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Abstract

We investigate the scope of a previous result concerning the behaviour of fermions hitting a general wall caused by a
first-order phase transition. The wall profile function was considered to be analytic in the real axis. The previous result is
valid for analytic functions in the whole complex plane except in certain isolated singularities located out of the real axis.
A non-analytic profile function in the real axis is studied in order to show the validity of the result for any profile which
can be put as a certain limit of a function which verifies the latter. A new understanding of the high energy behaviour of
the quantum reflection caused by a sharp profile, as the step, arises from that study.
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The scattering of high energy fermions by a wall
separating two phases of different symmetry properties
has received much attention recently. The main phys-
ical motivation of these works is the idea [1] that the
baryon asymmetry of the Universe might have been
produced if the cosmological electroweak phase tran-
sition has been of first order. The transition is described
in terms of bubbles of a spontaneously broken sym-
metry vacuum expanding in a preexisting symmetric
one. In this scenario the point to elucidate is whether
there exists a CP-asymmetry that produces a differ-
ent reflection and transmission probability for quarks
and antiquarks in order to explain, via the standard
model baryon number anomaly [ 2], the correct baryon
asymmetry of the Universe. In order to simplify the

! E-mail: jquinter@cica.es.
2 Work partially supported by Spanish CICYT, project PB 95-
0533-A.

treatment, an useful assumption is to break down the
process into two steps, one describing the production
of CP asymmetry when the quarks/antiquarks are re-
flected on the wall, the second describing the transport
and the eventual transformation of the CP asymmetry
into a baryon asymmetry. The first of two steps jus-
tifies the effort concentrated in the study of the scat-
tering of fermions in the presence of first order phase
transition [3-5]. The structure of the wall depends on
the Higgs field effective potential that takes into ac-
count the effects of the surrounding plasma trough the
temperature of a certain thermal bath., The wall pro-
file obtained by solving the equation of motion with
this effective potential is rather complex and depends
on too many coupling constants [6], thus the study of
the general wall profile problem [4,5] is justified not
only from a purely formal interest. We have shown
in a previous work [5] the connection between the
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complex plane poles of the wall profile function and
the behaviour of fermions hitting the wall in the high
energy limit. Nevertheless, by performing an extreme
simplification which allows to compute the Feynman
fermion propagator in an exact way [7], the wall pro-
file can be approximated by a step function, i.e. a sud-
den jump from one phase to the other, that is called
the thin wall approximation [7,8]. In this case, the
reflection coefficient in the high energy limit is>

my

2E’ ()
being the mass mg the high of the wall. Notice the
power law dependence on E of the reflection coeffi-
cient in Eq. (1). As we will see, the results given in
Ref. [5] cannot be directly applied to profile functions
which are not analytic in the real axis, as the step pro-
file function. Nevertheless, in this note we show the
high energy behaviour of a new kind of profile func-
tions, which can be considered in a certain limit as
analytic extensions in the complex plane of the step
function, by following [5]. Furthermore, we will in-
vestigate the appropriate limit in order to understand
the result (1) through the analytic properties of the
step function extensions.

Next, we outline the derivation of the high energy
asymptotic expression for the reflection coefficient
given in Ref. [5], where the detailed calculation can
be found.

By formulating the problem in the rest frame of a
wall normal to the z-axis, characterized by a general
non-CP-violating wall profile*, and working in the
chiral basis [6], we can factor the Dirac equation into
2 x 2 identical blocks. Thus, the problem is reduced
to solve ihe following equation:

R(E) =

(i6; + Q(2)) yym =0, (2)
with

_ E -m(z)
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3 This result can be immediately obtained from the reflection
coefficient given in [7]}, for instance. High energy limit means

E > my.
4 CP-violating wall profiles are studied in {9].

where W is the time-independent Dirac equation so-
lution in the chiral basis. We express the solution of
(3) as follows:

_ ¥ (20)
Yyn(z) =0z, 20) (!/12(20)) , (4)
with
0(z,20) = Pe'Sa 7, (5)

where P indicates a path ordered product and 7 is the
position variable along the z-axis. We consider m(7) =
my f(7), where f(7) is the profile wall function. The
asymptotic conditions f(+oc0) =1 and f(—o0) =0
are required, f(7) — 6(7) decreasing exponentially
when 7 — F00. Thus, after some tedious calculation,
we obtain from Egs. (3) and (5)

4
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where p(7) = + (E2 ~ [mof(m)] ) .
Following Nelson et al. [6], we can obtain the re-
flection coefficient from the result (6). Thus, by as-
suming in general that

f@=F(Z). ©)

where the parameter o gives the wall thickness, and
after much calculation [5], we finally obtain

N
R(E) = 27"0’”‘0 Z e—Zanj- BZfEU.tj
j=1
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where z; = x; +iy;and b, for j=1,..., N, are all
the poles of F(z) with positive imaginary part and
the n-power coefficient of the Laurent expansion for
the function in each pole, respectively. The order of

the pole z; is v;.
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The result (8) is valid in general for profile func-
tions which are analytic in the real axis, i.e. ana-
lytic functions in all the complex plane except in cer-
tain isolated singular points with non-zero imaginary
part. It is positively checked in Ref. [5] by using
the particular Kink-type wall profile [3,4], f(7) =
1 (1 + tanh(7/0)). We consider now the more gen-
eral kind of functions

1
1 +exp (-—fa-,il-) '

It is obvious that the functional behaviour of the Kink-
type wall is a particular case of the latter, given by
taking n = 0. Moreover, any of these functions gives
the step function if the limit o — 0 is taken. In order
to apply the result (8) to the functions (9), we must
know the singularities of these functions and their dis-
tribution in the complex plane. Taking into account
Eq. (7), we obtain for the poles of F(z)

f(r) = (9)

zjg = 7w (14 2j) meEin (4420, (10)

withj=0,1,2,...,00and k=0,1,...,m—1. Where
m = 2n + 1 is the power in the exponential argument
in (9). The order of all the poles is 1 and the residues,
b, can be written as

k
b,

1—m

=*I‘[1T(1+2j)}Teiil_;_mﬂ%+2k). (11)

m

It is easy to see that these poles are distributed in
the complex plane along m radial axes, on circum-
ferences with radius given by [ (1 + 2j)] ”m, where
j=0,1,...,00.In fact, the distribution of the poles is
symmetric with regard to the real axis. The schematic
location of the poles in the complex plane form = 1,3
is shown in Fig. 1. It can be found that the two poles
with lower positive imaginary part are

wo=mres, e =mETITW), (12)

and by applying the result (8) in the range of energies
Eco > 1, we obtain

R(E) = &#Wﬂ:g

my
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Fig. 1. Schematic distribution in the complex plane of the poles,
Zjk, given by Eq. (10), for m = 1 (a) and for m = 3 (b). The
poles are located in the solid points, distributed along radial axes,
as explained in the text.

where all the decreasing exponential terms except the
two with lowest arguments has been neglected. The
factor 2 — 8,1 arises because the two poles consid-
ered in Eq. (12) are the same for m = 1. The expo-
nential law of Eq. (13) is the expected behaviour for
the reflection coefficient provided that the result (8)
can be applied, if the energy is large enough. There-
fore, the reflection coefficient for the step wall profile
which presents a power law asymptotic behaviour, as
we mentioned above, does not seem to be coherent
with the former. Nevertheless, we must take into ac-
count that the result (8) relates the high energy be-
haviour of the fermions hitting a wall to the analytic
properties of the profile function in the complex plane.
Thus, we must appropriately extend the step profile in
the complex plane to investigate if the obtained poles
allow to explain the behaviour given by (1).

It can be easily seen that the limit of the functions
(9), for all n, when the parameter o goes to zero
is the step function. Therefore, in that limit, any of
those can be considered as an analytic extension in the
complex plane for the step function. By considering
that the function F(7) is the same as f(7), but scaled
by the parameter o, we have the same pattern for the
distribution of poles of f(7) than for that of F(7),
but with the distance between two consecutive poles
depending on o In other words, the poles will be as
close to each other along the same radial axes as o
small. The result (8) cannot be strictly applied for o =
0, but we know that if the limit when o — 0 of the high
energy reflection coefficient exists, it must be the same
obtained by using (8), which is valid for any non-
zero o. The crucial point in this approach is that when
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o is getting smaller and smaller we cannot consider
a large enough energy, E, to neglect the contribution
other than the closest poles to the real axis. In this way,
the contributions due to each pole have to be summed
before to take the limit and there is no reason to expect
an exponential final result.

Indeed, we have
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where b, is defined in Eq. (11) and yj, xji are the
real and pure imaginary components of zj, given by
Eq. (10). By taking o — 0 in Eq. (13), the sum for
J from O to 400 can be considered as an integral and
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As we only sum for the poles with positive imaginary
part, the signs +, — in Eq. (16) are for k < %L and
k > =1, respectively. By solving Eq. (15), we obtain

m—1
R(E) = 10 N7 Bt §-an)
AY F 2E LJ
k=0
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which agrees with Eq. (1). In consequence, the power
law behaviour which is characteristic for the step
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and therefore non-analytic, in the real axis, can be well
understood through the complex analytic properties of
these functions. The high energy reflection behaviour

is caused by the sum of the contributions due to each
singularity of the profile function. For a large enough
energy the contributions of one or several of these sin-
gularities can be considered as leading, provided that
the singuiar points are isolated. We only must take into
account that the real non-continuous point is produced

whean the nn‘lnc n'F tha fiimstinn ara dictrihitad §
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finitely compact way along lines in the complex plane
which contains this point to understand the power law
for the step. Thus, the smoother decreasing on the en-
ergy of the reflection coefficient for the sharp profiles
can be explained because no singularity contribution
can be isolated in order to lead the total result.
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ments and very helpful discussions. 1 am especially
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manuscript.
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