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Understanding low energy reaction with exotic nuclei
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Abstract. Recent developments on the understanding of low energy reactions are highlighted. Emphasis is given to the
CDCC framework where the breakup channels of the projectileare included explicitly. Properties of the breakup couplings
are presented. Comments are given with regard to the separation between the nuclear and the Coulomb contributions to
breakup cross sections as well as the dependence on the optical potentials. A discussion on the sensitivity of the CDCC
basis is discussed, by comparing pure breakup results with transfer to the continuum calculations. Finally, some remaining
controversies show the need to go beyond the single particlepicture for the projectile.

INTRODUCTION

Light nuclei on the driplines can be studied through a variety of reactions. Models for nuclear reactions have been
developed in recent years to incorporate the exotic features of these dripline nuclei [1]. They include the effects of the
long tails of the wavefunctions, the correct asymptotics, and the proximity of the ground state to threshold. Whereas
in the high energy regime many approximations are appropriate, the real challenge for reaction theory lies in the low
energy regime where most approximations are not valid.

It is in the low energy region (5-50 MeV/A) that observables become much more sensitive to the detailed structure
of the projectile and where more can be learnt. It is also at low energy where there is a larger sensitivity to the details
of the interaction with the target and where more care needs to be taken in modelling the reaction.

We consider dripline nuclei of two body nature, meaning thatthe projectile can be decomposed into a core and a
valence nucleon. Then, the study of the reaction consists ofa three body scattering problem. Due to the loosely bound
nature of the projectile, three body effects need to be carefully considered in the lower energy regime. The exact
way to formulate this problem would be to use Integral Faddeev Equations. However, due to technical problems the
Continuum Discretized Coupled Channel Method (CDCC) [2] isthe best working alternative. In CDCC, the continuum
couplings are included to all orders and nuclear and Coulombare treated consistently.

The work here presented is based on the CDCC framework. We first present the properties of the couplings in
breakup reactions, in particular continuum-continuum couplings. Second we emphasize the difficulty in separating
nuclear from Coulomb contributions and finally we discuss the choice of the Jacobi coordinates to represent the CDCC
basis. Finally we make some comments on lingering controversies calling for better description of the projectile.

COUPLINGS IN THE CONTINUUM

The proximity to the breakup threshold has been shown to haveimportant effects in the reaction mechanism [3].
Continuum couplings are a way of looking into the effect of the final state interactions, an integral part of CDCC.
They consist of the sum of the core-target interaction with the fragment-target interaction (both Coulomb and nuclear),
averaged over an initial and a final bin wavefunction. A bin wavefunction is essentially a scattering wavefunction
describing the two body continuum of the projectile, but averaged over a finite energy segment [3].

The properties of these continuum couplings and the influence they can have on breakup observables were addressed
in detail [4]. The couplings considered are those involved in the breakup of8B into 7Be+p when impinging on a58Ni
target at 25.8 MeV [3]. Continuum couplings are most important when the initial and final state energies (Ei and
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FIGURE 1. Contour plot of the continuum continuum potential couplings of an l=0 transition between two s-waves as a function
of the initial and final energies.(color)
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FIGURE 2. Contour plot of the continuum continuum potential couplings of an l=2 transition between an initial s-waves with
energyEi and a final d-wave with energyE f .(color)

E f ) are close to each other. The energy here referred to are the relative energy of the projectile in the breakup state
7Be+p. If the initial and final states have the same centrifugal barrier and the transition is a monopole transition,
then the couplings are only non-zero when the initial and final energies match. This corresponds to the condition of
orthonormality between bin states. The orthogonality condition is illustrated very clearly in Fig. 1 where a contour
plot of the coupling potentials is shown for initial and finals-wave bins. As the difference in the centrifugal barrier
and the order of the transition increases, one obtains a wider regionEi −∆ < E f < Ei +∆ where contributions are
significant. In Fig. 2 we show a contour plot for an initial d-wave with energyEd to a final s-wave with energyEs

(reverse coupling are equivalent). It is clear the formation of ridges parallel to theEi = E f line. These couplings are
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FIGURE 3. Sensitivity to optical potentials for the breakup of7Be on C (left) and Pb (right).

attractive forEd < Es and repulsive forEd > Es.
The fact that continuum couplings are only relevant around acertain region of the energy space offers a hint to

optimize the calculations. We have performed tests for a couple of examples, namely the above mentioned example,
the8B on Ni experiment from Notre Dame [5], and another case to be discussed in the next section, the7Be breakup
on Pb experiment from Michigan State University [6]. In bothcases we found up to 30% time gain for the calculations
where only the lower l=0,1,2 projectile partial waves were included. For the larger calculations where l=3 is also
included (necessary for complete convergence) the order ofsome transitions become too large to justify a truncation
along theEi = E f line. Unfortunately, in our typical calculations, it is exactly the larger partial waves (l>2) that make
the calculations very large and increase running time dramatically. It is expected that this optimization will be more
helpful when including core degrees of freedom as then even for the lower partial waves due to an order of magnitude
increase in the number of channels [7].

SEPARATION BETWEEN NUCLEAR AND COULOMB

Historically, there has always been the underlying assumption that, by appropriately choosing the experimental
conditions, Coulomb effects can be isolated from nuclear effects. Especially when breakup reactions are used to
extract Astrophysical information, such as radiative capture rates, this separation is crucial [8]. In [6] breakup of7Be
on a heavy and a light target is considered, motivated by recent experimental plans. The breakup reaction on Pb would
be Coulomb dominated and would allow to extract informationon the astrophysical factorS34, whereas the experiment
on the carbon target would be driven by nuclear effects and would provide an asymptotic normalization coefficient for
theα+3He system, again linking back to the astrophysical capture reaction at zero energy.

Results of CDCC calculations from [6], include the continuum of 7Be to all orders. The most important conclusion
of that work is that a simple angular selection of the so-called Coulomb Dissociation is not sufficient to guarantee that
the data is nuclear free. Identically, for the lighter target, the data is always contaminated by a Coulomb contribution.
Also, for the carbon case, coupling effects were in general non negligible for the center of mass forward angular
region. The work in [6] shows that only careful massaging of the data, i.e. specific three-body kinematic selections,
may recover the purity that is desired for Astrophysical problems.

It is common understanding that optical potentials can produce large uncertainties and there is a preoccupation in
either keeping nuclear contributions small or choosing reaction regimes where there is less sensitivity to the detailsof
the optical potentials. From the two cases studied in [6] oneexpects that the carbon case will show a larger dependence
given that it has a larger nuclear component when compared toit Coulomb component. For illustration purposes we
concentrate on theα-target interaction. We have compared the results when using a shallow [9] or a deep potential
fit [10] for the α−

12C and find a minor effect (see Fig.3 left). For the heavier target there is a weak dependence on
the optical potential and the only issue arising has to do with the fact that optical potentials are not available at the
correct energy. We show the sensitivity to the energy choicein Fig. 3. The differential cross section is plotted for the
case where theα-208Pb potential is taken directly from the literature [11] at the nearest available energy and compare
to the results when an interpolation of the potentials is made to the correct energy. As can be seen the dependence is
very small. These results suggest that, when the scatteringof the fragments is well understood, the optical potentials
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FIGURE 4. Each Faddeev component is written in its corresponding Jacobi coordinate system.

themselves do not introduce significant ambiguities in the analysis.

COMPARING CDCC BASES

A variety of breakup models are presently in use and, when twodifferent models are applied to the same problem,
there is often a disparity in the predictions. In this sense,a generalized effort to bridge the various approaches is
very much needed. One of the important issues lies in the choice of the coordinate representation of the continuum
wavefunctions. As mentioned in the introduction, the problem of a two-body projectile impinging on a target consists
of a three-body problem of which an exact solution would be obtained by solving the Integral Faddeev Equations.
Then, the wavefunction would contain components in the three Jacobi coordinates represented in Fig. 4. Due to
the complexity of this task, the CDCC method was derived [12]. However, the CDCC method already imposes a
preferential representation of the continuum, namely thatof the projectile (coordinate set (1) in Fig. 4). If there are
important resonant states in the target-fragment subsystem, the Jacobi coordinate set (2) in Fig. 4 would become more
appropriate and the representation in terms of coordinates(1) would probably be very difficult.

The standard CDCC breakup uses coordinates (1) and the couplings are single particle excitations of the projectile
into the continuum (referred to as BU). These are illustrated in Fig. 5 left. where the projectile A is excited into
A∗ = c + x through the interaction with the target T. Alternatively, one can imagine that the projectile transfers
its valence particle x into the continuum of the target (referred to as TR*). CDCC would be then applicable to
the continuum of the T+x system and thus be associated with a final state interaction. In that situation the relevant
coordinates would be (2) and the couplings would be transfercouplings such as those represented in Fig. 5(right).
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FIGURE 5. Breakup couplings for a two body projectile (c+x) impingingon a target T (on the left) and corresponding transfer
to the continuum couplings (on the right).
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FIGURE 6. Angular distribution for the7Be after8B breakup: comparison between the standard breakup calculation and the
transfer to the continuum.

Previous work shows that both methods may hold different results. For example, the analysis of the8B breakup [3]
was performed within the standard CDCC approach whereas the8Li data measured in the same energy regime could
only be explained when using transfer to the continuum [13].We have performed a comparative study between the
standard CDCC breakup approach and the so called transfer tothe continuum [15]. As a testing case we start with
the8B breakup which is well understood within the standard approach. Detailed data exists for8B→7Be+p on 58Ni
at 25.6 MeV [5]. Calculations using the standard CDCC to breakup (BU) 8B+58Ni → (7Be+p)+58Ni have provided
very good agreement with experiment [3, 14]. One can think ofthe alternative path to breakup, as transfer to the
continuum (TR*) of the59Cu, i.e.8B+58Ni →7Be+(p+58Ni). The results for the angular distributions of7Be are
shown in Fig. 6. BU calculations are fully converged and provide a pronounced Coulomb peak around 10-20 degrees.
This same peak is not well reproduced with the TR* approach. In fact, the convergence rate of the TR* calculation
is very slow and the calculations are much larger than BU, dueto the nature of the non-local transfer kernels. The
breakup of8B on 58Ni at 25.8 MeV is a good example where the BU configuration works much better than the TR*
configuration.

General guidelines as to the conditions for choosing the standard breakup approach or the transfer to the continuum
approach are under study. It seems clear that for the standard breakup approach to be valid, the average relative energy
for c+x during the reaction should be small as well as the average relative angular momentum for c+x. Identically
if the transfer to the continuum is to be applicable, the average excitation energy for t+x should be small as well as
the average relative angular momentum for t+x. However the situation is not always clear. There are also issues on
the choice of certain interactions that play a different role in the transfer process from the breakup process. A more
detailed discussion on these and other issues will soon become available [15].

REMAINING CONTROVERSIES

As breakup states are an essential path in reactions with loosely bound projectiles, only reaction models that include
the continuum have been successful in describing measurements for nuclei on the driplines.

There are some puzzling problems which can well correspond to cases where a single particle description is less
appropriate. Note that, in the reaction models we have discussed, the ground state of the projectile is taken to be a
single particle state of unit spectroscopic factor produced by a simple Woods-Saxon and spin-orbit interaction with
standard geometries with a depth fitted to the correct binding energy of thec+ x system. The continuum is produced
with that same interaction to ensure orthogonality. Below,we briefly discuss three different puzzles, the first related
to breakup experiments of8B, the second related to inelastic process with11Be and the last associated with knock-out
measurements for16C. They serve as an illustration of the need to go beyond the models so far developed.

There have been several8B breakup experiments performed at different facilities toprovide the needed information
for S17. Using our best understanding of the reaction mechanism, and assuming the projectile can be represented by
7Be(inert)+p, the Notre Dame data and the NSCL/MSU data show a 60% inconsistency in the quadrupole excitation



strength. This is an extremely severe problem from the pointof few of the direct capture cross section [16]. In
juxtaposition, accurate measurements have shown that7Be first excited state contributes to the ground state of8B
[17].

GANIL data of10,11Be(p,p’) inelastic scattering have remained unpublished for the last five years as we have been
unable to understand the process [18]. Due to the proximity to the continuum, there is a large contribution of breakup
10Be+n states to the inelastic cross section. Presently, thiscan only be modelled within an inert few-body model. It was
not possible within this model to understand10Be data and the11Be simultaneously. Identical conclusions were found
in MSU data [19]. It is well known that10Be first excited state contributes to the11Be ground state [20, 21]. A number
of preliminary tests have been performed [22] and suggest that excitation of10Be is very important for11Be(p,p’) in
particular in the breakup channels. However, within the current model, a definite conclusion is yet to be drawn [22].

The analysis [23] of knockout data to extract spectroscopicfactors for16C proved to be extremely difficult. The
same reaction model that had been so successful in a number ofcases did not provide very good agreement with
the data. Efforts to check the relevance of core excitation in reaction models [24, 25], by treating it statically were
also unfruitful. In those models the core excited componentis kept constant throughout the reaction process. This
approximation does not seem adequate, especially in cases where the couplings to core excited states are strong.

Although much progress has been made in the last decade concerning scattering and breakup reaction theory, core
degrees of freedom in the continuum has not been studied. Thesignificance of the structure dynamics on reaction
observables can be very large (see for instance [26]) and it is fundamental to address this problem as soon as possible.
Given that there are large core excited configurations in many dripline nuclei, one can expect an impact on many of
the reaction observables. Work on the dynamic treatment of core excitation in the continuum is underway [7].
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