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Abstract. We derive general existence theorems for random pullback expo-
nential attractors and deduce explicit bounds for their fractal dimension. The
results are formulated for asymptotically compact random dynamical systems
in Banach spaces.

1. Introduction

Studying the longtime behavior of infinite dimensional dynamical systems can
often be reduced to analyzing the dynamics on the global attractor. Global attrac-
tors are compact subsets of the phase space that are strictly invariant under the
time evolution of the system and attract all bounded subsets as time tends to in-
finity. If the global attractor exists, it is unique, and in most cases of finite fractal
dimension. The rate of convergence to the attractor, however, is typically unknown.
It can be arbitrarily slow and hence, global attractors are generally not stable under
perturbations. To overcome these drawbacks the notion of an exponential attractor
was introduced in [7]. Exponential attractors are compact, semi-invariant sets of
finite fractal dimension that contain the global attractor and attract all bounded
subsets at an exponential rate. Due to the exponential rate of convergence they are
more stable under perturbations. However, since exponential attractors are only
semi-invariant under the time evolution of the system, they are not unique.

Different methods have been developed to show the existence of exponential
attractors for infinite dimensional dynamical systems. The first existence proof was
established for semigroups acting in Hilbert spaces, cf. [7]. It is non-constructive,
based on the so-called squeezing property of the semigroup and essentially uses the
Hilbert space structure of the phase space. In [9] an alternative method and explicit
construction of exponential attractors for discrete time semigroups in Banach spaces
was proposed. The approach relies on the compact embedding of the phase space
into an auxiliary normed space, the existence of a bounded absorbing set and the
so-called smoothing property of the semigroup. This property implies that the
semigroup is eventually compact and is mainly satisfied by parabolic problems.
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More recently, in [6, 11] and [2, 3] the construction of exponential attractors
[9] has been extended to non-autonomous dynamical systems using the notion of
pullback attraction. In [6] and [11] evolution processes satisfying the smoothing
property were considered and the existence of a fixed bounded pullback absorbing
set was assumed. Moreover, rather strong regularity assumptions were imposed that
mainly restrict applications to parabolic problems. In [2, 3] the existence of pull-
back exponential attractors was shown under significantly weaker hypotheses and
the construction was generalized for asymptotically compact evolution processes.
In particular, the Hölder continuity of the process, as hypothesized in [6, 11], could
be omitted and the fixed bounded pullback absorbing set was replaced by a time-
dependent family of absorbing sets. As a consequence, the results allow for more
general non-autonomous terms in the equations and are also applicable, e.g. to
hyperbolic problems. Moreover, unlike in [6, 11] the pullback attractors are al-
lowed to be unbounded in the past, a property that is inherent to random pullback
attractors in most applications.

The aim of our paper is to extend the construction [2, 3] to the setting of random
dynamical systems. We formulate general existence results for random pullback
exponential attractors and derive explicit estimates for their fractal dimension. The
generalizations developed in [2, 3] are hereby essential, since the absorbing sets as
well as the constants in the estimates depend on the random parameter, and hence,
are time-dependent. Moreover, random attractors of PDEs perturbed by additive
or multiplicative noise are typically unbounded in the past.

Exponential attractors for random dynamical systems have previously been con-
sidered in [12], however, under restrictive assumptions that are difficult to verify in
applications. The construction was carried out in the setting of Hilbert spaces and
the attraction universe was the family of deterministic sets. The random dynamical
system was assumed to satisfy the smoothing property and to be uniformly Hölder
continuous in time. Moreover, certain stability assumptions and the compactness
of the absorbing set were imposed. We improve this result in various directions and
show that several of these hypotheses are not required. We consider asymptotically
compact random dynamical systems in Banach spaces, i.e. the cocycle can be rep-
resented as a sum of operators satisfying the smoothing property and a family of
contractions, and the attraction universe is the family of tempered random sets.
Our proof yields the measurability of the random exponential attractor without the
technical auxiliary results needed and established in [12], and does not require a
stability assumption or the compactness of the absorbing set. Moreover, we derive
explicit estimates for the fractal dimension of the attractors. For continuous time
random dynamical systems we propose to weaken the notion of positive invariance.
This allows to simplify the construction of random pullback exponential attrac-
tors such that the assumption of Hölder continuity in time of the cocycle can be
omitted.

In a forthcoming paper [1] we will apply the theoretical results to a stochastic
semilinear damped wave equation with multiplicative noise,

dut +
(
βut −∆u

)
dt = f(u)dt+ σu ◦ dW t > τ,

u|∂D = 0 t ≥ τ,(1)
u|t=τ = u0, ut|t=τ = v0 τ ∈ R,
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where D ⊂ Rn, n ≥ 3, is a bounded domain and W : Ω→ C0(R) a standard scalar
Wiener process. Assuming that the nonlinearity f is subcritical and dissipative
and the noise |σ| is small w.r.t. β we prove the existence of a random pullback
exponential attractor and derive estimates for its fractal dimension. The previous
existence result for random exponential attractors [12] is not applicable to problem
(1), since it is based on the smoothing property and Hölder continuity in time of
the generated random dynamical system, i.e. on properties that are not satisfied
in this situation.

The outline of our paper is as follows: In Section 2 we collect several notions
from the theory of random dynamical systems and recall results about entropy
properties of embeddings that we will need in the sequel. General existence results
for random pullback exponential attractors are derived in Section 3, where the
construction is first carried out for discrete time random dynamical systems and
subsequently extended to the continuous time setting.

2. Preliminaries

2.1. Random dynamical systems. We recall basic notions from the theory of
random dynamical systems that we will need in the subsequent sections and in-
troduce the concept of random exponential attractors. Here and in the sequel, we
assume (Ω,F ,P) is a probability space and (V, ‖·‖V ) a Banach space. Moreover, let
T denote R or Z, and T+ be the non-negative real numbers, or integers respectively.

Definition 1. A random dynamical system (θ, ϕ) on V consists of a measurable
and measure-preserving dynamical system {θt}t∈T, θt : Ω→ Ω, on (Ω,F ,P), i.e.

θ0 = Id,

θt ◦ θs(ω) = θt+s(ω) ∀t, s ∈ T, ω ∈ Ω,

(t, ω) 7→ θt(ω) is measurable,
θtP = P ∀t ∈ T,

where Id denotes the identity operator in Ω, and a cocycle mapping ϕ : T+×Ω×V →
V, i.e.

ϕ(0, ω, v) = v ∀ω ∈ Ω, v ∈ V,
ϕ(s+ t, ω, v) = ϕ(s, θt(ω), ϕ(t, ω, v)) ∀s, t ∈ T+, ω ∈ Ω, v ∈ V,

(t, ω, v) 7→ ϕ(t, ω, v) is measurable,
v 7→ ϕ(t, ω, v) is continuous ∀t ∈ T+, ω ∈ Ω.

Definition 2. A random set B is a subset of Ω × V that is measurable with
respect to the product σ-algebra F ⊗BV , where BV denotes the Borel σ-algebra of
V . Moreover, the ω-section of a random set B is defined by

B(ω) = {v ∈ V : (ω, v) ∈ B}.

A random set B is called tempered, if there exists a random variable rB(ω) ≥ 0
such that B(ω) is contained in a ball with center zero and radius rB(ω) and

lim
t→±∞

1
|t|

log+
(
rB(θt(ω))

)
= 0.
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We will denote a general family of random sets by D. It is usually called universe
and can represent, for instance, the family of bounded deterministic sets, or the
family of tempered random sets.

In the remainder of this subsection, when stating properties involving a random
parameter we assume that they hold a.s., unless otherwise specified (i.e., there exists
a subset Ω̄ ⊂ Ω of full measure such that the property is satisfied for all ω ∈ Ω̄).

Definition 3. A random set A with compact sections A(ω) 6= ∅ is a random pull-
back D-attractor for the random dynamical system (θ, ϕ) on V, if A is ϕ-invariant,
i.e.

ϕ(t, ω,A(ω)) = A(θt(ω)) ∀t ∈ T+,

and it pullback attracts the family D, i.e.

lim
t→∞

distH(ϕ(t, θ−t(ω), D(θ−t(ω))),A(ω)) = 0 ∀D ∈ D.

Here, distH(·, ·) denotes the Hausdorff semidistance in V , i.e.

distH(A,B) = sup
a∈A

inf
b∈B
‖a− b‖V .

There exist several criteria ensuring the existence of random pullback attractors.
The simplest one states that if a random dynamical system in V possesses a compact
random pullback D-attracting set, then a random pullback D-attractor exists (see
Theorem 4 in [5]).

Theorem 1. Let (θ, ϕ) be a random dynamical system on a separable Banach space
V . There exists a random pullback D-attractor for (θ, ϕ) if and only if there exists
a compact random pullback D-attracting set K, i.e., the sections K(ω) are compact
and

lim
t→∞

distH(ϕ(t, θ−t(ω), D(θ−t(ω))),K(ω)) = 0 ∀D ∈ D.

Remark 1. If a random dynamical system possesses a random pullback D-attractor
A and the universe D contains the family of compact deterministic sets, then A is
unique a.s. (see Corollary 1 in [5]).

We now use the concept of random pullback attractors to introduce exponential
attractors for random dynamical systems.

Definition 4. A random setM is a random pullback exponential D-attractor for
the random dynamical system (θ, ϕ) on V, if the sections M(ω) 6= ∅ are compact
andM is positively ϕ-invariant, i.e.

ϕ(t, ω,M(ω)) ⊂M(θt(ω)) ∀t ∈ T+.

Moreover, the fractal dimension ofM(ω) is finite, i.e. there exists a random variable
k(ω) ≥ 0 such that

dimf(M(ω)) ≤ k(ω) <∞,

andM is pullback D-attracting at an exponential rate, i.e. there exists α > 0 such
that

lim
t→∞

eαtdistH
(
ϕ
(
t, θ−t(ω), D(θ−t(ω))

)
,M(ω)

)
= 0 ∀D ∈ D.
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Here, dimf(·) denotes the fractal dimension, i.e. if A ⊂ V is precompact, then

dimf(A) = lim sup
ε→0

log 1
ε

(
NV
ε (A)

)
,

where NV
ε (A) denotes the minimal number of ε-balls in V with centers in A needed

to cover A.

2.2. (Kolmogorov) ε-entropy and entropy numbers. Our construction of ran-
dom pullback exponential attractors is based on the embedding of the phase space
into an auxiliary normed space, and the entropy properties of this embedding will
play a crucial role. In this subsection we recall the corresponding notions and
results that we will need in the sequel.

The (Kolmogorov) ε-entropy of a precompact subset A of a Banach space V is
defined as

HVε (A) = log2(NV
ε (A)),

where NV
ε (A) denotes the minimal number of ε-balls in V with centers in A needed

to cover A. It was first introduced by Kolmogorov and Tihomirov in [10]. The
order of growth of HVε as ε tends to zero is a measure for the massiveness of the
set A in V , even if its fractal dimension is infinite.

If V and U are Banach spaces such that the embedding V ↪→↪→ U is compact
we use the notation

Hε(V ;U) = HUε (BV1 (0)),

where BV1 (0) denotes the closed unit ball in V .

Remark 2. The ε-entropy is related to the entropy numbers ek for the embedding
V ↪→ U, which are defined by

ek = inf
{
ε > 0 : BV1 (0) ⊂

2k−1⋃
j=1

BUε (wj), wj ∈ U, j = 1, . . . , 2k−1
}
,

k ∈ N. If the embedding is compact, then ek is finite for all k ∈ N. For certain
function spaces the entropy numbers can explicitly be estimated (see [8]). For
instance, if D ⊂ Rn is a smooth bounded domain, then the embedding of the
Sobolev spaces

W l1,p1(D) ↪→W l2,p2(D), l1, l2 ∈ R, p1, p2 ∈ (1,∞),

is compact if l1 > l2 and l1
n −

1
p1
> l2

n −
1
p2
. Moreover, the entropy numbers grow

polynomially, namely,

ek ' k−
l1−l2
n

(see Theorem 2, Section 3.3.3 in [8]), and consequently,

Hε(W l1,p1(D);W l2,p2(D)) ≤ cε−
n

l1−l2 ,

for some constant c > 0.
Here and in the sequel, we write f ' g, if there exist positive constants c1 and

c2 such that
c1f ≤ g ≤ c2f.
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3. Construction of random pullback exponential attractors

Let (V, ‖·‖V ) be a separable Banach space, (θ, ϕ) be a random dynamical system
on V and D denote the universe of tempered random sets. Our construction of
random exponential attractors is based on the compact embedding of the phase
space into an auxiliary normed space, the decomposition of the cocycle as a sum
of operators satisfying the smoothing property and a family of contractions, and
the existence of a tempered pullback D-absorbing random set. We assume that
the following properties are satisfied on a subset of full measure Ω ⊂ Ω that, for
simplicity, we will denote again by Ω.

(H0) We assume (U, ‖ · ‖U ) is another separable Banach space such that the
embedding V ↪→↪→ U is dense and compact,

‖v‖U ≤ µ‖v‖V ∀v ∈ V,

for some constant µ > 0, and the ε-entropy Hε(V ;U) grows polynomially,
i.e.

Hε(V ;U) ≤ cε−γ ,
for some positive constants c and γ.

(H1) There exists a random closed set B ∈ D that is pullback D-absorbing, i.e.
for every D ∈ D and ω ∈ Ω there exists TD,ω ≥ 0 such that

ϕ(t, θ−t(ω), D(θ−t(ω))) ⊂ B(ω) ∀t ≥ TD,ω,

and we assume that TD,θ−τ (ω) ≤ TD,ω for all τ ∈ T+.

Moreover, the cocycle ϕ can be represented as sum ϕ = φ+ψ, where φ : T+ ×Ω×
V → V, and ψ : T+ ×Ω× V → V, are families of operators satisfying the following
hypotheses:
(H2) There exists a positive t̃ ≥ TB,ω such that the family φ satisfies the smooth-

ing property within B, i.e. there exists a random variable κ(ω) such that

‖φ(t̃, ω, u)− φ(t̃, ω, v)‖V ≤ κ(ω)‖u− v‖U ∀u, v ∈ B(ω),

and κ satisfies

lim sup
m→∞

1
m

m∑
k=1

(
κ(θ−k(ω))

)γ
<∞,(2)

where γ is the growth exponent of the ε-entropy in (H0).
(H3) The family of operators ψ is a contraction within B, i.e.

‖ψ(t̃, ω, u)− ψ(t̃, ω, v)‖V ≤ λ‖u− v‖V ∀u, v ∈ B(ω),

where 0 ≤ λ < 1
2 .

Remark 3. If the random variable κ satisfies κγ ∈ L1(Ω,F ,P), Birkhoff’s ergodic
theorem implies property (2).

Our main result is the following existence result for discrete time random dynam-
ical systems that we later extend for continuous time random dynamical systems.

Theorem 2. Let (θ, ϕ) be a discrete time random dynamical system on V , i.e.
T = Z and the assumptions (H0)–(H3) be satisfied. Then, for any ν ∈ (0, 1

2 − λ)
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there exists a random pullback exponential attractor Mν for (θ, ϕ) in V , and the
fractal dimension of its sections is bounded by

dimV
f (Mν(ω)) ≤ d(ω)

− log2(2(ν + λ))
∀ω ∈ Ω,

where

d(ω) =
c

νγ
lim sup
m→∞

1
m− 1

m∑
k=1

(
κ(θ−k(ω))

)γ
,

and c and γ are the constants determined by the entropy properties in (H0).

In the particular case that the constant κ in (H2) can be chosen uniformly
w.r.t. ω we recover the bound for the fractal dimension of deterministic pullback
exponential attractors in [2, 3], namely,

dimV
f (Mν(ω)) ≤

(
κ
ν

)γ
− log2(2(ν + λ))

.

Remark 4. Our results improve the previous existence result for random pullback
exponential attractors by Shirikyan & Zelik [12]. The hypotheses are significantly
weaker and easier to verify in applications. In particular, we generalize the con-
struction for asymptotically compact random dynamical systems, i.e. for cocycles
that can be represented as sum of operators φ satisfying the smoothing property
and a family of contractions ψ. Moreover, we formulate the setting in Banach
spaces instead of Hilbert spaces and replace the attraction universe of bounded de-
terministic sets by tempered random sets. The hypotheses on the random pullback
absorbing set B are essentially weaker, since we do not suppose its compactness
nor impose growth conditions for the ε-entropy of its sections. The measurability
of the exponential attractor is achieved by a modified construction that does not
require the technical auxiliary results in [12]. In Section 3.2 we extend the con-
struction for continuous time random dynamical systems. In order to apply the
approach in [2] developed for non-autonomous deterministic problems, that does
not require the Hölder continuity in time of the cocycle, we propose to weaken the
notion of positive invariance for continuous time random exponential attractors. It
essentially simplifies the construction and leads to better, explicit estimates for the
fractal dimension.

During the revision of our article S. Zhou published an existence result for expo-
nential attractors for non-autonomous random dynamical systems [13] and applied
the results to stochastic lattice systems. The setting is different, since he considers
non-autonomous random problems, and the hypotheses are more difficult to verify
in applications.

We first prove Theorem 2 and subsequently construct random exponential at-
tractors for continuous time random dynamical systems in Subsection 3.2.

3.1. Discrete random dynamical systems. In this subsection, we consider dis-
crete time dynamical systems (θ, ϕ), i.e. T = Z.

Proof of Theorem 2. Without loss of generality we assume that t̃ = 1 in assump-
tions (H2) and (H3).

We follow and extend the method used in [2] to construct pullback exponential
attractors for nonautonomous evolution processes. Different from the deterministic
setting, the constants now depend on the random parameter ω, and the construction
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has to be done in such a way that the random pullback exponential attractor is
measurable.
Coverings of ϕ

(
n, θ−n(ω), B(θ−n(ω))

)
. By Proposition 1.3.2 in [4] there exists

a sequence of measurable functions vj : Ω→ V , j ∈ N, such that vj(ω) ∈ B(ω) for
all j ∈ N, and

B(ω) = {vj(ω), j ∈ N}
V

∀ω ∈ Ω,

where · V is the closure in V . We denote the countable dense random subset by

V(ω) =
⋃
j∈N

vj(ω), ω ∈ Ω.(3)

We remark that by the assumption 1 = t̃ ≥ TB,ω in (H2) and property (H1) it
follows that

ϕ(n, θ−n−τ (ω), B(θ−n−τ (ω))) ⊂ B(θ−τ (ω)) ∀τ ≥ 0, n ∈ N.(4)

Let ν ∈ (0, 1
2 − λ) be arbitrary and β = 2(ν + λ). By property (3) and since

B is tempered, there exist vω ∈ V(ω) and a random variable R(ω) ≥ 0 such that
B(ω) is contained in a ball with center zero and radius R(ω),

lim
t→±∞

1
|t|

log+
(
R(θtω)

)
= 0,

and B(ω) ⊂ BVR(ω)(v
ω). Moreover, we choose elements pω1 , . . . , pωN(ω) ∈ V such

that

BV1 (0) ⊂
N(ω)⋃
i=1

BUν
κ(ω)

(pωi ),

where N(ω) = NU
ν

κ(ω)
(BV1 (0)). We define U0(ω) = {vω} for all ω ∈ Ω and construct

by induction in n ∈ N sets Un(ω), n ∈ N, such that

Un(ω) ⊂ ϕ
(
n, θ−n(ω),V(θ−n(ω))

)
⊂ B(ω)(U1)

]Un(ω) ≤
n∏
i=1

N(θ−i(ω))(U2)

ϕ
(
n, θ−n(ω),V(θ−n(ω))

)
⊂

⋃
u∈Un(ω)

BVβnR(θ−n(ω))(u),(U3)

where ] denotes the cardinality of a set. Certainly, property (U3) implies that

ϕ
(
n, θ−n(ω), B(θ−n(ω))

)
= ϕ

(
n, θ−n(ω),V(θ−n(ω))

V )
⊂

⋃
u∈Un(ω)

BVβnR(θ−n(ω))(u)
V
.

First, we build a suitable covering of the image ϕ
(
1, θ−1(ω),V(θ−1(ω))

)
. For any

v ∈ BVR(θ−1(ω))(v
θ−1(ω)) we have

1
R(θ−1(ω))

(v − vθ−1(ω)) ∈ BV1 (0) ⊂
N(θ−1(ω))⋃

i=1

BU ν
κ(θ−1(ω))

(pθ−1(ω)
i )
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and consequently,

BVR(θ−1(ω))(v
θ−1(ω)) ⊂

N(θ−1(ω))⋃
i=1

BUνR(θ−1(ω))
κ(θ−1(ω))

(
R(θ−1(ω))pθ−1(ω)

i + vθ−1(ω)
)
.

Due to the smoothing property (H2) we obtain

‖φ(1, θ−1(ω), ũ)− φ(1, θ−1(ω), ṽ)‖V ≤ κ(θ−1(ω))‖ũ− ṽ‖U < 2νR(θ−1(ω))

for all ũ, ṽ ∈ BUνR(θ−1(ω))
κ(θ−1(ω))

(
R(θ−1(ω))pθ−1(ω)

i + vθ−1(ω)
)
∩ V(θ−1(ω)) ⊂ B(θ−1(ω)),

which yields the covering

φ
(
1, θ−1(ω), BVR(θ−1(ω))(v

θ−1(ω)) ∩ V(θ−1(ω))
)
⊂
N(θ−1(ω))⋃

i=1

BV2νR(θ−1(ω))(zi),

for some z1, . . . , zN(θ−1(ω)) ∈ φ
(
1, θ−1(ω),V(θ−1(ω))

)
. In particular, we can choose

elements y1, . . . , yN(θ−1(ω)) ∈ V(θ−1(ω)) such that zi = φ(1, θ−1(ω), yi) for i =
1, . . . , N(θ−1(ω)).

Moreover, if u ∈ V(θ−1(ω)) ⊂ B(θ−1(ω)) the contraction property (H3) implies
that

‖ψ(1, θ−1(ω), u)− ψ(1, θ−1(ω), yi)‖V ≤ λ‖u− yi‖V < 2λR(θ−1(ω)),

for all i = 1, . . . , N(θ−1(ω)), and we conclude that

ψ
(
1, θ−1(ω),V(θ−1(ω))

)
⊂ BV2λR(θ−1(ω))

(
ψ(1, θ−1(ω), yi)

)
.

Finally, we obtain the covering

ϕ
(
1, θ−1(ω),V(θ−1(ω))

)
= (φ+ ψ)

(
1, θ−1(ω),V(θ−1(ω))

)
⊂
N(θ−1(ω))⋃

i=1

(
BV2νR(θ−1(ω))(φ(1, θ−1(ω), yi)) +BV2λR(θ−1(ω))(ψ(1, θ−1(ω), yi))

)

⊂
N(θ−1(ω))⋃

i=1

BVβR(θ−1(ω))

(
ϕ(1, θ−1(ω), yi)

)
,

with centers ϕ(1, θ−1(ω), yi) ∈ ϕ
(
1, θ−1(ω),V(θ−1(ω))

)
, i = 1, . . . , N(θ−1(ω)), where

β = 2(ν + λ). Denoting the new set of centers by U1(ω) it follows that

ϕ
(
1, θ−1(ω),V(θ−1(ω))

)
⊂

⋃
u∈U1(ω)

BVβR(θ−1(ω))(u),

U1(ω) ⊂ ϕ
(
1, θ−1(ω),V(θ−1(ω))

)
⊂ B(ω),

]U1(ω) ≤ N(θ−1(ω)),

which proves properties (U1)–(U3) for n = 1.
We now assume that the sets Uk(ω) satisfying (U1)–(U3) have been constructed

for all k ≤ n. In order to construct a covering of the set

ϕ
(
n+ 1, θ−(n+1)(ω),V(θ−(n+1)(ω))

)
=ϕ
(

1, θ−1(ω), ϕ
(
n, θ−n ◦ θ−1(ω),V(θ−n ◦ θ−1(ω))

))
⊂

⋃
u∈Un(θ−1(ω))

ϕ
(
1, θ−1(ω), BVβnR(θ−(n+1)(ω))(u)

)
,
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let u ∈ Un(θ−1(ω)). We proceed as before using a covering of the unit ball BV1 (0)
by ν

κ(θ−(n+1)(ω)) -balls in U to conclude

BVβnR(θ−(n+1)(ω))(u)

⊂
N(θ−(n+1)(ω))⋃

i=1

BUν(βnR(θ−(n+1)(ω))

κ(θ−1(ω))

(
βnR(θ−(n+1)(ω))pθ−(n+1)(ω)

i + u
)
.

By the smoothing property (H2) it then follows that

φ
(

1, θ−1(ω), ϕ
(
n, θ−n ◦ θ−1(ω),V(θ−n ◦ θ−1(ω))

)
∩BVβnR(θ−(n+1)(ω))(u)

)
⊂
N(θ−1(ω))⋃

i=1

BVβn2νR(θ−(n+1)(ω))(φ(1, θ−1(ω), yui )),

for some yu1 , . . . , yuN(θ−1(ω)) ∈ ϕ
(
n, θ−n ◦ θ−1(ω),V(θ−n ◦ θ−1(ω))

)
. Furthermore,

the contraction property (H3) implies that

ψ
(

1, θ−1(ω), ϕ
(
n, θ−n ◦ θ−1(ω),V(θ−n ◦ θ−1(ω))

)
∩BVβnR(θ−(n+1)(ω))(u)

)
⊂ BVβn2λR(θ−(n+1)(ω))(ψ(1, θ−1(ω), yui )),

for all i = 1, . . . , N(θ−1(ω)). Consequently, we obtain the covering

ϕ
(

1, θ−1(ω), ϕ
(
n, θ−n ◦ θ−1(ω),V(θ−n ◦ θ−1(ω))

)
∩BVβnR(θ−(n+1)(ω))(u)

)
=(φ+ ψ)

(
1, θ−1(ω), ϕ

(
n, θ−n ◦ θ−1(ω),V(θ−n ◦ θ−1(ω))

)
∩BVβnR(θ−(n+1)(ω))(u)

)
⊂
N(θ−1(ω))⋃

i=1

BVβn2νR(θ−(n+1)(ω))(φ(1, θ−1(ω), yui ))

+BVβn2λR(θ−(n+1)(ω))(ψ(1, θ−1(ω), yui ))

⊂
N(θ−1(ω))⋃

i=1

BVβn+1R(θ−(n+1)(ω))

(
(φ+ ψ)(1, θ−1(ω), yui )

)
=
N(θ−1(ω))⋃

i=1

BVβn+1R(θ−(n+1)(ω))

(
ϕ(1, θ−1(ω), yui )

)
with centers ϕ

(
1, θ−1(ω), yui ) ∈ ϕ

(
n+ 1, θ−(n+1)(ω),V(θ−(n+1)(ω))

)
, for i = 1, . . . ,

N(θ−1(ω)). Constructing for every u ∈ Un(θ−1(ω)) such a covering by balls with
radius βn+1R(θ−(n+1)(ω)) in V we obtain a covering of the set

ϕ
(
n+ 1, θ−(n+1)(ω),V(θ−(n+1)(ω))

)
and denote the new set of centers by Un+1(ω). This yields

]Un+1(ω) ≤ N(θ−1(ω))]Un(θ−1(ω)) ≤
n+1∏
k=1

N(θ−k(ω)),
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by construction the set of centers Un+1(ω) ⊂ ϕ
(
n+ 1, θ−(n+1)(ω),V(θ−(n+1)(ω))

)
,

and

ϕ
(
n+ 1, θ−(n+1)(ω),V(θ−(n+1)(ω))

)
⊂

⋃
u∈Un+1(ω)

BVβn+1R(θ−(n+1)(ω))(u),

which concludes the proof of the properties (U1)-(U3).
Construction of measurable sets of centres. Let n ∈ N and δ(ω) = βnR(θ−n(ω)).
We recall that V(ω) =

⋃
j∈N vj(ω) is a measurable selection for B(ω), the sets

Un(ω) ⊂ ϕ
(
n, θ−n(ω),V(θ−n(ω))

)
and

ϕ
(
n, θ−n(ω),V(θ−n(ω))

)
⊂

⋃
u∈Un(ω)

BVδ(ω)(u).

For an l-tuple k = (k1, . . . , kl) ∈ Nl, we define the random variable Gk : Ω→ {0, 1},

Gk(ω) =

{
1 if ϕ

(
n, θ−n(ω),V(θ−n(ω))

)
⊂
⋃l
j=1B

V
δ(ω)

(
ϕ
(
n, θ−n(ω), vkj (θ−n(ω))

))
,

0 otherwise,

and denote by Ωl ⊂ Ω those ω ∈ Ω for which there exists an l-tuple k such that
Gk(ω) = 1 and Gk̃(ω) = 0 for any k̃ containing less than l elements. The sets Ωl
are intersections of measurable sets,

Ωl =
⋂

]k=l−1

{ω ∈ Ω : Gk(ω) = 0} ∩
⋃
]k=l

{ω ∈ Ω : Gk(ω) = 1},

and hence, are measurable. Since Ω =
⋃
l∈N Ωl, it suffices to construct the set

of measurable centres Ũn on each subset Ωl. For l ∈ N let σ : N → Nl, σ(i) =
k = (k1, . . . , kl) be an indexing of all l-tuples in Nl. We define random variables
Fi : Ωl → {0, 1} such that Fi(ω) = 1, if

i = min
ĩ∈N

{
ϕ
(
n, θ−n(ω),V(θ−n(ω))

)
⊂

⋃
j∈σ(̃i)(ω)

BVδ(ω)

(
ϕ
(
n, θ−n(ω), vj(θ−n(ω))

))}
,

and Fi(ω) = 0, otherwise. Finally, we set

Ûn(ω) =
{
vj(θ−n(ω)) : Fi(ω) = 1, j ∈ σ(i)(ω)

}
,

and Ũn(ω) = ϕ
(
n, θ−n(ω), Ûn(ω))

)
. The set Ûn is a finite random set, since

d(v, Ûn) = min
{
‖v − vj(θ−n(ω))‖V : Fi(ω) = 1, j ∈ σ(i)(ω)

}
for all v ∈ V , which by the continuity and measurability of the cocycle ϕ implies
that also Ũn is a finite random set. Constructing for all l ∈ N the sets Ũn on Ωl
we obtain the random finite set Ũn(ω), ω ∈ Ω.

If necessary, we now replace for all n ∈ N and ω ∈ Ω the sets Un(ω) by the sets
Ũn(ω), and obtain a family of random finite sets Ũn, n ∈ N, which by construction,
satisfies the properties (U1)–(U3).
Definition of the random pullback exponential attractor. We define E0(ω) =
Ũ0(ω), for all ω ∈ Ω, and set

En(ω) = Ũn(ω) ∪ ϕ
(
1, θ−1(ω), En−1(θ−1(ω))

)
, n ∈ N.

Then, the family En(ω), n ∈ N0, satisfies
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ϕ
(
1, θ−1(ω), En(θ−1(ω))

)
⊂ En+1(ω),(E1)

En(ω) ⊂ ϕ
(
n, θ−n(ω), B(θ−n(ω))

)
⊂ B(ω),

En(ω) =
n⋃
k=0

ϕ
(
k, θ−k(ω), Ũn−k(θ−k(ω))

)
,(E2)

]En(ω) ≤
n∑
k=0

k∏
l=1

N(θ−n−l+k(ω)),

ϕ
(
n, θ−n(ω), B(θ−n(ω))

)
⊂

⋃
u∈eUn(ω)

BVβnR(θ−n(ω))(u)
V
.(E3)

These relations can be proved by induction, and are immediate consequences of
the definition of the sets En(ω), the properties (U1)–(U3) of the family Ũn(ω), n ∈
N0, and property (4). Using the sets En(ω) we define M̃ν(ω) =

⋃
n∈N0

En(ω) and
show that its closure

Mν = {Mν(ω) : ω ∈ Ω} =
{
M̃ν(ω)

V

: ω ∈ Ω
}

is a random pullback exponential attractor for (θ, ϕ).
Positive ϕ-invariance. The set M̃ν is positively ϕ-invariant: Indeed, for all
k ∈ N and ω ∈ Ω property (E1) implies that

ϕ
(
k, θ−k(ω),M̃ν(θ−k(ω))

)
=
⋃
n∈N0

ϕ
(
k, θ−k(ω), En(θ−k(ω))

)
⊂
⋃
n∈N0

En+k(ω) ⊂
⋃
n∈N0

En(ω) = M̃ν(ω).

Since ϕ is continuous, it follows the positive ϕ-invariance ofMν ,

ϕ
(
k, θ−k(ω),Mν(θ−k(ω))

)
= ϕ

(
k, θ−k(ω),M̃ν(θ−k(ω))

V )
⊂ϕ
(
k, θ−k(ω),M̃ν(θ−k(ω))

)V
⊂ M̃ν(ω)

V

=Mν(ω),

for all k ∈ N, ω ∈ Ω.
Compactness and finite fractal dimension. We first prove that the sections
M̃ν(ω) are precompact and of finite fractal dimension in V . For any m ∈ N and
n ≥ m the cocycle property implies that

En(ω) ⊂ ϕ
(
n, θ−n(ω), B(θ−n(ω))

)
= ϕ

(
m, θ−m(ω), ϕ

(
n−m, θ−(n−m) ◦ θ−m(ω), B(θ−(n−m) ◦ θ−m(ω))

))
⊂ ϕ

(
m, θ−m(ω), B(θ−m(ω))

)
,

where property (4) was used in the last inclusion. Consequently, for all m ∈ N we
obtain

M̃ν(ω) =
m⋃
n=0

En(ω) ∪
∞⋃

n=m+1

En(ω) ⊂
m⋃
n=0

En(ω) ∪ ϕ
(
m, θ−m(ω), B(θ−m(ω))

)
.

Let εm > 0,m ∈ N, be a sequence converging to 0 as m→∞. Since B is tempered
and β ∈ (0, 1), there exists a subsequence mj , j ∈ N, such that mj →∞ as j →∞
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and
βmjR(θ−mj (ω)) < εm ≤ βmj−1R(θ−mj+1(ω))

holds. Hence, it follows that

ϕ
(
mj , θ−mj (ω), B(θ−mj (ω))

)
⊂

⋃
u∈eUmj (ω)

BVε (u),

and we can estimate the number of εm-balls in V needed to cover M̃(ω) by

NV
εm(M̃ν(ω)) ≤ ]

( mj⋃
n=0

En(ω)
)

+ ]Ũmj (ω)

≤
( mj∑
n=0

n∑
k=0

k∏
l=1

N(θ−n−l+k(ω))
)

+
mj∏
k=1

N(θ−k(ω))

≤
( mj∑
n=0

(n+ 1)
n∏
l=1

N(θ−l(ω))
)

+
mj∏
k=1

N(θ−k(ω))

≤ (mj + 1)2
mj∏
l=1

N(θ−l(ω)) +
mj∏
k=1

N(θ−k(ω))

≤ 2(mj + 1)2
mj∏
k=1

N(θ−k(ω)),

where we used properties (U2) and (E2). This proves the precompactness of M̃ν(ω)

in V , and taking the closure Mν(ω) = M̃ν(ω)
‖·‖V

, ω ∈ Ω, we obtain compact
subsets in V .

For the fractal dimension of M̃ν(ω) we obtain

dimV
f (M̃ν(ω)) = lim sup

m→∞

ln
(
NV
εm(M̃ν(ω))

)
− ln εm

≤ lim sup
j→∞

ln(2) + 2 ln(mj + 1) +
∑mj
k=1 ln

(
N(θ−k(ω))

)
− ln(βmj−1R(θ−mj+1(ω)))

= lim sup
j→∞

∑mj
k=1 ln(N(θ−k(ω)))

− ln
(
βmj−1R(θ−mj+1(ω))

) .
Let now α ∈ (β, 1) be arbitrary and δ = ln(αβ ). Since B is tempered there exists
n0 ∈ N such that

βnR(θ−n(ω)) < αn ∀n ≥ n0.

Consequently, it follows that

dimV
f (M̃ν(ω)) ≤ lim sup

j→∞

∑mj
k=1 ln(N(θ−k(ω)))
− ln

(
αmj−1

)
=

1
− log2(α)

lim sup
j→∞

1
(mj − 1)

mj∑
k=1

c
(κ(θ−k(ω))

ν

)γ
=

d(ω)
− log2(α)

,

where we used the growth of the ε-entropy Hε(V ;U) in (H0) and assumption (H2).
This estimates holds for all α ∈ (β, 1), which implies the bound stated in the
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Theorem. Finally, since

dimV
f (Mν(ω)) = dimV

f (M̃ν(ω)
V

) = dimV
f (M̃ν(ω)),

the fractal dimension of the sectionsMν(ω) is bounded by the same value.
Pullback exponential attraction. It remains to show thatMν pullback attracts
all tempered random sets at an exponential rate. By assumption (H1) for any
D ∈ D and ω ∈ Ω there exists ND,ω ∈ N such that

ϕ
(
m, θ−(m+k)(ω), D(θ−(m+k)(ω))

)
⊂ B(θ−kω)

for all m ≥ ND,ω and k ∈ N. If n ≥ ND,ω + 1, i.e. n = ND,ω + n0 for some n0 ∈ N,
then

distVH
(
ϕ
(
n, θ−n(ω), D(θ−n(ω))

)
,M̃ν(ω)

)
≤distVH

(
ϕ
(
n0, θ−n0(ω), ϕ(ND,ω, θ−(ND,ω+n0)(ω), D(θ−(ND,ω+n0)(ω)))

)
,

∞⋃
n=0

En(ω)
)

≤distVH
(
ϕ
(
n0, θ−n0(ω), B(θ−n0(ω))

)
,

∞⋃
n=0

En(ω)
)

≤distVH
(
ϕ
(
n0, θ−n0(ω), B(θ−n0(ω))

)
, En0(ω)

)
≤(2(ν + λ))n0R(θ−n0(ω)) ≤ Ce−αn,

for some constants C ≥ 0 and α > 0, where we used that B is tempered in the

last inequality. Finally, the sections Mν(ω) = M̃ν(ω)
V

are certainly pullback
D-attracting at an exponential rate, since

distVH
(
ϕ
(
n, θ−n(ω), D(θ−n(ω))

)
,Mν(ω)

)
=distVH

(
ϕ
(
n, θ−n(ω), D(θ−n(ω))

)
,M̃ν(ω)

V )
≤distVH

(
ϕ
(
n, θ−n(ω), D(θ−n(ω))

)
,M̃ν(ω)

)
.

Measurability. By Proposition 1.3.1 in [4] the pullback exponential attractor

Mν = M̃ν
V

is a random set if and only if M̃ν is a random set. Moreover, M̃ν is the
countable union of the sets En, n ∈ N, and hence, it suffices to show that each set En

is a random set. However, En is the union of Ũn and images of the sets Ũn0 , n0 < n,

under the continuous and measurable cocycle ϕ. Since Ũn = {Ũn(ω), ω ∈ Ω} is a
finite random set for all n ∈ N, it follows the measurability of the sets En, n ∈ N,
and therefore the measurability ofMν .

This shows thatMν is a random pullback exponential attractor for the discrete
random dynamical system (θ, ϕ) in V . �

3.2. Continuous time random dynamical systems. We now consider the con-
tinuous time setting, i.e. T = R. If (θ, ϕ) is a continuous time random dynamical
system satisfying the hypotheses (H0)–(H3), we can construct as in the previous
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subsection a random set satisfying all the properties of a random pullback expo-
nential attractor, except for the positive ϕ-invariance. To obtain a positively ϕ-
invariant attractor requires additional assumptions, namely, the Hölder continuity
in time of the cocycle.

(H4) The cocycle ϕ is Hölder continuous in time within B, in particular, there
exist constants δω ∈ (0, 1] and Kω > 0 such that

distVH, symm

(
ϕ
(
s, θ−s(ω), En(θ−s(ω))

)
, ϕ
(
t, θ−t(ω), En(θ−t(ω))

))
≤ Kω|t− s|δω ,

for all s, t ∈ [0, t̃] and n ∈ N0, where En(ω) are the sets of centers con-
structed in the proof of Theorem 2 and distVH, symm(·, ·) denotes the sym-
metric Hausdorff distance in V .

Theorem 3. Let (θ, ϕ) be a continuous time random dynamical system on V , and
the assumptions (H0)–(H4) be satisfied. Then, for any ν ∈ (0, 1

2 − λ) there exists a
random pullback exponential attractorMν for (θ, ϕ) in V, and the fractal dimension
of its sections is bounded by

dimV
f (Mν(ω)) ≤ d(ω)

− log2(2(ν + λ))
+

1
δω

∀ω ∈ Ω.

Proof. Let (θ̃, ϕ̃) be the discrete random dynamical system defined by θ̃n = θnt̃,

n ∈ Z, and ϕ̃(n, ω, v) = ϕ(nt̃, ω, v), n ∈ N0, ω ∈ Ω, v ∈ V . Then, (θ̃, ϕ̃) satisfies
the hypotheses of Theorem 2, which implies the existence of a random pullback

exponential attractorMν
d for (θ̃, ϕ̃), whereMν

d(ω) = M̃ν
d(ω)

V

, ω ∈ Ω, and the sets
M̃ν

d(ω) =
⋃
n∈N0

En(ω) are as constructed in the proof of Theorem 2. To obtain a
random pullback exponential attractor for the continuous time dynamical system
(θ, ϕ) we set

M̃ν(ω) =
⋃

t∈[0,t̃]

ϕ
(
t, θ−t(ω),M̃ν

d(θ−t(ω))
)
,

Mν(ω) = M̃ν(ω)
V

.

Positive ϕ-invariance. Let τ ∈ [0, t̃] and t ≥ 0. Then, t + τ = kt̃ + s for some
k ∈ N0 and s ∈ [0, t̃]. By the cocycle property and the positive ϕ-invariance of the
discrete attractor M̃ν

d we obtain

ϕ
(
t, ω, ϕ

(
τ, θ−τ (ω),M̃ν

d(θ−τ (ω))
))

= ϕ
(
t+ τ, θ−τ (ω),M̃ν

d(θ−τ (ω))
)

= ϕ
(
kt̃+ s, θ−τ (ω),M̃ν

d(θ−τ (ω))
)

= ϕ
(
s, θkt̃−τ (ω), ϕ

(
kt̃, θ−τ (ω),M̃ν

d(θ−τ (ω))
))

⊂ ϕ
(
s, θkt̃−τ (ω),M̃ν

d(θkt̃−τ (ω))
)

= ϕ
(
s, θ−s ◦ θt(ω),M̃ν

d(θ−s ◦ θt(ω)
)

⊂
⋃

τ∈[0,t̃]

ϕ
(
τ, θ−τ ◦ θt(ω),M̃ν

d

(
θ−t ◦ θt(ω)

))
= M̃ν(θt(ω)).

Since τ ∈ [0, t̃] was arbitrary and ϕ is continuous, it follows thatMν is positively
ϕ-invariant.
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Compactness and finite fractal dimension. First, we observe that

M̃ν(ω) =
⋃

t∈[0,t̃]

ϕ
(
t, θ−t(ω),M̃ν

d(θ−t(ω))
)

=
⋃

t∈[0,t̃]

ϕ
(
t, θ−t(ω),

⋃
n∈N0

En(θ−t(ω))
)

=
⋃
n∈N0

⋃
t∈[0,t̃]

ϕ
(
t, θ−t(ω), En(θ−t(ω))

)
.

Moreover, by (H1) and the cocycle property we have

ϕ
(
t, θ−t(ω), En(θ−t(ω))

)
⊂ ϕ

(
t, θ−t(ω), ϕ(nt̃, θ−nt̃−t(ω), B(θ−nt̃−t(ω))

)
=ϕ
(
nt̃+ t, θ−t−nt̃(ω), B(θ−nt̃−t(ω))

)
=ϕ
(
mt̃, θ−mt̃(ω), ϕ

(
t+ (n−m)t̃, θ−(n−m)t̃−t ◦ θ−mt̃(ω), B(θ−(n−m)t̃−t ◦ θ−mt̃(ω))

))
⊂ϕ
(
mt̃, θ−mt̃(ω), B(θ−mt̃(ω))

)
for all n > m and t ∈ [0, t̃]. Let εm > 0,m ∈ N, be a sequence converging to 0 as
m→∞. Since B is tempered and β ∈ (0, 1), there exists a subsequence mj , j ∈ N,
such that mj →∞ as j →∞ and

βmjR(θ−mj (ω)) < εm ≤ βmj−1R(θ−mj+1(ω))

holds. Hence, for all n > mj it follows that

ϕ
(
t, θ−t(ω), En(θ−t(ω))

)
⊂ ϕ

(
mj , θ−mj (ω), B(θ−mj (ω))

)
⊂

⋃
u∈eUmj (ω)

BVεm(u),

and we can estimate the number of εm-balls in V needed to cover M̃(ω) by

NV
εm(M̃ν(ω)) ≤ ]

( mj⋃
n=0

⋃
t∈[0,t̃]

ϕ
(
t, θ−t(ω), En(θ−t(ω))

))
+ ]Ũmj (ω)

≤ ]
( ⋃
t∈[0,t̃]

ϕ
(
t, θ−t(ω),

mj⋃
n=0

En(θ−t(ω))
))

+
mj∏
k=1

N(θ−k(ω)).

As in the proof of Theorem 2 it follows that

]
( mj⋃
n=0

En(θ−t(ω))
)
≤ (mj + 1)2

mj∏
k=1

N(θ−k(θ−t(ω))).

Let n ∈ {0, . . . ,mj}. We now construct a covering of⋃
t∈[0,t̃]

ϕ
(
t, θ−t(ω), En(θ−t(ω))

)
.

We subdivide the interval [0, t̃] in at most pω =
⌊
t̃
(
Kω
εm

) 1
δω
⌋

+1 intervals Ii of length(
εm
Kω

) 1
δω , where bxc denotes the largest integer less than or equal to x. For each

i = 1, . . . , pω let si ∈ Ii be an arbitrary point in the subinterval. The hypothesis
(H4) then implies that

distVH,symm

(
ϕ
(
t, θ−t(ω), En(θ−t(ω))), ϕ

(
si, θ−si(ω), En(θ−si(ω)))

)
≤ Kω|t− si|δω < εm
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for all t ∈ Ii, and hence,⋃
t∈[0,t̃]

ϕ
(
t, θ−t(ω), En(θ−t(ω))

)
⊂

pω⋃
i=1

⋃
u∈En(θ−si (ω))

BVεm
(
ϕ(si, θ−si(ω), u)

)
.

Constructing for every n ∈ {0, . . . ,mj} such a covering we conclude that

NV
εm(M̃ν(ω)) ≤ pω(mj + 1)2

mj∏
k=1

N(θ−k(ω)) +
mj∏
k=1

N(θ−k(ω))

≤ 2pω(mj + 1)2
mj∏
k=1

N(θ−k(ω)),

which proves the precompactness of M̃ν . For the fractal dimension of M̃ν(ω) we
obtain, similarly as in the proof of Theorem 2,

dimV
f (M̃ν(ω)) = lim sup

m→∞

ln
(
NV
εm(M̃ν(ω))

)
− ln εm

≤ lim sup
j→∞

ln(2) + 2 ln(mj + 1) +
∑mj
k=1 ln

(
N(θ−k(ω))

)
+ ln(pω)

− ln(βmj−1R(θ−mj+1(ω)))

≤ d(ω)
− log2(2(ν + λ))

+ lim sup
j→∞

ln
(
t̃
(

Kω
βmjR(θ−mj (ω))

) 1
δω + 1

)
− ln(βmj−1R(θ−mj+1(ω)))

≤ d(ω)
− log2(2(ν + λ))

+
1
δω
.

Finally, since

dimV
f (Mν(ω)) = dimV

f (M̃ν(ω)
V

) = dimV
f (M̃ν(ω)),

the fractal dimension of the sectionsMν(ω) is bounded by the same value.
Exponential attraction. Since M̃ν

d ⊂ M̃ν , and the discrete attractor M̃ν
d is

pullback exponentially attracting all tempered sets, the property of pullback expo-
nential attraction for M̃ν and hence, forMν follows immediately.
Measurability. By Proposition 1.3.1 in [4] the pullback exponential attractor

Mν = M̃ν
V

is a random set if and only if M̃ν is a random set. Moreover, since
M̃ν(ω) is the countable union of the sets

Mν
n(ω) =

⋃
t∈[0,t̃]

ϕ
(
t, θ−t(ω), En(θ−t(ω))

)
, n ∈ N0,

it suffices to show thatMν
n is a random set for every n ∈ N0. To this end let n ∈ N0,

the set M̂ν
n ⊂ Ω×

(
[0, t̃]× V

)
be defined by

M̂ν
n(ω) =

{
(τ, v) ∈ [0, t̃]× V : v ∈ En(θ−τ (ω))

}
,

and the mapping χω : [0, t̃]× V → V be defined by

(τ, v) 7→ ϕ
(
τ, θ−τ (ω), v

)
.
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First, we observe that M̂ν
n is a compact random set, since for every (s, u) ∈ [0, t̃]×V

the mapping

ω 7→ inf
(τ,v)∈cMν

n(ω)

{
|s− τ |+ ‖u− v‖V

}
= inf

τ∈Q∩[0,t̃]

{
inf

v∈En(θ−τ (ω))

{
‖u− v‖V

}}
,

is measurable. Moreover, for every fixed ω ∈ Ω the mapping χω : [0, t̃]× V → V is
continuous, and for every (τ, v) ∈ [0, t̃]× V the mapping

ω 7→ χω(τ, v) = ϕ
(
τ, θ−τ (ω), v

)
is measurable. Since Mν

n(ω) = χω(M̂ν
n(ω)) the measurability of Mν

n now follows
from Proposition 5.6 in [12], which concludes the proof. �

The Hölder continuity in time (H4) is a limiting assumption in applications. We
therefore propose to weaken the invariance property of random pullback exponential
attractors, and to consider non-autonomous random pullback exponential attrac-
tors instead. This allows to apply the construction developed for non-autonomous
deterministic systems in [2]. It requires only the Lipschitz continuity in space of
the cocycle and not its Hölder continuity in time.

(H ′4) The cocycle ϕ is Lipschitz continuous in B, i.e. for all s ∈]0, t̃] there exists
a constant Lω,s > 0 such that

‖ϕ(s, ω, u)− ϕ(s, ω, v)‖V ≤ Lω,s‖u− v‖V ∀u, v ∈ B(ω).

Definition 5. The non-autonomous random setM⊂ R× Ω× V is called a non-
autonomous random pullback exponential attractor for (θ, ϕ) on V , if there exists
t̂ > 0 such that M(t + t̂, ω) = M(t, ω) for all t ∈ R, the sections M(t, ω) 6= 0 are
compact, andM is positively ϕ-invariant in the non-autonomous sense, i.e.

ϕ(s, ω,M(t, ω)) ⊂M(t+ s, θs(ω)) ∀s ≥ 0, t ∈ R.
Moreover, there exists a random variable κ(ω) such that

sup
t∈R

dimV
f (M(t, ω)) ≤ κ(ω) <∞,

andM is pullback D-attracting at an exponential rate, i.e. there exists α > 0 such
that

lim
s→∞

eαsdistH
(
ϕ
(
s, θ−s(ω), D(θ−s(ω))

)
,M(t, ω)

)
= 0 ∀D ∈ D, t ∈ R.

Remark 5. We emphasize that for every t ∈ R, the random set M(t, ·) contains
the global random attractor and satisfies all properties of a random pullback ex-
ponential attractor, except for the positive ϕ-invariance. Considering positive ϕ-
invariance in the non-autonomous sense instead allows to weaken the invariance
property of random pullback exponential attractors in continuous time settings.
The construction of the exponential attractor then essentially simplifies, it does
not require the Hölder continuity assumption (H4), and leads to better bounds for
the fractal dimension.

Theorem 4. Let (θ, ϕ) be a continuous time random dynamical system on V , and
the assumptions (H0)–(H3), (H ′4) be satisfied. Then, for any ν ∈ (0, 1

2 − λ) there
exists a non-autonomous random pullback exponential attractor Mν for (θ, ϕ) in
V, and the fractal dimension of its sections is bounded by

sup
t∈R

dimV
f (Mν(t, ω)) ≤ d(ω)

− log2(2(ν + λ))
∀ω ∈ Ω.
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Proof. Let (θ̃, ϕ̃) be the discrete random dynamical system defined by θ̃n = θnt̃,

n ∈ Z, and ϕ̃(n, ω, v) = ϕ(nt̃, ω, v), n ∈ N0, ω ∈ Ω, v ∈ V . Then, (θ̃, ϕ̃) satisfies
the hypotheses of Theorem 2, which implies the existence of a random pullback

exponential attractorMν
d for (θ̃, ϕ̃), whereMν

d(ω) = M̃ν
d(ω)

V

, ω ∈ Ω, and the sets
M̃ν

d(ω) are as constructed in the proof of Theorem 2. To obtain a non-autonomous
random pullback exponential attractor for the continuous time dynamical system
(θ, ϕ) we set

M̃ν(t, ω) = ϕ
(
t, θ−t(ω),M̃ν

d(θ−t(ω))
)
,

Mν(t, ω) = M̃ν(t, ω)
V

,

for all 0 ≤ t < t̃, andMν(kt̃+ t, ω) =Mν(t, ω) for all k ∈ Z and 0 ≤ t < t̃.
Compactness and finite fractal dimension. Due to the continuity of ϕ,
the sections M̃ν(ω), ω ∈ Ω, are precompact in V . Furthermore, the Lipschitz-
continuity (H4) implies the following estimate,

dimV
f

(
Mν(t, ω)

)
= dimV

f

(
M̃ν(t, ω)

)
=dimV

f

(
ϕ(t, θ−t(ω),M̃ν

d(θ−t(ω)))
)
≤ dimV

f

(
M̃ν

d(θ−t(ω))
)

for 0 ≤ t < t̃. The bound for the fractal dimension now follows from Theorem 2.
Positive ϕ-invariance. Let t ≥ 0 and s ∈ R. Then, s = lt̃+s0 and t+s0 = kt̃+t0
for some l ∈ Z, k ∈ N0 and s0, t0 ∈ [0, t̃[. The definition of M̃ν(t, ω) and the cocycle
property imply that

ϕ
(
t, ω,M̃ν(s, ω)

)
= ϕ

(
t, ω,M̃ν(s0, ω)

)
= ϕ

(
t, ω, ϕ(s0, θ−s0(ω),M̃ν

d(θ−s0(ω))
)

= ϕ
(
t+ s0, θ−s0(ω),M̃ν

d(θ−s0(ω))
)

= ϕ
(
kt̃+ t0, θ−s0(ω),M̃ν

d(θ−s0(ω))
)

= ϕ
(
t0, θkt̃−s0(ω), ϕ

(
kt̃, θ−s0(ω),M̃ν

d(θ−s0(ω))
))

⊂ ϕ
(
t0, θkt̃−s0(ω),M̃ν

d(θkt̃−s0(ω))
)

= ϕ
(
t0, θ−t0+t(ω),M̃ν

d(θ−t0+t(ω))
)

= M̃ν(t0, θt(ω)) = M̃ν((k + l)t̃+ t0, θt(ω)) = M̃ν(t+ s, θt(ω)),

where we used the positive ϕ-invariance of the discrete random pullback attractor
Mν

d. By the continuity of ϕ now follows thatMν is positively ϕ-invariant.
Pullback exponential attraction. This is a straightforward consequence of the
pullback exponential attracting property of the discrete random attractorMν

d.
Measurability. By Proposition 1.3.1 in [4] the pullback exponential attractor

Mν = M̃ν
V

is a random set if and only if M̃ν is a random set. By construction,
the sections of the sets M̃ν are images of the countable random sets M̃ν

d under the
measurable and continuous cocycle ϕ, which implies the measurability ofMν . �

An immediate consequence of our results is the existence and finite dimensional-
ity of the global random pullback attractor. We remark that even in the continuous
time case neither the Hölder continuity (H4) nor the Lipschitz continuity (H ′4) are
needed. In fact, (H0)-(H3) are sufficient conditions for the existence and finite
dimensionality of the global random pullback attractor.
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Corollary 1. Let (θ, ϕ) be a random dynamical system on V and T = Z or T = R.
If the assumptions (H0)-(H3) are satisfied, the global random pullback attractor A
exists, it is contained in the random pullback exponential attractor constructed in
Theorem 2, and the fractal dimension of its sections is bounded by

dimV
f (A(ω)) ≤ inf

ν∈(0, 12−λ)

d(ω)
− log2(2(ν + λ))

∀ω ∈ Ω.

Proof. For discrete time random dynamical systems it is an immediate consequence
of Theorem 2 and the characterization of cocycles possessing a random pullback
attractor in Theorem 1.

Let now T = R and the discrete random dynamical system (θ̃, ϕ̃) be defined by
θ̃n = θnt̃, n ∈ Z, and ϕ̃(n, ω, v) = ϕ(nt̃, ω, v), n ∈ N0, ω ∈ Ω, v ∈ V . Then, (θ̃, ϕ̃)
satisfies the hypotheses of Theorem 2. Hence, for every ν ∈ (0, 1

2 − λ) there exists
a random pullback exponential attractor Mν

d for (θ̃, ϕ̃). It remains to show that
the compact random setMν

d is pullback D-attracting for (θ, ϕ), the corollary then
follows from Theorem 1. Let D ∈ D, ω ∈ Ω and t ≥ ND,ω + 1, where ND,ω denotes
the absorbing time corresponding to (θ̃, ϕ̃). Then, t = (ND,ω + n0)t̃ + t0 for some
n0 ∈ N and t0 ∈ [0, t̃], and

distVH
(
ϕ
(
t, θ−t(ω), D(θ−t(ω))

)
,Mν

d(ω)
)

=distVH
(
ϕ
(
n0t̃, θ−n0 t̃

(ω), ϕ(ND,ω t̃+ t0, θ−(ND,ω t̃+t0)
(ω), D(θ−t(ω)))

)
,Mν

d(ω)
)

≤distVH
(
ϕ
(
n0, θ−n0(ω), B(θ−n0(ω))

)
, En0(ω)

)
.

As in the proof of Theorem 2 we conclude, that Mν
d pullback attracts every tem-

pered set D ∈ D at an exponential rate. �

Finally, we consider the special case λ = 0 and a slightly modified setting. We
formulate here only the results corresponding to Theorem 2, i.e., for discrete time
dynamical systems. The statements of Theorem 3, Theorem 4 and Corollary 1 hold
accordingly.

In the special case that λ = 0 Theorem 2 yields the result for random dynamical
systems satisfying the smoothing property with respect to the spaces V and U .
This situation was considered in [12]. However, the existence of random exponential
attractors has been proved under essentially stronger assumptions that are difficult
to verify in applications.

Corollary 2. Let (θ, φ) be a discrete time random dynamical system on V and the
assumptions (H0) and (H2) be satisfied. Moreover, we assume that (H1) holds with
ϕ replaced by φ, where it suffices that the absorbing set is tempered with respect to
the norm in U . Then, for any ν ∈ (0, 1

2 ) there exists a random pullback exponential
attractorMν for (θ, φ), and the fractal dimension of its sections is bounded by

dimV
f (Mν(ω)) ≤ d(ω)

− log2(2ν)
∀ω ∈ Ω.

We could also consider random dynamical systems and exponential attractors
in the weaker phase space U as analyzed, e.g. in [9] for autonomous deterministic
systems. Such attractors are also called bi-space attractors or (V,U)-attractors.
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Theorem 5. Let (θ, ϕ) be a a discrete time random dynamical system in U and the
assumptions (H0) and (H2) be satisfied. Moreover, we assume that (H1) holds for
an absorbing set B that is tempered with respect to the metric in U , and property
(H3) is satisfied with V replaced by U . Then, for any ν ∈ (0, 1

2 − λ) there exists a
random pullback exponential attractorMν for (θ, ϕ) in U , and the fractal dimension
of its sections is bounded by

dimU
f (Mν(ω)) ≤ d(ω)

− log2(2(ν + λ))
∀ω ∈ Ω.

Proof. The statement follows by slightly modifying the construction of the random
pullback exponential attractor in the proof of Theorem 2. �

References

[1] T. Caraballo and S. Sonner, Random exponential attractors for stochastic damped wave
equations, in preparation.

[2] A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in
Banach spaces: theoretical results, Comm. Pure Appl. Anal., 12 (2013), 3047–3071.

[3] A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in
Banach spaces: properties and applications, Comm. Pure Appl. Anal., 3 (2014), 1141–1165.

[4] I. Chueshov, Monotone Random Systems Theory and Applications, Lecture Notes in Math.
1779, Springer-Verlag, Berlin, 2002.

[5] H. Crauel and P. E. Kloeden, Nonautonomous and random attractors, Jahresber. Dtsch.
Math.- Ver., 117 (2015), 173–206. doi:10.1365/s1391-015-0115-0

[6] R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equa-
tions part I: Semilinear parabolic equations, J. Math. Anal. Appl., 381 (2011), 748–765.
doi:10.1016/j.jmaa.2011.03.053

[7] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative
Evolution Equations, Research in Applied Mathematics, Masson, Paris, John Wiley & Sons,
Ltd., Chichester, 1994.

[8] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Opera-
tors, Cambridge University Press, New York, 1996.

[9] M. A. Efendiev, A. Miranville and S. Zelik, Exponential attractors and finite-dimensional
reduction for nonautonomous dynamical systems, Proc. R. Soc. Edinburgh Sect. A, 135A
(2005), 703–730. doi:10.1017/S030821050000408X

[10] A. N. Kolmogorov and V. M. Tihomirov, ε-entropy and ε-capacity of sets in functional spaces,
Amer. Math. Soc. Transl. Ser. 2, 17 (1961), 277–364.

[11] J. A. Langa, A. Miranville and J. Real, Pullback exponential attractors, Discrete Contin.
Dyn. Syst., 26 (2010), 1329–1357. doi:10.3934/dcds.2010.26.1329

[12] A. Shirikyan and S. Zelik, Exponential attractors for random dynamical systems and appli-
cations, Stoch. Partial Differ. Equ. Anal. Comput., 1 (2013), 241–281. doi:10.1007/s40072-
013-0007-1

[13] S. Zhou, Random exponential attractor for cocycle and application to non-autonomous sto-
chastic lattice systems with multiplicative noise, J. Differential Equations, 263 (2017), 2247–
2279.

Departamento Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla,
Apdo. de Correos 1160, 41080 Sevilla, Spain

E-mail address: caraball@us.es

Institut für Mathematik und Wissenschaftliches Rechnen, Karl-Franzens-Universität
Graz, Heinrichstr. 36, 8010 Graz, Austria

E-mail address: stefanie.sonner@uni-graz.at


	1. Introduction
	2. Preliminaries
	2.1. Random dynamical systems
	2.2. (Kolmogorov) -entropy and entropy numbers

	3. Construction of random pullback exponential attractors
	3.1. Discrete random dynamical systems
	3.2. Continuous time random dynamical systems

	References

