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Abstract
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1 Introduction

In recent work [1, 2, 3] we have studied the role of pionic correlations for electron-nucleus
scattering in the kinematical domain of the quasielastic peak, focussing our attention on the
1p-1h sector. The calculation has been carried out on the basis of a Relativistic Fermi Gas
(RFG) model in which an exact relativistic treatment of the problem can be accomplished.
In the domain of perturbation theory, all diagrams including one pionic line were included
— in particular the meson-exchange currents (MEC) of contact and pion-in-flight types —
so that the corresponding current was automatically gauge invariant.

In [1, 2] the diagrams involving the excitation of a virtual ∆-resonance, represented in
fig. 1, were neglected. Although they do not affect the gauge invariance of the theory, since
they are associated with a conserved current, it is well-known that such contributions do
modify the nuclear response functions, especially in the transverse channel. The aim of this
paper is to extend the model of refs. [1, 2] to include the ∆-induced meson-exchange-currents
of fig. 1, in order to have a complete understanding of pionic effects in the quasielastic
peak (QEP) as far as the 1p-1h channel is concerned. In contrast with non-relativistic
calculations [4] our results do not involve any expansions in energy-momentum/M , where
M is a typical baryonic mass, and can therefore be applied when studying the response at
high momentum and energy transfers.

The present relativistic treatment of the ∆ current allows one to study several aspects of
∆ electroexcitation which are of special interest theoretically. In particular, in the effective
Lagrangian approach to electroexcitation of the ∆ resonance it is known that there is free-
dom at the electromagnetic (EM) vertex due to the off-shell behavior of this resonance [5].
In contrast to earlier approaches to the ∆-exchange current in a relativistic model [6], here
we consider a more general γN∆ interaction Lagrangian. First of all, current conservation
restricts the form of the vertex to a superposition of three covariants, for which one can
use any of the choices described for instance by Jones and Scadron [7]. One possible choice
is the familiar set of magnetic dipole, electric quadrupole, and Coulomb quadrupole multi-
poles, used in the pion electroproduction analyses of [8, 9]. In this work we use instead the
standard “normal parity” set, analogous to the Dirac-Pauli decomposition of the nucleon
form factor [10]. The corresponding term in the traditional chiral Lagrangian of Peccei [11]
is just a particular case of the normal parity set with two of the three terms equal to zero.

Going a step beyond the Jones-Scadron vertex, the off-shell propagation of massive vector
fields with spin S > 1

2
has been exhaustively discussed in the literature [5, 12, 13]. In

particular, a spin 3
2

field generates contributions involving the S = 1
2

sector of this field in the
effective amplitudes. In the case of the ∆, this is obtained by constructing the most general
vertex which is invariant under a special contact symmetry of the free Lagrangian (see [5] for
details). The invariance of the γN∆ and πN∆ vertices under this “point transformation” of
the field requires the introduction of additional parameters in the Lagrangian. Attempts have
been made to fix some of these “off-shell” parameters by fitting the pion electro- and photo-
production data [14] and, more recently, Compton scattering data from the nucleon [15]. In
this work we analyze the impact of the off-shellness nature of the ∆ in the EM responses for
high momentum transfers by comparing the results obtained with different sets of parameters
fitted to nucleon data. In this context we study, in particular, the differences with the
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Figure 1: The Feynman diagrams corresponding to the two-body electroexcitation of the ∆.

traditional Peccei Lagrangian approach, which corresponds to specific choices of the off-
shell parameters and coupling constants. Recently attempts have been made to design new
∆ interaction lagrangians “consistent” with the number of spin degrees of freedom of the
∆ from a rigorously field theoretical point of view [13, 16, 17]. However analyses of pion
photoproduction with these interactions have not been performed yet, and these studies
should be done before attempting to implement them into the MEC operators.

The structure of the work is the following: in sect. 2 we present the relativistic model for
the ∆ current and provide expressions for the ph matrix elements in the RFG. In sect. 3 we
present the results of the calculation of the nuclear response functions including the ∆ current
for several values of the momentum transfer, up to q = 3 GeV/c. We make contact with the
scaling properties of the response functions and compare the results with those obtained in
non-relativistic approaches for low and intermediate momentum transfer. Finally in sect. 4
we present our conclusions. In appendix A we discuss the properties of the ∆ propagator
and provide a new method to derive its general form fulfilling the point transformation. In
Appendix B we give details on the non-relativistic reduction of the ∆ current.

2 The relativistic ∆-isobar current

In line with refs. [1, 2] we perform our analysis in first-order perturbation theory, namely we
consider the contributions arising from diagrams with only one pionic line — our conventions
are discussed at length in the references cited. We then evaluate the contribution of a virtual
∆ to the longitudinal and transverse response functions

RL(q, ω) =

(

q2

Q2

)2 [

W 00 − ω

q
(W 03 +W 30) +

ω2

q2
W 33

]

(1)

RT (q, ω) = W 11 +W 22 , (2)
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Figure 2: The particle-hole Feynman diagrams corresponding to the two-body electroexci-
tation of the ∆.

linked to the hadronic tensor W µν . In the symmetric (Z = N) RFG model the one-body-∆
interference contribution to the hadronic tensor reads1

W µν
OB−∆ =

3Z

8πk3
F q

∫ kF

h0

hdhEp

∫ 2π

0
dφh

∑

sp,sh

2Re

[

m2
N

EpEh

jµ
OB(p,h)∗jν

∆(p,h)

]

, (3)

where (Ep,p) = P µ = (H +Q)µ = (Eh + ω,h + q) and the lower limit of the integral, h0, is
the minimum momentum required for a nucleon to participate in the process (see refs. [2, 18]
for details and explicit expressions). The ph one-body EM current is given by

jµ
OB(p,h) = u(p)

(

F1γ
µ + i

F2

2mN
σµνQν

)

u(h) , (4)

where F1 and F2 are the Dirac and Pauli form factors and u(h) ≡ u(h, sh, th) the free Dirac
spinor. The current jν

∆(p,h), associated with the diagrams of fig. 2, is linked to the ph
matrix element of the ∆ current operator, ĵν

∆(Q) through

〈ph−1|ĵν
∆(Q)|F 〉 = (2π)3δ3(q + h− p)

mN

V
√

EpEh

jν
∆(p,h) (5)

=
∑

sk,tk

∑

k≤kF

[

〈pk|ĵν
∆|hk〉 − 〈pk|ĵν

∆|kh〉
]

. (6)

The sum
∑

k≤kF
becomes, in the thermodynamic limit, an integral over the momentum in

the range 0 ≤ k ≤ kF , and over the angular variables θk, φk. The first and second terms in
eq. (6) represent the direct and exchange contribution to the matrix element, respectively.

We may write the γN∆ Lagrangian in the general form [15]

LγN∆ = L1
γN∆ + L2

γN∆ + L3
γN∆ (7)

with

L1
γN∆ =

ieG1

2mN
ψ̄αΘαµ(z1, A)γνγ5T

†
3NF

νµ + h.c. (8)

1We assume q > 2kF , where kF is the Fermi momentum, so that no Pauli blocking is present.
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L2
γN∆ =

eG2

(2mN )2
ψ̄αΘαµ(z2, A)γ5T

†
3 (∂νN)F νµ + h.c. (9)

L3
γN∆ = − eG3

(2mN )2
ψ̄αΘαµ(z3, A)γ5T

†
3N∂νF

νµ + h.c. , (10)

where ψα is the ∆-field, N the nucleon field and F νµ the EM field tensor. We denote by T †
a

the 1
2
→ 3

2
isospin transition operators [19] for a = 1, 2, 3. The Lagrangians (8-10) coincide

with the expressions given in refs. [5, 14, 20]. On the contrary, the term in eq. (9) differs
from ref. [15] in a global sign. As it will be shown later, this difference makes a negligible
effect on the global contribution to the MEC(∆) transverse response, but it causes a very
significant reduction in the contribution to the longitudinal response.

The tensor Θµν(z, A) can be written in the general form

Θµν(z, A) = gµν +
[

z +
1

2
(1 + 4z)A

]

γµγν , (11)

where z is the so-called off-shell parameter and A is an arbitrary parameter related to the
“contact” invariance of the Lagrangian [5, 15].

To derive the ∆ current we need also the πN∆ Lagrangian, given by

LπN∆ =
fπN∆

mπ

ψ
µ
Θµν(zπ, A)∂ν

π ·T†N , (12)

where π is the isovector pion field, and we have introduced an off-shell parameter zπ for the
πN∆ vertex. Finally, as in ref. [2], we use pseudo-vector coupling for the πNN vertex.

The corresponding two-body Delta current is obtained by computing the S-matrix ele-
ment for the elementary virtual photo-absorption process by two nucleons N1 + N2 + γ →
N ′

1 +N ′
2 (see fig. 1). The corresponding current function can be written as2 (see ref. [2] for

a detailed definition of relativistic currents):

jµ
∆(p′

1,p
′
2,p1,p2) =

fπN∆f

m2
π

Gπ(K2)K2αQνu(p
′
1) [Xαµν

a (P ′
1, P1)−Xανµ

a (P ′
1, P1)]u(p1)

×u(p′
2)γ5 6K2τau(p2) + (1←→ 2) , (13)

where we use the Einstein convention for the Lorentz indices and for a sum over a repeated
isospin index a = 1, 2, 3. Moreover, Kµ

i = P ′
i
µ − P µ

i (with i = 1, 2) are the pionic four-
momenta (see fig. 1) and

Gπ(K) =
1

K2 −m2
π

(14)

is the propagator of a pion carrying four-momentum Kµ. The tensor Xαµν
a is defined as

Xαµν
a (P ′, P ) = Θαβ(zπ, A)G∆

βρ(P +Q)

×
[

G1

2mN
Θρµ(z1, A)γν − G2

4m2
N

Θρµ(z2, A)P ν +
G3

4m2
N

Θρµ(z3, A)Qν

]

γ5TaT
†
3

2Here we use the Bjorken and Drell conventions [21], whereas different conventions were used in [22].
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+ γ5

[

G1

2mN
γνΘµρ(z1, A)− G2

4m2
N

P
′νΘµρ(z2, A)− G3

4m2
N

QνΘµρ(z3, A)

]

× G∆
ρβ(P ′ −Q)Θβα(zπ, A)T3T

†
a . (15)

The isospin sums in eq. (13) can be performed using the relations

T (1)
a T

†(1)
3 τ (2)

a =
2

3
τ (2)
z −

i

3

[

τ
(1) × τ

(2)
]

z
(16)

T
(1)
3 T †(1)

a τ (2)
a =

2

3
τ (2)
z +

i

3

[

τ
(1) × τ

(2)
]

z
. (17)

In eq. (15) the three amplitudes contributing to the N-∆ vertex [7, 15] are taken into account
and the values of the off-shell parameters zπ, z1, z2 and z3 will be discussed later.

In what follows we start by considering the ∆ as a stable particle with mass m∆, and we
will later include a width to account for its decay probability in the resonance region. The
isobar propagator can be expressed in general as a sum of two terms

G∆
βρ(P ) = GRS

βρ (P ) +GA
βρ(P ) , (18)

where

GRS
βρ (P ) = − 6P +m∆

P 2 −m2
∆

[

gβρ −
1

3
γβγρ −

2

3

PβPρ

m2
∆

− γβPρ − γρPβ

3m∆

]

(19)

is the usual Rarita-Schwinger (RS) propagator tensor and

GA
βρ(P ) = − 1

3m2
∆

A + 1

(2A+ 1)2

×
[

(2A+ 1)(γβPρ + Pβγρ)−
A+ 1

2
γβ( 6P + 2m∆)γρ +m∆γβγρ

]

(20)

the piece of the propagator that depends on the parameter A. Note that the global sign
in the RS term differs from the expressions given in [5, 14, 15]. This can be due just to
a different choice of phase in the definition of the propagator. As shown in Appendix A,
the choice of phase in this work coincides with the one that provides the standard form of
the nucleon propagator, SN (P ) = 1/( 6P −mN ). In appendix A eq. (20) is derived using a
contact transformation of the RS propagator3. Moreover, because of the contact invariance,
the physical properties of the field can be shown not to depend on A. As a further test of
our calculation, we have checked that the results for the T response do not depend on A.
Hence in what follows we fix A = −1 so that the complete ∆ propagator is simply reduced to
the Rarita-Schwinger expression and therefore omit the explicit A-dependence in the tensor
Θµν .

It is immediate to check that the current in eq. (13) is conserved,

Qµj
µ
∆(p′

1,p
′
2,p1,p2) = 0 , (21)

so that the ∆ current does not affect the gauge invariance of the RFG model.

3Note that there is an error in the relative sign between the GRS
βρ and GA

βρ pieces given in refs. [5, 12].
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The particle-hole matrix-element diagrams are obtained from eq. (13) by setting

(P ′
1, s

′
1, t

′
1) = (P, sp, tp) , (P1, s1, t1) = (H, sh, th)

(P2, s2, t2) = (P ′
2, s

′
2, t

′
2) = (K, sk, tk) (22)

for the direct term and

(P ′
1, s

′
1, t

′
1) = (P, sp, tp) , (P2, s2, t2) = (H, sh, th)

(P1, s1, t1) = (P ′
2, s

′
2, t

′
2) = (K, sk, tk) (23)

for the exchange term, and by summing over the hole momentum k, spin sk and isospin tk.
The isospin trace yields a vanishing direct matrix element, since Tr τa = TrT †

3Ta = 0. In the
exchange channel, recalling eq. (16), we get

∑

tk

χ†
tpTaT

†
3χtkχ

†
tkτaχth =

∑

tk

χ†
tkT3T

†
aχthχ

†
tpτaχtk =

4

3
χ†

tpτzχth (24)

and
∑

tk

χ†
tpT3T

†
aχtkχ

†
tkτaχth =

∑

tk

χ†
tkTaT

†
3χthχ

†
tpτaχth = 0 . (25)

As a consequence only the two “vertex” diagrams (a) and (b) in fig. 2, contribute to the
process, whereas the “self-energy” diagrams (c) and (d) give a vanishing contribution to the
responses.

Finally, by taking the thermodynamic limit, we get for the ph current function in eq. (5):

jµ
∆(p,h) = −fπN∆f

m2
π

4

3
χ†

tpτzχth

∑

sk

∫

d3k

(2π)3

mN

Ek

θ(kF − k)

× [ u(p, sp)F
µ(P,H,K)u(k, sk)u(k, sk)γ5( 6K− 6H)u(h, sh)

+ u(p, sp)γ5( 6P− 6K)u(k, sk)u(k, sk)B
µ(P,H,K)u(h, sh) ] , (26)

where

F µ(P,H,K) ≡ Gπ(K −H)(K −H)αQνΘ
αβ(zπ)G∆

βρ(K +Q)

×
{

G1

2mN
[Θρµ(z1)γ

ν −Θρν(z1)γ
µ]− G2

4m2
N

[Θρµ(z2)K
ν −Θρν(z2)K

µ]

+
G3

4m2
N

[Θρµ(z3)Q
ν −Θρν(z3)Q

µ]

}

γ5 (27)

and

Bµ(P,H,K) ≡ Gπ(P −K)(P −K)αQν

× γ5

{

G1

2mN

[γνΘµρ(z1)− γµΘνρ(z1)]−
G2

4m2
N

[KνΘµρ(z2)−KµΘνρ(z2)]

− G3

4m2
N

[QνΘµρ(z3)−QµΘνρ(z3)]

}

G∆
ρβ(K −Q)Θβα(zπ) (28)

6



correspond to the forward- and backward-going diagrams (a) and (b) of fig. 2, respectively.
The decay of the ∆-resonance into a physical N -π state should be taken into account

above threshold, i.e., P 2
∆ > (mπ +mN )2. This is accounted for by modifying the propagator

in eq. (19) to include a finite width according to the following prescription [6]

1

P 2 −m2
∆

−→ 1

P 2 −
[

m∆ − i
2
Γ(P 2)

]2 (29)

in which [19]

Γ(P 2) = Γ0
m∆√
P 2

(

p∗π
pres

π

)3

(30)

is the energy-dependent width. In the above p∗π is the momentum of the final pion resulting
from the ∆ decay (in the ∆-system) and pres

π is its value at resonance. Moreover we take
Γ0 = 120 MeV.

3 Results

In this section we show the contribution of the ∆ current to the longitudinal and transverse
quasielastic response functions in the 1p-1h channel.

3.1 Response functions and off-shell dependence

The following coupling constants have been used in the calculation [6, 15]:

f =
√

4π × 0.08 , fπN∆ = 4× 0.564 , G1 = 4.2 , G2 = 4 , G3 = 1 . (31)

The value of G3 is arbitrary owing to the lack of experimental information (see below).
Moreover, although not explicitly indicated in the above formulae, the following monopole
form factor

FπNN (K) = FπN∆(K) =
Λ2 −m2

π

Λ2 −K2
, (32)

with Λ = 1300 MeV, has been used. For the single-nucleon current we have for simplicity
adopted the Galster form factor parameterization [23]. The Fermi momentum is chosen to
be kF = 237 MeV/c, namely, representative of a typical sd-shell nucleus.

In fig. 3 we plot the one-body-∆ interference contributions to the longitudinal and trans-
verse responses as functions of the energy transfer ω for various values of the momentum
transfer q, ranging from 0.5 to 3 GeV/c. The separate contributions of the three Lagrangians
in eqs. (8,9,10) are displayed.

Regarding the longitudinal response (left panels), the G1 and G2 pieces are similar in
magnitude and tend to cancel for high q, whereas the G3 term is negligible. Note that this
result is very different from the one obtained with the Peccei Lagrangian (corresponding to
the G1 term only). However, as will be shown later, the whole contribution to the response
is very small.
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Figure 3: The contribution of the ∆ current to the longitudinal (left panels) and transverse
(right panels) responses plotted versus ω. Here kF=237 MeV/c. The separate contributions
of the first (G1, solid) second (G2, dashed) and third (G3, dotted) terms of the current are
displayed. The off-shell parameters are taken as z1 = z2 = z3 = zπ = −1/4.
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Figure 4: Global longitudinal and transverse responses plotted versus ω. Solid: RFG trans-
verse response; dashed: RFG+MEC(∆) transverse response; dotted: RFG longitudinal re-
sponse; dot-dashed: RFG+MEC(∆) longitudinal response.

In the transverse channel (right panels) the G1 term clearly dominates, although at high
q the contribution of G2 becomes significant and tends to cancel the first one. Hence in this
case the results almost coincide, for q not too high, with the results obtained with the Peccei
Lagrangian.

To clarify the effects introduced by the ∆ current, we show in fig. 4 the “total”, namely
RFG+MEC(∆), longitudinal and transverse responses compared with the pure RFG ones.
The same values of q as in the previous figure have been considered. We note that the con-
tribution of the MEC(∆) to the longitudinal response is always negligible. In the transverse
channel the contribution of the ∆ is larger and negative, that is, the interference between the
one- and two-body currents matrix elements is destructive and therefore reduces the total
from the purely nucleonic answer. At low momentum transfers the fractional contribution
arising from MEC(∆) contributions is relatively large and then it slowly decreases as the
momentum transfer increases into the several GeV regime. Specifically, at the selected values
of q = 0.5, 1, 2 and 3 GeV/c the net effect of the MEC(∆) contributions is 19%, 18%, 10%
and 4%, respectively.

It is also interesting to compare the role of the MEC(∆) with the other pionic MEC
(seagull and pion-in-flight), calculated in the same relativistic model in [1, 2]. As shown
in fig. 5 the ∆ contribution is larger than the pionic one for lower q, where the total MEC
are sizable, although for higher momentum transfers the difference in magnitude between
∆ and pionic MEC contributions decreases and the two contributions tend to cancel. As a
consequence, the impact of the total MEC at high q (say q ≥ 2 GeV/c) is almost vanishing
in the 1p-1h sector.
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Figure 5: MEC(∆) contribution to the transverse response (solid) compared with the pionic
seagull plus pion-in-flight contribution (dashed).

We now investigate the effect of changing the off-shell parameters zi. The values zi =
−0.25 used in the above results are unnecessarily restrictive, since they were fixed by Peccei
under the condition γµΘ

µν(z, A) = 0, which does not correspond to the most general form of
Θµν consistent with the point transformation. Different ranges or sets of the parameters zπ,
z1 and z2 have been obtained by fitting pion photo-production data on the nucleon [14, 24],
while the value of z3 needs electrons to be fixed. The uncertainty in these parameters arises
from the treatment of the unitarity constraint, due to both theoretical ambiguities and to
lack of precise experimental data.

Since a unique determination of the off-shell parameters is not available, we have studied
the dependence of our results upon a variation of them. In fig. 6 we present the ∆ contribution
to the longitudinal and transverse responses for q = 1 GeV/c using four different choices of
the parameters (zπ, z1, z2, z3):

a) (−1/4,−1/4,−1/4,−1/4) , b) (−1/4, 0.1, 2.25,−1/4) ,

c) (−1/4, 0.3, 2.25,−1/4) , d) (−1/2,−1/2,−1/2,−1/2) . (33)

Set a), used in the previous figures, reduces to the standard Peccei Lagrangian in the case
G2 = G3 = 0. Sets b) and c) are determined in [15] by fitting Compton scattering cross
sections on the nucleon (note that in this case the G3 term does not contribute) and set
d) yields the usual non-relativistic γN∆ vertex, namely Θµν = gµν . Although several other
choices of parameters have been suggested in the literature [14], we believe that the results of
fig. 6 give an indication of the uncertainty in the response functions associated with different
off-shell prescriptions. It appears from fig. 6 that the fractional uncertainty is much larger
in the longitudinal channel, where, however, the contribution to the response is negligible.
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Figure 6: MEC(∆) contribution to the longitudinal (upper panel) and and transverse (lower
panel) responses plotted versus ω. The momentum transfer is q = 1 GeV/c and results are
shown for the four sets of the off-shell parameters discussed in the text.
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On the other hand the transverse response, for which the MEC(∆) contributions are more
important, is rather insensitive to the different choices (the effect being at most of the order
of 6–7%).

In [17] a correspondence between classes of “consistent” and “inconsistent” lagrangians
was found by a redefinition of the spin-3/2 field. A new contact interaction that does not
involve the spin-3/2 field appears. In our case this would mean that a new MEC term
of contact type, dependent on the off-shell parameters, would arise and should be added
to the ”seagull” current, cancelling the dependence of the total responses on the off-shell
parameters.

In the next subsection we shortly address the scaling behavior of the MEC(∆) responses.

3.2 Scaling

The scaling phenomenon has been presented in detail in refs. [25, 26, 27]. Here we just recall
the basic definitions which are of use for the discussion that follows. We only focus on the
transverse channel since, as previously shown, the MEC(∆) are irrelevant in the longitudinal
channel.

Scaling of first kind occurs if the scaling function

fT (q, ω) = kF
RT (q, ω)

GT (q, ω)
(34)

becomes a function of one single variable, the scaling variable, and independent of q. Such
behaviour is known to occur for large q in the region below the QEP. In eq. (34) GT (q, ω) is
the relevant single-nucleon EM function (see ref. [27] for its explicit expression).

Several different scaling variables exist in the literature, all of them coalescing into one
— or being simply related to each other — for high enough momentum transfers. In the
quasielastic peak region the natural scaling variable turns out to be [28, 29]

ψ = ±
√

T0

TF
, (35)

where T0 =
√

h2
0 +m2

N −mN is the minimum kinetic energy required to a nucleon to take
part in the process. The +(−) sign in eq. (35) refers to the right (left) of the quasielastic
peak. The analysis of the World data [25, 26, 27] shows that scaling of first kind is reasonably
good for ψ < 0 and badly violated for ψ > 0.

Scaling of second kind corresponds to the independence of the function fT on the specific
nucleus, namely on the Fermi momentum. The analysis of the existing data points to an
excellent fulfillment of this scaling in the region ψ < 0 and to a not very dramatic breaking
of it for ψ > 0. When the two kinds of scaling occur the response is said to “superscale”.

The relativistic Fermi gas model fulfills both kinds of scaling, by construction, yielding the
scaling function f0 = 3(1− ψ2)/4. The observed superscaling behavior of the experimental
data [25, 27] offers a clear constraint on the size allowed for nuclear correlations and MEC
contributions, since these may break the scaling behaviour (of both kinds), and can therefore
be used as a test of the reliability of the model. It is then natural to explore the scaling
behaviour predicted in the present model.
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Figure 7: The scaling function fT plotted versus ψ at kF = 237 MeV/c for various values of
q (upper panel) and at q = 1 GeV/c for various values of kF (lower panel). The function f0

(thick solid line) refers to the free Fermi gas scaling function.

In [1] the evolution with q and kF of the pionic MEC and correlations has been already
explored in detail: it has been proven that these contributions satisfy, at momentum transfers
above 1 GeV/c, scaling of the first kind, but that they violate the second-kind scaling by
roughly three powers of kF , which is strong enough to be seen in existing data. However, the
size of the scale breaking predicted in [1] in the scaling region (below the QEP) was small
enough to be compatible with the high quality high-q data.

In fig. 7 we display the scaling function fT versus ψ for different values of q (upper panel)
and kF (lower panel). It appears that both kinds of scaling are violated by the MEC(∆)
contribution, something not evident in the high quality World data, at least within exist-
ing experimental uncertainties. When the “total” 1p-1h response is formed a quantitative
analysis shows that the MEC(∆) contributions in the transverse response play some role,
but that overall first-kind scaling is quite good for −1 ≤ ψ ≤ −0.5 and q ≤ 1 − 2 GeV/c
and is violated at a 5-10% level at the QEP. On the other hand, the second-kind scaling
violations from this 1p-1h model can be significant for all values of ψ, since they modify the
scaling function (that scales, by construction) by three powers of kF . The figure shows a
generous range of Fermi momenta; these correspond to going from 4He at kF = 200 MeV/c
to very heavy nuclei at kF

∼= 250 MeV/c and then well beyond to 300 MeV/c to explore
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more fully the second-kind scaling behaviour. If we restrict our attention to nuclear species
where high quality data exist then we should compare the kF = 200 MeV/c results with
those for kF = 250 MeV/c and the lower panel in the figure shows that violations of about
14% are predicted at the QEP (actually using modeling of this type for helium is probably
stretching things somewhat: if the comparison is made for “real nuclei” such as 12C ver-
sus 197Au for which excellent data exist then an effect of roughly 8% is predicted). While
second-kind scale breaking of this magnitude should be visible in the data one should be
careful before drawing premature conclusions, since one knows that additional scale-breaking
contributions arise from mechanisms outside the present model. In particular we know from
past work [6, 22, 30] that 2p-2h MEC contributions also typically lead to effects that go as
k3

F , but these add and therefore tend to cancel the contributions discussed in the present
work. The net effect, in the scaling region at least, is expected to amount to a few percent
and therefore be consistent with the relevant World data.

It appears that the scaling behaviour of the MEC(∆) contributions is different from that
of the single-nucleon RFG response — namely, if the scaling functions and variables are
defined as in past work to make the latter scale, then the two-body MEC contributions in
general do not. First-kind scaling violations (see the upper panel in fig. 7) arise because the
one- and two-body currents do not in general have the same (q, ω) dependences, and only
one choice can be made when defining the scaling function. Namely, in standard treatments
it is the one-body (single-nucleon) cross section that is divided out to produce scaling for
the dominant impulse approximation contributions. Similarly, second-kind scaling violations
arise when the density dependences of the various contributions are different.

The high-quality World data present a mixed picture: for negative values of ψ both
kinds of scaling are reasonably respected, although scaling of the second kind appears to
be better than scaling of the first kind in this region. For ψ positive, scaling of the first
kind becomes quite bad, partially because pion production including via the delta and other
baryon resonances becomes important and, for the reasons stated above, has a different
(q, ω) dependence. Additionally, the MEC(∆) effects under study in the present work can
contribute to this first-kind scale breaking. Were the latter to be the only contributions to
be present along with the one-body responses, then we would conclude from this study that
overall first-kind scaling is quite good for −1 ≤ ψ ≤ −0.5 and q ≤ 1–2 GeV/c, but could
be violated by as much as 5–10% at the QEP. However, the full assessment of which contri-
butions produce the observed result cannot be made before all effects are included, namely
from impulse approximation nucleonic currents, 1p-1h MEC effects from pion-exchange con-
tributions including those involving the ∆ (this work), 2p-2h MEC effects (work in progress)
and meson production.

Similar statements can be made with respect to second-kind scaling violations. The
MEC(∆) contributions studied in the present work (see lower panel in fig. 7) can be signifi-
cant for all values of ψ, since they modify the scaling function (that scales, by construction)
by three powers of kF .
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Figure 8: MEC(∆) transverse response computed for several values of q and kF . Solid: exact
relativistic result, dashed: non-relativistic result. Static propagators without a πNN form
factor have been used.
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3.3 Non-relativistic reduction

To finish with the discussion of the results, in this section we analyze the effects associated
with different types of non-relativistic approaches. Focusing on the MEC(∆) contribution
to the hadronic (e, e′) observables one deals with the single-nucleon EM current operator
and the two-body ∆ current. Improved “semi-relativistic” (SR) versions of the former have
been presented in [31, 32, 33] by expanding only in the dimensionless parameter η = p/mN ,
being p the struck nucleon three-momentum. By this method a SR form of the transverse
OB current can be written in terms of the non-relativistic one as

jOB
SR (p,h) =

1√
1 + τ

jOB
NR(p,h) , (36)

where τ = |Q2|/4m2
N . A similar expansion has been carried out for the pion-in-flight and

contact MEC in ref. [34] and for the one-body ∆ electroproduction current in [35]. In the
case of the MEC, a semi-relativistic expression similar to eq. (36) was proposed and tested
in [2]

jMEC
SR (p,h) =

1√
1 + τ

jMEC
NR (p,h) . (37)

Although these SR MEC currents compare better than the NR ones to the exact relativistic
calculation, they are not as good as that the SR OB current since, as illustrated in [2], an
additional kF -dependent normalization factor N(q, ω, kF ), arising from the integration over
the Fermi sea, should be present in eq. (37). Nevertheless the simplicity of these SR currents
make them suitable for easy incorporation in existing non-relativistic models.

The relativizing factor (1 + τ)−1/2 takes care of spinology and normalization properties
that cannot be neglected in any relativistic model. Therefore, consistently with eq. (37), we
propose a similar expression for the semi-relativistic ∆ current

j∆SR(p,h) =
1√

1 + τ
j∆NR(p,h) , (38)

where j∆NR(p,h) is the standard non-relativistic ∆ current commonly considered in the liter-
ature [36, 37], usually obtained from NR sets of γN∆ and πN∆ Lagrangians. In appendix
B we derive its expression by performing a non-relativistic reduction of the relativistic ∆
current considered in this work.

To illustrate clearly the impact of relativity we show in fig. 8 the MEC(∆) transverse
response corresponding to the fully relativistic calculation (solid lines) and to the standard
NR reduction (dashed lines) using the Fermi gas model of ref. [38]. In both cases no πNN
form factor has been used and the static limits of the pion and ∆ propagators have been
assumed. We observe that the two calculations give the same results for small density and
momentum transfer and start to differ as q and kF increase. In particular the results of fig. 8
provide a test of the multi-dimensional numerical integration procedure used in this work,
since the ∆ integrals over k in the non-relativistic calculation of [38] are analytical. Moreover
the agreement of both results for low momenta also represents a test of the applicability of
the non-relativistic ∆ current in this kinematic domain. This result is not obvious a priori
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Figure 9: MEC(∆) transverse response for q = 1 GeV/c. The result corresponding to
the fully relativistic Fermi gas (RFG) is compared with the non-relativistic (NR), including
relativistic kinematics (RK), semi-relativistic approach for the one-body current (SROB)
and for the ∆-current as well (SR) (see text for details).

due to the somewhat coarse approximations assumed in the derivation of the NR current
(see Appendix B).

The shrinking of the response domain in fig. 8 with increasing q arises from the relativistic
kinematics in the energy-conserving delta function appearing in the responses. As in past
work this effect can be accounted for approximately by the replacement λ→ λ(1 + λ), with
λ = ω/2mN , in the non-relativistic calculation.

This is shown in fig. 9, where we select the case q = 500 MeV/c and compare the NR
calculation (dashed line) with the same calculation but using relativistic kinematics (RK)
(dotted line). Apart from this effect, the enhancement of the non-relativistic calculations
with respect to the relativistic one is a consequence of the reduction of the single-nucleon and
∆ current operators. The semi-relativistic approach for the single-nucleon current (SROB)
(dot-dashed) improves the agreement with the fully relativistic result. Similarly, the response
obtained by using the SR current (38) (thin solid line) gets a little bit closer to the relativistic
result, although a difference between them still exists. Better agreement between the exact
and the relativized models for the MEC(∆) responses are obtained in the limit kF → 0 in
the quasielastic peak region.

4 Conclusions

In this paper we have studied the role of the MEC(∆) two-body current in 1p-1h quasielastic
electron scattering. A fully relativistic, gauge invariant, analysis has been performed in the
context of the RFG. The most general Lagrangian has been considered, allowing for different
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off-shell parameters in each one of the vertices, and the roles played by its various pieces have
been analyzed. The results have been compared with various non-relativistic reductions and
the behavior of the ∆ contribution with respect to the scaling phenomenon has been also
explored.

In summary, our results show that:

1. The ∆ contribution is only important in the transverse channel, where it represents
the dominant correction to the free Fermi gas, at least for q < 1–2 GeV/c.

2. In the transverse channel the main contribution comes from the first term of the La-
grangian (Peccei). This is strictly valid for not too high values of q.

3. In the longitudinal channel the global ∆ contribution is negligible. In this case, how-
ever, the first and second terms of the Lagrangian tend to cancel.

4. The transverse response is quite insensitive to the different sets of off-shell parameters
used, whereas the longitudinal one shows a much more pronounced sensitivity to them.

5. The MEC(∆) contributions by themselves clearly break both kinds of scaling be-
haviour. When combined with the RFG the total scaling breaking is on the edge
of being an effect that should be seen in the high quality high-q data; however, it
is known that contributions from 2p-2h MEC tend to cancel the 1p-1h MEC effects
studied here, and thus the net scale breaking is in reasonable accord with the data.

6. The effects of relativity are already sizable at q = 500 MeV/c and they can only
be accounted for approximately by using relativistic kinematics and correcting the
operators with a semi-relativistic prescription similar to the one found in the OB
current and MEC operators.

Finally, with the present relativistic model we have completed the gauge-invariant MEC
model of ref. [2] to a fully consistent, gauge invariant approach to the electro-nuclear re-
sponses in the one-nucleon emission channel, including all the diagrams with one-pion ex-
change and intermediate excitations of ∆ isobar, which can be applied for high-|Q2| values
in the region of the quasielastic peak.

A ∆-propagator and contact invariance

In this Appendix we derive the general relativistic expression for the ∆ propagator, discussing
in particular its sign and the invariance of the theory under contact transformations.

The current amplitudes of fig. 1 are computed using the standard Feynman rules which
are essentially based on contraction of pairs of fields or propagators. The ∆-propagator
in coordinate space is then derived, in analogy with the Feynman propagator for spin-1/2
fermions. It reads

iGαβ
RS(X −X ′) = 〈0|T

{

ψα(X)ψ
β
(X ′)

}

|0〉 , (39)
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where

ψα(X) =
∑

p,s∆

√

m∆

V Ep

[

cs∆
uα(p, s∆)e−iP ·X + d†s∆

vα(p, s∆)e+iP ·X
]

(40)

is the free massive spin-3/2 Rarita-Schwinger field, resulting from the coupling of a spin-1/2
and a spin-1 object:

uα(p, s∆) =
∑

λ,s

〈1
2
s1λ|3

2
s∆〉eα(p, λ)u(p, s) , (41)

u(p, s) being a Dirac spinor of mass m∆ and eα(p, λ) the basis vectors.
The Rarita-Schwinger propagator in momentum space is the 4-dimensional Fourier trans-

form of GRS(X)

Gαβ
RS(X) =

∫

d4P

(2π)4
Gαβ

RS(P )e−iP ·X (42)

and it reads

Gαβ
RS(P ) = − 6P +m∆

P 2 −m2
∆

[

gαβ − 1

3
γαγβ − 2

3

P αP β

m2
∆

− 1

3

γαP β − γβP α

m∆

]

. (43)

Note that the minus sign in eq. (43), directly arising from the definition in eq. (39), is
opposite to the one in refs. [5, 14, 15], whereas it agrees with ref. [39]. A simple check of the
sign can be done by evaluating the right-hand side of eq. (39) for t > t′. Inserting the field
expansion of eq. (40) in eq. (39) we obtain

iGαβ
RS(X −X ′) =

∫

d3p

(2π)3

m∆

E

∑

s∆

uα(p, s∆)uβ(p, s∆)e−iP ·(X−X′). (44)

The spin sum inside the integral reads
∑

s∆

uα(p, s∆)uβ(p, s∆)

=
∑

s∆

∑

λs

∑

λ′s′
〈1

2
s1λ|3

2
s∆〉〈12s′1λ′|32s∆〉eα(p, λ)eβ(p, λ′)∗u(p, s)u(p, s′) . (45)

This sum is particularly simple in the static limit p = 0 and for the components α = β = 3:
in this case eα(p, λ) and eβ(p, λ′) vanish unless λ = λ′ = 0. Moreover the Clebsch-Gordan
coefficients select s = s′ = s∆, yielding

∑

s∆

u3(0, s∆)u3(0, s∆) =
∑

s

〈1
2
s10|3

2
s〉2 u(0, s)u(0, s)

=
2

3

∑

s

u(0, s)u(0, s) =
2

3

m∆+ 6P
2m∆

, (46)

where we have used 〈1
2

1
2
10|3

2
1
2
〉 = 〈1

2
− 1

2
10|3

2
− 1

2
〉 =

√

2
3
, and where the positive-energy

projector for spin 1/2 and mass m∆ is meant to be evaluated at p = 0. The same result is
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obtained from the RS propagator in eq. (43) setting p = 0 and α = β = 3, performing the
contour integral over p0 in eq. (42):

i
∫

dp0

2π

6P +m∆

P 2 −m2
∆ + iǫ

e−ip0t =
6P +m∆

2Ep

(47)

and using

G33
RS(P ) = − 6P +m∆

P 2 −m2
∆

[

g33 − 1

3
(γ3)2

]

=
2

3

6P +m∆

P 2 −m2
∆

. (48)

Let us now discuss the so-called “contact-invariance”, induced by the operator

Oµ
ν(b) = gµ

ν +
b

2
Sµ

ν , (49)

where b is an arbitrary parameter and Sµ
ν ≡ γµγν is the generator of the transformation,

fulfilling the identity S2 = 4S.
A contact transformation of the RS field is defined by

ψ′α = Oα
β(b)ψβ . (50)

Some useful properties of the contact operators are:

i) O(a)O(b) = O(a+ b+ 2ab) (51)

ii) O−1(b) = O

(

− b

1 + 2b

)

(52)

iii) O(a)O−1(b) = O

(

a− b
1 + 2b

)

. (53)

The contact invariance follows from the fact that the A-dependent free Lagrangian of the
3
2
-field becomes independent of the parameter A, after a redefinition of the RS field [15]:

∆α = Oα
β(A)ψβ . (54)

Therefore, in terms of the contact transformation eq. (50) we can write the new field in
matrix form as:

∆ = O(A)O−1(b)ψ′ (55)

and using eq. (53) we obtain that contact invariance is fulfilled if the parameter A changes
to A′ = (A− b)/(1 + 2b).

We now derive the general form of the ∆-propagator G(A) for an arbitrary parameter A
in terms of the usual RS propagator in eq. (43). From the definition in eq. (39) (for simplicity
we omit the X,X ′ variables) we get

iGαβ(A) = 〈0|T
{

O−1
αµ(A)∆µ∆

ν
O−1

νβ (A)
}

|0〉
= O−1

αµ(A)〈0|T{∆µ∆
ν}|0〉O−1

νβ (A)

= O−1
αµ(A)iGµν(0)O−1

νβ (A) , (56)

20



where Gµν(0) is the propagator for A = 0, obtained in terms of the free Lagrangian for the
∆α field. The above equation can be written in matrix form introducing the 4× 4 matrix of
the propagator G(A) ≡ Gµ

ν(A)

G(A) = O−1(A)G(0)O−1(A) . (57)

The RS propagator in eq. (43) corresponds to A = −1, which also can be related with the
A = 0 case

G(−1) = O−1(−1)G(0)O−1(−1) . (58)

Using the two above equations we can write

G(A) = O−1(A)O(−1)G(−1)O(−1)O−1(A)

= O(B)G(−1)O(B) , (59)

where

B = − A+ 1

1 + 2A
(60)

and use has been made of eq. (53).
From eq. (59) it is immediate to show that the combinationX(A) ≡ Θ(z, A)G(A)Θ(z′, A),

appearing in the MEC(∆) current, is independent of A. We note that the operator in eq. (11)
can be expressed, by means of eq. (51), as the product of two contact operators

Θ(z, A) = O(2z)O(A) = O(A)O(2z) . (61)

Hence

X(A) = O(2z)O(A)G(A)O(A)O(2z′) = O(2z)G(0)O(2z) = X(0) . (62)

To obtain the explicit form of G(A), we note that the Rarita-Schwinger propagator G(−1),
given by eq. (43), can be more conveniently written as

G(−1) = − 6P +m∆

P 2 −m2
∆

[

11− 1

3
S − 2

3m2
∆

U − 1

3m∆
(V −W )

]

, (63)

having introduced the matrices

Uµ
ν ≡ P µPν , V

µ
ν ≡ γµPν , W

µ
ν ≡ P µγν . (64)

From eq. (59) it follows that

G(A) = G(−1) +
B

2
[SG(−1) +G(−1)S] +

B2

4
SG(−1)S = GRS +GA . (65)

After straightforward γ-matrix algebra the following useful relations can be deduced:

SG(−1) +G(−1)S =
2

3m2
∆

(V +W −m∆S) (66)

SG(−1)S =
2

3m2
∆

(2W− 6PS − 2m∆S) (67)

which finally yield

GA =
1

3m2
∆

B
[

V +W −m∆S +
1

2
B(2W− 6PS − 2m∆S)

]

. (68)

This, exploiting eq. (60), coincides with eq. (20).
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B Non-relativistic reduction of the ∆-current

In this appendix we derive in detail the non-relativistic reduction of the ∆-exchange current
corresponding to the Peccei-like γN∆ vertex.

Let us consider the γN∆ Lagrangian as given by eq. (8). The corresponding two-body
current can be written as follows

jµ
∆(p′

1,p
′
2,p1,p2) =

G1

2mN

fπN∆f

m2
π

Gπ(K2)
[

AµTaT
†
3 +BµT3T

†
a

]

u(p′
2)γ5 6K2τ

au(p2)

+ (1 ⇐⇒ 2) , (69)

where we have introduced

Aµ ≡ u(p′
1)K2αΘαβGRS

βρ (P1 +Q)Qν (Θρµγν −Θρνγµ) γ5u(p1) (70)

Bµ ≡ u(p′
1)K2αγ5Qν (γνΘµρ − γµΘνρ)GRS

ρβ (P ′
1 −Q)Θβαu(p1) . (71)

To compare with the Peccei vertex the tensor Θαβ in eq. (11) should be taken for z = −1/4
and the ∆ propagator is the Rarita-Schwinger expression in eq. (19).

In what follows we invoke the static limit as usually considered in standard non-relativistic
calculations. In this case the spin dependence in the tensor Θαβ is neglected, i.e., Θαβ = gαβ.
Moreover, the pion propagator simply reduces to

Gπ(K) = − 1

k2 +m2
π

(72)

while the ∆ propagator only contributes for space indices becoming

G∆
ij(P ) =

1

mN −m∆

(

δij +
1

3
γiγj

)

, i, j = 1, 2, 3 . (73)

Assuming Kα
2 ∼ (0,k2) and Qµ ∼ (0,q) (valid in the static limit), the space components of

the four-vectors Aµ and Bµ in eqs. (70,71) can be written in terms of space components only

Ai ≃ − 1

mN −m∆
u(p′

1)k
k
2

(

δkl +
1

3
γkγl

)

qj(−δliγj + δljγi)γ5u(p1) (74)

Bi ≃ − 1

mN −m∆
u(p′

1)k
k
2qj(−δliγj + δljγi)γ5

(

δkl +
1

3
γlγk

)

u(p1) . (75)

Taking now the positive energy components of the gamma matrices,

γkγl → −σkσl, γiγ5 → σi, δkl +
1

3
γlγk →

2

3
δkl −

i

3
ǫklmσm (76)

we can write Ai, Bi in terms of matrix elements between the Pauli spinors, χ1, as follows

Ai =
1

mN −m∆

χ′
1
†Aiχ1 (77)

Bi =
1

mN −m∆

χ′
1
†Biχ1 , (78)
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where Ai and Bi are the non-relativistic reduced operators given by

Ai =
2

3
ki

2qjσj −
2

3
kj

2qjσi −
i

3
ǫkimk2kqjσmσj +

i

3
ǫkjmk2kqjσmσi (79)

Bi = −2

3
k2iqjσj +

2

3
k2jqjσi +

i

3
ǫikmk2kqjσjσm −

i

3
ǫjkmk2kqjσiσm . (80)

After some algebra involving vector relations and properties of the Pauli matrices, the re-
duced non-relativistic A and B terms in their vector form result

A =
1

3
q× (k2 × σ)− 2

3
iq× k2 (81)

B = −1

3
q× (k2 × σ)− 2

3
iq× k2 . (82)

Moreover, the matrix element of the second nucleon in the static limit reduces to

u(p′
2)γ5 6K2u(p2) −→ u(p′2)k2 · γγ5u(p2) −→ χ′

2
† (k2 · σ)χ2 . (83)

Using the above results, the ith component of the current can be written as

J i
∆ = χ′

1
†χ′

2
†J i

∆χ1χ2 , (84)

where, using eq. (16),

J i
∆ ≃ i

2

9

G1

2mN

fπN∆

mπ

f

mπ

k2 · σ(2)

m2
π + k2

2

1

m∆ −mN

{

4τ
(2)
3 k2 −

[

τ
(1) × τ

(2)
]

z
σ

(1) × k2

}

× q

+ (1 −→ 2) .

(85)

This form coincides with the usual non-relativistic ∆ current used in the literature [37].
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