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Abstract
Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-

trihidroxipalmitic) acid and tomato fruit cutin monomers (a mixture of mainly 9(10),16-

dihydroxypalmitic acid (85%, w/w) and 16-hydroxyhexadecanoic acid (7.5%, w/w)) with

pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid

plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and

morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM.

The structure of these nanoparticles can be described as a lipid core with a pectin shell.

Pectin facilitated the formation of nanoparticles, by inducing their aggregation in branched

chains and favoring the condensation between lipid monomers. Also, pectin determined the

self-assembly of cutinsomes on highly ordered pyrolytic graphite (HOPG) surfaces, causing

their opening and forming interconnected structures. In the case of cutin monomers, the

nanoparticles are fused, and the condensation of the hydroxy fatty acids is strongly affected

by the presence of the polysaccharide. The interaction of pectin with polyhydroxylated fatty

acids could be related to an initial step in the formation of the plant biopolyester cutin.

Introduction
The cuticle is a composite membrane that covers the epidermis of non-lignified aerial parts of
plants [1]. It is an effective barrier against massive water loss, pathogen and fungal infection
and UV radiation. It also prevents organ fusion, provides mechanical support and, in some
cases, self-cleaning surfaces [2,3]. The plant cuticle is composed by an amorphous and insolu-
ble matrix named cutin, polysaccharides from the cell wall (mainly cellulose, hemicellulose and
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pectin) and other components such as waxes and phenolic compounds [4]. Cutin is an aliphat-
ic polyester with interesting intrinsic properties (hydrophobicity, viscoelasticity, chemical in-
ertness, etc.) formed by condensed C16 or C18 polyhydroxy fatty acids [4]. Currently, there is a
growing interest in this biopolymer due to mainly two reasons. First, cutin is a key factor in the
quality and appearance of commercial fruits [5,6]. Second, as consequence of its abundance in
nature and of its above-mentioned properties, it is starting to be considered a source of lipid
monomers as well as a model to produce new bio-inspired materials [7–10].

In recent years, a large number of publications have addressed cutin biosynthesis. Practically
all of them were focused on the identification of genes and enzymes involved in the synthesis
of this polyester [2,3,11,12]. In fact, a cutin synthase, specifically a tomato extracellular acyl-
transferase, was identified as the enzyme mainly responsible for cutin synthesis [13]. However,
other mechanisms have been suggested to be involved in this process. In this sense, a nano-
metric approach for cutin biosynthesis has been proposed [14,15]. This hypothesis takes into
account the self-assembly properties of cutin polyhydroxylated fatty acids in polar environ-
ments and their ability to produce self-esterification reactions at neutral pH [14]. Particles thus
synthetized, cutinsomes, have been described as soft sphere-like structures (50–200 nm diame-
ter) with a mostly esterified liquid-like core surrounded by an acid carboxylic/carboxylate shell
[16]. Cutinsomes have shown a high capacity of aggregation, forming micro-islands on cellu-
lose and cuticle substrates with similar characteristics to natural cutin [15,17]. Participation of
cutinsomes in cutin biosynthesis has been demonstrated after their detection in the epidermis
of different plant species [12,18,19]. The complementarity of this nanometric approach, where
the cutinsomes are extruded and aggregated during the initial stages of the cutin formation,
with the proposed enzymatic mechanism has been suggested [12].

To our knowledge, the role of polysaccharide, the other main cuticle component, in cutin
biosynthesis has not been addressed. Here we report the influence of low amounts of pectin on
the self-assembly in an aqueous environment of aleuritic acid and tomato cutin monomers.
Pectin is one of the most important polysaccharide present in the plant cell wall and in the cuti-
cle, and therefore its putative involvement in cutinsome formation has been studied.

Materials and Methods

Materials
Aleuritic (DL-threo-9,10,16-trihydroxyhexadecanoic, C16H32O5) acid (93.8% by NaOH titra-
tion) was purchased from Fluka. Apple pectin (� 76% of galacturonic acid, ˜7% of methoxi
group content) was purchased from Sigma-Aldrich. Both materials were used without
additional treatments.

Extraction of cutin monomers
Previously to the extraction of cutin monomers, tomato (Solanum lycopersicum L.) fruit cuti-
cles were enzymatically isolated in an aqueous solution of sodium citrate buffer (50 mM,
pH 3.7) containing fungal cellulase (0.2%, w/v, Sigma, St Louis, MO, USA) and pectinase
(2.0%, w/v, Sigma) with 1mM NaN3 to prevent microbial growth [20]. Vacuum was applied to
facilitate enzyme penetration and fruits were incubated with continuous agitation at 37°C for
10–14 days. Cuticles were then separated from the epidermis, rinsed in distilled water, and
stored under dry conditions.

Cutin monomers were extracted following a protocol similar to that described by Luque
et al. [21]. First, cuticle waxes were removed after incubation in a chloroform:methanol mix-
ture (2:1, v/v) for 3 h at approximately 65°C. Cutin was obtained after hydrolysis of the poly-
saccharide fraction of dewaxed cuticles in a 6 M HCl solution for 12 h at 105°C. Finally, cutin
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was depolymerized in a KOH 2% (w/v) solution for 18 h at 100°C. Cutin monomers were ob-
tained by extraction in diethyl ether and evaporation of the organic solvent under N2.

Nanoparticle preparation
Nanoparticles of polyhydroxy fatty acids and pectin were produced using a method previously
described [22]. Basically, nanoparticles were prepared by adding aleuritic acid (30 mg/mL) or
cutin monomers (3 mg/mL) to alkaline (NaOH 0.5 M) solutions of pectin (0, 1.25, 2.5, and
5 mg/mL for aleuritic acid and 0 and 0.125 mg/mL for cutin monomers) at pH 12 and reducing
the pH to 5.8 with small amounts of HCl 0.1 M. Thus, final fatty acid:pectin weight ratio was
1:0, 24:1, 12:1, 6:1 for aleuritic acid:pectin and 1:0, 6:1 for cutin monomer:pectin mixtures.
Nanoparticles were obtained after centrifugation at 19000 g. They were then washed several
times with distilled water and filtered to remove residual fatty acids and pectin and sodium
chloride formed during the process. Dispersions were prepared using 1.5 mg of nanoparticles
in 1.5 mL of distilled water and sonicated for 1 h to break the aggregates formed after
centrifugation.

Nanoparticle characterization
Opalescence of the solutions was monitored at 480 nm by UV-Vis spectroscopy using a Smart-
Spec Plus (Bio-Rad) spectrophotometer. Four mL cells with 10 mm path length were employed.
Changes in absorbance were monitored as the pH of the different fatty acid:pectin solutions
was decreased from 12 to ˜ 5.8 with small amounts of HCl 0.1 M (at pH< 5.8 fatty acids pre-
cipitated). Also, opalescence of pectin solutions (2.5 and 5 mg/mL) at pH 12 was measured.

For Transmission Electron Microscopy (TEM) analysis, a drop of nanoparticles dispersed
in water was deposited on a copper grid and allowed to dry. Nanoparticles were stained with
an aqueous solution of uranyl acetate (1%, w/v) to contrast lipid material, rinsed with distilled
water and then analyzed at 100 kV with a Philips CM-100 electron microscope. Particle dimen-
sions were measured using ImageJ software analysis.

Attenuated Total Reflected-Fourier Transform Infrared (ATR-FTIR) spectra of samples
were obtained from pellets of purified nanoparticles using an ATR accessory (MIRacle ATR,
PIKE Technologies) coupled to a FTIR spectrometer (FT/IR-4100, JASCO). All spectra were
recorded in the 4000–600 cm-1 spectral range at 4 cm-1 of resolution and accumulating
128 scans.

For Atomic Force Microscopy (AFM) measurements, a droplet (25 μL) of disperse nanopar-
ticles in water was deposited on a freshly cleaved surface of highly ordered pyrolytic graphite
(HOPG) and slowly evaporated by keeping the sample at 6°C for 24h. The AFM was a Cervan-
tes model from Nanotec Electrónica operated at room conditions (20–25°C and 35–40% RH).
Non-contact images were obtained and processed using the WSxM software [23]. Rectangular
Si3N4 cantilevers with nominal force constant of 2.8 N m-1 and resonance frequency around
80 kHz were used.

Results and Discussion

Characterization of pectin-aleuritic acid nanoparticles
Presence of nanoparticles was monitored by the titration curves of the solutions of aleuritic
acid and aleuritic acid:pectin mixtures at different ratios (24:1, 12:1, and 6:1, w/w) and the mea-
surement of opalescence, Fig 1. The sample of aleuritic acid without pectin showed low values
of absorbance at basic pH with a significant increase at lightly acid pH (˜ 6.3). This behavior
has been described for other fatty acid molecules and can be related to a direct transition from
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micelles to nanodrops [22]. The 24:1 (w/w) sample of aleuritic acid:pectin was very similar, but
the turning point was shifted to pH 6.6. This small increase in pH (0.3 points) observed in the
sample containing pectin can be biologically relevant and suggests pectin participation in the
formation of nanoparticles. Samples with higher ratios of pectin were comparable to that of
24:1 ratio (aleuritic:pectin), but with higher absorbance values in the 12–6.6 pH range. This in-
crease in absorbance was also observed in the samples of pectin without aleuritic acid: ˜ 0.7 and
˜ 1.5 a. u. in the 2.5 and 5 mg/mL pectin solutions, respectively. These results suggest that pec-
tin increased light scattering in this wavelength region.

Morphology of the structures formed from mixtures of aleuritic acid and pectin was charac-
terized by TEM, Fig 2, using uranyl acetate to stain aleuritic acid since this compound has high
affinity for lipid molecules However, uranyl acetate lightly stained pectin, S1 Fig [24]. Fig 2a
shows a TEMmicrograph of nanoparticles derived from aleuritic acid without pectin. These
cutinsomes had a polydisperse size distribution (50–200 nm diameter) and were found either
isolated, aggregated or fused [14,16]. Morphology of the nanoparticles obtained with a 24:1
ratio of aleuritic:pectin is shown in Fig 2b. In this case sphere-like nanoparticles with a diame-
ter around 165 nm were observed. These particles displayed an electron dense lipid core with a
diameter of 138 ± 15 nm surrounded by an electron translucent pectin shell with a thickness of
26 ± 4 nm. Some unstained regions with a diameter of 9 ± 1 nm were observed in the lipid core
which could be related to areas with a higher local concentration of pectin. Many particles
formed aggregates joined by their polysaccharide shells, forming branched chains of nanoparti-
cles Fusion of lipid cores was also observed but limited by the encapsulation action exerted by
the pectin shell. Finally, Fig 2c shows the nanoparticles derived from the 6:1 ratio of aleuritic:
pectin. In this case, a thick pectin shell (56 ± 7 nm) surrounded a much thinner lipid core
(28 ± 5 nm). Aggregation was low with most nanoparticles isolated. These data suggest that
pectin acts as an effective encapsulating agent of cutin material, providing an interphase be-
tween the polar medium and the hydrophobic core of the nanoparticles and regulating the
final size and shape of cutinsomes.

Fig 1. Formation of cutinsomeswith pectin monitored by opalescence. Transition of aleuritic acid (black
squares) and aleuritic acid with pectin (24:1 w/w-red circles, 12:1 w/w-blue triangles, 6:1 w/w-green inverted
triangles) solutions frommicellar to nanoparticle state monitored at 480 nm. The absorbance increase is
associated with the opalescence resulting from the appearance and aggregation of nanoparticles. Chemical
structures of pectin and aleuritic acid are included.

doi:10.1371/journal.pone.0124639.g001
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Fig 2. Morphology of cutinsomes from aleuritic acid and pectin. a-c, TEM images of aggregated
nanoparticles of aleuritic acid and pectin at 1:0 (a), 24:1 (b) and 6:1 (c) w/w ratios. Diverse morphologies are
observed for the different ratios. Scale bar = 200 nm.

doi:10.1371/journal.pone.0124639.g002
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Cutinsomes have been reported to be formed by partially esterified material [14,15]. Esterifi-
cation level of the nanoparticles derived from the different aleuritic acid:pectin mixture ratios
were evaluated by ATR-FTIR. For this, the esterification index, that is the ratio between the in-
tensities of stretching bands of ester and methylene groups, was calculated at different pH val-
ues, Fig 3. This parameter has been used in the chemical characterization of cutin to estimate
the presence of ester functional groups [25]. Samples of aleuritic acid and of the 24:1 mixture
of aleuritic:pectin showed a similar behavior to that observed in the titration process (see
Fig 1), with low values at basic pH and a sudden increase of the esterification index at lightly
acid pH. In fact, the turning point of the opalescence and the esterification index was observed
at the same pH (˜6.3 for aleuritic acid and ˜ 6.6 for the 24:1 mixture of aleuritic:pectin), indicat-
ing that in the micellar state (basic conditions) no reaction occurred while at the nanoparticle
state (neutral-lightly acid pH) monomer condensation took place. It is interesting to note that
in the 5.8–6.3 pH range, where nanoparticles are formed, values of the esterification index were
higher for the 24:1 mixture of aleuritic:pectin than for the aleuritic acid alone. On the other
hand, the 12:1 and 6:1 mixtures of aleuritic:pectin showed low esterification values in the pH
range studied. Though, a small increase was observed at pH ˜ 6.5. Molecular orientations of—
OH and—COOH groups to allow their interaction and extrusion of water molecules generated
during monomer condensation have been considered the driving forces of the esterification re-
action [14]. Pectin incorporation to the fatty acid mixture produced changes in the esterifica-
tion reaction of nanoparticles. For instance, the pectin shell, as interphase between the
hydrophobic lipid core and the aqueous environment, could regulate the flow of water mole-
cules and shift the reaction to hydrolysis. This effect would be stronger with thicker shells (e.g.,
12:1 and 6:1 mixtures of aleuritic:pectin). Also, reaction between pectin and lipid molecules
should be considered. However, further chemical analyses (for example, with nuclear magnetic
resonance) would be necessary to confirm these assumptions.

Main chemical modifications occurring in the fatty acid monomers during the formation of
cutinsomes in the presence of pectin have been characterized by ATR-FTIR. Inset in Fig 3
shows the infrared spectra in the C = O region (1810–1510 cm-1) of the 24:1 mixture of

Fig 3. Esterification capacity of cutinsomes from aleuritic acid and pectin. Esterification index of the
precipitated solids obtained from aleuritic acid (black squares) and aleuritic acid with pectin (24:1 w/w-red
circles, 12:1 w/w-blue triangles, 6:1 w/w-green inverted triangles) solutions in the range of pH from 8.0 to 5.6.
Inset shows the ATR-FTIR spectra in the carbonyl region (1810–1510 cm-1) of the precipitated solid from
aleuritic acid with pectin (24:1 w/w) solutions at pH 8 and 6.

doi:10.1371/journal.pone.0124639.g003
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aleuritic:pectin at pH 8 and 6. At pH 8, in the micellar regime, a single and strong band at 1562
cm-1, ascribed to the asymmetrical stretching of carboxylate functional groups of aleuritic acid
and pectin, was detected. At pH 6, after nanoparticles have been formed and monomers re-
acted, the intensity of this vibration was greatly reduced while a major band at 1728 cm-1 asso-
ciated with the stretching of C = O groups in ester bonds was detected. Also, two shoulders at
1711 and 1687 cm-1 were observed and assigned to the C = O stretching of ester groups inter-
acting by hydrogen bonds and carboxylic acids, respectively.

Structural stability of cutinsomes derived from aleuritic acid and the 24:1 mixture of aleuri-
tic:pectin was studied by non-contact AFM after particle deposition on a non-polar substrate
(HOPG). Cutinsomes obtained from aleuritic acid preserved their structure and aggregated,
Fig 4a. This result is very similar to that described for cutinsomes derived from cutin monomers
on the same substrate [16]. Particles from the 24:1 mixture of aleuritic:pectin showed a struc-
ture of interconnected islands with angular hollows, Fig 4b. Moreover, the heights of the struc-
tures described were very different: 1–2 nm for aleuritic acid and approximately 8 nm for the
24:1 mixture, Fig 4c. These differences can be ascribed to pectin incorporation to the self-as-
sembly process. It is known that self-assembled polysaccharides on HOPG produce geometric
structures due to strong interaction between the C-H functional groups of the polysaccharide
with the sp2 hybridized orbital of the aromatic rings of the hexagonal graphite crystal geometry
[26,27]. In this sense, pectin can participate in the self-assembly of cutinsomes inducing the
opening of nanoparticles and favoring certain orientations on the HOPG surface during
the process.

Nanoparticles of cutin monomers and pectin
The effect of a low amount of pectin in the formation of nanoparticles from tomato cutin
monomers was also studied. Tomato fruit cutin is mainly composed of a mixture of 9
(10),16-dihydroxypalmitic acid (85%, w/w) and 16-hydroxyhexadecanoic acid (7.5%, w/w))
[28]. Fig 5a shows the esterification index of cutin monomers and a 24:1 mixture of cutin:pec-
tin. The sample of cutin monomers without pectin showed a similar esterification index as that
of aleuritic acid (see Fig 3): low values at basic conditions and a strong increase at neutral con-
ditions. The highest esterification index was achieved at pH ˜ 6.85, below this value hydroxylat-
ed fatty acids precipitated. The main difference between the cutin monomer sample and the
aleuritic acid one was the shift of the turning point to neutral (˜ 7.1). Samples of 24:1 mixture
of cutin:pectin showed that esterification changed linearly with pH, with a maximum achieved
at pH ˜ 6.1. To better understand this behavior, nanoparticle structure was analyzed by TEM,
Fig 5b. In this case, fused rounded particles with a diameter of 200–300 nm were observed.
Most of them showed lipid cores with diffuse edges surrounded by a grey material. Unlike the
sample derived from the 24:1 mixture of aleuritic acid:pectin, the polysaccharide and lipid ma-
terial did not separate but were partially blended.

Amodel for the formation of cutinsomes with pectin
Based on the above experimental data and by analogy with lipid nanoparticles derived from
polyhydroxylated fatty acids [14–18], a model for the formation of cutinsomes with pectin is
proposed, Fig 6. Fig 6a–6c show the stages that are common to aleuritic acid and cutin mono-
mers, while Fig 6d–6f those specific to aleuritic acid and Fig 6d’–6f’ to cutin monomers. The
addition of low relative amounts of pectin has also been considered. At the initial stage, Fig 6a,
lipid molecules and pectin are solved in a basic aqueous solution. The carboxylic acid groups of
both substances are in the carboxylate form. Lipid molecules are free in the solution or, most
probably, forming micelles. At lightly acid pH a critical ratio of fatty acid—COOH and—COO-
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Fig 4. Interaction HOPG surface-cutinsomeswith pectin. a-b, non-contact AFM topography of
cutinsomes obtained frommixtures of aleuritic acid with pectin at 1:0 (a) and 24:1 (b) ratios deposited on
HOPG by drop vaporization. c, height profile corresponding to the dashed line in a and b.

doi:10.1371/journal.pone.0124639.g004
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Fig 5. Cutinsomes from cutin monomers and pectin. a, esterification index of precipitated solids from
solutions of cutin monomers (black squares) and cutin monomers with pectin (24:1 w/w-red circles) in the
range of pH from 8.5 to 5.5. Chemical structures of the main tomato fruit cutin monomers of tomato fruit are
included. b, TEM image of aggregated nanoparticles of cutin monomer and pectin at 24:1 w/w. A diffuse edge
between the components is observed.

doi:10.1371/journal.pone.0124639.g005
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groups is generated, while pectin, due to its lower pKa continues in the carboxylate form,
Fig 6b. At this point, formation of RCOO-(RCOOH)n aggregates is favored by hydrogen bond
stabilization [23]. These structures can result from the combination of lipid molecules or lipid
molecules with pectin chains, Fig 6c. At this point differences between aleuritic acid and cutin
monomers start. In the case of the aleuritic acid, when the solution is slightly more acid, these
aggregates can self-assemble producing nanoparticles with a polar shell of pectin acting as an
interphase between the aqueous medium and a hydrophobic core mainly composed of insolu-
ble aleuritic acid molecules in the—COOH form. Some protons, carboxylated lipids, water
molecules, and pectin chains can also be found in the lipid core, Fig 6d. Under these conditions,

Fig 6. A model for pectin-lipid self-assembly during the formation of cutinsomes. Diagram of the phase
transition from a micellar state to the formation and polymerization of a cutinsome and its subsequent
aggregation from an aqueous solution of aleuritic acid (a-f) or cutin monomers (a-c and d’-f’) with pectin.

doi:10.1371/journal.pone.0124639.g006
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the right molecular orientation of—OH and—COOH lipid functional groups and the extrusion
of water molecules to the environment would allow monomer condensation and generate a po-
lymerized core, Fig 6e. These nanoparticles can aggregate by their pectin shells forming
branched chains of esterified polyhydroxy fatty acids. On the other hand, cutin monomers
would interact with the polysaccharide originating nanoparticles with lipid cores and blended
and diffuse shells, Fig 6d’. These structures gradually esterify as the pH decreases, Fig 6e’. Final-
ly, nanoparticles aggregate forming rounded structures with lipid cores partially mixed
with pectin.

Conclusions
Nanoparticles, named cutinsomes, have been prepared from different mixtures of aleuritic acid
or cutin monomers with pectin. In the case of aleuritic acid, TEM analysis has revealed that
nanoparticles have a lipid core surrounded by a pectin shell. The role of pectin in this system is
multiple. First, pectin participates in the self-assembly process during nanoparticle formation,
providing an interphase between the hydrophobic core and the aqueous environment, regulat-
ing their size and aggregation. Second, the ratio between pectin and aleuritic acid is an impor-
tant factor to consider. Low amounts of pectin slightly improve monomer condensation while
higher amounts favor the inverse hydrolytic reaction. Third, self-assembly of cutinsomes from
aleuritic acid with pectin on HOPG is affected by the interaction of the polysaccharide with the
substrate, producing a structure of interconnected islands. On the other hand, the participation
of pectin in the formation of cutinsomes from cutin monomers produces nanoparticles with
lipid cores and diffuse shells composed by mixtures of lipids and the polysaccharide. Also, un-
like the samples with aleuritic acid, pectin induce a gradual esterification of the cutin mono-
mers as a function of the pH.

Despite extrapolation to an in planta scenario from the in vitro conditions above described
is not straightforward, these results suggest that polysaccharides, specifically pectin, can inter-
act favorably with cutin monomers, producing nanoparticles at neutral pH more esterified
than those obtained polyhydroxylated fatty acid solutions. In other words, cell wall polysaccha-
rides could play a significant role during the cutin biosynthesis beyond the mere mechanical
support, participating actively in cutinsome formation.

Supporting Information
S1 Fig. TEM image of pectin stained with uranyl acetate. A blurry and slightly stained micro-
graph of pectin.
(TIF)
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