
ACM S I G S O F T Software Engineering Notes vol 27 no 1

Verifying Software Requirements with XSLT

A m a d o r D u r t n , A n t o n i o R u i z , B e a t r i z B e r n ~ r d e z a n d M i g u e l T o r o
D e p a r t m e n t o f C o m p u t e r L a n g u a g e s a n d S y s t e m s

U n i v e r s i t y o f Sevi l le , S p a i n

e - m a i l : { a m a d o r , a r u i z , b e a t , m t o r o } @ l s i . u s . e s

J anua r y 2002 Page 39

A b s t r a c t

In this article, we present an approach for the automatic ver-
ification of software requirements documents. This approach
is based on the representation of software requirements in
XML and the usage of the XSLT language not only to auto-
matically generate requirements documents, but also to verify
some desired quality properties and to compute some metrics.
These ideas have been implemented in REM, an experimental
requirements management tool that is also described in this
paper.

K e y w o r d s : requirements engineering, requirements verifi-
cation, XML, XSLT

I n t r o d u c t i o n

Paraphras ing Boehm [5], requirements validation and ver-
ification can be informally defined by the questions "Am
I building the right requirements?" (validation) and "Am I
building the requirements tight?" (verification).

In other words, the goal of requirements validation is to
ensure tha t requirements documents contain actual require-
ments and tha t these requirements are all the known require-
ments by the t ime the requirements documents are baselined.

On the other hand, the goal of requirements verification
is to ensure the quality of requirements according to desired
quality properties. Some of these quality propert ies have to
do with requirements semantics but others have to do with
syntactic, s t ructural or pragmat ic aspects of requirements
(see [12] for a complete classification of quality properties of
requirements).

Verification of semantic propert ies of requirements is
closely related to requirements validation 1 and requires hu-
man part icipat ion, whereas verification of non-semant ic
propert ies should be as au toma ted as possible.

In this article, we present an au tomated approach for the
verification of some quality propert ies of requirements. Most
of these propert ies can be classified as non-semantic , but
we have also developed some heuristics to check potent ial
problems with some semantic properties. Our approach is
based on the emergent technology built around X_ML [4] and
its companion language XSLT [3].

The rest of the article is organized as follows. First , we
briefly describe the basics of XML and XSLT needed to un-
ders tand the following sections. Then, we describe REM,
an exper imenta l requirements management tool [8, 9], the

1Distinction between requirements verification and validation is
sometimes subtle and many authors use both terms interchangeably.

XML model of requirements used by REM and how XSLT
can be used to verify some quality propert ies of require-
ments expressed in XML. Finally, we discuss some related
work, present some results and point out future work.

X M L a n d X S L T

X M L B a s i c s

There are millions of web pages wri t ten in H T M L available
in Internet . In these web pages, pure information is mixed
with format t ing elements, making the au tomat ic processing
of information very difficult. XML [4] is a language designed
for representing pure information in Internet . Informat ion
in XML is represented by elements. An XML element is
made up of a s t a r t tag, an end tag, and other tags or da ta
in between. For example, for representing the information
about a book, we might have the following XML element
named book:

<book isbn="X-XXX-XXXX-X">

<author>Misuel de Cervantes</author>
<title>E1 Quijote</title>

</book>

As you can see, the information abou t a book is between
the ibookL and j/bookL tags and it is easy to parse by a com-
puter program. The author and title elements are considered
as children of the book element, thus forming a hierarchy.
An XML document must always have one and only one root
element at the top of its hierarchy.

In order to allow information interchange between two or
more part ies using XML, they must agree abou t element
g rammar and semantics. Element g r a m m a r is specified as
regular expressions in D T D s (Document T y p e Definitions)
[4]. For example, the D T D fragment for the previous XML
data would be the following:

<!~T~MENTbook (author+,title)>
<!ATTLIST book isbn ID #REQUIRED>

<!ELEMENT author (#PCDATA)>
<!~T~MENT title (#PCDATA)>

where it is s ta ted t ha t a book element can contain one o more
author elements and only one title element. An XML element
can also have at tr ibutes. For example, isbn is defined as a
required identification a t t r ibu te of book, i.e. there cannot
exist two books with the same value for the isbn a t t r ibu te in
the same XML document. Those elements t h a t contain only
text are said to contain #PCDATA, tha t s tands for parsed
character data.

ACM S I G S O F T Software Engineering Notes vol 27 no 1 J a n u a r y 2002 Page 40

Transforming XML

There are m a n y si tuations in which XML da ta need to be
t ransformed. For example, for presenting XML data as an
H T M L page. XSLT [3] is a language based on t ransforma-
tion pat terns . An XSLT stylesheet, which is also a an XML
document , searches for pa t t e rns in the XML da ta and applies
p rog rammed t ransformat ions , thus generat ing some ou tpu t
results. For example, if we wanted to show information about
books in a web browser, we could apply the following XSLT
t ransformat ion rule:

<xsl : template match="book">
<xsl : value-of ~elect ="tit le"/>

(ISBN <xsl:value-of select="©isbn"/>)

was wri¢¢en by

<xsl: value-of select="author [1] "/>

</xsl : "template>

The informal semantics of this XSLT rule are "when you find
a book element, generate its title in boldface, then its ISBN
a t t r ibu te (notice the @ prefix for a t t r ibutes) , and then its
first au thor in emphasized mode". In the XSLT code, text
literals like t t T M L tags can be mixed with element values,
which are ob ta ined by means of the xsl:value-of s ta tement .
If we applied this XSLT rule to the previous XML data, the
result of the t ransformat ion would be something like this
when rendered in a web browser:

E1 Q u i j o t e (ISBN X - X X X - X X X X - X) was wri t ten by
Miguel de Cervantes

Although there are many more details abou t XML and
XSLT, we think t ha t this brief introduction should be enough
for those readers not familiar with XML technologies in order
to unders tand the rest of this article.

REM: An X M L - b a s e d Requirements
Management Tool

REM (REquirements Manager) is an experimental require-
ments managemen t tool developed by one of the authors
[8, 9]. In REM, a requirements engineering (RE) project is
considered to be composed of three documents:

1. a cus tomer -or ien ted requirements document (the require-
ments document [13]), usually containing requirements in
na tura l language expressed in t e rms of cus tomer ' s vocab-
ulary, also known as C-requirements [7].

2. a developer-or iented requirements document (the speci-
fication document [13]), usually containing requirements
models and more technical information, also called D -
requirements [7].

3. a registry for detected conflicts and negotiat ion support .

In REM, C- requ i rements and conflicts are expressed in
na tura l language using predefined requirements templa tes
and some linguistic pa t t e rns (see [9] for details). For express-
ing D-requi rements , we have chosen a subset of the UML [6]

REM A r c h i t e c t u r e

REM documents, i.e. RE projec ts composed of the three doc-
uments previously described, are s tored in relat ional l igh t -
weight databases. When the user creates a new REM docu-
ment , the basic s t ructure is t aken f rom a REM base document
(see figure 1), t ha t can be e m p t y or can contain the manda-
to ry sections of software requirements s t andards like [1] or
[15]. Any ordinary REM document can be selected as a base
document , so users can create their own base documents or
reuse other REM documents .

Engfneer

/ - s ~ # l ~ X ~ data | I

~ t I u J u [[~tyjt~snetr LIJ obtects
Engineering Projects ~ ~ '

(MDB format)

Figure 1: REM Archi tec ture

In order to provide immedia te feedback on user act ions,
REM generates XML da t a corresponding to the documen t
being edited, applies an external XSLT stylesheet t ha t t rans-
forms XML da ta into H T M L and shows the resul t ing H T M L
to the user. In this way, whenever the user changes a require-
ments document , he or she can see the effects immediately.

In a similar way the REM base documen t can be tailored,
the user can also change document appea rance by selecting
or creating different external X S T L stylesheets. The defaul t
XSLT stylesheet generates a highly hyper l inked document ,
easing navigation of requirements documents (see right side
of figure 2).

Other configurable aspect of REM is the language of the
user interface. The user can choose it by selecting an exter-
nal resource dynamic link l ibrary (DLL). At the m o m e n t of
writ ing, we have developed two external resource DLLs for
REM, one in Spanish and other in English. Ano the r one in
Por tuguese is under development.

REM U s e r I n t e r f a c e

T h e user interface of REM presents two different views to the
user (see figure 2). On the left, the user can see a t a b b e d view
with three tree views, one for each requi rements documen t
in the R E project . On the right hand, the result of the XSLT

A C M S I G S O F T Sof tware E n g i n e e r i n g No te s vol 27 no 1 3 a n u a r y 2002 P a g e 41

[:~j..<~ 3.1 Capability requirements
~.-~iii!~;~ 3.1.1 System actors
i % ~ tacr-000~ Costomer

• :~ i,....;~ [ACT-O002] Employee
~ - . ~ 3.1.2 Information storage n

~],.l~ [IRQ-O001] Information
:, i $ ' ,[XRq-OOOZ],.~orm~Uon

~1--1 ~ [IRQ-O003] Information
[] "'~!~i~ 3. t ~ Z_Sy~.te_rg~se cg.~eP.

i.....~ I. Actor Customer asi~
!.....'~ 2, Actor Employee qt~ • i ~ :.~

i "~yT"~, 3, The system showsi~
: i L,. ~l~ If there are no a~

!.,.--% 4, Actor Customer chl I
i..--., 5. Actor Employee as I
: .

Ordhta D,

llex i iThe system shall behave as de scribed in. the f o l l o ~ . ~ . . ~ . ~ . . ~
.................. ~[when a customer wants to rent. a C~

.

e i /q--! [Acto, Cu~oms* (ACT-OOOD asks f0, ava~lable cars rot !i

*r ~_l~yJ.~.2~.~..~.~i queries the system for

system shows a list of a vailab!e ¢~s ...

chooses one available car

asks f0s ~ent.a! dates

cust0msf data to the
provides ~ dates and

.~rt.em .~t~..t..°_.t.~.~..°.~L~d.:e~s.t.~_~ .~r~.. _...i
me_._~ has rented the cats i!i

F i g u r e 2: REM User In te r face

t r a n s f o r m a t i o n of the X M L d a t a is p r e s e n t e d to t h e user in
a e m b e d d e d web browser .

In any of t he t h r e e t ree v iews, t he user can d i r ec t l y m a n i p -
u la t e o b j e c t s by d r a g and d r o p or b y con t ex t menus . On ly
a c t i o n s t h a t have sense can b e p e r f o r m e d , fol lowing a correct-
by-construction a p p r o a c h , t hus inc reas ing qua l i t y a n d sav ing
ve r i f i ca t ion effort .

For e x a m p l e , a c t i ons of use case s t e p s can be of t h r e e dif-
ferent c lasses (see f igure 4): actor action, if t he a c t i o n is
p e r f o r m e d b y a n ac tor ; system action if t h e a c t i o n is pe r -
f o r m e d b y t h e s y s t e m , or use case action, if t he ac t i on con-
s is ts of p e r f o r m i n g o t h e r use case, i .e . an use case inclusion
or extension [6]. A c t o r a c t i o n s a n d use case ac t ions can be
c r e a t e d on ly if some a c t o r or some use case have been prev i -
ous ly c r e a t e d . In genera l , o b j e c t s can be c r e a t e d by means
of c o n t e x t menus on p o t e n t i a l p a r e n t s or by means of the
c r e a t i o n t o o l b a r .

X M L M o d e l of R e q u i r e m e n t s in REM

REM is b a s e d on a n U M L [6] m o d e l of r e q u i r e m e n t s (a p a r t i a l
v iew of th i s m o d e l is shown in f igure 4). T h e m a i n o b j e c t
c lass of t h e m o d e l is t he Requirements Document, t h a t is
c o m p o s e d of a sequence of REM ob jec t s . See f igure 3 for a
c lass i f i ca t ion of REM ob jec t s .

W e have t r a n s l a t e d ou r U M L m o d e l of r e q u i r e m e n t s in to a
r e l a t i o n a l s c h e m a a n d in to a D T D . As an e x a m p l e , t h e Use-

Case class in f igure 4 has been t r a n s l a t e d in to t he fol lowing
D T D e l emen t def in i t ion:

<!RIRblENT rem:useCase (
ram:name, ram:version,
ram:authors?, ram:sources?, rem:commentsT,
ram:importance, ram:urgency,
ram:status, ram:stability,
rem:isAbstraet?, rem:trigEerinEEvent,
ram:precondition, rem:postcondition,
ram:frequency, rem:s~ep*)>

<!ATTLIST rem:useCase old ID #REQUIRED>

M a n y of t h e e l emen t s in t h e p r e v i o u s D T D f r a g m e n t
(comments , t r igger ingEevent , pre a n d pos tcondi t ion) , c o n t a i n s
on ly t ex t , i .e. n a t u r a l l anguage . In REM, t e x t c a n b e c o m -
posed of any c o m b i n a t i o n of free t e x t , re fe rences t o o t h e r
o b j e c t s a n d T B D (To Be Determined) m a r k s , de f ined as fol-
lows:

<!ELEMENT rem:text (#PCDATA[rem:reflrem:tbd)*>
<!ELEMENT ram:tel (#PCDATA)>

<!ATTLIST ram:tel oid IDREF #REQUIRED>
<!w~ENT rem:tbdEMPTY>

where the rem:ref e l e m e n t m u s t have a r e q u i r e d a t t r i b u t e
ca l led oid t h a t i t is d e c l a r e d as an IDIREF, i .e . a r e fe rence t o
o t h e r e l emen t w i t h a m a t c h i n g iden t i f i ca t ion a t t r i b u t e va lue .
A n IDREF a t t r i b u t e is ve ry s i m i l a r t o a foreign key in re la -
t i o n a l d a t a b a s e s .

ACM SIGSOFT Software Engineering Notes vol 27 no 1 January 2002 Page 42

REM object
, Sectionappendix
Paragraphglossaryitem
Extem~lgraphicfile
Traceabilitymatrix
Stakeholders-related object

Organization
Stakeholder
Meeting

C-Requirement
Objective
Actor
Informatio.nstorag.erequirement
Constrairltrequirement
Function .lrequiremen.tuseeas¢
Non funcfion~lrequirem eat

D-Requirement
l Objeqttype

Valu.etype
Associatio.ntype
System operation

Conflict

Figure 3: Classification of objects in R E M

The rem:tbd element is declared as an EMPTY element,
i .e. i t c a n n o t have n e i t h e r s u b o r d i n a t e e l e m e n t s n o r da t a . I t
is simply a mark.

U s i n g X S L T as a R e q u i r e m e n t s Veri-
f i cat ion L a n g u a g e

In the following sections we describe how some of the quality
factors described in [10t can be automatically verified using
XSLT when requirements are electronically stored in XML
format according to the REM DTD.

U n a m b i g u i t y

A requirement is unambiguous if and only if has only one pos-
sible interpretation [1]. Obviously, this is a semantic prop-
erty of a requirement and cannot be automatically verified,
but we can give some hints about potential ambiguities in a
requirements document.

We agree with Leite [11] in the importance of understand-
ing the language of the problem and in the importance of
building a glossary (called Language Extended Lexicon, LEL,
in [11]). Following Leite, the glossary should follow two
principles: the principle of circularity, (the glossary must
be as self-contained as possible) and the principle of min-
imal vocabulary (use as much glossary items as possible in

Stakeholder ~ REMObJect

, s°urcd~l , I =oo i ~[c°mrnen~

C-Requirement
impodance~
urgency~
statu~
stability~

. _ L

UseCase • I ~Iep ~ -Y----7~--, I
- - ~ " V_ "loescrlpt'°r~]

isAbstra~ . { ° rdemd~L- -T~ l~ - - -] * i - -
tflggaringEvent[• [~1 = ,,__
precondition] ~;=~ ~ p
postconditior~ ~ ' ~ - - ~ ~ descriptio~
frequency~ I ~ ' " ~ " [~ termination~

r----~----~ ~ 1 I
UseCaseActlon I SystemAction ! ActorActlon

description~ [description~
performanoe~ ",t *~ ,

Actor

Figure 4: UML model of use cases in REM

your requirements descriptions). Leite's principles cannot
guarantee unambiguity, but they can help to build unam-
biguous, understandable, verifiable, consistent, concise, and
cross-referenced requirements [10].

XSLT can be used to measure glossary circularity (GLC)
and minimality of vocabulary (MOV). GLC can be measured
as the ratio between glossary items and references to glossary
items from other glossary items. The following XSLT code,
where we have declared a variable for the sake of readability,
can be used for computing GLC:

<xsl : variable name="GLC"
select="count (//rem:glossaryItem) div

count (//rem: glossaryItem//rem: ref) "/>
<xsl : value-of

select=" format-number ($GLC, ' #0. O0 ~) "/>

where the expression //rem:glcx~saryltem is an X.Path
expression [2] meaning "any r e m : g l o s s a r y l t e m ele-
ment descendant of the root", whereas the expression
//rern:giossaryltem//rem:ref means "any rem:ref element
descendant of any rem:glossaryitem descendant of the root".
In XPath, the language for building navigation expressions
over XML trees, an element is considered as descendant of
other element if it is its child at any level of depth in the
hierarchy.

A similar ratio between the number of references to glos-
sary items in requirements and the number of requirements
can be used to measure MOV. From the MOV viewpoint,

ACM SIGSOFT Software Engineering Notes vol 27 no 1 January 2002 Page 43

it is also possible to detect those "suspicious" requirements
that do not have any reference to any glossary item in their
text. Since those requirements are not using the vocabulary
of the customer, they should be checked for potential prob-
lems of ambiguity or understandability [10]. For example, if
we want to know which use cases are "suspicious", we can
use the following XSLT code:

<xsl : template mat chf"rem:useCase [not (. / / r e m : ref)] "/>

U~e case

<xsl :value-of select="rem:name"/>
does not use any glossary item

</xsl : templar e>

where the match expression uses brackets to select only
those use cases with no descendant references. Another
possibility is to determine a threshold value for the num-
ber of references per requirement and consider as suspi-
cious all requirements with a number of references under
the threshold. In that case, the match expression would be
rem:useCase[count(.//rem:ref) i m], with m being the MOV
threshold.

C o m p l e t e n e s s

A requirements document is complete if it includes [10]:

1. Everything that the software is supposed to do, i.e. all
the requirements

2. Responses of the software to all classes of input data in
all realizable situations

3. Page numbers, figure and table names and references, a
glossary, units of measure and referenced material

4. No sections marked as TBD

In our approach, the third completeness condition is par-
tially satisfied by means of the correct-by-construction para-
digm of REM: figure and table names are automatically gen-
erated, references are automatically inserted and updated,
and the user can easily create a glossary. If we want to be
sure about the existence of a section named Glossary, we can
apply the following XSLT code:

<xsl: choose>

<xs i :when test="//ram: section [ram: name=' Glossary '] "/>
There is a glossary

</xsl: when>

<xsl : otherwise>

There is no glossary

</xsl : otherwise>

</xsl : choose>

where the structure formed by xsl:choose, xsl:when and
xsl:otherwise is basically an if-else-endif statement with mul-
tiple else branches. Notice that if we want to check the ex-
istence of an element we cannot use an XSLT template. If
there is no such an element, the template will never match
and we will have no output.

Similar XSLT code can be used to verify if requirements
documents are organized [10], i.e. if they have mandatory
sections in the mandatory order with manda tory content.

The fourth condition of completeness, the absence of TBD
marks, can be easily verified using XSLT. If we want to know
how many TBD marks are in a requirements document we
can apply the following X_LST code:

T h e r e a x e

<xsl : value-of select =" count (//ram: tbd) "/>

TBD marks

that would generate in the output the number of occurrences
of elements of type rem:tbd anywhere in the XML data. If
we want to be more precise and we want to know what use
cases have TBD marks inside their text and how many TBD
marks they have, we could write the following XSLT code:

<xsl :template match="rem:useCase [./Item: tbd] "/>

Use case <xsl:value-of select="rem:name"/>

has <xsl: value-of select=" count (.//ram: tbd) "/>
TBD marks

</xsl: template>

in which the select expression "rem:useCase[.//rem:tbd]"
means "any use case with at least one descendant of type
rem:tbd".

T r a c e a b i l i t y

In [10], a requirements document is said to be traceable if
and only if it is written in a manner that eases the refer-
encing of each individual requirement. Since REM assigns
automatically an unique identifier to every requirement (the
required identifier attr ibute oid, see the DTD for use cases),
this quality factor does not have to be verified explicitly.

What it nmst be checked is if the origin of every require-
ment is clear, i.e. if requirements are traced [10]. In our UML
model of requirements, any REM object can be traced to and
from other REM objects and to their human sources and au-
thors (see figure 4). Checking if a requirement has sources
and authors and if it is traced to or from other requirements
is easy with XSLT. For example, the following XSLT tem-
plate will match all use cases with no human sources:

<xsl : template mat chf"rem: useCase [not (ram: sources)] ">

Use case

<xsl: value-of select="rem:name"/>

has no sources

</xsl: template>

And this XSLT template will match all non functional re-
quirements not traced to other REIV1 objects:

<xsl : template mat ch=" ram: nonFunct ionalRequirement ">
<xsl:if testf"not(//rem:trace[©source=cuxrent()/©oid])">

Non functional requirement

<xsl : value-of select="rem: name"/>
is not traced to any object

</xsl: if>

</xsl : template>

ACM SIGSOFT Software Engineering Notes vol 27 no 1 January 2002 Page 44

In REM, traces are defined as elements with two required
at tr ibutes of type IDREF, namely source and target. The user
of REM can also use traceability matrices for visual checking
of non- t raced requirements.

O t h e r v e r i f i a b l e q u a l i t y f a c t o r s

Applying the same ideas, other quality factors defined in [10]
can be verified using XSLT, for example:

• Wha t requirements are not annotated with relative im-
portance, relative stability or version.

* W h a t requirements have potentially ambiguous words in
their description, like easy to, user-friendly, etc. by means
of XSLT string functions like contains [3].

• If use cases are not well structured, i.e. if there are too
few or too many includes or extends relationships.

• W h a t use cases have too few or too many steps, or too
much exceptions, i.e. too many alternative courses.

• W h a t defined actors do not participate en any use case.

R e l a t e d W o r k

Most work on automated requirements verification is based
on Natural Language Processsing (NLP), like [14] or [12].
Those approaches, focused on semantic analysis of require-
ments, usually make requirements engineers write require-
ments in a subset of natural language, demand many com-
puter resources and have not been widely adopted in indus-
try.

The Automated Requirement Measurement (ARM) tool
[16], is probably the most related work to the approach pre-
sented in this article. I t is a simple yet powerful tool that
scans requirements documents searching for indicators, i.e.
words that have been identified as indicators of good or bad
quality properties.

Our approach does not use NLP but an open, simpler
and lighter technology like XML/XSLT. We can offer the
same functionality of ARM plus all additional verification
described in this paper, and the user of REM can defined his
or her own XSLT verification stylesheets. From a practical
point of view, we think that our results are useful for the
average requirements engineer.

C o n c l u s i o n s a n d F u t u r e W o r k

In this article we have briefly presented an automated ap-
proach for the verification of software requirements. Our ap-
proach is based on a open technology like XML and XSLT.
In fact, if requirements are represented in XML using a dif-
ferent DTD, many of the XSLT code presented in this paper
should be easily adapted. Our approach does not need hard
computer resources and it has proved to be useful when used
with our students at the University of Seville.

Our future work is focused in developing quality metrics,
so we can detect potential problems with requirements com-
paring quantitative values. We expect to identify some useful
metrics soon by applying data mining techniques to the re-
quirements documents generated by our students.

A c k n o w l e d g m e n t s This work is partially funded by the
Spanish CICYT project G E O Z O C O T I C 2000-1106-C02-
01 and by the international C Y T E D project W E S T .

R e f e r e n c e s

[1] IEEE Recommended Practice for Software Requirements
Specifications. IEEE/ANSI Standard 830-1998, Institute of
Electrical and Electronics Engineers, 1998.

[2] XML Path Language (XPath) 1.0. W3C Recommendation,
November 1999.

[3] XSL Transformations (XSLT) 1.0. W3C Recommendation,
November 1999.

[4] Extensible Markup Language (XML) 1.0 (Second Edition).
W3C Recommendation, October 2000.

[5] B. W. Boehm. Verifying and Validating Software Require-
ments and Design Specifications. IEEE Software, 1(1):75-88,
1984.

[6] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1999.

[7] J .W. Brackett. Software Requirements. Curriculum Module
SEI-CM-19-1.2, Software Engineering Institute, 1990.

[8] A. Durhn. A Methodological Framework for Requirements
Engineering of Information Systems (in Spanish). PhD the-
sis, University of Seville, 2000.

[9] A. Durhn, B. Bern£rdez, A. Ruiz, and M. Toro. A Require-
ments Elicitation Approach Based in Templates and Pat-
terns. In WER'99 Proceedings, Buenos Aires, 1999.

[10] A. Davis et al. Identifying and Measuring Quality in a Soft-
ware Requirements Specification. In Proceedings of the 1st
International Software Metrics Symposium, 1993.

[11] J. C. S. P. Leite et al. Enhancing a Requirements Baseline
with Scenarios. In Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering (RE'g7), 1997.

[12] F. Fabbrini, M. Fusani, V. Gervasi, S. Gnesi, and S. Ruggieri.
Achieving Quality in Natural Language Requirements. In
Proceedings of the 11 th International Software Quality Week,
1998.

[13] B. L. Kovitz. Practical Software Requirements: A Manual of
Content ~ Style. Manning, 1998.

[14] N. A. Maiden, M. Cisse, H. Perez, and D. Manuel. CREWS
Validation Frames: Patterns for Validating Systems Require-
ments. In Fourth International Workshop on Requirements
Engineering: Foundation for Software Quality (RESFQ),
1998.

[15] C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A. Scheffer,
and R. Stevens. Software Engineering Standards. Prentice-
Hall, 1994.

[16] L. Rosenberg, T. Hammer, and J. Shaw. Software Metrics
and Reliability. In 9th International Symposium on Software
Reliability Engineering, 1998.

