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Abstract

We study the high energy behaviour of fermions hitting a general wall caused by a first-order phase transition. The wall
profile is introduced through a general analytic function. The reflection coefficient is computed in the high energy limit and
expressed in terms of the poles of the wall profile function. It is shown that the leading singularity gives the high energy

behaviour.

PACS: 11.10.Q; 11.80.F; 11.30.Q

Much work has been devoted to the problem of
transmission and reflection of relativistic fermions
through a wall separating two phases of different
symmetry properties. The main effort concentrates in
developing the idea [1] that the baryon asymmetry
of the Universe might have been produced if the cos-
mological electroweak (SU(2) x U(1)) phase tran-
sition has been of first order. In these works the phase
transition is described in terms of bubbles of “true”
vacuum with an inner expectation value of the Higgs
field v # 0, i.e. a spontaneously broken symmetry
phase, appearing and expanding in the preexisting
“false” vacuum with v = 0, i.e. a symmetric phase.

In this scenario the quarks/antiquarks hitting the
wall from the unbroken phase are reflected or trans-
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mitted. The point to elucidate is whether there exists a
CP-asymmetry that produces a different reflection and
transmission probability for quarks and antiquarks in
order to explain, via the standard model baryon num-
ber anomaly [2],

b = 3,0t = Nf(g-‘z%ww - ;‘jg%}’)’). (1)
the correct baryon asymmetry of the Universe. In
the physical conditions of the early Universe the
fermions moving through the bubble wall will inter-
act not only with the wall but also with the particles
in the surrounding plasma, thus we have a transport
problem. This transport plays an essential in the so-
called “charge transport” mechanism [3], in which
the action of the baryon anomaly happens at a dis-
tance from the bubble wall. This diffusion problem
is very complicated and involves solving the Fokker-
Planck equation taking into account CP violation and
baryon anomaly. A useful simplifying assumption
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is to decompose the process into two steps, one de-
scribing the production of the CP asymmetry when
the quarks/antiquarks are reflected on the wall, the
second describing the transport and the eventual
transformation of the CP asymmetry into a baryon
asymmetry via the baryon number anomaly (1).

One expects that the diffusion corrections are rela-
tively minor ones to the first step, i.e. to the scatter-
ing from the wall, although effects of the surrounding
plasma are incorporated by mean of introducing the
Higgs field effective potential that takes info account
the temperature of a thermal bath. The structure of the
wall depends on this effective potential and its knowl-
edge is obviously necessary in order to compute the
reflection and transmission coefficients. However, the
profile obtained by solving the equation of motion is
rather complex and depends on many coupling con-
stants [3]. At this point, two lines for simplifying the
problem have been followed. The first is to describe
the profile of the bubble wall by an analytical func-
tion that simulates the dynamics of the phase transi-
tion and then to treat the scattering in an approximate
way[1-3]. The second approximates the wall profile
by a step function, i.e. a sudden jump from one phase
to the other, the thin wall approximation [6,7]. this
extreme simplification allows to compute in an exact
way the Feynman fermion propagator in the presence
of a wall [7].

Our aim in the present paper is to study the general
problem of fermions hitting a wall in order to con-
nect the analytic properties of the profile function to
the behaviour of the fermions. In general, this ques-
tion 1s very difficult, but interesting conclusions about
this relation between the profile and the behaviour of
fermions in the high energy limit can be obtained. We
develop a general method to calculate the reflection
and transmission coefficients of high energy fermions
hitting a wall, establishing a relationship between the
poles of the profile function and these coefficients.
The quantum corrections to the expected classical be-
haviour are obtained. Apart from the clear theoretical
and purely formal interest of this result, cosmological
implications and possible applications of the formal-
ism to systems of relativistic fermions undergoing a
phase transition should be considered. Some implica-
tions in CP-violating process are studied in {8]. Two
other examples of application fields can be condensed
matter under extreme external conditions or certain

stages of the quark-gluon plasma formation process.

As usual in this kind of work, we formulate the
problem in the rest frame of a wall, parallel to the
x —y plane and normal to the z-axis, characterized by
a general profile. In order to calculate the reflection
coefficient we need only the plane wave solutions of
the Dirac equation for particles moving along the z-
axis. In any case, for other incoming directions we can
perform an appropriate Lorentz boost parallel to the
x — y plane and reduce the problem to the latter. The
phase transition is incorporated into the Dirac equation
by including a position dependent mass term which
varies inside a certain region designated as the domain
wall and takes two different constant values in the two
outer sides of the wall. Following Nelson et al. [3],
we work in the chiral basis, conveniently reordered to
obtain

s_f{o3 O )
r= ( 0 -0y
, and factor the Dirac operator into 2 x 2 blocks. Thus
the Dirac equation can be expressed as

id, +id, —m(z) 0 0
m*(z) id, —id, 0 0 ¥
0 0 id, +id, —m*(z)
0 0 m(z) id, —id
=0. (2)

With the following Ansatz for solutions with positive
energy £

= (!
V= ("")e—w‘, with ¥ (fg) :
Y Y = ()
where ¥ and ¢4 are eigenspinors of the chirality op-

erator, s, for the eigenvalue +1 and ¢ and ¢ for
-1, we obtain

(id; +0(z)) 1 =0,

(3)

(id; + Q(z)) ym =0, (4)
with
E -m(z)
Q(z)=(m(z). _F ) and
o=, ™) (5)

where the mass function can be considered as com-
plex in order to incorporate CP-violating process in



J. Rodriguez-Quintero et al. / Physics Letters B 388 (1996) 259-265 261

the formalism. In this work we are not interested in
CP-violation but in a general approach of the problem.
Thus the mass function will be assumed as real and
consequently Q(z) and Q(z) will be identical matri-
ces. The solution for the first equation of (4) can be
written as follows:

_ ='f.;de(T) ¥ (20)
i(z) = Pe (Mzo) ). (6)
and analogously for the second one,

_ p,i Jo 40 (Y3(20)
¥n(z) = Pe (). (7)

where P indicates a path ordered product and 7 is the
position variable along the z-axis. Nevertheless, it is
obvious that for a real mass function the quantity

2

O(z,20) = Pexp ]:f/dTQ(T)] (8)

n

in (6) is the same as Q(z,2) = P fm e in (7).
In consequence, the task is to evaluate Eq. (8).

Using the vsual Pauli matrices, Q(7) can be ex-
pressed as

Q(7) =o3E — ioom(7). (9)

We consider now

m(7) =mof(7), (10)

where f(7) is a certain function which describes the
structure of the domain wall, the profile wall func-
tion. The asymptotic conditions f(+oco) = 1 and
f(—o0) = 0 are required, f(7) — 6(7) decreasing
exponentially when 7 — £o0. It is also assumed that
f(r) = O(1). The profile function will be consid-
ered as an analytic function in the real axis, therefore
a profile which is constant outside a certain finite re-
gion, the domain wall, cannot be described. This last
kind of wall profiles are studied in detail in [8]. If
the profile function is analytic, the wall, defined as the
region where the mass varies with the position, ex-
tends formally from v = —oc0 to 7 = 4+00. Neverthe-
less the domain wall will be characterized by an effec-
tive thickness, o. The particular criterion considered
in order to define this parameter is not important; for

instance, it can be established by taking into account
that |f(7) — 1] < 0.1 for 7 > o and | f(7)| < 0.1 for
T < —0o. However, in general we can write

f(r)=F(§) - (11)

A characteristic energy, mp, and a characteristic length,
1/my, will be used to obtain dimensionless quantities
in what follows. By considering a certain path parti-
tion, (2o, 21, - - - Zv—1> ZN> 2 ), WE Can write

p e:‘j‘;df@(r) _p e;fu dr Q(r)
i [ drQ(n) i [a
xPe LN—] TR PDe fw e (12)

As shown in the appendix, we find for small A ;, where
Aj = Zj41 — Zj, that

i [ar Q) 1
Pe J; = e'7Pi% 4 o2 fisin(pdg)

(13)
= 2 f1/2 .
where p; = +(E" — f7)"/* and f; is defined as

Zj+l

1
fi= A fdff(‘«"}, (14)
i
Zj

e.g. as the average value of the integral.

Thus, by substituting the path order products of the
right-hand side in (12) by (13), multiplying and re-
ordering the terms, we obtain

N
fo’_\ Epjﬁj

Q(z,20) =

N k=1
1 N —ioy Y b io3 Y pid;

+ 2 Z sin(pyAg) fre =k e

k=0

+0 {(}3)2} . (15)

where we have used e?A = Ae~% when {A,B} = 0.
If the path partition is now considered to be thinner
and thiner, or in other words, if the limit A; — 0 is
taken for all j, then we can replace . A; — [dr.
The definition of f; as an integral average value leads
to the substitutions f; — f(7) and p; — p(7), where
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p{r) =+ (E2 - [f(r}]z)m. provided that f(7) is
continuous. In this way, we obtain

0(z,20)
i (1 +(g)on [arpn) gy 7 Lo
20
2 . 2
o k";:) D"m hero (16)

We must stress here that 0(z,zp) has been ex-
panded in powers of 1/E, but not in a strict sense
because the coefficients are also depending on E,
As a consequence of this fact, whether the series for
Q(z,20) which is truncated in order to give (16) is
an asymptotic one or not must be carefully elucidated.
This point is treated in detail in [8] and we will re-
turn to this question below. If we define the quantity
a = 20F and expand all the terms which depend on
E in (16) in powers of 1/E, by assuming a constant,
we obtain

Q(Ao, —Ao)

1
I aA |
- {1 + $or 5 /dx F(Ax) e~inar(l=2)
-1

vo[ ()]}

where z = Ao and zp = —Ac, with A > 1. The
function F(7) has been introduced in (11) and the
integration variable is changed to x = . The quantity
¢ is defined as “classical path”, f; drp(t) = Aa +

o [(%)z] . Eq. (17) can be written in a matrix way

0100 = (21 22).

Neglecting terms of the order o (1/E) we get

W) = eiia = “)52*

iaA 1 N .
w12=_TEI(a) = Wy, (19)
where

Z(a) =]dxe*"‘“*F(Ax). (20)

-1

By considering the requirements imposed to the
profile wall function, f(7), the following approxi-
mations are performed: m(7) = O for 7 < —Ac
and m(7) = mg for r > Ao; ie. F(Ax) = 0,1 for
x < —1 and x > 1, respectively. Thus, taking into
account the chirality eigenvalues of the eigenspinors
U, ¢, ¢ and ¢y, we have that ¢, and ¢ corre-
spond to right-moving right-handed particles and left-
moving left-handed particles respectively, and 3 and
4 to right-moving left-handed and left-moving right-
handed particles, in the region where x < —1. Con-
cerning the region where x > 1, Q(Aox, Aox) can
be immediately diagonalized in order to identify the
right-moving and the left-moving flux of particles,
since the mass is constant. Thus, by requiring that the
left-moving flux is zero in the latter region, i.e. by
imposing that we only have a transmitted flux in this
region, a left-handed reflected flux is obtained from
the right-handed one and vice versa®. The equiva-
lence between the equations for ¢ and for ¢y in (4),
as a consequence of the result Q(z) = Q(z) for the
real mass case, implies that there is no asymmetry in
the reflection of incident right-handed and left-handed
fermions. In consequence, needless to distinguish ¢
and ¢q. Only when an imaginary mass term, which
introduces CP-violating effects, is incorporated, dif-
ferences between the behaviour of right-handed and
left-handed fermions may exist in the reflection pro-
cess [1,3,5]. The fact that CP invariance boils down
to an equality between both helicities is a consequence
of CPT invariance [7].

In this way, following the method above described,
which was originally introduced by Nelson et al. for
a numerical computation of the reflection coefficient
[6,7], we use that

Y(z) =0(z, 20)¥(20), (21)

where

w010 () ma

3 Indeed, by conservation of angular momentum J. the helicity
is flipped in the reflection process.
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eiEzO
¥ () = (Re—iEzo) . (22)

D diagonalizes the matrix Q in the region where the
mass is constant. From Eq. (21), (22) we obtain for
the reflection coefficient

R(E) = ztﬁmwu (E ~ p)wy

, 23
w}, — (E~plon (23)

with p = +V/E? — 1. In our case, for the high energy
limit, we have

R(E) = —

1 2
iAa
25( :AaI(a))+o[( )] (24)

E

Now, we must compute the integral which gives the
function Z(a) in Eq. (20). We introduce a certain
convergence factor, ¢ %%, where the parameter € is
taken small enough to be sure that F(Ax) decreases
faster than this factor when x — —oo, in such a way
that the integration over the real axis, from —oo to
00, is well defined. Thus, by cutting the integration

domain into three intervals, (—oc, —1), (—1,1) and
(1,00), we can write
I(a)=
[= =] [s+] -1
lim f -f— f dxe =X F(\x)
e—0t
—00 1 -0
(25)

where the integrals in the regions (—o0,—1) and
(1,400) can be trivially solved. Indeed, as indicated
above, we approximate F(Ax) =0,1 for x < —1 and
x > 1, respectively. Therefore, we have

-1
lim / dx F(Ax) e e)x =0

e—0

~00

+0o0 .
lim fdx F(Ax) eta=ax o L gira (26)
e—0+ Aa

+1

Concerning the integral over all of the real axis, the
Cauchy theorem can be applied in order to perform
this integration. If the Laurent expansion for F(z) in
the pole of order v}, z = zj,is 3 1er, bi(z — 2;)" the
following result can be obtained:

+00
lir&[dx F(Ax) elira—e)x
27 (:a)”"
== e e“”‘JZb’,n TR

=1

where z; = x|+fYI, = x2+£y2, v AN = xN+in, are
all the poles of F(z) with positive imaginary part we
have picked when the integration contour is adequately
closed. Since the profile function is analytic on the
real axis, it is obvious that y; # 0 and therefore we
obtain an exponential dependence on a.

It can be shown from Egs. (24), (25), (26) and
(27) that

N

R(E) = ﬁ—; Y e gfon

Jj=1
(l a)n 1 1 2

ij_"(nbl)’ "[(5)] ‘ (28)
Obviously, R(E) defined in Eq. (23) and given
by Eq. (24) is the reflection coefficient generated
by a profile function which is zero in the region
(—o0,—Ac) and constant in the region (Ao, o0).
Nevertheless, f(7) is an analytic function in the
real axis verifying that f(7) — ®(7) decreases ex-
ponentially when 7 — +o0, in such a way that the
wall profile is well defined over all the real axis. In
fact, we are interested in the situation where the wall
profile extends from —oo to oo, although the former
requirement is technically necessary in order to iden-
tify the incident, reflected and transmitted waves. On
the other hand, we cannot take directly the limit when
A — oo [8]. This problem is solved by considering
A as large enough to neglect the effects due to the
evolution of the wave outside the region (—Ac, Ao).
The question is studied in detail way in Ref. [8] and
the result is, as intuitively expected, that in the limit
where we take for the wall profile an analytic function
from —o0 to +oo one simply has to consider in (25)
the first integral, from —co to +oc, and that conse-
quently (28) gives the reflection coefficient for the
wall from —oc to +0c0. The effect of the mentioned
technical assumption (the substitution of the true pro-
file function by a step function outside the interval),
is that Z(a) is defined as an integral over de domain
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(—1,1). It can be bounded as seen in (25) when this
function, Z(a), is expressed through the integral over
all the real axis and the two other integrals given by
Eq. (26). It is worth to stress that indeed R(E) in
Eq. (28) does not depend on A, as expected for the

raflantinn

s s
LINLEALLIUILL

¥Y

In (24) the leading term for a series of powers in
1/E has been written. Nevertheless, we can be sure
that it gives the leading term only if a is a constant.
If the parameter which is considered constant is o,
then we must return to the problem of the asymptotic
properties of the series we use. As above mentioned,
this question is discussed in [8], where we conclude
that the right-hand side of (24) is the leading term of
the reflection coefficient for high energy when o < 1,
even if a = 2¢0'E > 1. In this way, by considering the

nafhniant far tha uaall fene P N I
LIV BUL LEIG il LLVILE —7UAS LY TR

denendance an F for the raflactinn cnafficient in tha
LvpvaiGaive Ul ds 1V iU TVUCLUUN WUCIVITIL 1 U

high energy limit, taking o as constant, we have

ke, piEex N~y (2T
R(E)=2‘?TG’Z€ e ’ZH_HW
j=i n=1i )
(29)

Thus, the behaviour of the high energy fermions, i.e.
the high energy component of a wave packet, hitting
the wall is completely determined by the complex sin-
gularities of the wall profile function. Furthermore, if
wc arc in such arange of encigy that oL > 1, the lead-
ing contribution is exponentially decreasing with the
by the pole of f(z) with the smallest imaginary part,
i.e. the closest to the real axis. Calling z; = x; + iy,

this prevailing pole we obtain
P XD PN T
{(2ibo )™

(v — 1)!

—IEU}’; bk 21‘50':(1

-y

R(E) =2mae
(30)

The dependence in o in (30) is simply an artifact of
our change of variables (11). Indeed it can be inmedi-
ately seen that if we consider the Laurent expansion,
S bi(z — z;)7, for f(z) instead F{z), in the
pole of the order »;, z = z}, we have

te

b) =

n

2, =01, (31)

where, by using (11), the poles and the coefficients of
the Laurent expansion for F(z) and f(z) have been

L.

related. Thus, the final result can be expressed in terms
of the singularities of f(z) by replacing (31) in Egs.
(29) and (30),

N , o
R(E) =27 S e~25Y) QHEx N " pli- (VQ:E)" 7‘
=i T (n—-1)!
oy ok (2EYN
=2mwe” "k b ' (32)

bl

—_—yy, S T €
% (v — 1)1
where the lower expression is valid in such a range
of energy that e?£0%¥) can be neglected, y, and ),

ITmaginary o to
llllaél nal y Pa.l v

real axis (this requirement is analogous to the former
oE > 1). The dependence on o has disappeared in
(32), as expected.

The results we present can be checked by using the
particular analytic solution obtained in Refs. [5,4] for
the following wall profile

haing tha Fabobrarm alocau wolac ¢ sl o
ULITE Hiv I LT LW LIUsLl DUICS LU LS

1 + tanh(7/0)
—_—.

£

flr) = (33)
For this particular profile function, it follows from
(29) by computing the sum for the infinite series of

poles it presents

To

R(E) = 2sinh(mEo)’

(34)
which agrees with the result of Ref. [5,4] in the high
energy limit for o < 1.

With this positive check, we conclude that (29) in
general and (30) for Eo large give the high energy
behaviour of the reflection coefficient for analytic pro-
file functions in the real axis. The singularities of the
profile function determine the behaviour of the high
energy fermions in the way shown by Eq. (29), and
if the en
characteristic wall thickness, it is the closest pole to the
real axis that gives the high energy behaviour through

Eq. (30).
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Appendix A

We take Q (7) as constant in the intervals (zj, zj;1),
defining for each one f; as the following integral av-
erage value:

i+l

fj=EI‘__/de(f). (A.1)

J
Zj
where A; = zj;1 — z;. By assuming that A; is small
(in fact, the limit A; — O is considered for the result
obtained in this appendix), it can be written in a good
approximation by using (9)

- il

Taking into account that for two operators verifying
{A, B} =0 and A% = B? = 1, the following result can
be easily proven:

e®4+PB _ osh [(az + 432)”2}

B

and from (A.2) we can derive Eq. (13),

. il
'Pelfﬂj w o _ impia;

=e¢

| _ 142
+ Zoafjsin(pi,;) + 0 (E) , (A4)
where p; = +(E? — f})'fz. In order to obtain this
equation E/p; and 1/p; have been expanded in powers
of 1/E.
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