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Asynchronous Modular Arbiter

J. CALVO, J. I. ACHA, AND M. VALENCIA

Abstract -A practical N-user arbiter and its implementation are
presented in this correspondence. Because of the asynchronous character
of its input variables (request signals), the design proposed is asyn-
chronous and keeps in mind the possibility of metastable operations. The
structure of the arbiter is very simple and modular.
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Fig. 1. Signaling conventions for arbiters (not to scale).

Index Terms -Asynchronous arbiter, asynchronous logic design, con-
flict resolution, metastable operation, modular control logic.

I. INTRODUCTION
When in a digital system there are multiple processors operating

under the control of independent clocks, and they share the use of
a common resource, a circuit is necessary to arbitrate its use and to
resolve the conflicts that may occur. A valid solution to this problem
would be to design a control mechanism (N-user arbiter) that satis-
fies the following general conditions.

1) Only one processor may use the resource shared at any one
time.

2) Any request for using the common resource must be serviced
in a finite time.
An arbiter is not a sequential circuit operating in fundamental

mode. Because of the asynchronous character of its input variables
(request signals), they may change at arbitrary times, independent
of one another, and then it is necessary to define the proper operation
of the circuit under the unrestricted input change assumption [5].
Therefore, with reference to arbiters, the traditional design ap-
proaches are inadequate [1]. However, we think that these methods
can be used for designing some parts of the arbiter; normally, they
will make the design easier. On the other hand, it is necessary to bear
in mind the possibility of metastable operations in the arbiter's
memory elements. Although it is an inevitable problem [8], [9], the
designs must tend to diminish the probability of any anomalous
behavior, and if possible, such situations should not affect the out-
put signals of the arbiter.
The purpose of this correspondence is to present a design of a

simple and modular N-user asynchronous arbiter that takes into
account the metastable operation. The design is based on the expe-
rience of other earlier work [1]-[4]. However, we dedicate special
attention to design simplicity taking advantage of the power of
traditional design methods whenever possible. In Sections 1I-B and
II-C the modularity equations of the arbiter are given and a detailed
study of the control circuit timing is carried out, relating the com-
plexity of the control circuit and the number of processors that must
share the resource. Finally, in Section III we discuss the failure
probability of the arbiter due to metastable operations and estimate
this probability in a concrete realization of the arbiter.

II. THE ARBITER
Communication between each processor Pi, i = 1**, N, and

the arbiter takes place by means of two wires: the request wire ri and
the acknowledge wire ai. The processor Pi communicates that it
wants to use the common resource and sends a request signal by
switching its wire ri to' 1. The arbiter, according to its priority
scheme, will give permission to use the common resource to pro-
cessor Pi with an acknowledge signal by switching its wire ai to 1.
When the Pi has finished using the common resource, it resets its
request line (ri = 0), which causes the arbiter to reset the corre-
sponding acknowledge line (ai = 0). That is, we adopt the signaling
convention shown in Fig. 1 [1], and in agreement with condition 1),

aia1= 0, Vi,j, and i #j. (1)
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We propose a design scheme which is based on the following
rules.

a) The arbiter must have one module Mi for each processor Pi that
has access to the shared resource. Each module Mi will be made up
of a memory element to record the request and additional gates for
determining the processor Pi priority and for generating the ac-
knowledge signal.

b) The N-user arbiter will be realized by a linear array of N such
modules. The priority is determined by the order of the modules in
the array.

c) A signal CO controls the intervals of time where the request
signals must be recorded in the arbiter.

d) The signal CO will order a new recording (CO = 1) of request
signals only when all requests recorded in the last iteration are
serviced and the common resource can be used again.

e) The design must be asynchronous, simple, and must keep in
mind the possibility of metastable operations.

A. Memory Element
In agreement with the above rules, the state table, the transition

table, and the implementation of the memory element are shown in
Fig. 2. Notice that the memory element can record request ri = 1 to
use the common resource only if Co = 1. When Co = 0, if the
request was recorded (Qi = 1), the memory element will change
state when the request signal ri switches to 0. After this, where Co
is 0, the memory element will remain inhibited for any change of ri.

B. Priority Scheme
After each process of request storage, the arbiter initiates a new

iteration of acknowledgments to use the common resource from
among the processors Pi that had made the requests. The arbiter
will grant the use of the resource to the processor Pi iff the follow-
ing hold.

1) Its request was recorded (Qi = 1).
2) All processor Pj, with j < i, requests were serviced.
That is, Vi with 1 ' i ' N:

ai, Qi=bi- (2)
where

bi = Qi bi- 1 . (3)

If we include the necessary gates for realizing (2) and (3), the
module design Mi is shown in Fig. 3. Of course, for MI, b0 must
always be 1.
We must complete the arbiter design with the control circuit for

generating the signals C0 and I,. The function of the latter signal will
be shown later.

C. Control Circuit
In the N-user arbiter that we propose, the control signals C0 and

Ia are generated from the output bN of module MN. In agreement with
(3), the switch of signal bN to 1 indicates that all requests have been
serviced. From this moment the arbiter must initiate a new iteration
and record the new requests to use the common resource. For the
sake of discussion, the design of the control circuit is represented in
Fig. 4, and its significant signals are shown in Fig. 5.

Supposing that all gates used in the design have the same delay
Atg, the pulse bN duration Atb has a minimum value equivalent to
the delay of five gates (5Atg). This minimum value would corre-

0018-9340/86/0100-0067$01.00 C 1986 IEEE

67



IEEE TRANSACTIONS ON COMPUTERS, VOL. c-35, NO. 1, JANUARY 1986

A
a)

B

Qi
0

b)
1

c)

r.C
1 0

00 01 11 10

0,0 1E,O IB I1 '9o1LA O AA ° |,(
00 01 11 10

(D,o (D,°-1 , 1

o.'o o,'o X,1 1,1

qi = r.iC + riQi

*Q.

*Qi

Fig. 2. Memory element of the module Mi. (a) State table. (b) Transition
table. (c) Circuit.

The purpose of the delay At, is to avoid runt pulses (see f3 + bN
in Fig. 5), in the signals C0 and I,, which could cause metastable
operations in some memory element. Logically, its value must be
smaller than the minimum value of A tb and larger than the propaga-
tion delay of monostable Atdm, i.e.,

Atdm < At, < 5Atg . (5)

For typical values of Atg and A tdm of gates and monostables with
the same technology [6], a simple solution for At, could be two or
four inverters in cascade connection.
The signal Ia is obtained from the NOR operation of signals C0 and

Cl where Cl is CO delayed an interval At2. The function of la is to
inhibit the outputs ai where I, is 0. The purpose of the delay At2
is dual:

1) to inhibit the outputs ai of possible metastable operations
caused in some memory element because of the simultaneity be-
tween the negative-going edge of the pulse in the signal C0 and the
switching to 1 of some signal rj;

2) to guarantee that all signals in the modules are stable before
the arbiter grants the initial use of the resource to a processor, in
accordance with the priority scheme.

Let us assume the situation indicated in (4) and C0 = 1, when the
processor Pk requests (rk = 1) the use of the common resource at
time to. If we designate t, as the time in which all signals in the
modules Mk through Mi,1 are stable again, the value of t, - to
would be

t, - to = 3Atg +

Fig. 3. Module Mi of the arbiter.
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Fig. 4. The arbiter's control circuit.
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B bsmAtb + atm

t C.P co tb ^m dm )
I I

(i - k) Atg if k < i

0 if k>i
(6)

where the first term on the right side of (6) represents the time
interval for the transition from stable state (Qk = 0, rkC,, = 01) to
stable state (Qk = 1, rkC,, = 11) of the memory element in the
module Mk, and the second term represents the time spent on the
transmission of logical value 0 from bk to bi-,. According to (4),
when k > i, this second term is zero.
To determine At2, we must select the worst case, which occurs

when i = N and k = 1 in (6) and, because of the request of P1, the
module M1 is in the situation indicated in point 1) above. Then, At2
must be

At2 > 3Atg + (N - l)Atg = (N + 2)Atg.
That is,

At2 = (N + 2) Atg + At

(7)

(8)
where the term At must cover the duration of the metastable
operation. Logically, as we will discuss in Section III, the larger At
is, the smaller the probability that some output ai will show a
possible metastable operation.
On the other hand, in agreement with the function of I,,, it is

obvious (see Fig. 5) that the delay At2 must be smaller than the
minimum pulse duration in the signal C, (AteC)

A t2 < AtCo min . (9)

cl- 1. At2-4
I _1t

Ia
g

I
_l- At2+ Atg):

Fig. 5. Signals in the control circuit.

spond to the situation in which processor PN had requested the use
of the resource. The greatest value of A tb is not bounded because in
a situation with all ri = 0, all ai = 0 and bN = 1, the arbiter would
be waiting for some processor to request the use of the resource.
The monostable is triggered by the negative-going edge of the

pulse in the signal bN. This means that at least one request ri = 1 has
been recorded and

bj= 0, Vj_ i.

The last expression suggests to us some simplifications (which
reduce the circuit cost) of the control circuit that we have proposed.
The utility of these simplifications will depend on the number N of
processors and the particular characteristics of the resource shared.
We discuss three solutions.

Solution 1: We eliminate the monostable and.the delay At,. No-
tice that, in this case, the gate OR in Fig. 4 is not necessary. Then,

Co - bN, AtCo I min = Atb min = 4Atg

From (8) and (9),

4Atg > At2 = (N + 2)Atg + At. (10)

Obviously, N must be smaller than 2, and then this solution is not
(4) valid.
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Solution 2: We eliminate only the monostable.
Supposing that At, = 4Atg,

AtCo min = (Atb + Atl) min = 9Atg I

From (8) and (9),

9Atg > At2 = (N + 2) Atg + At.

This solution is valid, but the numberN of processors is determined
by the estimated value for At. In any case, N < 7.

Solution 3: Design of Fig. 4.
For each value of Atm,

AtCo min =A tb min + Atm+ A tdm = 5Atg + Atm +A tdm

with

A tm + Atdm > 4Atg . (12)

From (8) and (9),

5Atg + Atm + Atdm > At2 = (N + 2) Atg + At. (13)

It is evident from the last two expressions that the monostable output
pulse is necessary whenever N ' 7. Taking into account the fixed
values ofN and At, the value of Atm must be chosen in agreement
with (13). Then, this solution is valid in all cases.

III. DISCUSSION OF THE METASTABLE OPERATION
In each module M, the core of the memory element is a simple

R-S flip-flop constructed by cross-tying two NAND gates. With
relation to metastable operation, numerous studies and experi-
mentation have been carried out on this device [10]-[14]. For our

purpose, we wish emphasize the works of Chaney and collaborators
[15], [17]; they have provided abundant experimental data for a

good number of bistable devices, relating the temporal character-
istics of input signals and some parameters of the devices with
probabilistic measures of metastable operation.

For the sake of discussion, we will designate event A as being the
negative-going edge of the pulse in signal C0 and event B as being
the switching to 1 of the signal ri. In the arbiter that we propose, the
metastable operation in some memory element can only be caused
by the simultaneity between events A and B, that is, by the transi-
tion riCG: 01 -- 10 in the state table of Fig. 2. This situation is
shown schematically in Fig. 6.
We define the resolution time of the memory element as the time

it takes to produce logically defined and stable outputs, after the
time of ocurrence of its excitation. In good behavior conditions this
resolution time will be the normal propagation delay time (D), which
we have estimated as 3A tg . When the device is in a metastable state,
its resolution time is nondeterministic.

In agreement with [15], [16], a characteristic of the memory ele-
ment is a time interval [tl, t2], termed glitch window, whose location
and width ( = t2- tl) are defined with respect to event A. If the
relative delay td between events A and B is within this interval
(td E [tl, t2j), the memory element will be set in a metastable state
where t1 is small enough so that the memory always records the
request to use the common resource within its specified propagation
delay time, and t2 is sufficiently large so that event B is never

recognized.
Assuming that event A occurs at time t = 0 and that the proba-

bility density functionf(td) is uniform over the interval 8, that is,

r0 if tl > tdor td > t2

f(td)= I
i f t 1 _ td _- t2

(14)

we can define F(At) as the probability that the resolution time
exceeds At. Hurtado [7] has shown that for At > ; this probability
can be approximated by

Fig. 6. The simultaneity between events A and B can cause

metastable operations.

At(ns)

TABLE I

F(At) F I
One failure every

30 2.8 106 34 seconds
40 1.1 io08 2.5 hours

50 4.3 10 11 27 days

60 1.6 10 13 19 years
70 6.4 10- 4982 years

F(At) = __e with At > ; (15)

where the parameters T0, 8, and T are characteristic to each bistable
device.

As an example, we wish to estimate F(At) and its variation for a

particular realization of the R-S flip-flop constructed by cross-tying
two NAND gates of chips 74S00 [TTL(S)]. From the data supplied
by Chaney [17], for this realization t = 1.8 ns, To = 1 s, and
= 17 ns.

Although the value is not available to us, we can use 20 ns as

a pessimistic estimation for it. If we assume further that the average

number of arbiter iterations (the average times that event A occurs)
is 104 times per second, we can calculate the expected failure inter-
val Fl. Table I takes in these results.
We wish to point out that the development carried out in this

Section is based on one memory element only. Therefore, the esti-
mated values for F(At) do not correspond to the failure probability,
due to metastable situations in an arbiter withN modules. However,
they represent a very good approximation. Take into account that
during intervals of requests recording, the modules are statistically
independent. The worst case occurs when the first module in the
array goes into metastable operation. Otherwise, in agreement with
(8), the memory element will have a time interval greater than the
fixed value of At, in order to resolve its metastable situation. More-
over, if the module in the anomalous situation does not have the
highest priority in the iteration, the above time interval will be
increased by the time the processors, with higher priority, take to
use the resource.

IV. CONCLUSIONS
The arbiter described in this correspondence uses a request-

acknowledge signaling convention presented by Plummer. The ar-
biter operates by iterations, each of which begins with a process of
request storage. After that, in accordance with a priority scheme for
a linear selection, the arbiter initiates a process of acknowledgments
to use the common resource from among the processors Pi that have
made the requests. Only when all requests have been serviced will
a new iteration begin. In this asynchronous and modular design, two
characteristics have been pursued: simplicity of design and the in-
tent to reduce the problems related to possible metastable situations.
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several papers [2], [3]. It has been shown that the deductive method
is faster than the parallel method for most circuits.
The deductive method, introduced by Armstrong [4], considers

each gate in the circuit, and by analyzing the faults that cause
incorrect signals at gate inputs, deduces a list of faults that would
cause an incorrect signal at the gate output. By processing all the
gates in this manner a list of faults causing incorrect signal values
at the circuit outputs can be calculated in one simulation pass.
Deductive simulation involves set operations (union, inter-

section) on fault lists. It is shown in this paper that list operations
on fault lists can be greatly simplified by taking into consideration
the structural properties of the modules. A method for the deductive
simulation of inverter-free circuits is presented in the following
section. It is shown that fault list calculations are greatly simplified
compared to the conventional deductive simulation. Results of
Section II are applied to the deductive simulation of programmable
logic array (PLA) faults in Section III. A two-valued simulation
is considered. The single-fault assumption is made throughout
the discussions.

II. GATE LEVEL DEDUCTIVE SIMULATION OF
INVERTER-FREE CIRCUITS

Set operations performed for calculating the fault lists of each
gate in deductive simulation take a considerable amount of com-
putation time. The type of set operations performed on the fault lists
of gate inputs depends on the gate input and output values. For
example, for an n-input AND gate with output value 1 and input fault
lists LI, L2,.*. , Ln, the output fault list Lout is calculated as

n

Lout = U Li.
i=l

(1)

If the output of the AND gate is 0, then Lout is calculated using the
following equation:

Lout= (L)n(U )

Deductive Fault Simulation of Internal Faults of Inverter-Free
Circuits and Programmable Logic Arrays

FUSUN OZGUNER

Abstract -A method for the deductive fault simulation of faults in
inverter-free circuits is presented. It is shown that in an inverter-free
circuit, fault lists on lines with complementary logic values are disjoint,
and fault list calculations can be done by performing fewer set operations
compared to conventional gate level deductive simulation. Applications of
the method to programmable logic arrays (PLA's) and deductive fault
simulation of PLA faults are discussed.

Index Terms Deductive simulation, fault simulation, inverter-free cir-
cuits, programmable logic arrays.

I. INTRODUCTION
Fault simulation is becoming an increasingly important part of

fault diagnosis of digital systems as the circuits become larger and
test generation becomes time consuming and expensive. Several
effective algorithms for the simulation of stuck-type faults exist in
the literature, i.e., parallel, deductive, and concurrent simulation
[1], [4]-[6]. Fault simulation algorithms have been compared in
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L° fault list of jth input with value 0,
Lk .fault list of kth input with value 1.

In each case, the faults of the gate which would affect its output are

added to its output fault list.
If the circuit, however, is inverter free, then simpler expressions

can be used to calculate fault lists of gates as shown by the following
theorem.
Theorem 1: In an inverter-free circuit, internal stuck fault lists of

lines with complementary logic values are disjoint.
Proof: The proof follows from the fact that an s-a-0 (s-a- 1)

fault can only cause erroneous 0's (1 's) at gate inputs and outputs on
paths from the fault site to the circuit outputs. The fault list of a line
with value 1(0) consists of faults that would change it to a 0(1), and
in this case these could only be s-a-0 (s-a-1) faults. Therefore, the
same fault could not appear on the fault lists of lines with com-

plementary logic values.
Q.E.D.

This means that in fault simulation of an inverter-free circuit by
the deductive method, the same fault could not appear on the fault
lists of inputs to the same gate with different logic values, and this
leads to a simplification of operations performed for the calculations
of the gate output fault lists.

In the conventional deductive simulation algorithm, the output
fault list Lout of an AND gate with output value 0 in the fault-free
circuit is calculated using (2), which can be written as

Lo., LO nLOn ... nL9n ... nL1 n ... nLIn ... (3)
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(2)
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