ACM BIGSOFT

Software Engineering Notes vol 27 no 1

January 2002 Page 39

Verifying Software Requirements with XSLT

Amador Durdn, Antonio Ruiz, Beatriz Berndrdez and Miguel Toro
Department of Computer Languages and Systems
University of Seville, Spain
e-mail: {amador,aruiz,beat,mtoro}@lsi.us.es

Abstract

In this article, we present an approach for the automatic ver-
ification of software requirements documents. This approach
is based on the representation of software requirements in
XML and the usage of the XSLT language not only to auto-
matically generate requirements documents, but also to verify
some desired quality properties and to compute some metrics.
These ideas have been implemented in REM, an experimental
requirements management tool that is also described in this
paper.

Keywords: requirements engineering, requirements verifi-
cation, XML, XSLT

Introduction

Paraphrasing Boehm [5], requirements validation and ver-
ification can be informally defined by the questions ” Am
I building the right requirements?” (validation) and ”Am I
building the requirements right?” (verification). ‘

In other words, the goal of requirements validation is to
ensure that requirements documents contain actual require-
ments and that these requirements are all the known require-
ments by the time the requirements documents are baselined.

On the other hand, the goal of requirements verification
is to ensure the quality of requirements according to desired
quality properties. Some of these quality properties have to
do with requirements semantics but others have to do with
syntactic, structural or pragmatic aspects of requirements
(see [12] for a complete classification of quality properties of
requirements).

Verification of semantic properties of requirements is
closely related to requirements validation! and requires hu-
man participation, whereas verification of non-semantic
properties should be as automated as possible.

In this article, we present an automated approach for the
verification of some quality properties of requirements. Most
of these properties can be classified as non—semantic, but
we have also developed some heuristics to check potential
problems with some semantic properties. Our approach is
based on the emergent technology built around XML [4] and
its companion language XSLT [3].

The rest of the article is organized as follows. First, we
briefly describe the basics of XML and XSLT needed to un-
derstand the following sections. Then, we describe REM,
an experimental requirements management tool [8, 9], the

IDistinction between requirements verification and validation is
sometimes subtle and many authors use both terms interchangeably.

XML model of requirements used by REM and how XSLT
can be used to verify some quality properties of require-
ments expressed in XML. Finally, we discuss some related
work, present some results and point out future work.

XML and XSLT
XML Basics

There are millions of web pages written in HT'ML available
in Internet. In these web pages, pure information is mixed
with formatting elements, making the automatic processing
of information very difficult. XML [4] is a language designed
for representing pure information in Internet. Information
in XML is represented by elements. An XML element is
made up of a start tag, an end tag, and other tags or data
in between. For example, for representing the information
about a book, we might have the following XML element
named book:

<book isbn="X-XXX-XXXX-X">
<author>Miguel de Cervantes</author>
<title>El Quijote</title>

</book>

As you can see, the information about a book is between
the jbook and j/book; tags and it is easy to parse by a com-
puter program. The author and title elements are considered
as children of the book element, thus forming a hierarchy.
An XML document must always have one and only one root
element at the top of its hierarchy.

In order to allow information interchange between two or
more parties using XML, they must agree about element
grammar and semantics. Element grammar is specified as
regular expressions in DTDs (Document Type Definitions)
(4). For example, the DTD fragment for the previous XML
data would be the following:

<{ELEMENT book (author+,title)>
<tATTLIST book isbn ID #REQUIRED>

<{ELEMENT author (#PCDATA)>

<{ELEMENT title (#PCDATA)>

where it is stated that a book element can contain one o more
author elements and only one title element. An XML element
can also have attributes. For example, isbn is defined as a
required identification attribute of book, i.e. there cannot
exist two books with the same value for the isbn attribute in
the same XML document. Those elements that contain only
text are said to contain #PCDATA, that stands for parsed
character data.

ACM SIGSOFT

Transforming XML

There are many situations in which XML data need to be
transformed. For example, for presenting XML data as an
HTML page. XSET [3] is a language based on transforma-
tion patterns. An XSLT stylesheet, which is also a an XML
document, searches for patterns in the XML data and applies
programmed transformations, thus generating some output
results. For example, if we wanted to show information about
books in a web browser, we could apply the following XSLT
transformation rule:

<xsl:template match="book">

<xsl:value—of select="title"/>

(ISBN <xsl:value—of select="Qisbn"/>)

was written by

<xsl:value—of select="author[1il"/>
</xsl:template>

The informal semantics of this XSLT rule are *when you find
a book element, generate its title in boldface, then its ISBN
attribute (notice the @ prefix for attributes), and then its
first author in emphasized mode”. In the XSLT code, text
literals like HI'ML tags can be mixed with element values,
which are obtained by means of the xsl:value-of statement.
If we applied this XSLT rule to the previous XML data, the
result of the transformation would be something like this
when rendered in a web browser:

El Quijote (ISBN X—XXX-XXXX-X) was written by
Miguel de Cervantes

Although there are many more details about XML and
XSLT, we think that this brief introduction should be enough
for those readers not familiar with XML technologies in order
to understand the rest of this article.

REM: An XMlIL—-based Requirements
Management Tool

REM (R FEquirements Manager) is an experimental require-
ments management tool developed by one of the authors
(8, 9]. In REM, a requirements engineering (RE) project is
considered to be composed of three documents:

1. a customer—oriented requirements document (the require-
ments document [13]), usually containing requirements in
natural language expressed in terms of customer’s vocab-
ulary, also known as C~requirements (7).

2. a developer—oriented requirements document (the speci-
fication document [13]), usually containing requirements
models and more technical information, also called D-
requirements [7].

3. a registry for detected conflicts and negotiation support.

In REM, C-requirements and conflicts are expressed in
natural language using predefined requirements templates
and some linguistic patterns (see [9] for details). For express-
ing D-requirements, we have chosen a subset of the UML [6]

Software Engineering Notes vol 27 no 1

January 2002 Page 40

REM Architecture

REM documents, i.e. RE projects composed of the three doc-
uments previously described, are stored in relational light—
weight databases. When the user creates a new REM docu-
ment, the basic structure is taken from a REM base document
(see figure 1), that can be empty or can contain the manda-
tory sections of software requirements standards like [1] or
[15]. Any ordinary REM document can be selected as a base
document, so users can create their own base documents or
reuse other REM documents.

T

Resource

Engineer

[)

XML
data

Transformed
XML data
(HTML)

REM *
. XSLT » '
Requirements DTD Stylesheet lli)x;;r;mlly configurable
Engineering Projects » obj

(MDB format)

Figure 1: REM Architecture

In order to provide immediate feedback on user actions,
REM generates XML data corresponding to the document
being edited, applies an external XSLT stylesheet that trans-
forms XML data into HTMI and shows the resulting HTML
to the user. In this way, whenever the user changes a require-
ments document, he or she can see the effects immediately.

In a similar way the REM base document can be tailored,
the user can also change document appearance by selecting
or creating different external XSTL stylesheets. The default
XSLT stylesheet generates a highly hyperlinked document,
easing navigation of requirements documents (see right side
of figure 2).

Other configurable aspect of REM is the language of the
user interface. The user can choose it by selecting an exter-
nal resource dynamic link library (DLL). At the moment of
writing, we have developed two external resource DLLs for
REM, one in Spanish and other in English. Another one in
Portuguese is under development.

REM User Interface

The user interface of REM presents two different views to the
user (see figure 2). On the left, the user can see a tabbed view
with three tree views, one for each requirements document

in the RE project. On the right hand, the result of the XSLT

ACM SIGSOFT

Software Engineering Notes vol 27 no 1

January 2002 Page 41

3.1 Capability requirements

% 3.1.1 System actors
% [ACT-D001] Customer
% [ACT-0002] Employee
% 3.1.2 Information storage require
[IRQ-0001] Information about;
[IRQ-0002] Infarmation aboul

iiActor Customer (ACT-0001) asks for available cars for
) renting

Actor Employes (ACT-0002) queries the system for
availgble cars

[IRQ-0003] Information aboul
3 3.1.3 System use cases

1 .D.ctor Customer 8
% 2. actor Employee q
3. The system show:
-@ If there are no
& 4., Actor Customer ¢
5. Actor Employee a:

The system shows a hst ufg_‘@_sis_@_l_g_g_m

) A ctor Cugtomer (ACT-0001 provxdes teptsl dates ¢
HActor Employes (ACT-000) provides gental dates and

Houstomer data to the system

Figure 2: REM User Interface

transformation of the XML data is presented to the user in
a embedded web browser.

In any of the three tree views, the user can directly manip-
ulate objects by drag and drop or by context menus. Only
actions that have sense can be performed, following a correct-
by—construction approach, thus increasing quality and saving
verification effort.

For example, actions of use case steps can be of three dif-
ferent classes (see figure 4): actor action, if the action is
performed by an actor; system action if the action is per-
formed by the system, or use case action, if the action con-
sists of performing other use case, 7.e. an use case inclusion
or extension [6]. Actor actions and use case actions can be
created only if some actor or some use case have been previ-
ously created. In general, objects can be created by means
of context menus on potential parents or by means of the
creation toolbar.

XML Model of Requirements in REM

REM is based on an UML (8] model of requirements (a partial
view of this model is shown in figure 4). The main object
class of the model is the Requirements Document, that is
composed of a sequence of REM objects. See figure 3 for a
classification of REM objects.

We have translated our UML model of requirements into a
relational schema and into a DTD. As an example, the Use-

Case class in figure 4 has been translated into the following
DTD element definition:

<VELEMENT rem:useCase (
rem:name, rem:version,
rem:authors?, rem:sources?,
rem:importance,
rem:status, rem:stability,
rem:isAbstract?, rem:triggeringEvent,
rem:precondition, rem:postconditionm,
rem: frequency, rem:step*)>

<VATTLIST rem:useCase oid ID #REQUIRED>

rem:comments?,
rem:urgency,

Many of the elements in the previous DTD fragment
(comments, triggeringEevent, pre and postcondition), contains
only text, i.e. natural langnage. In REM, text can be com-
posed of any combination of free text, references to other
objects and ‘TBD (To Be Determined) marks, defined as fol-
lows:

<VELEMENT xrem:text (#PCDATA|rem:ref|rem:tbd)*>
<VELEMENT rem:ref (#PCDATA)>

<IATTLIST rem:ref oid IDREF #REQUIRED>
<!ELEMENT rem:tbd EMPTY>

where the rem:ref element must have a required attribute
called oid that it is declared as an IDREF, i.e. a reference to
other element with a matching identification attribute value.
An IDREF attribute is very similar to a foreign key in rela-
tional databases.

ACM SIGSOFT

REM object

— Sectionappendix

—— Paragraphglossaryitem

~—— Externglgraphicfile

—- Traceabilitymatrix

—— Stakeholders-related object

—— QOrganization

— Stakeholder

—— Meeting

—— C-Requirement

—— Objective

—— Actor

— Informationstoragerequirement
— Constraintrequirement
—— Functionalrequirementusecase
— Nonfunctionalrequirement
—— D-Requirement

— Objecttype

—— Valuetype

—— Associationtype

—— Systemoperation

— Conflict

Figure 3: Classification of objects in REM

The rem:thd element is declared as an EMPTY element,
i.e. it cannot have neither subordinate elements nor data. It
is simply a mark.

Using XSLT as a Requirements Veri-
fication Language

In the following sections we describe how some of the quality
factors described in {10} can be automatically verified using
XSLT when requirements are electronically stored in XML
format according to the REM DTD.

Unambiguity

A requirement is unambiguous if and only if has only one pos-
sible interpretation [1]. Obviously, this is a semantic prop-
erty of a requirement and cannot be automatically verified,
but we can give some hints about potential ambiguities in a
requirements document.

We agree with Leite [11] in the importance of understand-
ing the language of the problem and in the importance of
building a glossary (called Language Extended Lexicon, LEL,
in [11]). Following Leite, the glossary should follow two
principles: the principle of circularity, (the glossary must
be as self-contained as possible) and the principle of min-
imal vocabulary (use as much glossary items as possible in

Software Engineering Notes vol 27 no 1

January 2002 Page 42

Stakeholder [€o= REMObJect
‘:ulhord nam e,
sourcd version|
7 comments]
Ll targe [‘l {disioint}
— SUNIN S
IR
C-Requirement
importance|
urgency
statug]
stability}
ﬁ\ {disioit)_
! A A -, | Condition
UseCase «| Step [(@——p description]
isAbstract] i . ; ,,'.
triggeringEven E tio
precondition| xce.p. n
postcondition| descnpﬂ_orﬂ
frequency| termination]
/-\
W ._Tl {disjoint}]
* 0 T]
I UseCaseAction ! SystemAction ActorAction
description] description]
performance| *

Xl X\
Actor

Figure 4: UML model of use cases in REM

your requirements descriptions). Leite’s principles cannot
guarantee unambiguity, but they can help to build unam-
biguous, understandable, verifiable, consistent, concise, and
cross-referenced requirements [10].

XSLT can be used to measure glossary circularity (GLC)
and minimality of vocabulary (MOV). GLC can be measured
as the ratio between glossary items and references to glossary
items from other glossary items. The following XSLT code,
where we have declared a variable for the sake of readability,
can be used for computing GLC:

<xsl:variable name="GLC"
select="count (//rem:glossaryItem) div
count (//rem:glossaryItem//rem:ref)"/>
<xsl:value-of
select="format-number ($GLC, ’#0.00’)"/>

where the expression //rem:glossaryltem is an XPath
expression [2] meaning Yany rem:glossaryltem ele-
ment descendant of the root”, whereas the expression
//rem:glossaryltem//rem:ref means “any rem:ref element
descendant of any rem:glossaryltem descendant of the root”.
In XPath, the language for building navigation expressions
over XML trees, an element is considered as descendant of
other element if it is its child at any level of depth in the
hierarchy.

A similar ratio between the number of references to glos-
sary items in requirements and the number of requirements
can be used to measure MOV. From the MOV viewpoint,

ACM SIGSOFT

it is also possible to detect those ”suspicious” requirements
that do not have any reference to any glossary item in their
text. Since those requirements are not using the vocabulary
of the customer, they should be checked for potential prob-
lems of ambiguity or understandability [10]). For example, if
we want to know which use cases are ”suspicious”, we can
use the following XSLT code:

<xsl:template match="rem:useCase[not(.//rem:xref)]"/>
Use case
<xsl:value-of select="rem:name"/>
does not use any glossary item

</xsl:template>

where the match expression uses brackets to select only
those use cases with no descendant references. Another
possibility is to determine a threshold value for the num-
ber of references per requirement and consider as suspi-
cious all requirements with a number of references under
the threshold. In that case, the match expression would be
rem:useCase[count(.//rem:ref) | m], with m being the MOV
threshold.

Completeness

A requirements document is complete if it includes [10]:

1. Everything that the software is supposed to do, i.e. all
the requirements

2. Responses of the software to all classes of input data in
all realizable situations

3. Page numbers, figure and table names and references, a
glossary, units of measure and referenced material

4. No sections marked as TBD

In our approach, the third completeness condition is par-
tially satisfied by means of the correct—by—construction para-
digm of REM: figure and table names are automatically gen-
erated, references are automatically inserted and updated,
and the user can easily create a glossary. If we want to be
sure about the existence of a section named Glossary, we can
apply the following XSLT code:

<xsl:choose>
<xsl:when test="//rem:section[rem:name=’Glossary’]"/>
There is a glossaxry
</xsl:when>
<xsl:otherwise>
There is no glossary
</xsl:otherwise>
</xsl:choose>

where the structure formed by xst:choose, xsl:when and
xs!:otherwise is basically an if-else—endif statement with mul-
tiple else branches. Notice that if we want to check the ex-
istence of an element we cannot use an XSLT template. If
there is no such an element, the template will never match
and we will have no output.

Software Engineering Notes vol 27 no 1

January 2002 Page 43

Similar XSLT code can be used to verify if requirements
documents are organized [10], i.e. if they have mandatory
sections in the mandatory order with mandatory content.

The fourth condition of completeness, the absence of TBD
marks, can be easily verified using XSLT. If we want to know
how many TBD marks are in a requirements document we
can apply the following XLST code:

There are
<xsl:value-of select="count(//rem:tbd)"/>
TBD marks

that would generate in the output the number of occurrences
of elements of type rem:tbd anywhere in the XML data. If
we want to be more precise and we want to know what use
cases have TBD marks inside their text and how many TBD
marks they have, we could write the following XSLT code:

<xsl:template match="rem:useCase[.//rem:tbd]"/>
Use case <xsl:value—of select="rem:name"/>
has <xsl:value-of select="count(.//rem:tbd)"/>
TBD marks

</xsl:template>

in which the select expression ”rem:useCase[.//rem:tbd]”
means “any use case with at least one descendant of type
rem:tbd”.

Traceability

In [10], a requirements document is said to be traceable if
and only if it is written in a manner that eases the refer-
encing of each individual requirement. Since REM assigns
automatically an unique identifier to every requirement (the
required identifier attribute oid, see the DTD for use cases),
this quality factor does not have to be verified explicitly.

What it must be checked is if the origin of every require-
ment is clear, i.e. if requirements are traced [10]. In our UML
model of requirements, any REM object can be traced to and
from other REM objects and to their human sources and au-
thors (see figure 4). Checking if a requirement has sources
and authors and if it is traced to or from other requirements
is easy with XSLT. For example, the following XSLT tem-
plate will match all use cases with no human sources:

<xsl:template match="rem:useCase[not(rem:sources)]">
Use case
<xsl:value-of select="rem:name"/>
has no sources

</zsl:template>

And this XSLT template will match all non functional re-
quirements not traced to other REM objects:

<xsl:template match="rem:nonFunctionalRequirement">

<xsl:if test="not(//rem:tracel[®source=current()/Qoid]})">

Non functional requirement
<xsl:value-of select="rem:name"/>
is not traced to any object
</x8l:if>
</xsl:template>

ACM SIGSOFT

In REM, traces are defined as elements with two required
attributes of type IDREF, namely source and target. The user
of REM can also use traceability matrices for visual checking
of non—traced requirements.

Other verifiable quality factors

Applying the same ideas, other quality factors defined in [10]
can be verified using XSLT, for example:

o What requirements are not annotated with relative im-
portance, relative stability or version.

e What requirements have potentially ambiguous words in
their description, like easy to, user—friendly, etc. by means
of XSLT string functions like contains [3].

o If use cases are not well structured, i.e. if there are too
few or too many includes or extends relationships.

e What use cases have too few or too many steps, or too
much exceptions, t.e. too many alternative courses.

o What defined actors do not participate en any use case.

Related Work

Most work on automated requirements verification is based
on Natural Language Processsing (NLP), like [14] or [12].
Those approaches, focused on semantic analysis of require-
ments, usually make requirements engineers write require-
ments in a subset of natural language, demand many com-
puter resources and have not been widely adopted in indus-
try.

The Automated Requirement Measurement (ARM) tool
[16], is probably the most related work to the approach pre-
sented in this article. It is a simple yet powerful tool that
scans requirements documents searching for indicators, i.e.
words that have been identified as indicators of good or bad
quality properties.

Our approach does not use NLP but an open, simpler
and lighter technology like XML/XSLT. We can offer the
same functionality of ARM plus all additional verification
described in this paper, and the user of REM can defined his
or her own XSLT verification stylesheets. From a practical
point of view, we think that our results are useful for the
average requirements engineer.

Conclusions and Future Work

In this article we have briefly presented an automated ap-
proach for the verification of software requirements. Our ap-
proach is based on a open technology like XML and XSLT.
In fact, if requirements are represented in XML using a dif-
ferent D'TD, many of the XSLT code presented in this paper
should be easily adapted. Our approach does not need hard
computer resources and it has proved to be useful when used
with our students at the University of Seville.

Software Engineering Notes vol 27 no 1

January 2002 Page 44

Our future work is focused in developing quality metrics,
so we can detect potential problems with requirements com-
paring quantitative values. We expect to identify some useful
metrics soon by applying data mining techniques to the re-
quirements documents generated by our students.

Acknowledgments This work is partially funded by the
Spanish CICYT project GEOZOCO TIC 2000-1106—C02—
01 and by the international CYTED project WEST.

References

(1] IEEE Recommended Practice for Software Requirements
Specifications. IEEE/ANSI Standard 830-1998, Institute of
Electrical and Electronics Engineers, 1998.

2] XML Path Language (XPath) 1.0. W3C Recommendation,
November 1999.

[3] XSL Transformations {XSLT) 1.0. W3C Recormmendation,
Novernber 1999.

[4] Extensible Markup Language (XML) 1.0 (Second Edition).
‘W3C Recommendation, October 2000.

[5] B. W. Boehm. Verifying and Validating Software Require-
ments and Design Specifications. IEEE Software, 1(1):75-88,
1984.

[6] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison—Wesley, 1999.

[7] J. W. Brackett. Software Requirements. Curriculum Module
SEI-CM-19-1.2, Software Engineering Institute, 1990.

[8] A. Durdn. A Methodological Framework for Requirements
Engineering of Information Systems (in Spanish). PhD the-
sis, University of Seville, 2000.

[9] A. Duran, B. Bernirdez, A. Ruiz, and M. Toro. A Require-
ments Elicitation Approach Based in Templates and Pat-
terns. In WER’99 Proceedings, Buenos Aires, 1999.

[10] A. Davis et al. Identifying and Measuring Quality in a Soft-
ware Requirements Specification. In Proceedings of the 1st
International Software Metrics Symposium, 1993.

[11] J. C. S. P. Leite et al. Enhancing a Requirements Baseline
with Scenarios. In Proceedings of the 3rd IEEE International
Symposium on Requirements Engineering (RE’97), 1997.

[12] F. Fabbrini, M. Fusani, V. Gervasi, S. Gnesi, and S. Ruggieri.
Achieving Quality in Natural Language Requirements. In
Proceedings of the 11 th International Software Quality Week,
1998.

(18] B. L. Kovitz. Practical Software Requirements: A Manual of
Content & Style. Manning, 1998.

[14] N. A. Maiden, M. Cisse, H. Perez, and D. Manuel. CREWS
Validation Frames: Patterns for Validating Systems Require-
ments. In Fourth International Workshop on Reguirements
Engineering: Foundation for Software Quality (RESFQ),
1998.

[15] C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A. Scheffer,
and R. Stevens. Software Engineering Standards. Prentice—
Hall, 1994.

[16] L. Rosenberg, T. Hammer, and J. Shaw. Software Metrics
and Reliability. In 9th International Symposium on Software
Reliability Engineering, 1998.

