partial schedule of jobs in JX is denoted σX , X = A or

B.

The completion time of job σj ∈ σ is denoted as Cj(σ). Then, CX
sum(σ) =

∑
j∈JX Cj(σ)

is the total �owtime or total completion time of a complete schedule σ for jobs in JX . In the

following, we omit σ in the objective function unless it may lead to confusion. As objective we

consider the minimization of CA
sum subject to CB

sum ≤ ϵ, with ϵ a given constant. The problem

is denoted 1|ϵ(CA
sum/CB

sum). Finally, let σX
SPT be the sequence formed by jobs in X = A or B

according to the SPT order.

Note that the decision problem can be infeasible or feasible depending on the values of ϵ.

More speci�cally, we consider the following cases:

• ϵmin = CB
sum(σB

SPT ).

If ϵ = ϵmin the problem is trivial, and an optimal schedule is σ∗ = σB
SPT ∪ σA

SPT with

CA
sum(σ∗) = nApB + CA

sum(σA
SPT ). Note that ϵmin = CB

sum(σ∗).

If ϵ < ϵmin the problem is infeasible.

• ϵmax = CB
sum(σB

SPT ) + nBpA.

If ϵ ≥ ϵmax the problem is trivial, and the optimal schedule is σ∗ = σA
SPT ∪ σB

SPT with

CA
sum(σ∗) = CA

sum(σA
SPT ). Note that ϵmax = CB

sum(σ∗).

For ϵ between ϵmin and ϵmax the problem is known to be weakly NP-hard (Agnetis et al., 2004),

so it is not possible to �nd the optimal solution (sequence) in polynomial time. It is clear that

3



Figure 1: Binary codi�cation

the number of di�erent sequences for this problem is n! (i.e. the number of possible permutations

for n jobs). However, the following property allows reducing this number of solutions:

(Agnetis et al., 2004) In an optimal sequence, jobs in J A and jobs in J B follow the Shortest

Processing Time �rst (SPT) rule.

In view of this property, we de�ne a SPT sequence as a sequence in which jobs in set J A are

ordered according to the SPT rule, whereas jobs in set J B are ordered according to the SPT

rule. Note that, in a SPT sequence, jobs belonging to di�erent sets may not follow the SPT rule.

In the following, without loss of generality we will assume that the processing times of jobs in

J A and J B are given in SPT order respectively. Property 2 states that the optimal solution is

one out of all possible SPT sequences, therefore permutation sequences that do not belong to

the class of SPT sequences can be discarded. However, it is di�cult to check if a permutation

solution veri�es Property 2, since in SPT sequences, jobs in J A always maintain the same partial

order, and jobs in J B too.

A more e�cient way to use Property 2 is to de�ne another representation of the solutions,

that we label binary encoding. In this representation, jobs in J A are coded as zero whereas

jobs in J B are coded as one. Thus, a sequence of nA zeros and nB ones represents univocally a

given SPT sequence, since we can determine the job that corresponds to each zero or each one in

the schedule (see Figure 1). By using this codi�cation, the size of the solution space is smaller

than that when using the permutation codi�cation. More speci�cally, we only consider (nA+nB)!
nA!nB !

sequences out of a total of (nA + nB)! sequences. The proposed encoding scheme may allow

the development of methods based on the systematic exploration of solutions. More speci�cally,

in view of the need to determine the factors in�uencing the feasibility/di�culty of the problem

mentioned in Section 1, we will conduct an analysis of the distribution of solutions in Section 3.

From the insights gained in this analysis, in Section 4 we will derive further properties which will

serve us to develop e�cient exact and approximate methods (Section 5).
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3 Distribution of solutions

The nature of the problem 1|ϵ(CA
sum/CB

sum) may vary greatly depending on the number of jobs in

the di�erent sets and on the speci�c values of ϵ related to the processing times of the jobs in both

sets. For instance, it is clear that for very loose ϵ values (as compared to the processing times

of the jobs), many di�erent schedules are feasible, and the problem is basically to minimize the

�owtime of the jobs in set J A since there may be great di�erences among the CA
sum of the feasible

schedules. In contrast, for tight ϵ values, perhaps only a few feasible schedules exist, maybe with

similar values of CA
sum. In such case, the decision problem turns to be more similar to a feasibility

problem rather than to a minimisation problem, as the few feasible solutions would consists on

�rst scheduling all/most jobs in set J B. Therefore, it is important to investigate the di�erent

nature of the problems depending on the combination of the number of jobs in J A and J B, and

ϵ (expressed as a function of the processing times of the jobs). Such analysis can provide the

basis for designing and testing new solution methods, both exact and approximate.

As mentioned before, the problem under consideration is weakly NP-hard. However, in prac-

tice, simple methods may �nd good or even optimal solutions for some NP-hard scheduling

problems whereas in other problems, sophisticated methods are required to even �nd acceptable

solutions. Such `empirical hardness' is determined by the distribution of the space of solutions of

the problem, as it may turn out that there are many solutions with objective values close to the

optimum. In such case, acceptable or even good values of the objective function can be found by

random schedules. Therefore, analysing the empirical hardness of the scheduling problem is of

great practical interest, as it allows us know whether is worth developing sophisticated algorithms

for a problem, or not, as the e�ort may not pay o�. In addition, such analysis may provide the

basis for designing appropriate test beds for the problem, thus determining the parameters that

make the problem to be `easy' or `hard'. The usual way to conduct these analysis is to establish

the empirical frequencies of �nding sequences that are under a given percentage of the optimal

value. Note that, in order to perform such analysis, not only the optimal value has to be de-

termined, but all possible sequences in the space of solutions have to be evaluated in order to

measure their distance to the optimum.

Despite the usefulness of such analysis, these studies are often neglected in the literature

(Framinan et al., 2014). However, there are some contributions on the topic. For instance,

Perez-Gonzalez and Framinan (2009) study a strongly NP-hard scheduling problem for which,

in some cases, almost all solutions (99.6%) have an approximation percentage to the optimal

value of less than 2%. So, �nding a good solution in such cases is `easy'. Taillard (1990),

Armentano and Ronconi (1999) and Framinan et al. (2001) conduct similar analysis on other

scheduling problems concluding that the corresponding problems are `empirically hard'. To the

best of our knowledge, this kind of study have been not carried out for interfering jobs problems.

The only related reference is Khowala et al. (2014), who study the structure of two interfering

jobs problems (under the Pareto approach), but their methodology is quite di�erent as their

multi-objective approach is not the same.
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The main drawback of this analysis is the fact that it must be con�ned to small problem

sizes, although, in our case, the binary codi�cation introduced in the previous section may help

to address bigger instances, since it requires evaluating nT = (nA+nB)!
nA!nB !

sequences for each instance

instead of the (nA+nB)! sequences with the standard permutation codi�cation. Note that, since

not all sequences are feasible, two indicators are considered when analysing the empirical hardness

of our problem:

• The relative number of feasible solutions rf , i.e. the ratio between the number of feasible

solutions nf of the problem instances with respect to the total number of solutions nT =
(nA+nB)!
nA!nB !

. More speci�cally:

rf =
nf

nT
· 100

For our problem, this ratio clearly depends on the value of ϵ and on the processing times of

the jobs belonging to each set. After evaluating all solutions of each instance, nf is obtained

so rf can be derived, and then it can be averaged for several instances. According to this

indicator, we de�ne the empirical hardness with respect to feasibility (HF) of a problem as

the (empirical) di�culty to �nd feasible schedules.

• The relative distance of the feasible solutions to the optimal solution rd, i.e.: If σ∗ is the

optimal solution (CA
sum(σ∗) ≤ CA

sum(σ), ∀σ feasible), then rd can be computed for each

solution as in Taillard (1990):

rd =
CA
sum(σ)− CA

sum(σ∗)

CA
sum(σ∗)

· 100

By counting the number of times that the solutions are within a given relative distance

to the optimal solution with respect to the number of feasible solutions, we can construct

the empirical cumulative distribution function (cdf) yielding the probability of a random

solution to be within a given relative distance to the optimal solution. This cdf also gives

an indication of the variability of the objective function. According to this indicator, we

de�ne the empirical hardness with respect to quality (HQ) of a problem as the di�culty

to �nd (feasible) schedules close to the optimal. Clearly, the higher the variability, the

more di�cult the problem is, since the probability of a random solution to be close to

the optimal is lower. Note that the number of times that the solutions are within a given

relative distance to the optimum can be normalised with respect either to the total number

of possible solutions (nT ), or to the number of feasible sequences (nf ). In our analysis

we have adopted the second approach in order to distinguish the feasibility aspects of the

problem (i.e. how likely is to �nd a feasible solution) from the optimality aspects (i.e. how

likely is to �nd a good solution).

A series of preliminary experiments shows that, as foreseeable, instances of the 1||ϵ(CA
sum/CB

sum)

problem could have di�erent structure of solutions depending on certain values of nA, nB, and
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Table 1: Percentage of feasible solutions rf

α
nA nB 0.2 0.4 0.6 0.8 Aver.

5 20 12.1031 56.6029 90.5590 99.3303 64.6488
15 13.1127 56.4880 89.8013 99.1338 64.6340
10 14.9950 56.2970 88.3350 98.6547 64.5704
5 19.2063 55.3968 84.2857 96.6270 63.8790

10 20 9.7848 67.5351 97.3084 99.9668 68.6488
15 11.2345 66.8304 96.6568 99.9368 68.6646
10 13.8711 65.6915 95.3331 99.8345 68.6826
5 19.8968 63.4266 91.5018 99.1275 68.4882

15 20 7.1052 69.3507 98.5913 99.9884 68.7589
15 8.6749 68.3683 98.0317 99.9868 68.7654
10 11.5637 66.8426 96.6568 99.9464 68.7524
5 18.2598 64.0473 92.9870 99.5130 68.7018

20 15 7.8457 71.2204 98.8205 99.9964 69.4708
10 10.9965 69.2182 97.7723 99.9783 69.4913
5 18.1993 65.7271 94.1585 99.6868 69.4429

Aver. 13.1233 64.2029 94.0533 99.4472 67.7067
St. Dv 4.1890 5.3833 4.3492 0.8837 2.0045

ϵ. Based on these preliminary results, a test bed is designed to analyse these parameters in

depth. More speci�cally, we have generated ten small instances for each problem size combining

di�erent values of nA ∈ {5, 10, 15, 20}, nB ∈ {5, 10, 15, 20} (except the case nA × nB = 20 × 20

since the computational requirements are too high). The processing times of each job is randomly

generated from a [1, 99] uniform distribution. Then, for each problem instance, the value of ϵ is

computed as in Agnetis et al. (2009), i.e.: ϵ ∈ [ϵmin, ϵmax], for a given α ∈ (0, 1):

ϵ = ϵmin + α(ϵmax − ϵmin) (1)

with ϵmin = CB
sum(σB

SPT∪σA
SPT ), and ϵmax = CB

sum(σA
SPT∪σB

SPT ). In our experiments, we consider

di�erent levels of α, i.e. α ∈ {0.2, 0.4, 0.6, 0.8}. Once the test bed has been generated, all possible
solutions for each instance have been obtained by complete enumeration, and the corresponding

average values of rf and the empirical cdf of rd have been obtained for each problem size and α.

Regarding HF, in Table 1, the average results of rf for each size is shown. In average, the

percentage is around 65-70% of feasible solutions. According to ϵ, and as expected, the percentage

of feasible solutions increases with α (i.e. with ϵ). In particular, we can observe the following

aspects: For the tighter values of ϵ (α = 0.2), rf decreases with nA and nB, so HF increases with

the problem size. However, the performance is di�erent for α ∈ {0.4, 0.6, 0.8}, since HF decreases

with the problem size. The values of the standard deviation of rf show that there is not a high

variability among instances.

Regarding HQ, the results can be observed in Figure 2, which shows the empirical cdf of rd

depending on α, and in Figure 3, which shows the distribution of feasible solutions depending
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Figure 2: Distribution of feasible solutions for di�erent values of α

on the size of the problem according to the ratio rn = nA

nB . These �gures have been developed

by aggregating the values of rd for all instances in the test bed for a given value of α and rn

respectively. They must be interpreted in the following manner: the value in the y-axis indicates

the empirical probability of �nding a solution with a lower or equal relative distance to the

optimum given by the x-axis. Therefore, the lowest the curve, the more di�cult is to randomly

�nd a good solution for the problem.

On one hand, the curves in Figure 2 reach lower values as α increases, which means that HQ

is higher as ϵ increases. Note that a high percentage of solutions are very far to the optimum, in

some cases farther than the 100% of distance, taking into account the vertical line which appears

in the 100% for the highest values of α.

On the other hand, Figure 3 shows that, when rn is lower than 1 (i.e. nA < nB) the feasible

solutions are more distant to the optimum than in the opposite case. nA = nB is a medium term

case. Finally, for values of rn < 1, a high percentage of solutions are very far to the optimum,

farther than the 100% of distance. Therefore, HQ increases when rn decreases, that is, while

nA < nB and the di�erence among the sizes of each set is greater.

Summarizing, we can observe that:

• Regarding HF (see Table 1):

� As expected, it decreases when α increases (i.e. when ϵ increases).

� When nA and nB increases, it decreases for the smallest values of ϵ (α = 0.2). However,

it increases for medium and high values of ϵ (α ∈ {0.4, 0.6, 0.8}). Moreover, when

nA < nB HF decreases for the smallest values of ϵ, and increases for medium and high

values of ϵ.

• Regarding HQ:
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Figure 3: Distribution of feasible solutions for di�erent values of rn = nA/nB

� It increases when α increases, i.e. when ϵ increases (see Figure 2).

� It increases when rn < 1, i.e. when nA < nB (see Figure 3).

Finally, the analysis carried out in this section allows us to derive the following conclusions:

1. For the smallest values of ϵ (α = 0.2), the number of feasible solutions is low and the

problem is di�cult in terms of feasibility. However, these solutions are close to the optimal

solution, so it is relatively likely that a random feasible solution is a good solution for the

problem.

2. For medium/high values of ϵ, (α ∈ {0.4, 0.6, 0.8}), the number of feasible solutions is high,
so �nding a feasible solution is easy. However, the distance to the optimal is large, therefore

is it likely that a random feasible solution is far from the optimum.

3. When nA < nB the problem is di�cult regarding both HF and HQ.

The observations above allow us to generate instances with di�erent hardness degrees depend-

ing on the parameters of the instance. We will use these inputs to generate three test beds in

Section 6. In addition, the results about HQ show that heuristics focused on properties of the

neighbourhood structure can be useful for this problem (see Section 5), since random solutions

have a high probability to be very far to the optimal solution and these properties may help in

discarding bad solutions and in restricting the search space. Finally, the results about HF show

the importance to design methods to repair the infeasibility of schedules, since �nding feasible

schedules is not trivial (see Section 4).

With the above results in mind, a number of properties focused on several aspects of the neigh-

bourhood (including infeasibility repairing) have been developed. These properties are presented

in the next section.
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Figure 4: Backward and Forward Insertion Improvement

4 Properties of the neighbourhood structure

As mentioned before, the binary codi�cation of Section 2 serves to reduce the space of solutions

from n! to (nA+nB)!
nA!nB !

possible sequences. However, this reduction implies that the usual neigh-

bourhood operators de�ned for permutation sequences cannot be directly applied, as they may

provide redundant sequences, i.e. in the binary encoding the interchange of positions between

two jobs does not necessarily lead to di�erent solutions. The following theorem formalises this

statement (note that, in the following, all sequences are assumed to be binary-encoded).

Let σ′ be a sequence obtained by swapping two positions of a sequence σ. If the jobs in these

positions belong to the same set, then σ′ = σ.

Trivial.

In order to provide non redundant schedules by using the usual neighbourhood operators, we

propose several results using the following de�nitions:

Let σ be a sequence and j a job belonging to a set X = A or B in the position l in σ. We

de�ne a forward (backward) insertion of step k as the insertion of the job j in position l − k

(l + k), obtaining a new sequence σ′.

A X-block is de�ned as a subsequence of consecutive jobs of JX in σ, with X = A or B.

A forward (backward) insertion of a job belonging to a set X = A or B does not provide a

redundant schedule if and only if the jobs between the initial deletion position and the �nal in-

sertion position include elements of both sets. Therefore, in a valid forward (backward) insertion,

the selected job must be the �rst (last) job of its X-block, and it has to be inserted into another

block formed by jobs in the other set (see Figures 4 and 5).

Based on these results, it is possible to improve the total �owtime of jobs in J A of a given a

feasible sequence while maintaining its feasibility by the following insertion methods (see Figure

4):

(Backward Insertion Improvement) Let σ be a SPT sequence and σ′ the sequence ob-

tained by a backward insertion of step k of the �rst job of an A-block, with processing time pAi ,
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in the adjacent B-block of size b (see Figure 4 1.).

Then, CA
sum(σ′) ≤ CA

sum(σ). Moreover, if σ is feasible, then σ′ is feasible if and only if

k = min

{
b, Int

[
ϵ− CB

sum(σ)

pAi

]}
The total �owtime of J A and J B are:

CA
sum(σ′) = CA

sum(σ)−
j∑

l=j−k

pBl

CB
sum(σ′) = CB

sum(σ) + k · pAi

First, it is trivial to proof that CA
sum(σ′) ≤ CA

sum(σ). If σ is feasible then CB
sum(σ) ≤ ϵ ⇒

ϵ − CB
sum(σ) ≥ 0. Let σ′ be the sequence obtained by inserting backward the �rst job of an

A-block in the adjacent B-block. If is moved k ≤ b positions, then

CB
sum(σ′) = CB

sum(σ) + kpAi

σ′ is feasible ⇔ CB
sum(σ′) ≤ ϵ ⇔ CB

sum(σ) + kpAi ≤ ϵ ⇔ kpAi ≤ ϵ− CB
sum(σ) ⇔ k ≤ ϵ−CB

sum(σ)

pAi
(Forward Insertion Improvement) Let σ be a SPT sequence and σ′ the sequence obtained

by forward insertion of step k of the last job of a B-block, with processing time pBj , in the adjacent

A-block of size a (see Figure 4 2.).

Then, CA
sum(σ′) ≤ CA

sum(σ). Moreover, if σ is feasible, σ′ is feasible if and only if k ≤ a and

i+k∑
l=i

pAl ≤ ϵ− CB
sum(σ)

The total �owtime of J A and J B are:

CA
sum(σ′) = CA

sum(σ)− kpBj

CB
sum(σ′) = CB

sum(σ) +

i+k∑
l=i

pAl

It is trivial to proof that CA
sum(σ′) ≤ CA

sum(σ). The last job of a B-block is inserted forward

k ≤ a positions, then

CB
sum(σ′) = CB

sum(σ) +

i+k∑
l=i

pAl

σ′ is feasible ⇔ CB
sum(σ′) ≤ ϵ ⇔ CB

sum(σ) +
∑i+k

l=i p
A
l ≤ ϵ ⇔

∑i+k
l=i p

A
l ≤ ϵ− CB

sum(σ)

In view of the previous properties, the following corollary holds:

The sequence obtained by the pairwise exchange of the last job of a B-block, with processing
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Figure 5: Backward and Forward Insertion Infeasibility Repair

time pBj , and the �rst job of the adjacent A-block, with processing time pAi , provides the same

sequence than the backward (and forward) insertion improvement of step k = 1, being CA
sum(σ′) =

CA
sum(σ)− pBj and CB

sum(σ′) = CB
sum + pAi .

Backward and forward insertions can be used also to repair infeasible sequences at the expense

of obtaining worst values of the �owtime of the jobs in A, according to the following properties

(see Figure 5):

(Backward Insertion Infeasibility Repair) Let σ be a SPT sequence and σ′ the sequence

obtained by the backward insertion of step k of the �rst job of a B-block, with processing time

pBj , in the adjacent A-block with size a (see Figure 5 1.).

Then, CB
sum(σ′) ≤ CB

sum(σ). Moreover, if σ is infeasible, then there are two possible minimum

values of k:

• k = a if
∑

∀l∈A−block
pAl < CB

sum(σ)− ϵ, and in this case σ′ is infeasible, or

• The minimum value of k that veri�es
∑i

l=i−k p
A
l ≥ CB

sum(σ)− ϵ. In this case σ′ is feasible.

The total �owtime of J A and J B are:

CA
sum(σ′) = CA

sum(σ) + kpBj

CB
sum(σ′) = CB

sum(σ)−
i∑

l=i−k

pAl

It is trivial to proof that CA
sum(σ′) ≥ CA

sum(σ). Moreover, if σ is infeasible then CB
sum(σ) > ϵ.

Let δ = CB
sum(σ)−ϵ > 0. Let σ′ be the sequence obtained by backward insertion of step k (k ≤ a)

of the �rst job of a B-block. Then, the following equation holds:

CB
sum(σ′) = CB

sum(σ)−
i∑

l=i−k

pAl

12



If
∑

l∈A−block
pAl < δ then the maximum value of k is a, and the job is inserted before all jobs in the

adjacent A-block. In this case CB
sum(σ′) = CB

sum(σ)−
∑

l∈A−block
pAl > CB

sum(σ)−(CB
sum(σ)−ϵ) >

ϵ, therefore σ′ is infeasible.

If
∑

l∈A−block
pAl ≥ δ, let k ≤ a be the minimum value such that

∑i
l=i−k p

A
l ≥ δ. In this case

CB
sum(σ′) = CB

sum(σ)−
∑i

l=i−k p
A
l ≤ CB

sum(σ)− (CB
sum(σ)− ϵ) ≤ ϵ, therefore σ′ is feasible.

(Forward Insertion Infeasibility Repair) Let σ be a SPT sequence and σ′ the sequence

obtained by forward insertion of step k of the last job of a A-block, with processing time pAi , in

the adjacent B-block with size b (see Figure 5 2.).

Then, CB
sum(σ′) ≤ CB

sum(σ). Moreover, if σ is infeasible, then the minimum value of k is:

• k = b if bpAi < CB
sum(σ)− ϵ, and in this case σ′ is infeasible, or

• k = Int
[
CB

sum(σ)−ϵ

pAi

]
+ 1. In this case σ′ is feasible.

The total �owtime of J A and J B are:

CA
sum(σ′) = CA

sum(σ) +

j+k∑
l=j

pBl

CB
sum(σ′) = CB

sum(σ)− kpAi

It is trivial to proof that CA
sum(σ′) ≥ CA

sum(σ). Moreover, if σ is infeasible then CB
sum(σ) > ϵ.

Let δ = CB
sum(σ)− ϵ > 0. Let σ′ be the sequence obtained by forward insertion of step k (k ≤ b)

of the last job of an A-block. Then, the following equation holds:

CB
sum(σ′) = CB

sum(σ)− kpAi

If bpAi < δ then the maximum value of k is b, and the job is inserted after all jobs in the

adjacent B-block. In this case CB
sum(σ′) = CB

sum(σ) − bpAi > CB
sum(σ) − (CB

sum(σ) − ϵ) > ϵ,

therefore σ′ is infeasible.

If bpAi ≥ δ, let k ≤ b be the minimum value such that kpAi ≥ δ, i.e. k = Int
[

δ
pAi

]
+ 1.

Therefore, CB
sum(σ′) = CB

sum(σ)− kpAi ≤ CB
sum(σ)− (CB

sum(σ)− ϵ) ≤ ϵ and σ′ is feasible.

According to the results provided by Properties 4 and 4, the following corollary holds:

The sequence obtained by pairwise exchange of the last job of an A-block with process-

ing time pAi and the �rst job of the adjacent B-block with processing time pBj , provides the

same sequence than the forward (backward) insertion infeasibility repair of step k = 1, being

CA
sum(σ′) = CA

sum(σ) + pBj and CB
sum(σ′) = CB

sum − pAi .

Finally, a new property allows to reduce the space of search in a construction process, pro-

viding a bounding method by the following lower bounds:

Let σ be a feasible schedule with CA
sum(σ) = UB. Let σ′ be a partial schedule formed by

n′ ≤ n jobs in J = J A
∪

J B, and S a set containing the n− n′ unscheduled jobs.

13



1. Let σ′
A = σ′∪[0, . . . , 0] be the schedule formed by the union of σ′ and all unscheduled jobs

in J A. If CA
sum(σ′

A) ≥ UB, then no schedule σ′∪σS (for all σS formed by jobs in S) exists

such as CA
sum(σ′∪σS) < CA

sum(σ).

2. Let σ′
B = σ′∪[1, . . . , 1] be the schedule formed by the union of σ′ and all unscheduled jobs

in J B. If CB
sum(σ′

B) > ϵ, then no feasible schedule σ′∪σS (for all σS formed by jobs in S)

exists.

Trivial.

As a summary of this section, we have presented a number of properties that may allow us to

e�ciently implement a number of neighbourhood operators. In the next section, these properties

will be embedded in both exact and approximate solution procedures.

5 Solution methods

To the best of our knowledge, the only solution procedure available for the 1||ϵ(CA
sum/CB

sum)

problem is the Dynamic Programming algorithm (DP) by Agnetis et al. (2004). This (exact)

pseudo-polynomial algorithm exploits Property 2. The Bellman equation is the following:

F (i, j, q) = min{F (i− 1, j, q) + P (i, j), F (i, j − 1, q − P (i, j))

with P (i, j) =
∑i

k=1 p
A
i +

∑j
k=1 p

B
j . Note that F (i, j, q) yields the value of an optimal solution

for the i �rst jobs in JA, j �rst jobs in JB, and q = 0, . . . , ϵ. The formula is iteratively solved by

increasing values of i and j. We are not aware of approximate methods for the problem.

Using the binary encoding in Section 2, and the properties derived in Section 4, we propose

both exact and approximate solution procedures. First, in Subsection 5.1 we present a Branch

and Bound (B&B) algorithm for providing exact solutions for the problem. The computational

experience carried out in Section 6.2 shows that it is more e�cient than the DP. Regarding

approximate methods, in subsection 5.2 we propose fast constructive heuristics while in Subsection

5.3 we present two versions of a Genetic Algorithm: GA(B) using the binary codi�cation, and

GA(B)_I using the binary codi�cation plus the improvement properties seen in the previous

section. The experiments in 6.4 show that these two versions are more e�cient than the same

structure of GA using the standard permutation codi�cation, GA(P).

5.1 Branch and Bound Algorithm

Branch and bound has been widely applied in scheduling literature (see e.g. Sabouni et al., 2010;

Gawiejnowicz et al., 2010; Framinan, 2007). In this section, we develop a B&B algorithm based

on the binary encoding and Property 4 to generate lower bounds. In the following, we assume

that, given a problem instance, the sequence σB
SPT ∪ σA

SPT yields a �owtime lower or equal than

ϵ (i.e. it is feasible). Otherwise, as discussed in Section 2, there is no feasible solution for the

instance. Then, the B&B consists of two steps:

14



procedure UpdateTree(σ)
if σ is complete;

if CA
sum(σ) < UB
UB = CA

sum(σ);
end if

else

LBA = CA
sum(σ

∪
σA)

LBB = CB
sum(σ

∪
σB)

if σA ̸=
if LBB ≤ ϵ & LBA ≤ UB

σ = σ
∪

0;
σA = σ − 0;
UpdateTree(σ)

end if

end if

if σB ̸=
if LBB ≤ ϵ & LBA ≤ UB

σ = σ
∪

1;
σB = σ − 1 ;

UpdateTree(σ)
end if

end if

end if

Figure 6: Pseudo-code of UpdateTree

Step 1. Initialization: The initial upper bound, UB, is computed as the total �owtime of J A

for sequence σB
SPT ∪ σA

SPT . Sequence σ is initially the empty set (σ :=), sequence σA

contains all jobs in J A (σA := [0, . . . , 0]), and sequence σB contains all jobs in J B

(σB := [1, . . . , 1]).

Step 2. Update Tree: A recursive function is applied to construct the tree. More speci�cally,

given a sequence σ, this procedure consists on:

• If σ is complete, its �owtime CA
sum(σ) is computed. If CA

sum(σ) is lower than the

current upper bound, then UB := CA
sum(σ).

• If σ is a partial sequence, then the tree can be branched by adding one job from

σA (i.e. adding {0} to σ) or one job from σB (i.e. adding {1} to σ). When the

two options are available (σA ̸= and σB ̸=), the branch with the addition of the

job in σA is prioritised. More speci�cally, we compute LBA the lower bound for

CA
sum as LBA := CA

sum(σ
∪

σA); and LBB the lower bound for CB
sum as LBB :=

CB
sum(σ

∪
σB).

� If σA ̸=: If LBA < UB and LBB ≤ ϵ, we add a job in J A to σ, remove the job

from σA, and invoke the Update Tree step. Otherwise, the branch is fathomed.

� If σB ̸=: If LBA < UB and LBB ≤ ϵ, we add a job in J B to σ, remove the job

from σB, and invoke the Update Tree step. Otherwise, the branch is fathomed.

The pseudo-code of the Update Tree step is given in Figure 6.
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procedure Maximum Improvement

σ = σB
SPT

∪
σA
SPT ;

δ = CB
sum(σ)− ϵ;

while δ > 0
σ′= Forward_Insertion_Improvement(σ); % (see Property 4)

σ′′= Backward_Insertion_Improvement(σ); % (see Property 4)

if CA
sum(σ′) < CA

sum(σ) & CA
sum(σ′′) < CA

sum(σ)
if CA

sum(σ′) <= CA
sum(σ′′)

σ = σ′;
else

σ = σ′′;
end if

else if CA
sum(σ′) < CA

sum(σ) & CA
sum(σ′′) = CA

sum(σ)
σ = σ′;

else

σ = σ′′;
end if

δ = CB
sum(σ)− ϵ;

end while

Figure 7: Pseudo-code of Maximum Improvement

5.2 Constructive heuristics

Given the NP-nature of the problem, it is unlikely that exact methods are practical for big instance

sizes. For such cases, we develop several constructive heuristics that can provide approximate

solutions in low CPU time. In addition, these fast heuristics could provide initial solutions for

more sophisticated approximate methods, such as the GA presented in Section 5.3. In total, we

present seven heuristics (denoted as CHX, X=1 to 7) which apply several improvement methods

(based on the properties discussed in Section 4) to an initial sequence. The improvement methods

are the following:

• Maximum Improvement: This method starts with the feasible sequence σB
SPT

∪
σA
SPT and

performs a backward (forward) insertion on jobs in J A (J B) using Property 4 (Property

4) in order to improve CA
sum. The pseudo-code is given in Figure 7.

• Iterative Improvement: This method starts with any feasible sequence σ and applies Corol-

lary 4 to improve CA
sum(σ). The pseudo-code is given in Figure 8.

• Maximum Repair: This method starts with the sequence σA
SPT

∪
σB
SPT (infeasible unless

the problem is trivial, see Section 2) and performs a backward (forward) insertion of jobs in

J B (J A) using Property 4 (Property 4) in order to obtain a feasible sequence by decreasing

CB
sum. The pseudo-code is given in Figure 9.

• Iterative Repair: This method starts with the sequence σA
SPT

∪
σB
SPT (infeasible unless

the problem is trivial, see Section 2) and applies Corollary 4 in order to obtain a feasible

sequence by decreasing CB
sum(σ). The pseudo-code is given in Figure 10.

These improvement methods are combined into the seven heuristics, as summarised in Table

2. CH1, CH2 and CH3 start with sequence σB
SPT

∪
σA
SPT , which is feasible unless the problem
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procedure Iterative Improvement(σ)
δ = CB

sum(σ)− ϵ;
while δ ≥ pA1

k = max{i ∈ JA : δ ≥ pAi };
Let k′ be the first job in the A-block where k belongs to;

Let j be the last job of the adjacent B-block;

Let σ the sequence obtained by pairwise exchange of both jobs (k′ ajnd j); % (see Corollary 4)

δ = CB
sum(σ)− ϵ;

end while

Figure 8: Pseudo-code of Iterative Improvement

procedure Maximum Repair

σ = σA
SPT

∪
σB
SPT ;

δ = CB
sum(σ)− ϵ;

while δ < 0
σ′= Forward_Insertion_Unfeasibility_Repair(σ); %(see Property 4)

σ′′= Backward_Insertion_Unfeasibility_Repair(σ); %(see Property 4)

if CB
sum(σ′) < CB

sum(σ) & CB
sum(σ′′) < CB

sum(σ)
if CB

sum(σ′) <= CB
sum(σ′′)

σ = σ′;
else

σ = σ′′;
end if

else if CB
sum(σ′) < CB

sum(σ) & CB
sum(σ′′) = CB

sum(σ);
σ = σ′;

else

σ = σ′′;
end if

δ = CB
sum(σ)− ϵ;

end while

Figure 9: Pseudo-code of Maximum Repair

procedure Iterative Repair(σ)
δ = CB

sum(σ)− ϵ;
while δ < 0

if |δ| ≤ pA
nA

k = min{i ∈ JA : |δ| ≤ pAi };
else

k = nA;

Let k′ be the last job in the A-block where k belongs to;

Let j be the first job of the adjacent B-block;

Let σ the sequence obtained by pairwise exchange of both jobs (k′ and j); % (see Corollary 4)

δ = CB
sum(σ)− ϵ;

end while

Figure 10: Pseudo-code of Iterative Repair

Table 2: Constructive Heuristics

CH1 CH2 CH3 CH4 CH5 CH6 CH7
Initial Sequence σB

SPT

∪
σA
SPT σA

SPT

∪
σB
SPT σSPT

Maximum Improvement x x (1st)
Iterative Improvement x x (2nd) x (2nd) x
Maximum Repair x x (1st)
Iterative Repair x x
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does not have any feasible solution. This schedule provides the worst value of CA
sum. CH1,

CH2 and CH3 try to improve the �owtime while maintaining the feasibility. More speci�cally,

CH1 applies Maximum Improvement, CH2 applies Iterative Improvement, and CH3 �rst applies

Maximum Improvement and then Iterative Improvement. CH5, CH6 and CH7 start with the

initial sequence σA
SPT

∪
σB
SPT , which is infeasible (unless the problem is trivial). This schedule

provides the best value of CA
sum. CH5, CH6 and CH7 look for feasibility trying to provide a

good value of CA
sum. More speci�cally, CH4 applies Maximum Repair and CH5 applies Iterative

Repair until feasibility is achieved. CH6 applies Maximum Repair until feasibility is achieved and

then, Iterative Improvement tries to improve CA
sum. Finally, CH7 starts with the initial sequence

σSPT , i.e. all jobs are scheduled by the SPT rule. This schedule can be feasible or infeasible. If

it is feasible, the Iterative Improvement method is applied, else the Iterative Repair method is

applied.

5.3 Genetic Algorithm

Genetic Algorithms (GAs) have been frequently used in scheduling with very good results (see e.g.

Chang et al., 2007; Luo et al., 2009; Damodaran et al., 2009; Ventura and Yoon, 2013; Li et al.,

2014; Chang and Liu, 2015 for single criterion problems, Framinan, 2009; Tseng and Lin, 2010;

Yao et al., 2011 for multicriteria problems, and Balasubramanian et al., 2009; Soltani et al., 2010;

Li and Hsu, 2012 for interfering jobs problems). In the version presented by Ruiz and Allahverdi

(2009), there is one population and new individuals do not replace their parents, but a new

individual replaces the worst individual of the population if this new one is unique and better

than the worst one. This GA was successfully employed by Ruiz et al. (2005); Ruiz and Maroto

(2006); Ruiz and Allahverdi (2009). We have adapted this GA to our problem (see Figure 11).

However, taking into account the original version presented by Ruiz and Allahverdi (2009), we

have replaced the local search procedure by an improvement method based on Path Relinking.

This scheme of GA has been implemented using both codi�cations presented in the previous

section: permutation and binary codi�cation �denoted GA(P) and GA(B) respectively�. Both

algorithms are identical, except with respect to the �tness computation, since the way to calculate

the �owtime is simpler in the binary codi�cation than in the permutation codi�cation. Moreover,

we have implemented an improved version of GA(B) �denoted GA(B)_I� which di�ers from the

former in two phases: Initial population and Improvement method. Details about the phases

of the proposed GA (Initial population, �tness calculation, parents selection, crossover operator,

improvement method, mutation scheme, and the diversity of the population) are described below.

Finally, as the algorithm does not have a natural stopping criterion, it is stopped when a given

amount of CPU time has elapsed (see Section 6).

5.3.1 Initial population

The population size is given by the parameter populationsize. This population contains two

super-individuals generated in the �rst step. For GA(P) and GA(B), two solutions using heuristics
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procedure GA

% STEP 1: Initial Population

S1 := CH1;
S2 := CH2;
insert S1 and S2 into population;

for k = 3 to sizepopulation do

Sk := randomly generated sequence;

insert Sk into population;

end for

for k = 1 to sizepopulation do

Fk := fitness(Sk);

end for

% STEP 2: New Population

while (termination criterion not satisfied) do

for k = 1 to 2 do

select Sk by n_tournament(population);

end for

TP_Crossing(S1,S2);

Path_Relinking(S1,S2, Snew);

Shift_Mutation(Snew);

Fnew := fitness(Snew);

uniqueness= Uniqueness(Snew, population);
if(uniqueness = true) then

Fworst := fitness(Sworst);

if(Fnew < Fworst) then

remove Sworst from population;

insert Snew in population;

end if

end if

end while

end

Figure 11: Pseudo-code of GA
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CH1 and CH2 are employed as super-individuals, whereas for GA(B)_I four super-individuals

are generated using the best four constructive heuristics (see Section 6), i.e. CH2, CH3, CH5 and

CH7.

5.3.2 Fitness calculation

In order to obtain better results, infeasible solutions in the population are allowed. Then, the

�tness of sequence σ is calculated depending on its feasibility. Since, for a given ϵ, σ is feasible if

CB
sum(σ) ≤ ϵ (and infeasible otherwise), the infeasibility is penalized depending on the di�erence

between CB
sum and ϵ. Therefore, the �tness of a sequence σ is given by:

fitness(σ) =

CA
sum(σ) if σ is feasible

CA
sum(σ) + CB

sum(σ)− ϵ if σ is infeasible

5.3.3 Parents selection

For parents selection, the n-tournament selection procedure by Ruiz and Allahverdi (2007) is

chosen, i.e.:

Step 1: Select randomly a percentage of the population according to the pressure parameter

(denoted as pressure).

Step 2: Select the individual with the best �tness value among the randomly chosen individuals

as a parent

Step 3: If there are two parents then Stop. Else, remove the �rst parent from the population and

return to Step 2

In this procedure, the �rst parent selected does not participate in the tournament for the

selection of the second parent.

5.3.4 Crossover operator

The crossover procedure selected is the two-point (TP) crossing. Two-point crossover selects two

crossing sites and chromosomal material is swapped between them. Let S1 = (S1
1 , . . . , S

1
n) and

S2 = (S2
1 , . . . , S

2
n) be two parents, and k and l (k < l) the two points (i.e. two positions of vectors

S1 and S2). Then the resulting o�springs have the same structure than their parents from job 1

to k and from job l to n, and the jobs from k to l swapped from S1 to S2. Applying this method

to a schedule may result in some jobs repeated in the o�spring and therefore infeasible sequences.

This is avoided by the process explained in Figure 12. The probability of carrying out a crossover

after selection is called pC .
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Figure 12: TP crossing

5.3.5 Mutation scheme

The mutation operator is based on a probability (pM ) per individual to be mutated. The mutation

process is as follows:

Step 1: Extract one job from the individual

Step 2: Re-insert it in another random position

5.3.6 Diversity in the population

Finally, each new individual is checked to guarantee its `uniqueness' once the �tness has been

calculated in order to avoid clones in the population, following this two-level process:

• At objective function level: two identical individuals cannot have distinct objective function

values, but two distinct solutions might have the same objective function value. Therefore,

whenever an equal objective function value is found in the population, both solutions (the

existing and the new one) are selected for the next level.

• At permutation level: check if the selected individuals in the previous level have the same

exact permutation. In this case, the new individual is not introduced in the population.

5.3.7 Improvement Method

The GA proposed incorporates an improvement method based on Path Relinking (see e.g. Pinedo,

1995; Bozejko, 2010) applied to the pairs of individuals, denoted as S1 and S2, obtained by the

n-tournament procedure, or to both o�springs obtained after crossover if it has been carried out.

The procedure is the following:

Step 1: Let S be the best sequence between S1 and S2

Step 2: Compare each component of S1 to the same component of S2, if they are di�erent remove

it and insert it at the end of S1.
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Step 3: If the sequence obtained for each comparison is better than S, then replace S by this

new sequence.

The new sequence obtained is denoted as Snew in the pseudo-code in Figure 11. Moreover,

GA(B)_I incorporates the Iterative Improvement method (see Figure 8) and Iterative Repair

method (see Figure 10) applied to S1 and S2 depending on their feasibility. Both methods are

applied before the Path Relinking method.

6 Computational experiments

Taking into account the conclusions regarding the empirical hardness of the problem derived in

Section 3, we have designed a testbed in Section 6.1. This test bed allows us to compare the

proposed B&B with the DP in order to test their e�ciency (see Section 6.2). Additionally, we

compare the best exact method (B&B) with the constructive heuristics (see Section 6.3). Finally,

we calibrate the GA by a Design of Experiments, and compare GA(P), GA(B) and GA(B)_I to

the best solution provided by the four best constructive heuristics (see Section 6.4).

6.1 Test bed design

In the analysis of the distribution of solutions carried out in Section 3, we concluded that the

empirically hardest problems are those with a large value of ϵ and nA < nB. In order to test the

di�erent methods for a wide variety of problems, we design three test beds with di�erent sizes

and di�culty. Processing times are uniformly generated in the interval [1, 99]. ϵ is computed as in

Section 3, depending on α. All test beds contain 10 independent instances for each combination

of jobs. More speci�cally, the test beds are as follows:

• Small Size Medium Di�culty (SSMD) test bed: In this case we consider di�erent combina-

tion of sizes nA × nB, with nA > nB, nA = nB and nA < nB. In addition, α values would

be uniformly generated in the interval [0.4, 0.6]. According to the results from Section 3,

these problems cannot be considered very di�cult. The values selected for nA × nB are:

5× 5 10× 5 15× 5 20× 5

5× 10 10× 10 15× 10 20× 10

5× 15 10× 15 15× 15 20× 15

5× 20 10× 20 15× 20 20× 20

In total, we have 160 instances in the SSMD test bed.

• Small Size High Di�culty (SSHD) test bed: According to the results from Section 3 in

this case we consider nA < nB and α uniformly generated in the interval [0.5, 0.8]. Values

selected for nA × nB are:
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5× 10 10× 15 15× 20 20× 25

5× 15 10× 20 15× 25 20× 30

5× 20 10× 25 15× 30

5× 25 10× 30

5× 30

In total, we have 140 instances in the SSHD test bed.

• Big Size High Di�culty (BSHD) test bed: According to the results from Section 3 in this

case we consider nA ≤ nB and α uniformly generated in the interval [0.5, 0.6]. Values

selected for nA × nB are:

20× 20 50× 50 100× 100 200× 200

20× 50 50× 80 100× 200 200× 500

20× 80 50× 100 100× 500 500× 500

In total, we have 120 instances in the BSHD test bed.

6.2 Comparison of B&B and DP

Table 3 and Table 4 show the results for DP and B&B in SSMD and SSHD test beds respectively.

Both methods are stopped when the computational time is 3,600 seconds. For some problem

sizes, the methods do not obtain the optimal solution in all instances. Then, we compute for each

instance the relative percentage deviation (RPD) as follows:

RPD =
CA
sum(ALG)− CA

sum(MIN)

CA
sum(MIN)

· 100

where CA
sum(ALG) is the value of the objective function provided by the algorithm considered,

and CA
sum(MIN) is the value of the �owtime provided by the minimum value of all algorithms

(optimum or best bound).

Table 3 and Table 4 show the number of instances solved optimally (denoted as N), the

average computational times (in seconds) required by each method, and average RPD (ARPD)

values for each size of the SSMD test bed and SSHD test bed respectively solved by B&B and DP.

In particular, Table 3 presents the results for the SSMD test bed. It can be seen that the CPU

times required by DP are higher than those of B&B. DP cannot provide the optimal solution in

less than 3,600 seconds for all instances of size 20 × 20. For these instances, the best solution

provided by DP in one hour is 32% worst in average than the optimal value. Table 4 presents the

results for the SSHD test bed. B&B is faster than DP for all instances. Biggest size instances

(15×25, 15×30, 20×25 and 20×30) are not solved optimally by DP in less than 3,600 seconds,

while the number of instances solved optimally by B&B are: all instances (10 of 10) for 15× 25

and 15× 30 in only 41.77 and 29.47 seconds on average respectively; 9 of 10 for 20× 25; and 4 of

10 for 20× 30 in less than 3,600 seconds. Moreover, ARPD values for the solutions provided by
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Table 3: Number of instances solved optimally N , average CPU times (secs.) and ARPD: Exact
Methods applied to the Small Size Medium Di�culty test bed. * Optimum are not obtained for

all instances.

N Average CPU Times ARPD
nA × nB B&B DP B&B DP B&B DP

5× 5 10 10 0.0002 0.0006 0.0000 0.0000
5× 10 10 10 0.0006 0.0017 0.0000 0.0000
5× 15 10 10 0.0004 0.0061 0.0000 0.0000
5× 20 10 10 0.0008 0.0225 0.0000 0.0000
10× 5 10 10 0.0004 0.0041 0.0000 0.0000
10× 10 10 10 0.0013 0.0870 0.0000 0.0000
10× 15 10 10 0.0203 1.4639 0.0000 0.0000
10× 20 10 10 0.1270 13.4427 0.0000 0.0000
15× 5 10 10 0.0006 0.0117 0.0000 0.0000
15× 10 10 10 0.0144 1.8762 0.0000 0.0000
15× 15 10 10 0.3206 82.4253 0.0000 0.0000
15× 20 10 10 4.2169 1661.1820 0.0000 0.0000
20× 5 10 10 0.0009 0.0461 0.0000 0.0000
20× 10 10 10 0.0907 20.5339 0.0000 0.0000
20× 15 10 10 3.1844 1999.3910 0.0000 0.0000
20× 20 10 0 133.0693 > 3,600 0.0000 32.1909*

Aver. 10.00 9.38 8.8156 461.2809 0.0000 2.0119

DP in these cases are high, which means that the approximate solutions provided by the B&B in

one hour are better than approximate solutions provided by DP in the same time.

Therefore, we can conclude that the proposed B&B algorithm provides optimal solutions faster

than the DP. The di�erences between each method are remarkable, from less than 9 seconds to

more than 460 seconds on average for the SSMD test bed, and from less than 266 seconds to

more than 1,198 seconds on average for the SSHD test bed. Moreover, on average, the biggest

instances are solved in reasonable CPU times by the proposed algorithm while the DP cannot

obtain the optimal solution after one hour of computation.

6.3 Comparison of constructive heuristics

The constructive heuristics proposed in Section 5.2, CH1 to CH7, have been tested for small

sizes test beds. These heuristics do not give the optimal solutions so they are compared to the

(optimal or best bound) solution provided by the B&B in less than 3,600 seconds.

Table 5 shows ARPD values for each size of the SSMD test bed for the B&B, each constructive

heuristic, and the minimum value among the four best methods (CH2, CH3, CH5 and CH7),

denoted as MIN4 (it is computed for each instance and the average for each size). The best

bound provided by B&B for these biggest instances in less than 3,600 seconds are worst than

the approximate solutions provided by the constructive heuristics. It can be observed that the

best constructive heuristics are CH3 and CH7. MIN4 obtains, on average, a �owtime which is

around 3% worst than the optimum in negligible computation times. Additionally, the variability
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Table 4: Number of instances solved optimally N , average CPU times (secs.) and ARPD: Exact
Methods applied to the Small Size High Di�culty test bed. * Optimum are not obtained for all

instances.

N Average CPU Times ARPD
nA × nB B&B DP B&B DP B&B DP

5× 10 10 10 0.0004 0.0018 0.0000 0.0000
5× 15 10 10 0.0004 0.0063 0.0000 0.0000
5× 20 10 10 0.0008 0.0228 0.0000 0.0000
5× 25 10 10 0.0019 0.0646 0.0000 0.0000
5× 30 10 10 0.0063 0.1398 0.0000 0.0000
10× 15 10 10 0.0108 1.6415 0.0000 0.0000
10× 20 10 10 0.1296 14.6060 0.0000 0.0000
10× 25 10 10 0.6327 90.4479 0.0000 0.0000
10× 30 10 10 2.4954 424.4971 0.0000 0.0000
15× 20 10 10 4.1286 1841.0160 0.0000 0.0000
15× 25 10 0 41.7778 > 3,600 0.0000 35.7003*
15× 30 10 0 29.4793 > 3,600 0.0000 71.3482*
20× 25 9 0 1151.0255 > 3,600 0.0000* 84.9178*
20× 30 4 0 2488.0908 > 3,600 0.0000* 101.3890*

Aver. 9.50 7.14 265.5557 1198.0317 0.0000 20.9539

among sizes for these heuristics is low (see the standard deviation reported), which means that

heuristics are robust with respect to the problem size. ARPD values increase with nB, and,

considering instances with the same number of total jobs (nA + nB), it can be observed that the

cases with nA < nB have worse results than those where the opposite occurs. This may be seen

as a con�rmation of the results obtained in Section 3.

Table 6 shows the corresponding results for each size of the SSHD test bed. As it can be

seen, ARPD values are worse than those in Table 5. In general, all methods perform worse for

this test bed, which is in line with the conclusions of the analysis on the distribution of solutions

carried out in Section 3. Again, CH3 and CH7 are the best methods with the lowest values of

average and standard deviation. Results show that MIN4 provide solutions which are, on average,

at 6.63% from the best solution. Given the di�culty of the instances, these methods provide a

nearly instantaneous good solution to the problem.

6.4 Calibration and comparison of GA

The GA versions proposed in Section 5 have the following parameters: Population size (populationsize)

which determines the size of the population created and used in the GA; Pressure (pressure),

which provides the percentage of population involved in the n-tournament selection procedure;

Probability of crossing pC ; Probability of mutation pmut; and �nally the stopping criteria time,

which determines the CPU time provided to the GA to solve the problem (n·time
1000 seconds, with

n = nA + nB).

Based on the levels tested for each parameter (factor) used by Ruiz and Allahverdi (2009);

Ruiz and Maroto (2006); Ruiz et al. (2005), we have selected the following: populationsize ∈
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Table 5: Constructive Heuristics for Small Size Medium Di�culty test bed

ARPD CPU Times

nA × nB B&B CH1 CH2 CH3 CH4 CH5 CH6 CH7 MIN4 B&B MIN4

5× 5 0.0000 8.4918 3.2877 1.7596 20.2461 9.3539 10.4636 3.0455 0.4123 0.0002 0.0061
5× 10 0.0000 18.7286 15.2634 7.4265 29.4643 16.3847 17.5867 7.4265 3.2740 0.0006 0.0065
5× 15 0.0000 24.5432 22.0990 4.1013 37.6441 23.4061 26.7973 4.1013 4.1013 0.0004 0.0069
5× 20 0.0000 28.6363 28.2512 9.8982 81.5602 31.7349 30.2301 9.8982 8.4770 0.0008 0.0064
10× 5 0.0000 4.4782 3.5412 3.4344 7.0223 2.7761 6.5191 3.2261 1.5946 0.0004 0.0062
10× 10 0.0000 3.9960 2.7143 3.0000 13.0221 5.2794 15.3995 3.6407 1.7722 0.0013 0.0066
10× 15 0.0000 9.5574 7.4764 9.5234 15.3379 8.0826 20.3262 9.5234 6.1673 0.0203 0.0072
10× 20 0.0000 21.2348 19.9943 7.6330 16.1047 8.3904 25.7940 7.6330 5.4378 0.1270 0.007
15× 5 0.0000 2.8318 2.1298 2.0413 6.0639 1.4715 5.0153 1.8876 1.0571 0.0006 0.0064
15× 10 0.0000 5.4673 4.2801 4.5909 10.2436 4.1900 12.2794 4.3187 3.0591 0.0144 0.0068
15× 15 0.0000 4.8215 3.4695 6.1755 13.5036 6.3630 17.9188 3.8728 2.8235 0.3206 0.0076
15× 20 0.0000 5.9754 4.6898 5.8526 13.3377 6.1640 21.8438 5.7325 4.3777 4.2169 0.0072
20× 5 0.0000 1.5720 1.1932 1.0334 4.0221 1.3050 6.3397 1.0422 0.5038 0.0009 0.0071
20× 10 0.0000 3.8852 3.4352 3.3044 6.2721 2.2270 9.2054 2.4254 1.5753 0.0907 0.0072
20× 15 0.0000 3.2943 2.3571 3.8404 8.2567 3.5420 14.0641 3.1864 1.9390 3.1844 0.0061
20× 20 0.0000 5.3966 4.7062 6.1786 9.8100 5.4109 18.6657 2.5146 2.4896 133.0693 0.0064

Aver. 0.0000 9.5569 8.0555 4.9871 18.2445 8.5051 16.1530 4.5922 3.0663 8.8156 0.0067
Std. Dev. 0.0000 8.6279 8.4277 2.6759 19.0732 8.4519 7.6570 2.6827 2.2019 33.1583 0.0005

Table 6: Constructive Heuristics for Small Size High Di�culty test bed

ARPD CPU Times

nA × nB B&B CH1 CH2 CH3 CH4 CH5 CH6 CH7 MIN4 B&B MIN4

5× 10 0.0000 21.8319 20.9624 4.0354 37.7012 22.8314 20.6174 4.0354 2.6322 0.0004 0.0069
5× 15 0.0000 27.3264 26.3915 8.3615 52.5849 21.8366 21.0223 8.3615 7.5119 0.0004 0.0067
5× 20 0.0000 32.3473 30.8796 8.0291 58.3927 33.3875 31.5060 8.0291 6.4734 0.0008 0.0067
5× 25 0.0000 31.8541 29.2141 12.2470 81.9308 36.2388 36.0655 12.2470 10.6151 0.0019 0.0065
5× 30 0.0000 33.7142 31.8267 11.4447 45.8394 33.7054 35.1947 11.4447 9.9047 0.0063 0.0067

10× 15 0.0000 5.7016 4.4005 5.2098 17.0224 9.1380 21.9361 5.2098 4.3259 0.0108 0.0072
10× 20 0.0000 16.2264 12.8269 12.0889 18.8685 11.0054 21.8328 12.0889 6.3250 0.1296 0.0064
10× 25 0.0000 23.1331 21.1691 8.1807 19.8593 13.8358 28.2659 8.1807 7.4113 0.6327 0.0073
10× 30 0.0000 30.8885 30.1709 12.2075 24.0247 16.2861 35.5662 12.2075 9.2334 2.4954 0.0073
15× 20 0.0000 6.9520 5.6825 8.3836 14.5568 10.2456 21.8648 8.3543 5.6605 4.1286 0.0069
15× 25 0.0000 10.1093 8.6825 8.7632 15.6656 11.2731 25.3717 8.7632 6.4082 41.7778 0.0072
15× 30 0.0000 20.6720 19.5952 6.8067 17.5758 10.6801 30.9389 6.8067 5.8180 29.4793 0.0075
20× 25 0.0000 7.7050 6.4602 9.2131 11.8188 8.5276 23.0170 8.7296 5.6773 1151.0255 0.0078
20× 30 0.0000 6.5043 4.8900 7.3538 12.0022 7.4508 26.6582 7.3538 4.8732 2488.0908 0.0082

Aver. 0.0000 19.6404 18.0823 8.7375 30.5602 17.6030 27.1327 8.7009 6.6336 265.5557 0.0071
Std. Dev. 0.0000 10.6885 10.6624 2.5483 21.4879 10.2269 5.7760 2.5449 2.1807 708.7810 0.0005
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Figure 13: Mean and LSD Intervals 95% for populationsize, pressure, pC , pmut and time

{30, 50, 70}, pressure ∈ {10, 30, 50}, pC ∈ {30, 50, 70}, pmut ∈ {1, 2, 3} and time ∈ {30, 60, 90},
and we have developed a Design of Experiments, using the SSMD test bed in order to obtain

the best combination of the parameters. The Analysis of Variance (ANOVA) applied to the

ARPD values obtained by the GAB_I reveals that only the parameters pressure and time have

statistical in�uence on the variable ARPD with 95% con�dence level. This result indicates that

the levels selected for the parameters popsize, pC and pmut do not greatly a�ect the ARPD.

Figure 13 shows the LSD intervals for the ARPD in order to determine the best value for each

parameter. For popsize, there are not signi�cant di�erences between 30 and 60, but these exist

between 60 and 90, being 60 the best option. There are signi�cant di�erences among all levels of

pressure, increasing the ARPD values as it grows from 10 to 50. The probability of crossing pC

and mutation pmut does not provide signi�cant di�erences among levels, but the lowest means

are obtained for pC = 70 and pmut = 2. Finally, the best option for parameter time is provided

by 60, since there are not signi�cant di�erences between 60 and 90. From the study, we conclude

that the best combination of parameters for the GA are popsize = 50, pressure = 10, pC = 70,

pmut = 2 and time = 60.

Once the calibration has been carried out, we compare GA with MIN4 (the combination of

the four best constructive heuristics), in order to determine its e�ciency for the high di�culty

test beds (SSHD and BSHD). We solve the instances using GA(P), GA(B) and GA(B)_I. Table

7 shows the results for the SSHD test bed. It can be observed that GA(B)_I provides the
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Table 7: Comparison of GA to MIN4 for Small Size High Di�culty test bed

ARPD
nA × nB MIN4 GA(P) GA(B) GA(B)_I

5× 10 2,6322 11,0456 0,0000 0,0000
5× 15 7,5119 14,0179 0,0000 0,0000
5× 20 6,4734 21,3967 0,0000 0,0000
5× 25 10,6151 25,3148 0,0000 0,0000
5× 30 9,9047 23,0635 0,0000 0,0000
10× 15 4,3259 14,7907 0,0000 0,0000
10× 20 6,3250 15,4136 0,1088 0,0959
10× 25 7,4113 17,3734 0,0000 0,0000
10× 30 9,2334 22,4824 0,0142 0,0000
15× 20 5,6605 12,1942 0,0055 0,0000
15× 25 6,4082 17,1291 0,0177 0,0000
15× 30 5,8180 24,1633 0,0287 0,0000
20× 25 5,6746 13,9534 0,0333 0,0000
20× 30 5,3589 19,3639 0,0292 0,0000

Aver. 6,6681 17,9788 0,0170 0,0068
Std. Dev. 2,1544 4,6662 0,0293 0,0256

best results for all instances (except one). The permutation codi�cation is not e�cient for this

problem, as the di�erence between GA(P) and GA(B) is notable. Regarding CPU times, we

have reported the same times provided in Table 6 for MIN4, together with the CPU times of all

versions of the GA, which have been stopped at n · 60/1000 seconds, with n = nA + nB. Finally,

Table 8 shows the results for the BSHD test bed, being GA(B)_I the best method. The relatively

good performance of the constructive heuristics can be noted as well, which con�rms that it may

be interesting to apply local search to improve the GA.

7 Conclusions

In this paper, we have addressed a single machine interfering jobs scheduling problem with objec-

tive total �owtime for two sets of jobs, denoted 1||ϵ(CA
sum/CB

sum). This problem is known to be

weakly NP-hard, and a Dynamic Programming algorithm exists to solve it. However, the compu-

tational performance of this algorithm was unknown, and, given the NP nature of the problem,

there were no methods to provide approximate solutions to the problem in short time intervals.

Taking into account a property of the problem, we propose a codi�cation scheme, called

binary encoding, which reduces the space of solutions of our problem as compared to the classical

permutation encoding. The distribution of solutions is analysed depending on the instance size

(nA and nB) and ϵ. We study the empirical hardness of the problem with respect to its feasibility

and quality of the solutions by analysing the percentage of feasible solutions and its relative

distances to the optimal solution respectively. As a result, the problem turns out to be harder (in

statistical terms) for large values of ϵ, and nA < nB. This analysis help us to derive conclusions

about the importance to provide properties for the neighbourhood structure (in terms of feasibility
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Table 8: Comparison of GA and MIN4 for Big Size High Di�culty test bed

ARPD
nA × nB MIN4 GA(P) GA(B) GA(B)_I

20× 20 0.0302 0.0848 0.0028 0.0000
20× 50 0.1655 0.1367 0.0339 0.0000
20× 80 0.1874 0.1393 0.0792 0.0000
50× 50 0.0265 0.0686 0.0024 0.0000
50× 80 0.1134 0.0854 0.0039 0.0000
50× 100 0.1426 0.1013 0.0410 0.0000
100× 100 0.0182 0.0700 0.0013 0.0000
100× 200 0.1391 0.1006 0.0540 0.0000
100× 500 0.2389 0.1393 0.0901 0.0000
200× 200 0.0192 0.0780 0.0023 0.0000
200× 500 0.1882 0.1040 0.0695 0.0000
500× 500 0.0151 0.1160 0.0056 0.0000

Aver. 0.1070 0.1020 0.0322 0.0000
Std. Dev. 0.0813 0.0261 0.0339 0.0000

and quality) to be embedded on heuristics. Moreover, the analysis also allows us to determine

the values of the parameters of the problem that make the instances to be easy or hard, in order

to generate appropriate test beds.

We have proposed both exact and approximate solution procedures using the binary cod-

i�cation and the aforementioned properties. Regarding exact procedure, a branch and bound

algorithm has been developed. Regarding approximate procedures, di�erent methods to improve

feasible schedules and repair infeasible schedules have been designed. These methods have been

embedded in seven constructive heuristics labelled CH1 to CH7. Finally, three versions of a

Genetic Algorithm have been developed. All of them follow the same phases without using so-

phisticated local search methods. GA(P) uses permutation encoding, GA(B) uses the binary

encoding, and GA(B)_I is a variation of GA(B) where the properties of the problem are applied

into two phases of the algorithm. The methods presented in this paper have been exhaustively

tested in di�erent test beds. The B&B solves small size instances more e�ciently than the ex-

isting DP method. The constructive heuristics presented provide approximate solutions almost

instantaneously for all instances. The best heuristics regarding the quality of the solutions (i.e.

CH3 and CH7) are shown to be robust for di�erent problem sizes. Regarding the versions of the

GAs, GA(B) (binary encoding) performs better than GA(P) (permutation encoding), showing

the importance of the encoding used. Moreover, embedding additional problem properties into

GA(B) produces an improved version �GA(B)_I � that outperforms the other versions.

A future research line could be to apply the binary encoding and its properties to similar prob-

lems, testing adapted versions of the methods presented, and designing local search procedures

based on the properties, since the good performance of some constructive heuristics indicates that

there is room for improving the results. Finally, the application of pseudo-polynomial approx-

imation algorithms based on the binary encoding can be very interesting to solve the problem,
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determining the dependency of the complexity of these algorithms with respect to parameter ϵ.
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