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Abstract

The ground state and spectral properties of Bose gases in double-well potentials are studied

in two different scenarios: i) an interacting atomic Bose gas, and ii) a mixture of an atomic

gas interacting with diatomic molecules. A ground state second-order quantum phase transition

(QPT) is observed in both scenarios. For large attractive values of the atom-atom interaction, the

ground-state is degenerate. For repulsive and small attractive interaction, the ground-state is not

degenerate and is well approximated by a boson coherent state. Both systems depict an excited

state quantum phase transition (ESQPT). In both cases, a critical energy separates a region in

which all the energy levels are degenerate in pairs, from another region in which there are no

degeneracies. For the atomic system, the critical point displays a singularity in the density of

states, whereas this behavior is largely smoothed for the mixed atom-molecule system.
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I. INTRODUCTION

Bose-Einstein condensation in dilute atomic gases provides a valuable tool to study fun-

damental problems of quantum systems at a macroscopic scale. Among such phenomena, the

quantum transition from Josephson oscillations to self-trapping is one of the most interest-

ing. It comprises the transition from a regime in which two spatially separated Bose-Einstein

condensates (BEC) oscillate, to another one in which the macroscopic wave function remains

trapped in one of the two trap sides. This transition has been experimentally observed in

[1] by means of a condensate of 87Rb atoms in an optical trap. It has also been theoretically

studied in Refs. [2–4]. Using a two-site Bose-Hubbard Hamiltonian as a description of two

BECs that can tunnel between the two wells, it has been shown that the quantum phase

transition (QPT) develops at a critical value of the atom-atom interaction. The imbalance,

that is, the difference of population between the two wells, acts as an order parameter for

the transition, changing from zero in the Josephson oscillation regime to a non-zero value

in the self-trapping regime.

This is an example of QPT which has been studied in other systems. In [5], the same

kind of transition was reported in a non-linear version of the same system, and it was related

to a classical bifurcation in the Hamiltonian. In [6], a similar bifurcation was linked to a

transition from zero to non-zero values in the imbalance.

In this work, we expand these studies by focusing not only in the ground state QPT, but

also looking at quantum critical phenomena in the energy spectrum. In particular, we will

describe the so called excited-state quantum phase transitions (ESQPTs). These occur when

some kind of non-analytic behavior [7] arise in an excited region of the energy spectrum,

normally a singularity in the density of states or in the flow of the energy spectrum through

the critical energy line. In contrast to usual quantum phase transitions [8], they are not

characterized by a critical value of the control parameter λc, but by a critical energy Ec

above the ground state, at which the non-analyticity takes place. Usually, ESQPTs are

linked to QPTs; below the critical parameter λc no transition appears, while above λc the

non-analytic behavior characteristic of the QPT propagates to a certain critical excitation

energy Ec. However, in some cases an ESQPT occurs without the corresponding QPT.

As a paradigmatic example, we mention the realization of the Lipkin-Meshkov-Glick model

studied in [6].
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ESQPTs entail dramatic dynamic consequences, like the enhancement of the decoherence

if the ESQPT takes place in the environment with which a quantum system interacts [9], the

onset of chaos [10] or the emergence of symmetry-breaking equilibrium states after a quench

[11]. They appear in models pertaining to different branches of Physics, like the interacting

boson model (IBM) [12, 13], Lipkin-Meshkov-Glick model [14], vibron model [15], Dicke

and Jaynes-Cummings models [10, 16, 17], kicked top [18] and microwave Dirac billiards

[19]. It is worth mentioning that, despite the fact that the excitation energy is linked to the

temperature of an isolated system, ESQPTs are qualitatively different from thermal phase

transitions. The existence of a critical energy does not necessarily entail a corresponding

critical temperature. For example, the Dicke model restricted to the maximum angular

momentum sector displays an ESQPT, but has no thermal phase transition [20].

In order to investigate these issues, we treat two related systems. The first consists of an

atomic Bose gas trapped in a two-well potential, and the second incorporates the interaction

of the atoms with a diatomic molecule. Mixed condensates of atoms and molecules have

been experimentally realized by means of the manipulation of a Feshbach resonance [21–23].

Mixtures of atoms and molecules in double-well potentials have been studied previously in

[24]. In [25] a similar system was used to model the atom-atom interaction by means of a

Feshbach resonance.

The organization of the paper is as follows. We introduce the two models in Sect. II.

In Sect. III and Sect. IV the ground state quantum phase transitions are investigated

numerically as well as analytically for both models; first, within a mean field approach, for

which we later incorporate fluctuations. Sect. V is devoted to analyze ESQPTs in both

models. Finally, in Sect. VI the main conclusions of this work are summarized.

II. THE MODELS

We shall study a bosonic atom gas confined in a double-well potential as a model of a

bosonic Josephson junction [26]. It has been recently shown that a restriction to the lowest

two modes is a valid approximation for a wide range of the bosonic interaction [4]. In this

limit, the model reduces to the two-site Bose-Hubbard Hamiltonian. Each site represents

the lowest mode of the right and left wells, respectively,

H1 = −J
(
a†LaR + a†RaL

)
+

U

N

(
a†La

†
LaLaL + a†Ra

†
RaRaR

)
, (1)
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where the a†k and ak (k = L, R for left and right wells) operators are the atom creation and

annihilation operators in each well and obey the usual boson commutation rules, N is the

total number of atoms, J is the hopping strength, and U is atomic interaction. Note that the

scaling factor 1/N in front of the atomic interaction is needed to ensure that the energy per

particle E/N is well-defined in the thermodynamic limit. The static and dynamic properties

of the Hamiltonian (1) have been extensively studied in recent years [27–30]. Moreover, it

has been shown that (1) is a quantum integrable model and a particular limit of Richardson-

Gaudin bosonic families [31–33].

In addition to (1), we will consider here an extension of the two-site Hubbard model

by the explicit inclusion of an interacting diatomic molecule. The resulting two-channel

Hamiltonian is:

H2 = −J
(
a†LaR + a†RaL

)
+

U

N

(
a†La

†
LaLaL + a†Ra

†
RaRaR

)

+ ωb†b− g√
2N

[
b† (aLaL + aRaR) +

(
a†La

†
L + a†Ra

†
R

)
b
]
, (2)

where N is the total number of atoms plus twice the number of molecules, N = 2b†b +(
a†LaL + a†RaR

)
, and b†(b) creates (annihilates) a molecule. The operators b and b† follow

the usual bosonic commutation rules. Because of the shape of the atom-molecule interaction

(two atoms are destroyed to create a molecule, and viceversa) they represent a dimeric entity,

giving rise to the previously written conservation of the total number of particles N . The

frequency ω represents the self-energy of the molecule. When it goes to zero, the Hamiltonian

(2) describes a Feshbach resonance interacting with the atomic cloud. In what follows we will

use the hopping term J as the energy unit. This Hamiltonian is in general non-integrable.

However, as a function of the interaction parameters ω, U , and g it has two integrable limits

which will allow us to explore the transition from regularity to chaos. As in the previous

case, the scaling factors 1/N and 1/
√
N in front of the atom-atom and the atom-molecule

interaction ensure that the energy per particle is well-defined in the thermodynamic limit.

For both Hamiltonians, (1) and (2), N is a conserved quantity. They also conserve a kind

of parity, related to the interchange between atoms in left and right wells.

In connection with this symmetry, it is worth mentioning that the population imbalance

operator that counts the difference between the number of atoms in the left and right wells

Î = a†RaR − a†LaL, (3)
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does not commute with the parity operator. Therefore, its expectation value is zero in any

common eigenstate of the Hamiltonian and the parity operator.

III. PHASE DIAGRAM

In this section we analyze and compare the ground-state phase diagram of both models,

the double well with and without the interaction with the diatomic molecule. In order to

carry out this comparison, we select the atomic interaction U that is common to both models

as the control parameter, and keep fixed ω and g. As it will be seen below, the ground state

of one of the phases is doubly degenerate due to spontaneous symmetry-breaking. Thus,

the population imbalance is a good candidate of order parameter for this transition. In fact,

it has been used in [4] to characterize the macroscopic self-trapping in the two-site Bose-

Hubbard model. However, it is not possible to rely directly on the population imbalance to

study numerically this transition, because both Hamiltonians, (1) and (2), have a well defined

parity and, therefore, the imbalance expectation value is zero in any of their eigenstates. One

possible solution is to introduce a small symmetry-breaking term to break the degeneracies,

as it has been done in [4]. In this work we do not follow this way; we will use, instead, a

new order parameter derived from a quantum version of the Fisher information, defined as

[34]

FQFI =
〈
(n̂R − n̂L)

2〉− (〈n̂R − n̂L〉)2 . (4)

For eigenstates with well-defined parities, this expression reduces to:

FQFI =
〈
(n̂R − n̂L)

2〉 . (5)

Therefore, to obtain a quantity proportional to the number of left or right-well atoms, we

will use
√

FQFI as the order parameter of the transition. As it will be seen below, this

magnitude behaves in the same way as the population imbalance in the exact solution of

both Hamiltonians.

A. Mean-field approximation

The mean-field or semi-classical approximation is expected to provide accurate results

for this kind of two-level systems in the large N limit. In fact, it has been shown that the

5



ground state energy in this approximation is exact to leading order in N [35]. The great

advantage of this approach is that it can be solved analytically. We use boson coherent

states as variational wavefunctions to model the ground state of both Hamiltonians. The

corresponding wavefunctions are:

|Ψ1〉 = e
√
N(γRa†R+γLa

†
L)|0〉, (6)

for the case without molecule, and

|Ψ2〉 = e
√
N(β

2
b†+γRa†R+γLa

†
L)|0〉, (7)

for the case with molecule. They are eigenstates of the annihilation operators aL, aR (both)

and b (only the last), with eigenvalues
√
NγR,

√
NγL, and

√
Nβ/2, respectively; hence,

they fulfill the mathematical requirement for coherent states. The former could be obtained

from the second one as the limit in which the atom-molecule coupling parameters g and

the corresponding amplitude in the coherent state (β) go to zero, and the self-energy of the

molecule ω goes to infinity: g → 0, ω → ∞ and β → 0. Therefore we will mostly concentrate

on the second model, and treat the other one as a particular case in the appropriate limit.

It is important to note that both coherent states break the parity symmetry and will give a

finite population imbalance different from zero in the symmetry-broken phase.

The energy per particle using the coherent state |Ψ2〉 is

E

N
=

〈Ψ2|H2|Ψ2〉
N〈Ψ2|Ψ2〉

= −2JγRγL +
ω

2
β2 − gβ(γ2

R + γ2
L) + U(γ4

R + γ4
L), (8)

where the variational parameters are assumed to be real, provided g > 0. By minimizing this

energy surface for the corresponding set of parameters J , ω, g and U , optimal variational

parameters β, γR and γL are obtained, providing an approximation to the exact ground

state wavefunction and energy. This method is only exact, as mentioned above, for the

leading order in N [35]. Because of the conservation of the total number of particles in

the system, there is a constraint for the variational parameters: β2 + γ2
R + γ2

L = 1. This

condition is included in the minimization by using a Lagrange multiplier which introduces

a new parameter, λ.

When the energy surface, with the constraint of the particle number conservation, is

minimized, the optimal values of the variational parameters as a function of the control
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parameters are determined from the set of equations,

β2 + γ2
R + γ2

L = 1, (9)

−g(γ2
R + γ2

L) + ωβ − 2λβ = 0, (10)

gβγR − 2Uγ3
R + JγL + λγR = 0, (11)

JγR + gβγL − 2Uγ3
L + λγL = 0. (12)

This set of four non linear equations has two classes of solutions: a) the symmetric, with

γR = γL = γ; and the non-symmetric, b) γR 6= γL. The former corresponds to the symmetric

phase; the latter, to the non-symmetric phase.

The solutions in the symmetric phase are

β =





− g
2U

+ (1−i
√
3)A

6 3
√
4U(B+

√
B2+4A3)

1/3 −
(1+i

√
3)(B+

√
B2+4A3)

1/3

12 3
√
2U

if U ∈ (Uc, 0)

−2J−ω+
√

12g2+(2J+ω)2

6g
if U = 0

− g
2U

− A

3 3
√
4U(B+

√
B2+4A3)

1/3 +
(B+

√
B2+4A3)

1/3

6 3
√
2U

if U ∈ (0,∞)

(13)

γ =

√
1− β2

2
, (14)

with

A = −9g2 + 6U(2J − 2U + ω) , (15)

B = 54g(2JU − g2 + Uω) . (16)

The range of variation of the Hamiltonian parameters for this solution is: g ∈ R −
{0}, ω and J ∈ R. Uc is the critical value for which the system undergoes the QPT.

For the non-symmetric phase, U ∈ (−∞, Uc), the solutions are
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β = − g

4U
+

(1− i
√
3)A′

12 3
√
2U

(
B′ +

√
(B′)2 + 4(A′)3

)1/3
−

(1 + i
√
3)

(
B′ +

√
(B′)2 + 4(A′)3

)1/3

24 3
√
2U

,(17)

γR =

√
1− β2

2
+

√
−J2 + U2(β2 − 1)2

2U
, (18)

γL = − J

2UγR
. (19)

with

A′ = 12U(ω − 4U)− 9g2 , (20)

B′ = 54g(2Uω − g2) . (21)

For this solution the Hamiltonian parameters are restricted to g ∈ R− {0}, ω ∈ R and J ∈
R− {0}.

The critical value of U (Uc) can be computed using equations (13) and (17). The vari-

ational parameter β has to be a continuous function of U to ensure the continuity of the

ground state energy. By equating both expressions of β in the symmetric, (13), and non-

symmetric, (17), phases we can determine numerically the critical value Uc. For instance,

for a system defined by J = 1, ω = 5 and g = 5, the value obtained for Uc is Uc = −1.14018.

A similar analysis can be performed for the limit without coupling to the molecule ob-

taining the following expressions for the variational parameters

γR =





√
1
2
+ Sign(U)

√
U2−1
2U

if U < Uc

1√
2

if U ≥ Uc

(22)

γL =





−J
2U

1√
1

2
+Sign(U)

√
U2−1

2U

if U < Uc

1√
2

if U ≥ Uc

(23)
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FIG. 1: (Color online) Panels (a) and (c) show the variational parameters γR and γL, as a

function of the control parameter U . Panels (b) and (d) show the normalised expectation

value of the invalance operator Î in solid line, and the square root of the Fisher

information, obtained by numerical diagonalization, in open symbols. Panels (a) and (b)

are for the mixed atom-molecule system (two numerical calculations for different system

sizes are shown in (b), (black) circles correspond to N = 100, and (orange) squares, to

N = 200) whereas panels (c) and (d) present the system without molecule.

In this case, the critical value for the coupling constant is Uc = −1.

Note that Eqs. (9)-(12) are invariant under the transformation γL → −γL, γR → −γR,

which implies that there always exist two variational solutions. In the symmetric phase,

both of them give rise to Î = 0, corresponding to the same physical state. On the contrary,

in the non-symmetric phase both have non-zero imbalance, Î1 = −Î2, implying that the

ground state is degenerate. So, in this case any linear combination of these two solutions

is also a ground-state of the system, and thus it is possible to build a parity-projected

solution, with Î = 0. As a consequence, the critical coupling Uc separates two different

regions: the symmetric one, in which the populations of the two wells are always equal,

and the non-symmetric one, in which one can find symmetry-breaking ground states. As

the coherent states used in this section break the symmetry for γL 6= γR, they provide an

accurate description of the transition in terms of the imbalance.
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B. Numerical results

In this subsection, we compare the mean field results with exact diagonalizations for finite

systems. In panels (a) and (c) Fig. 1 we depict the behaviour of the variational parameters

γR and γL for both cases, without molecule (right panels) and with molecule (left panels).

It is clearly seen that γL and γR are equal to each other in one of the phases, and different in

the other, for both models. In panels (b) and (d) of the figure we plot the mean-field result

for the imbalance, together with the numerical values for
√
FQFI , obtained for N = 3200

particles in the case without molecules, and with N = 100 and N = 200 particles in the case

with molecule. The imbalance behaves as a typical order parameter: it is zero in one of the

phases, and becomes non-zero after crossing the critical point Uc, showing a non-analytic

behavior at Uc. Therefore, the symmetric phase is characterized by the same population

of atoms in the two wells, whereas in the non-symmetric phase there is a finite imbalance.

Numerical results show that
√

FQFI provides also a correct description of the QPT: it is

non-zero in the non-symmetric phase, and tends to zero in the symmetric one. Note that

the Fisher information measures the fluctuations around the equilibrium state, and therefore

it cannot be strictly zero in finite systems. However, we can see from the figure how this

signature tends to zero as the size of the system increases.

In Fig. 2 we depict the energy (per particle) difference between the ground state and the

first-excited state for both, the case with (panel (a)) and without (panel (b)) molecule, for

different system sizes. For the former, we have used N = 20, 40, 80, 160, and 320 particles;

for the second one N = 250, 1000, 4000, and 16000. Dotted vertical lines show the mean

field values for the critical coupling Uc. Solid horizontal lines show a numerical bound to

distinguish the degenerate from the non-degenerate phase. The value of the coupling for

which the gap becomes less than this bound is the finite-size precursor of the transition

U
(N)
c . Obviously, the precise value of this precursor depends on the chosen value for the

bound, but the important result is the finite-size scaling and the fact that U
(N)
c → Uc in

the thermodynamic limit. From our numerical results, it seems clear that the finite-size

precursor of the transition tends to the mean-field critical behaviour in the thermodynamic

limit.

In Fig. 3 we show how the finite-size precursor U
(N)
c scales with the system size, in a

double-logarithmic scale, both for the case with (panel (a)) and without (panel (b)) molecule.
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FIG. 2: (Color online) Gap between ground state and first-excited state, for different

system sizes: system with molecule, N = 20 (triangles, red online), 40 (circles, green

online), 80 (diamonds, blue online), 160 (squares, magenta online) and 320 (hexagons,

cyan online), in panel (a); and system without molecule, N = 250 (triangles, red online),

1000 (circles, green online), 4000 (diamonds, blue online) and 16000 (squares, magenta

online), panel (b). In all the cases, system sizes increase from left to right.
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FIG. 3: Scaling of the finite-size precursor of the critical point.

It is clearly seen that U
(N)
c − Uc → 0, when N → ∞. In both cases a scaling power-law

U
(N)
c −Uc ∝ N−α is found, with α = 0.84±0.03 for the case with molecule, and α = 0.99±0.02

for the case without molecule.

The results presented in the subsection show that a second-order quantum phase tran-

sition takes place at a critical coupling Uc, for both models. The main difference between

them resides in the finite-size scaling exponent α.
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IV. LOW ENERGY SPECTRUM

A. Beyond mean-field approximation

The mean-field results obtained in the preceding section provide the leading order N

description of the models. In order to improve the mean-field description, we first perform

a shift transformation to the aL, aR and b bosons, defining the shifted bosons d0, d1 and f

a†R =
√
NγR + d†0, (24)

a†L =
√
NγL + d†1, (25)

b†L =
√

N/2β + f †, (26)

where γR, γL and β are taken as real variational parameters, and N is the total number of

particles in the system. These new bosons, di and f , satisfy the usual bosonic commutation

relations.

When this shift transformation is introduced into the Hamiltonian, an expansion of Ĥ in

powers of N is obtained,

Ĥ = Ĥ1 + Ĥ1/2 + Ĥ0 +O(1/
√
N) , (27)

where Ĥi represents the i-esim term of the expansion, which is proportional to the power

N i.

The first term, Ĥ1, is the mean-field energy already computed in the previous section,

with γR, γL and β evaluated at the energy minimum. The next order in the Hamiltonian

expansion, Ĥ1/2, is

Ĥ1/2 =
√
N

[−1√
2

(
γ2
R + γ2

L

)
g + β (2λ− ω) f −

(
JγL + (λ+ βg)γR − 2Uγ3

R

)
(d0 + d1) + h.c.

]
.

(28)

This term cancels at the equilibrium values of the variational parameters. This stems

from the relation Ĥ1/2 =
∑

i
1

2
√
N

dĤ1

dγi
(di + d†i) +

1√
2N

dĤ1

dβ
(f + f †), i = 0, 1. Thus, the first

non-zero correction to the mean-field energy comes from the Ĥ0 term. This term can be

expressed in compact form as
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Ĥ0 =
1

2
δ†Mδ − 1

2
TrY, (29)

where δ and δ† are column and row vectors of dimension 6 respectively, M is a 6×6 matrix,

and Y and Z are 3× 3 matrices. M has the form

M =


Y Z

Z Y


 , (30)

with the 3× 3 Y and Z matrices given by

Y =




4Uγ2
R − λ −J −

√
2γRg

−J 4Uγ2
L − λ −

√
2γLg

−
√
2γRg −

√
2γLg ω − 2λ


 , Z =




2Uγ2
R − βg 0 0

0 2Uγ2
L − βg 0

0 0 0


 , (31)

δ† =
(
d†0 d†1 f † d0 d1 f

)
. (32)

The quadratic Hamiltonian (29) in the shifted bosons d and f can be diagonalized by

means of a canonical transformation [36], which is equivalent to diagonalize the matrix

M̃ =


 Y Z

−Z −Y


 . (33)

The matrix M̃ has a Goldstone mode at zero energy due to the breaking of the U(1)

symmetry associated with the condensation phenomenon. It also has two real and positive

eigenvalues describing the excited states of the system. Once the canonical transformation

is defined through the diagonalization of M̃ , Ĥ0 can be expressed as

Ĥ0 =

3∑

i=1

g†i gi∆i +
1

2

3∑

i=1

∆i −
1

2
TrY, (34)

where gi (g
†
i ) are the new quasiparticle operators, and ∆i (i = 1, 2, 3) are the corresponding

eigenvalues of M̃ . This problem has no analytic expression for ∆i in general. For a given

set of Hamiltonian parameters g, ω and J , we diagonalise numerically M̃ to compute the

eigenvalues ∆i. Notice that the term 1
2

∑3
i=1∆i − 1

2
TrY gives a correction for the ground

state mean field energy.
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The limit with no molecule is obtained from the analytic expressions for the mean field

corrections when g → 0 and ω → ∞. Notice that the f (f †) modes decouple from the gi (g
†
i )

modes and its energy goes to infinity. In this limit M̃ becomes a 4x4 matrix and its eigen-

values provide the two different excited modes of the model. One of these modes is always

zero, corresponding to the Goldstone mode associated with the breaking of U(1) symmetry.

The reduction of the M̃ matrix size allows for the derivation of analytic expressions for these

modes since its characteristic polynomial has degree four and can be solved by radicals.

B. Comparison with numerical calculations

In order to check the quality of the mean field approach and the improvement provided

by the corrections to the mean field approximation discussed in the preceding subsection,

we present here a comparison with the exact diagonalization of (2) for finite systems. The

ground state energy per particle versus the control parameter U , for fixed values of the other

parameters J = 1, ω = 5, and g = 5, is shown in panel (a) of Fig. 4. The stars represent the

exact numerical calculation for a system with N = 200 bosons. The thin full line is the mean-

field result, while the dot-dashed line corresponds to the beyond mean-field approximation.

For this system size the differences between the exact results and the two approximations

are imperceptible at the panel (a) scale. In order to see the numerical differences, we present

in panel (b) the differences between the mean-field and beyond mean-field calculations with

the exact numerical results in a larger scale. The U values in (b) are restricted to the

region around the critical point at Uc ∼ −1.14. As apparent in Fig. 4 (b), the computed

ground state energies from beyond mean field clearly improve the mean field results. The

beyond mean field calculations match the exact results in most of the range of variation of

the control parameter; the differences with the exact numerical results are concentrated in

a small region close to the critical point. This validates the beyond mean field formalism as

a valuable tool for taking into account the finite-size effects in these models.

Fig. 5 shows the lowest excited energies obtained by means of the beyond mean-field

treatment (full lines), compared with the exact numerical results (symbols), for both the

case with (panel (a)) and without (panel (b)) the diatomic molecule. In both cases, the

beyond mean-field approach gives a very accurate description of the low-energy spectra,

including the important fact that the energy levels are degenerate in pairs in one of the
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FIG. 4: (Color online) In panel (a) the ground state energy per particle of the model with

the diatomic is plotted as a function of the control parameter U for N = 200. Panel (b)

shows the difference between the exact ground state energy per particle obtained

numerically and the values obtained by using the two analytic approximations considered

in this work in a small region around the critical point for a system with N = 200. The rest

of the control parameters in the Bose-Hubbard Hamiltonian are: J = 1, ω = 5 and g = 5.

phases, while this degeneracy is broken in the other. The main difference between the two

systems lay in the qualitative behavior of the levels. In the case without the molecule, the

spectrum is similar in both phases, though it seems more compressed in the symmetric one.

On the contrary, both phases show clear qualitative differences in the case with the molecule.

The spectrum of the symmetry-broken phase is very smooth, all the levels changing mildly

with energy. The symmetric phase is characterized by an erratic behavior of the levels,

with crossings between levels with different parities, and multiple avoided crossings. This

constitutes a signature of a highly complex behavior related to the onset of chaos (see Sec.

V for more details).
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FIG. 5: (Color online) First few excited state energy gaps as a function of the control

parameter U . Symbols are the exact results for N = 200, while lines provide the beyond

mean field approximation. The rest of the parameters are fixed to J = 1, ω = 5 and g = 5

in panel (a), and J = 1 in panel (b). The vertical dot line marks the separation between

the two phases.

V. EXCITED-STATE QUANTUM PHASE TRANSITIONS

In some collective many-body quantum systems, QPTs are accompanied by ESQPTs,

giving rise to a critical energy Ec for certain values of the system control parameter [9–17].

Traditionally, ESQPTs have been linked to singularities in the density of states or in one of

its derivatives, depending on the number of system’s degrees of freedom in the semiclassical

limit [38]. It has been shown that for a system with just one effective degree of freedom,

as the Tavis-Cummings model, a λ-singularity in the density of states characterizes the

ESQPT. For the Dicke model, which has two effective degrees of freedom, the singularity

making the ESQPT appears in the first derivative of the density of states [17]. This fact

entails an increasing difficulty for detecting such a critical behavior in complex systems, with

many effective degrees of freedom.

In this work, we rely on a different way to identify ESQPTs. In general, the critical

energy separates two different regions of the spectrum which share some of the properties

of the ground state at one and at either side of the QPT. For instance, in Dicke and Lipkin

models the critical energy separates one region in which all eigenstates are doubly-degenerate

from another in which there are no degeneracies and all the levels have a well defined parity

[11]. So, in order to characterize the ESQPTs in our system, we study the distance between
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FIG. 6: (Color online) Complete phase diagram. Panel (a) depicts the case with molecule,

obtained with N = 320 particles, and J = 1, ω = 5 and g = 5. Panel (b) depicts the case

without molecule, with N = 1000 particles and J = 1. In both cases, dark filled region

(blue online) indicates the symmetry-breaking phase, in which the eigenstates are

doubly-degenerate, and light filled region (yellow online) the normal phase, in which there

are no degeneracies and the parity is a good quantum number for all the eigenstates.

Vertical dotted lines enclose the region in which there is no ESQPT.

consecutive energy levels with opposite parity. We follow the same criterion as in Fig. 2.

Figure 6 shows the energy per particle versus the strength of the U parameter for the two

systems. Panel (a) corresponds to the case with a diatomic molecule and a total of N = 320

particles, with J = 1, ω = 5 and g = 5; while panel (b) corresponds to the case without

molecule, with N = 1000 particles and J = 1. The lowest line is the ground-state energy,

while the uppermost line gives the limit of the calculated spectra for the system size used

(highest calculated excited state). There are many excited states in between both lines. In

both panels two vertical dotted lines are plotted: the left line gives the ground state QPT,

Uc, while the right one marks an equivalent singularity for the highest excited state, Ũc. The

energy region with no degeneracies is called normal (light filled region, yellow online), while

the region with double degeneracies is a reflection of the appearance of a broken-symmetry

(dark filled region, blue online). Our calculations clearly identify an ESQPT, that is marked

by the line in between light and dark regions. It separates normal (non-degenerate) from

broken-symmetry (degenerate) phases. Figure 6 shows that both systems behave in the

same qualitative way. For U < Uc, the lower part of the spectrum is degenerate, whereas

the upper part is not degenerate. For large values of the control parameter, U > Ũc, the
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spectrum behaves in the opposite way: the upper part is degenerate, whereas the lower part

is not. In between, Uc ≤ U ≤ Ũc, all the energy levels are not degenerate. This entails that,

for attractive interactions U < 0 there is a QPT at a critical coupling Uc, and a critical

energy Ec for U < Uc. On the contrary, if the interaction is repulsive U > 0, an analogue of

a QPT takes place on the highest-excited level at a critical coupling Ũc, and also a critical

energy appears for U > Ũc. No ESQPT is observed in the region Uc ≤ U ≤ Ũc.

The critical line can be easily estimated from the numerics in the case without the

molecule and gives

Ec =





U
2
− 1, U < Uc = −1;

U
2
+ 1, U > Ũc = 1.

(35)

This result entails that the spectrum is turned upside down when changing the interaction

from attractive to repulsive, being the critical points symmetric with respect to the free

case, U = 0. The same analysis is not that clean for the system with a molecule. The

precise values for Ũc and Ec(U) depend on the molecular parameters ω and g. For ω 6= 0

and g 6= 0 the symmetry around U = 0 is broken. Furthermore, due to the smaller values

of the total number of particles N accessible to the our current computational power, it has

not been possible to obtain a precise estimate of the behavior in the thermodynamic limit.

For g = ω = 5 a numerical fit to the case with N = 320 particles gives rise to

Ec =




0.46U − 1.89, U < Uc ∼ −1.3

0.42U + 2.55, U > Ũc ∼ 1.7
(36)

where both critical values, Uc and Ũc, correspond to the finite-size precursors, which are still

far from the true critical points in the thermodynamic limit.

It is possible to study ESQPT for fixed values of the system parameters by looking at

the density of states ρ(E) as a function of the excitation energy. A singular behavior in

ρ(E) signals an ESQPT at the critical energy Ec. It has been recently shown that ρ(E)

presents a logarithmic singularity at E = Ec for models with just one semiclassical degree of

freedom. On the contrary, the density of states for models with more than one semiclassical

degree of freedom is not singular. In these cases, the logarithmic singularity occurs in its

derivative ρ′(E) [38]. This feature has been tested in the integrable Tavis-Cummings model

with one semiclassical degree of freedom, and in the non-integrable Dicke model with two
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semiclassical degrees of freedom [17]. Following a similar procedure, we fix the value of the

interaction U = 9 and calculate the density of states as a function of the excitation energy

for the two systems. From the results of Eqs. (35) and (36) we estimate the critical energy

to be around E ∼ 6.3 in the case with molecule, and E ∼ 5.5 in the case without molecule.
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FIG. 7: Density of states ρ(E): Panel (a) for N = 320, U = 9 and a molecule at resonance.

Panel (b) for N = 2000 without molecule.

Figure 7 shows the density of states ρ(E) versus the excitation energy. Panel (a) cor-

responds to the case of a molecule at resonance and N = 320 particles. It shows no neat

trace of a singular behavior around the estimated critical energy Ec ∼ 6.3. This is however

compatible with a logarithmic singularity in the derivative of the density of states, which

is very difficult to see in systems of this size. Panel (b) corresponds to N = 2000 without

molecule. It clearly shows a precursor of the logarithmic singularity at Ec = 5.5. The results

obtained with these two systems are therefore, compatible with those derived in Ref. [17]

for the Tavis-Cummings and Dicke models.

In order to get a deeper insight into the properties of the ESQPTs, we plot in Fig. 8 the

ratio of degenerate energy levels as a function of the scaled energy E/N . The calculation

has been done in the following way: a) we choose a set of 100 energy levels, starting from

the ground state; b) we count the number of pairs whose relative energy difference is less

than 10−6; c) we normalize this value to 100; d) we associate this value to an energy equal to

the mean energy of the interval; e) we repeat the calculation starting from the 11th energy

level; f) we proceed in the same way up to covering the whole spectrum. In the same figure

we plot the results for the system with (panel (a)) and without the molecule (panel (b)).

19



 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

%
 D

eg
en

er
at

ed

E/N

(a)

 0
 20
 40
 60
 80

 100

 6.4  6.6  6.8  7

 0

 20

 40

 60

 80

 100

 3  4  5  6  7  8  9

%
 D

eg
en

er
at

ed

E/N

(b)

 0
 20
 40
 60
 80

 100

 5.3  5.4  5.5  5.6

FIG. 8: Ratio of degenerate energy levels as a function of the energy: panel (a) for

N = 320, U = 9 and a molecule at resonance. Panel (b) for N = 2000 without molecule.

The case without molecule shows an abrupt transition from non-degenerate to degenerate

energy levels at the expected value for the critical energy Ec ∼ 5.5. The case with molecule

is not as sharp, though the critical behavior is still clearly observed. For this case, a small

number of degeneracies appear distributed randomly in the lower part of the spectrum. We

attribute this behavior to the spectral fluctuations of the energy levels, and relate it to the

crossings and avoided crossings shown in Fig. 5 in the symmetric phase. In spite of this

behavior at low energies, we observe an abrupt change from non-degenerate to degenerate

in the spectrum at an energy Ec ∼ 6.6. The 5% discrepancy with our estimate is attributed

to finite-size effects.

Figure 9 shows the behavior of the order parameter
√
FQFI for both systems, with

molecule (panel (a)) and without molecule (panel (b)). It has been obtained by calculating

the square root of the Fisher information for all the eigenstates of the systems. The results

are similar to those obtained for the density of states. For the case without the molecule

the quantum Fisher information displays a sharp singularity at the estimated critical energy

Ec ∼ 5.5. On the contrary, there is no such a signature in the case with molecule. These

results are compatible with the fact that ESQPTs are softer in systems with more than

one semiclassical degree of freedom, as it is pointed out in [16, 38]. In the case with the

molecule, large fluctuations between different eigenstates blur the expected singular behav-

ior of the order parameter at the estimated critical energy. On the other hand, in the limit

without molecule, which has just one semiclassical degree of freedom, a cusp singularity at
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FIG. 9: Fisher information as a function of the energy: Panel (a) for N = 320, U = 9 and

a molecule at resonance. Panel (b) for N = 2000 without molecule.
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FIG. 10: Spectral statistics for U = 9 and N = 360, even-parity states, as a function of the

scaled energy E/N .

the critical energy is clearly seen.

Finally, it is interesting to analyze the degree of chaos in the spectra as a function of the

energy. In Ref. [10] it was conjectured a connection between the ESQPT and the onset of

chaos in the Dicke model. Here we analyze the nearest-neighbor spacing distribution as the

simplest measure of quantum chaos. While integrable systems follow a Poisson distribution

PP (s) = exp(−s), non-integrable and fully chaotic systems are well described by the Wigner

surmise PW (s) = π
2
s exp

(
−π

4
s2
)
. Given a set of spacings si = (Ei+1 − Ei) / 〈s〉, a natural
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way to measure the degree of chaos is by means of the ratio

η =
vars − varW
varP − varW

, (37)

where “var” means the variance of the distribution. The parameter η varies from η = 0 for

fully chaotic systems, to η = 1, for integrable systems.

In Fig. 10 we show the parameter η as a function of the scaled energy E/N . The

calculation has been done as follows: a) a set of 250 levels, starting from the ground state

has been chosen, b) the set has been unfolded, discarding a 20% of higher and lower levels,

c) the parameter η has been calculated, d) the value of η has been linked to the mean energy

value of the set, e) the procedure has been repeated increasing the energy. It is important

to note that all the eigenstates have a definite value of parity. As it can be seen in Fig. 10,

a transition from a fully chaotic to an intermediate regime takes place at E ∼ Ec. Below

this critical point, the system is more or less chaotic, with the exception of the region very

close to the ground state, which is closer to integrability. This is fully compatible with the

complex behavior shown in Fig. 5 for the lowest excited states in the symmetric phase. On

the contrary, above the critical energy the system is far from chaos. The interplay between

chaos and regularity as a function of energy is qualitatively similar to the Dicke model

[10, 37]. For Dicke and the present model, chaos characterizes the normal phase, in which

there are no degeneracies, whereas the symmetry-breaking phase is closer to integrability.

Despite this fact, there seems to be no clear connection between the ESQPT and the onset of

chaos [37]. Dynamics of systems with two semiclassical degrees of freedom suffering ESQPTs

seems to be more chaotic in the phase in which there are no degeneracies in the spectrum.

VI. CONCLUSIONS

By means of analytic and numerical results, we have studied the QPT signaled by the

population imbalance in two kinds of double-well BECs: one comprising bosonic atoms

tunneling between the two wells, and the second including the interaction of the atoms with

a diatomic molecule. Our main results are summarized as follows:

Both systems display a second-order QPT at a certain critical value Uc of the atom-atom

interaction. In both cases, for U < Uc the ground state is degenerate due to the breaking of

the left-right symmetry in the atomic system, giving rise to a finite population imbalance.
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On the contrary, for U > Uc the ground state is not degenerate and the imbalance is

zero. This critical value of the control parameter was obtained by means of a mean-field

calculation, and it was numerically tested by means of exact diagonalizations and finite-size

scaling using the gap between the ground state and the first excited state as a signature of

the transition. We have also related the population imbalance with the square root of the

Fisher information, and tested the mean-field with exact diagonalizations.

Beyond mean-field techniques that take into account the quantum fluctuations have been

used to describe the low energy spectrum. A comparison with exact diagonalizations shows

the goodness of these theoretical results. In particular, it is worth mentioning that the theory

successfully accounts for the crossings between levels corresponding to opposite parities,

which take place when the degree of freedom of the diatomic molecule is added. This

formalism greatly improves the description of the critical point, showing that the second-

order QPT is strongly influenced by correlations and fluctuations that are beyond the mean-

field approximation.

Both systems also display ESQPTs at certain critical energies depending on the value of

the interaction U . Contrary to the ground state QPT, the nature of these transitions differs

in both models. The two-site Bose-Hubbard Hamiltonian is characterized by a λ divergence

in the density of states. This behavior in the energy spectrum is comparable to the Lipkin

and the Tavis-Cummings models, both having a single semiclassical degree of freedom. On

the contrary, the density of states for the case in which the atoms interact with a diatomic

molecule, shows no divergence. This behavior is qualitatively similar to the Dicke model, in

which the divergence arises in the derivative of the density of states.

Finally, we can infer a correlation between the ESQPT and the onset of chaos in the

systems with atoms and molecules. A similar conclusion has been obtained for the Dicke

model [10], though it seems that the transition between the integrable and the chaotic regime

does not coincide with the critical energy at which the ESQPT takes place [37]. Taking into

account the strong numerical limitations for the atom-molecule system, we conjecture that

quantum chaos only appears in the non-degenerate region of the spectrum. Whether this

is a generic mechanism, linking chaos and critical phenomena in the energy spectrum of

systems with more than one semiclassical degree of freedom remains still an open question.
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