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Abstract. In this paper we study two stochastic chemostat models, with and
without wall growth, driven by a white noise. Specifically, we analyze the ex-
istence and uniqueness of solutions for these models, as well as the existence

of the random attractor associated to the random dynamical system generated
by the solution. The analysis will be carried out by means of the well-known
Ornstein-Uhlenbeck process, that allows us to transform our stochastic chemo-
stat models into random ones.

1. Introduction. Chemostat refers to a laboratory device used for growing mi-
croorganisms in a cultured environment and has been regarded as an idealization
of nature to study competition modeling in mathematical biology, which is a really
important and interesting problem since they can be used to study recombinant
problems in genetically altered microorganisms (see e.g. [17, 18]), waste water
treatment (see e.g. [13, 25]) and play an important role in theoretical ecology (see
e.g. [2, 12, 16, 23, 29, 31, 32, 34]). Derivation and analysis of chemostat models are
well documented in [26, 27, 33] and references therein.

Two standard assumptions for simple chemostat models are: 1) the availability
of the nutrient and its supply rate are fixed and 2) the tendency of microorganisms
to adhere to surfaces is not taken into account (see e.g. [7, 8]). However, these are
very strong restrictions as the real world is non-autonomous and stochastic and this
justifies the analysis of stochastic chemostat models, with and without wall growth.

Let us first consider the following chemostat model without wall growth

dS

dt
= (S0 − S)D − mSx

a+ S
, (1)

dx

dt
= −Dx+

mSx

a+ S
, (2)
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where S(t) and x(t) denote concentrations of the nutrient and the microbial biomass,
respectively; S0 denotes the volumetric dilution rate, a is the half-saturation con-
stant, D is the dilution rate and m is the maximal consumption rate of the nutrient
and also the maximal specific growth rate of microorganisms. We notice that all
parameters are supposed to be positive and a function Holling type-II is used as
functional response of the microorganisms describing how the nutrient is consumed
by the species (see e.g. [28] for more details and biological explanations about this
model).

Our aim in this paper is to perturb system (1)-(2) by a noisy input such that
the perturbed one becomes a more realistic model of a chemostat. Recently, in
[4] the authors have analyzed system (1)-(2) by replacing the dilution rate D by

D+αẆ (t), whereW (t) is a Wiener process. Even though in that paper the existence
and uniqueness of solutions, as well as the existence of the corresponding attractor
have been stated, biologically the model does not seem completely realistic, since
the substrate S in the corresponding stochastic chemostat model can take negative
values. We want to overcome this biological inconsistence by considering a different
kind of stochastic perturbation.

We would like to emphasize that one may consider several alternatives to model
randomness and stochasticity. We will use a technique based in the one carried out
by Fudenberg and Harris in [19] or by Foster and Young in [15], in which the first
idea was to consider a stochastic perturbation of the payoff function in continuous-
time replicator dynamics. In other words, we could write our model as

dS(t)

dt
= S(t)f1(S(t), x(t)),

dx(t)

dt
= x(t)f2(S(t), x(t)),

and then we could add some stochastic perturbation αiẆi to the expected payoff
fi(·, ·), for i ∈ {1, 2}, instead of adding it directly to dS/dt and dx/dt, as follows

dS(t)

dt
= S(t)

[
f1(S(t), x(t)) + α1Ẇ1(t)

]
,

dx(t)

dt
= x(t)

[
f2(S(t), x(t)) + α2Ẇ2(t)

]
,

or, equivalently,

dS(t) = S(t)f1(S(t), x(t))dt + α1S(t)dW1(t),

dx(t) = x(t)f2(S(t), x(t))dt + α2x(t)dW2(t).

In this way, the populations S and x will always remain positive for any realiza-
tion of the Wiener processes Wi. In fact, as explained in [19], it can be understood
as the payoff to play some strategy i subjected to some external perturbations due
to, for example, the weather.

Moreover, in the paper by Imhof and Walcher (see [22]) the authors justify math-
ematically that it could be reasonable to consider the following stochastic chemostat
model

dS =

[
(S0 − S)D − mSx

a+ S

]
dt+ α1SdW1(t),
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dx =

[
−Dx+

mSx

a+ S

]
dt+ α2xdW2(t),

whereW1 andW2 are independent Wiener processes. To this end, a discrete Markov
chain is considered for some increment δt and the convergence to the solution of
the original stochastic equation is proved as δt tends to zero, whenever it exists a
unique solution (see [22] for a more detailed explanation).

Motivated by this feature, in this paper we consider a noisy term in each equation
(1)-(2) in the same fashion as in [22], which ensures the positivity of both the
nutrient and biomass, although does not preserve the washout equilibrium from the
deterministic to the stochastic model. More precisely, we consider now the following
system, which is understood in the Itô sense

dS =

[
(S0 − S)D − mSx

a+ S

]
dt− αSdW (t),

dx =

[
−Dx+

mSx

a+ S

]
dt− αxdW (t),

where W (t) is a standard Brownian motion, and α ≥ 0 represents the intensity of
noise.

We remark that, in order to make the calculations much more tractable and clear,
we consider the same noise in both equations, even though a similar analysis could
be developed by using different Brownian motions in each equation. This leads to
more complicated technicalities that we prefer to avoid in this first approach.

We would also like to note that there are not special reasons to consider the sign
minus (−) in front of the stochastic terms, instead of the positive one used in [22],
since the choice does not cause any effect over the behavior of our system.

Now, by using the well-known conversion between Itô and Stratonovich senses
we obtain the following stochastic chemostat without wall growth

dS =

[
−D̄S − mSx

a+ S
+ S0D

]
dt− αS ◦ dW (t), (3)

dx =

[
−D̄x+

mSx

a+ S

]
dt− αx ◦ dW (t), (4)

where

D̄ := D +
α2

2
. (5)

Before analyzing the previous system, we would like to highlight some significant
insights discovered throughout this work. We will only refer to the case without
wall growth since similar ones hold for the other case as well.

Concerning the deterministic chemostat model (DCM) given by (1)-(2), Cara-
ballo and Han proved in a recently published book (see [6]) the existence of a
unique axial equilibrium (S0, 0) which is asymptotically stable provided D > m,
therefore this situation corresponds to the extinction of the microorganism. How-
ever, if D < m and aD/(m − D) < S0 the axial equilibrium becomes unstable
and a unique positive globally asymptotically stable equilibrium appears inside the
positive quadrant, i.e., persistence of the microorganism can be ensured. Notice
that, in this case, the global attractor exists and consists of both equilibria and
the heteroclinic solutions between them. Otherwise, no more information can be
deduced related to the asymptotic behavior of the system.
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Regarding the stochastic chemostat model (SCM), we prove in this paper that
there exists a unique global random attractor which is given by singleton compo-
nents (S0Dρ∗(ω), 0) provided D + α2/2 > m (see Section 3.1 for more details).
Otherwise, the unique global random attractor is contained in a segment whose
intersection with the axes S = 0 and x = 0 is reduced to two single points.

In light of the previous facts, observe that when D < m and aD/(m−D) < S0

we can choose α, large enough, such that D + α2/2 > m. This means that persis-
tence of the microorganism holds for (DCM), while for (SCM) we have extinction
since the global random attractor becomes the single random point (S0Dρ∗(ω), 0).
This fact is closely related to the stabilizing effects that Itô’s noise can produce on
deterministic systems. However, if we considered a Stratonovich interpretation for
our perturbation at the beginning of our study, then we would have obtained D
instead of D̄ in (3)-(4); in other words, assumption D+α2/2 > m in (SCM) would
become D > m, the same that we had for (DCM). Consequently, no stabilizing
effect is produced by the noise (see [3, 6, 21] and Remark 3.3 in [24] for a more
detailed discussion on this topic). Thus, not only the type of noise but also its
mathematical interpretation can provide different results, something that has to be
taken into account by the modeler. A reference that could help to make the ap-
propiate choice in a specific application is [30], where the author presents a criterion
for determining which interpretation of the noise is the most useful in his work.

Up to now, we have just mentioned the chemostat model without wall growth.
Nevertheless, we are also interested in studying the equivalent model with wall
growth since it will allow us to work in a more realistic situation and we will also
be able to obtain more useful results from the biological point of view. Then, let us
now introduce the simplest chemostat model with wall growth

dS

dt
= D(S0 − S)− mS

a+ S
x1 −

mS

a+ S
x2 + bνx1, (6)

dx1

dt
= −(ν +D)x1 + c

S

a+ S
x1 − r1x1 + r2x2, (7)

dx2

dt
= −νx2 + c

S

a+ S
x2 + r1x1 − r2x2, (8)

where S(t), x1(t) and x2(t) denote concentrations of the nutrient and the two differ-
ent microorganisms, respectively; b ∈ (0, 1) describes the fraction of dead biomass
which is recycled, ν > 0 is the collective death rate coefficient, r1 > 0 and r2 > 0
represent the rates at which the species stick on to and shear off from the walls,
respectively, and 0 < c ≤ m is the growth rate coefficient of the consumer species.

By introducing again a white noise in each equation of (6)-(8) and using the con-
version between Itô and Stratonovich interpretations, we finally obtain the following
stochastic system with wall growth

dS =

[
−D̄S + bνx1 −

mS

a+ S
x1 −

mS

a+ S
x2 +DS0

]
dt− αS ◦ dW (t), (9)

dx1 =

[
−
(
ν + D̄ + r1

)
x1 + c

S

a+ S
x1 + r2x2

]
dt− αx1 ◦ dW (t), (10)

dx2 =

[
r1x1 −

(
ν + r2 +

α2

2

)
x2 + c

S

a+ S
x2

]
dt− αx2 ◦ dW (t). (11)



STOCHASTIC CHEMOSTAT MODELS 5

The paper is organized as follows: in Section 2 we recall some basic results on
random dynamical systems. Then, in Section 3 we analyze both random chemo-
stat models, with and without wall growth, and we provide some results regarding
existence and uniqueness of global solution just like the generation of a random dy-
namical system and existence of random pullback attractor, describing its internal
structure explicitly. Moreover, in Section 4 we use a conjugation result in order
to explain how the global attractor behaves in the stochastic model. Finally, we
state some numerical simulations to illustrate our study and some final comments
in Section 5.

2. Random dynamical systems. Although there are very good references (see
e.g. [1]) in the literature which provide a very detailed information about random
dynamical systems (RDSs), we prefer to recall very briefly here some definitions
and results to make our presentation as much self-contained as possible.

Let (X, ‖ · ‖X) be a separable Banach space.

Definition 2.1. A RDS on X consists of two ingredients: (a) a metric dynamical
system (Ω,F ,P, {θt}t∈R) where (Ω,F ,P) is a probability space and the family of
mappings θt : Ω → Ω satisfies

(1) θ0 = IdΩ,
(2) θs ◦ θt = θs+t for all s, t ∈ R,
(3) the mapping (t, ω) 7→ θtω is measurable,
(4) the probability measure P is preserved by θt, i.e., θtP = P

and (b) a mapping ϕ : [0,∞)×Ω×X → X which is (B[0,∞)×F ×B(X),B(X))-
measurable, such that for each ω ∈ Ω,

(i) the mapping ϕ(t, ω) : X → X , x 7→ ϕ(t, ω)x is continuous for every t ≥ 0,
(ii) ϕ(0, ω) is the identity operator on X ,
(iii) (cocycle property) ϕ(t+ s, ω) = ϕ(t, θsω)ϕ(s, ω) for all s, t ≥ 0.

Definition 2.2. Let (Ω,F ,P) be a probability space. A random set K is a measur-
able subset of X×Ω with respect to the product σ−algebra B(X)×F . MoreoverK
will be said a closed or a compact random set if K(ω) = {x : (x, ω) ∈ K}, ω ∈ Ω,
is closed or compact for P−almost all ω ∈ Ω, respectively.

Definition 2.3. A bounded random set K(ω) ⊂ X is said to be tempered with
respect to {θt}t∈R if for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
x∈K(θ−tω)

‖x‖X = 0, for all β > 0;

a random variable ω 7→ r(ω) ∈ R is said to be tempered with respect to {θt}t∈R if
for a.e. ω ∈ Ω,

lim
t→∞

e−βt sup
t∈R

|r(θ−tω)| = 0, for all β > 0.

In what follows we use E(X) to denote the set of all tempered random sets of X .

Definition 2.4. A random set B(ω) ⊂ X is called a random absorbing set in E(X)
if for any E ∈ E(X) and a.e. ω ∈ Ω, there exists TE(ω) > 0 such that

ϕ(t, θ−tω)E(θ−tω) ⊂ B(ω), for all t ≥ TE(ω).
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Definition 2.5. Let {ϕ(t, ω)}t≥0,ω∈Ω be an RDS over (Ω,F ,P, {θt}t∈R) with state
space X and let A(ω)(⊂ X) be a random set. Then A = {A(ω)}ω∈Ω is called a
global random E−attractor (or pullback E−attractor) for {ϕ(t, ω)}t≥0,ω∈Ω if

(i) (compactness) A(ω) is a compact set of X for any ω ∈ Ω;
(ii) (invariance) for any ω ∈ Ω and all t ≥ 0, it holds

ϕ(t, ω)A(ω) = A(θtω);

(iii) (attracting property) for any E ∈ E(X) and a.e. ω ∈ Ω,

lim
t→∞

distX(ϕ(t, θ−tω)E(θ−tω), A(ω)) = 0,

where distX(G,H) = supg∈G infh∈H ‖g−h‖X is the Hausdorff semi-metric for
G,H ⊆ X .

Proposition 2.1. [See [11, 14]] Let B ∈ E(X) be a closed absorbing set for the
continuous random dynamical system {ϕ(t, ω)}t≥0,ω∈Ω that satisfies the asymptotic
compactness condition for a.e. ω ∈ Ω, i.e., each sequence xn ∈ ϕ(tn, θ−tnω)B(θ−tnω)
has a convergent subsequence in X when tn → ∞. Then ϕ has a unique global ran-
dom attractor A = {A(ω)}ω∈Ω with component subsets

A(ω) =
⋂

τ≥TB(ω)

⋃

t≥τ

ϕ(t, θ−tω)B(θ−tω).

Remark 1. When the state space X = R
d as in this paper, the asymptotic com-

pactness follows trivially.

The next result ensures when two RDSs are conjugated (see [5, 9]).

Lemma 2.6. Let ϕu be an RDS on X. Suppose that the mapping T : Ω×X → X
possesses the following properties: for fixed ω ∈ Ω, T (ω, ·) is a homeomorphism
on X, and for x ∈ X, the mappings T (·, x), T −1(·, x) are measurable. Then the
mapping

(t, ω, x) → ϕv(t, ω)x := T −1(θtω, ϕu(t, ω)T (ω, x))

is a (conjugated) RDS.

3. Random chemostat. In this section we will study the stochastic systems (3)-
(4) and (9)-(11) by transforming them into differential equations with random co-
efficients.

Let W be a two sided Wiener process. Kolmogorov’s theorem ensures that W
has a continuous version, that we will denote by ω, whose canonical interpretation
is as follows: let Ω be defined by

Ω = {ω ∈ C(R,R) : ω(0) = 0} = C0(R,R),
F the Borel σ−algebra on Ω generated by the compact open topology (see [1] for
details) and P the corresponding Wiener measure on F . We consider the Wiener
shift flow given by

θtω(·) = ω(·+ t)− ω(t), t ∈ R,

then (Ω,F ,P, {θt}t∈R) is a metric dynamical system. Now let us introduce the
following Ornstein-Uhlenbeck process on (Ω,F ,P, {θt}t∈R)

z∗(θtω) = −
0∫

−∞

esθtω(s)ds, t ∈ R, ω ∈ Ω,
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which solves the following Langevin equation (see [1, 10])

dz + zdt = dω(t), t ∈ R. (12)

Proposition 3.1. [See [1, 10]] There exists a θt-invariant set Ω̃ ∈ F of Ω of full P

measure such that for ω ∈ Ω̃, we have

(i) the random variable |z∗(ω)| is tempered.
(ii) the mapping

(t, ω) → z∗(θtω) = −
0∫

−∞

esω(t+ s)ds+ ω(t)

is a stationary solution of (12) with continuous trajectories;

(iii) in addition, for any ω ∈ Ω̃:

lim
t→±∞

|z∗(θtω)|
t

= 0;

lim
t→±∞

1

t

∫ t

0

z∗(θsω)ds = 0;

lim
t→±∞

1

t

∫ t

0

|z∗(θsω)|ds = E[z∗] < ∞.

In what follows we will consider the restriction of the Wiener shift θ to the set
Ω̃, and we restrict accordingly the metric dynamical system to this set, that is also
a metric dynamical system, see [5]. For simplicity, we will still denote the restricted
metric dynamical system by the old symbols (Ω,F ,P, {θt}t∈R).

From now on, we denote X := {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0}.

3.1. Random chemostat without wall growth. In what follows we use the
Ornstein-Uhlenbeck process to transform (3)-(4) into a random system. To this
end, we first define two new variables σ and κ as follows

σ(t) = S(t)eαz
∗(θtω) and κ(t) = x(t)eαz

∗(θtω). (13)

For the sake of simplicity, and when no confusion is possible, we will write z∗ instead
of z∗(θtω), and σ and κ instead of σ(t) and κ(t).

Hence, it is straightforward that

dσ

dt
= −(D̄ + αz∗)σ − mσe−αz∗

a+ σe−αz∗
κ+ S0Deαz

∗

, (14)

dκ

dt
= −(D̄ + αz∗)κ+

mσe−αz∗

a+ σe−αz∗
κ. (15)
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Next we prove that the random chemostat (14)-(15) generates an RDS.

Theorem 3.1. For any ω ∈ Ω and any initial value u0 := (σ0, κ0) ∈ X , where
σ0 and κ0 denote σ(0) and κ(0) respectively, the system (14)-(15) possesses a
unique global solution u(·;ω, u0) := (σ(·;ω, u0), κ(·;ω, u0)) ∈ C1([0,∞),X ) with
u(0;ω, u0) = u0. Moreover the solution mapping generates a RDS ϕu : R

+ ×
Ω×X → X defined as

ϕu(t, ω)u0 = u(t;ω, u0), for all t ∈ R
+, u0 ∈ X , ω ∈ Ω.

Proof. Observe that we can rewrite one of the terms in the previous equations as

mσe−αz∗

a+ σe−αz∗
κ =

mσe−αz∗

+ma−ma

a+ σe−αz∗
κ = mκ− ma

a+ σe−αz∗
κ

and therefore system (14)-(15) turns into

dσ

dt
= −(D̄ + αz∗)σ −mκ+

ma

a+ σe−αz∗
κ+ S0Deαz

∗

, (16)

dκ

dt
= −(D̄ + αz∗)κ+mκ− ma

a+ σe−αz∗
κ, . (17)

Denoting u(·;ω, u0) := (σ(·;ω, u0), κ(·;ω, u0)), system (16)-(17) can be rewritten
as

du

dt
= L(θtω) · u+ F (u, θtω),

where

L(θtω) =

(
−(D̄ + αz∗) −m

0 −(D̄ + αz∗) +m

)

and F : X × Ω −→ R
2 is given by

F (η, ω) =




ma

a+ η1e−αz∗(ω)
η2 +DS0eαz

∗(ω)

−ma

a+ η1e−αz∗(ω)
η2


 ,

where η = (η1, η2) ∈ X .

Since t 7→ z∗(θtω) is continuous, L generates an evolution system on R
2. More-

over, we notice that

∂

∂η1

[
± ma

a+ η1e−αz∗
η2 + C̃

]
= ∓ mae−αz∗

(a+ η1e−αz∗)2
η2,

and

∂

∂η2

[
± ma

a+ η1e−αz∗
η2 + C̃

]
= ± ma

a+ η1e−αz∗
,

where C̃ is a constant which does not depends on (η1, η2) ∈ X , therefore F (·, θtω) ∈
C(X × [0,∞);R2) and is continuously differentiable with respect to the variables
(η1, η2), which implies that it is locally Lipschitz with respect to (η1, η2) ∈ X .

Therefore, thanks to classical results from the theory of ordinary differential
equations, system (16)-(17) possesses a unique local solution. Let us check now
that in fact this solution is a global one.
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We define V (t) := σ(t) + κ(t) and thanks to (16)-(17) we have

dV

dt
= −(D̄ + αz∗)V + S0Deαz

∗

.

By solving the previous differential equation we obtain

V (t) = V (0)e−D̄t−α
∫

t

0
z∗ds + S0D

∫ t

0

eαz
∗

e−D̄(t−s)−α
∫

t

s
z∗drds, (18)

hence V is clearly bounded by above by an expression which does not blow up.
On the other hand, from (14) we obtain

dσ

dt
≤ −(D̄ + αz∗)σ + S0Deαz

∗

,

hence, similarly to previous calculations, we obtain

σ(t) ≤ σ(0)e−D̄t−α
∫

t

0
z∗ds + S0D

∫ t

0

eαz
∗

e−D̄(t−s)−α
∫

t

s
z∗drds,

thus σ does not blow up either.
Summing up, we have proved that V (t) and σ(t) do not blow up and the same

happens to κ(t) = V (t) − σ(t). Therefore, the unique local solution to system
(16)-(17) can be extended to a unique global one.

Now we would like to check that the global solution of (16)-(17) belongs to the
set X for any t ∈ R

+. From (14)-(15), if σ(t) = 0 for some t∗ ∈ R
+, we have

dσ

dt
(t∗) =

[
−(D̄ + αz∗)σ − mσe−αz∗

a+ σe−αz∗
κ+ S0Deαz

∗

]
(t∗) = S0Deαz

∗

> 0.

Besides, given (σ0, 0) with σ0 > 0, there exists a unique solution of system (14)-(15)
satisfying σ(t0) = σ0 and κ(t0) = 0 for some initial time t0 ≥ 0. Imposing κ ≡ 0 we
deduce that σ(t) is given by

σ(t) = σ(t0)e
−D̄(t−t0)−α

∫
t

t0
z∗ds

+ S0D

∫ t

t0

eαz
∗

e−D̄(t−s)−α
∫

t

s
z∗drds. (19)

Now, let us pick (σ0, κ0) ∈ X . Thus, there exists a unique solution (σ(t), κ(t)) such
that σ(0) = σ0 and κ(0) = κ0. If there is some first t∗ > 0 verifying κ(t∗) = 0, then
we have that (σ(·), κ(·)) is the unique solution of system (14)-(15) with σ(t∗) = σ∗

and κ(t∗) = 0. Moreover κ(t) > 0 for all 0 ≤ t < t∗; however, we already have
another solution (σ(t), 0) for all t ≥ t∗ − δ (for any δ > 0 small enough) for this
problem, so we obtain a contradiction. As a result, we deduce that for any initial
data u0 ∈ X the solution u(t) remains in X .

Now we can define the mapping ϕu : R+ × Ω×X → X given by

ϕu(t, ω)u0 := u(t;ω, u0), for all t ≥ 0, u0 ∈ X , ω ∈ Ω.

Since the function F is continuous in (u, t), and is measurable in ω, we obtain the
(B[0,∞)×F×B(X ),B(X ))−measurability of the previous mapping. It then follows
that (16)-(17) generate the continuous RDS ϕu(t, ω)(·).

Now we study the existence of a random attractor, describing its internal struc-
ture if possible.
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Proposition 3.2. There exists a tempered compact random absorbing set B(ω) ∈
E(X ) of the random dynamical system {ϕu(t, ω)}t≥0,ω∈Ω.

Proof. Recall that ϕu(t, θ−tω)u0 = u(t; θ−tω, u0) denotes the solution of system
(14)-(15), satisfying u(0; θ−tω, u0) = u0, where u0 := u0(θ−tω) ∈ E(θ−tω).

First we define ‖ · ‖ as

‖ϕu(t, θ−tω)u0‖ = ‖u(t; θ−tω, u0(θ−tω))‖

:= σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω)).

By replacing ω by θ−tω in (18), we have

σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω))

= (σ + κ)(0)e−D̄t−α
∫ 0
−t

z∗(θsω)ds

+S0D

∫ t

0

e
τ

[
−D̄+

αz∗(θ
−τω)

τ
−α

τ

∫ 0
−τ

z∗(θrω)dr

]

dτ, (20)

and therefore

lim
t→∞

{σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω))} = S0Dρ∗(ω)

since D̄ given by (5) is always positive, where ρ∗(ω) is defined by

ρ∗(ω) :=

∫ ∞

0

e
τ

[
−D̄+

αz∗(θ
−τω)

τ
−α

τ

∫
0
−τ

z∗(θrω)dr

]

dτ.

Note that the above integrand converges to zero when τ goes to infinity, but not
the integral. Moreover, ρ∗(ω) has sub-exponential growth.

Therefore, for any given ε > 0, there exists TE(ω, ε) > 0 such that

S0Dρ∗(ω)− ε ≤ ‖u(t; θ−tω, u0(θ−tω))‖ ≤ S0Dρ∗(ω) + ε

for all u0 ∈ E(θ−tω) and t ≥ TE(ω, ε).
We now define

Bε(ω) :=
{
(σ, κ) ∈ X : S0Dρ∗(ω)− ε ≤ σ + κ ≤ S0Dρ∗(ω) + ε

}
,

thus Bε(ω) ∈ E(ω) is absorbing in X for any ε > 0.
Hence, from Proposition 2.1, the RDS generated by the system (16)-(17) pos-

sesses a unique random attractor given by A = {A(ω)}ω∈Ω ⊂ Bε(ω) for any ε > 0.
Thus A = {A(ω)}ω∈Ω ⊂ B0(ω), i.e., we have the following expression for each
component of our attractor

A(ω) := (S0Dρ∗(ω)− κ(ω), κ(ω)).

Proposition 3.3. For D̄ defined by (5) assume that D̄ > m. Then, the random
attractor A associated to the RDS ϕu has the following structure:

A = {A(ω)}ω∈Ω, where A(ω) = (S0Dρ∗(ω), 0).

Proof. Thanks to (15) we know that

dκ

dt
≤ −(D̄ −m+ αz∗)κ,

whose solution, after replacing ω by θ−tω and making t go to infinity, tends to zero
provided D̄ > m, thus the internal structure of the attractor in this case consists of
singleton subsets A(ω) = (S0Dρ∗(ω), 0) which means that there is not persistence
of the microorganism (see Figure 2 in Section 5).
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However, we cannot ensure the persistence of the microorganism in case D̄ <
m by using mathematical arguments even though our simulations show that the
random attractor in this case is totally contained in X , in other words, our model
seems to guarantee the persistence of the microorganism (see Figure 1 in Section
5).

3.2. Random chemostat with wall growth. In what follows we use the Ornstein-
Uhlenbeck process to transform (9)-(11) into a random system. Similarly to Section
3.1, we first define three new variables σ, κ1 and κ2 as follows

σ(t) = S(t)eαz
∗(θtω), κ1(t) = x1(t)e

αz∗(θtω) and κ2(t) = x2(t)e
αz∗(θtω). (21)

By differentiation, we obtain the following random system

dσ

dt
= −(D̄ + αz∗)σ + bνκ1 −

mσe−αz∗

a+ σe−αz∗
(κ1 + κ2) +DS0eαz

∗

, (22)

dκ1

dt
= −(ν + D̄ + r1 + αz∗)κ1 + c

σe−αz∗

a+ σe−αz∗
κ1 + r2κ2, (23)

dκ2

dt
= r1κ1 −

(
ν + r2 +

α2

2
+ αz∗

)
κ2 + c

σe−αz∗

a+ σe−αz∗
κ2. (24)

Now, we define two new variables

κ(t) = κ1(t) + κ2(t) and ξ(t) =
κ1(t)

κ1(t) + κ2(t)
=

x1(t)

x1(t) + x2(t)
(25)

in order to transform our random system (22)-(24) into another system which will
be more useful to understand the dynamics of the model. For the sake of simplicity
we will write κ and ξ instead of κ(t) and ξ(t).

Taking into account (25), the system (22)-(24) is equivalent to the following
random one

dσ

dt
= −(D̄ + αz∗)σ + bνξκ− mσe−αz∗

a+ σe−αz∗
κ+DS0eαz

∗

, (26)

dκ

dt
= −

(
ν + αz∗ +

α2

2

)
κ+ c

σe−αz∗

a+ σe−αz∗
κ−Dξκ, (27)

dξ

dt
= −Dξ(1− ξ)− r1ξ + r2(1− ξ). (28)

We first study the Riccati equation held by ξ(t) since the dynamics of ξ(t) =
ξ(t;ω, ξ0) is uncoupled with σ(t) and κ(t).

Defining Fξ : [0,∞)× [0, 1] −→ R as

Fξ(t, ξ) = −Dξ(1− ξ)− r1ξ + r2(1− ξ) = −Dξ +Dξ2 − r1ξ + r2 − r2ξ,

it is straightforward to check that Fξ is continuous (it is a polynomial function)
and locally Lipschitz respect to ξ, hence there exists a unique local solution of (28)
which can be extended to a global one since ξ is bounded.

Moreover, by solving explicitly (28) we obtain

ξ∗(t) := ξ̂ +
1[

1

ξ(0)−ξ̂
+ D

D+r1+r2−2Dξ̂

]
e(D+r1+r2−2Dξ̂)t − D

D+r1+r2−2Dξ̂

, (29)

where ξ̂ :=
D+r1+r2−

√
(D+r1+r2)2−4Dr2

2D , so that D + r1 + r2 − 2Dξ̂ > 0.
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Now we can define ϕξ : R
+ × Ω× (0, 1) → (0, 1) as

ϕξ(t, ω)ξ0 := ξ(t;ω, ξ0), for all t ≥ 0, ξ0 ∈ (0, 1), ω ∈ Ω.

Since the function Fξ is continuous in (ξ, t), and is measurable in ω, we obtain the
(B[0,∞)×F×B(0, 1),B(0, 1))−measurability of the previous mapping. Hence (28)
generates the continuous RDS ϕξ(t, ω)(·).

By replacing ω by θ−tω in (29) we have

ϕξ(t, θ−tω)ξ0 = ξ(t; θ−tω, ξ0(θ−tω))

= ξ̂ +
1[

1

ξ0−ξ̂
+ D

D+r1+r2−2Dξ̂

]
e(D+r1+r2−2Dξ̂)t − D

D+r1+r2−2Dξ̂

.

Hence, since D + r1 + r2 − 2Dξ̂ > 0, we obtain

lim
t→∞

ξ(t; θ−tω, ξ0(θ−tω)) = ξ̂.

Therefore, given ξ0 ∈ E(θ−tω), there exists TE(ω) > 0 such that

ξ(t; θ−tω, ξ0(θ−tω)) = ξ̂

for all t ≥ TE(ω). Hence, it follows directly from Proposition 2.1 that the RDS
generated by (28) possesses a unique random attractor given by

Aξ = {Aξ(ω)}ω∈Ω =
{
ξ̂
}
.

Now, we are interested in studying the system

dσ

dt
= −(D̄ + αz∗)σ + bνξ∗κ− mσe−αz∗

a+ σe−αz∗
κ+DS0eαz

∗

, (30)

dκ

dt
= −

(
ν + αz∗ +

α2

2

)
κ+ c

σe−αz∗

a+ σe−αz∗
κ−Dξ∗κ. (31)

Theorem 3.2. For any ω ∈ Ω, any (σ0, κ01, κ02) ∈ R
3
+ and any initial value

u0 := (σ0, κ0) ∈ X , where σ0, κ0, κ01 and κ02 denote σ(0), κ(0), κ1(0) and κ2(0),
respectively, the system (30)-(31) possesses a unique global solution u(·;ω, u0) :=
(σ(·;ω, u0), κ(·;ω, u0)) ∈ C1([0,∞),X ) with u(0;ω, u0) = u0. Moreover the solution
mapping generates a RDS ϕu : R+ × Ω×X → X defined as

ϕu(t, ω)u0 = u(t;ω, u0), for all t ∈ R
+, u0 ∈ X , ω ∈ Ω.

Proof. Arguing in the same way as in the proof of Theorem 3.1, the classical results
from the theory of ordinary differential equations ensures that system (30)-(31)
possesses a unique local solution. Let us check now that in fact this solution is a
global one. In order to do that, we define V (t) := σ(t) + κ(t), which satisfies the
following differential equation

dV

dt
≤ −

(
α2

2
+ αz∗

)
(σ + κ) +DS0eαz

∗

, (32)

since c ≤ m, ξ∗ ≤ 0 and b ∈ (0, 1). Hence

V (t) ≤ V (0)e
−α2

2 t−α
∫

t

0
z∗ds +DS0

∫ t

0

eαz
∗

e
α2

2 s+α
∫

s

0
z∗dre−

α2

2 t−α
∫

t

0
z∗drds, (33)

thus V is clearly bounded by above by an expression which does not blow up at
any finite time.
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On the other hand,

dκ

dt
≤ −

(
ν + αz∗ +

α2

2
− c

)
κ,

thus we have

κ(t) ≤ κ(0)e
−
(
ν+α2

2 −c
)
t−α

∫
t

0
z∗ds

, (34)

hence κ does not blow up at any finite time either. As a result, σ(t) = V (t)− κ(t)
does not blow up. Therefore, the unique local solution to system (30)-(31) can be
extended to a unique global one.

Furthermore,
dV

dt
≥ −(D̄ + αz∗ +m+ ν)V +DS0eαz

∗

,

therefore we obtain the following inequality, which will be further very useful

V (t) ≥ V (0)e−(D̄+m+ν)t−α
∫

t

0
z∗ds

+DS0

∫ t

0

eαz
∗

e(D̄+m+ν)s+α
∫

s

0
z∗dre−(D̄+m+ν)t−α

∫
t

0
z∗drds. (35)

It is straightforward to verify, similarly to the case without wall growth, that the
global solution u(t) of (30)-(31) belongs to X for any initial data u0 ∈ X and t ∈ R

+.
Now we can define the mapping ϕu : R+ × Ω×X → X given by

ϕu(t, ω)u0 := u(t;ω, u0), for all t ≥ 0, u0 ∈ X , ω ∈ Ω.

Analogously to the case without wall growth, we obtain the (B[0,∞)×F×B(X ),B(X ))−mea-
surability of the previous mapping. Hence ϕu(t, ω)(·) is an RDS.

Now we study the existence of a random attractor, describing it explicitly when-
ever it is posible.

Proposition 3.4. There exists a tempered compact random absorbing set B(ω) ∈
E(X ) of the RDS {ϕu(t, ω)}t≥0,ω∈Ω.

Proof. Remember that

‖ϕu(t, θ−tω)u0‖ = ‖u(t; θ−tω, u0(θ−tω))‖

:= σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω)).

By replacing ω by θ−tω in (33), we have

σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω))

≤ (σ + κ)(0)e−
α2

2 t−α
∫ 0
−t

z∗(θrω)dr +DS0

∫ t

0

e
−τ

[
α2

2 −
αz∗(θ

−τω)

τ
+α

τ

∫
0
−τ

z∗(θrω)dr

]

dτ,

which tends to DS0ρ∗u(ω) when t goes to infinity, where

ρ∗u(ω) :=

∫ ∞

0

e
−τ

[
α2

2 −
αz∗(θ

−τω)

τ
+α

τ

∫ 0
−τ

z∗(θrω)dr

]

dτ.

Now we replace ω by θ−tω in (35) thus we obtain

σ(t; θ−tω, u0(θ−tω)) + κ(t; θ−tω, u0(θ−tω))

= (σ + κ)(0)e−(D̄+m+ν)t−α
∫

0
−t

z∗(θrω)dr



14 T. CARABALLO, M. J. GARRIDO-ATIENZA AND J. LÓPEZ-DE-LA-CRUZ

+DS0

∫ t

0

e
−τ

[
(D̄+m+ν)−

αz∗(θ
−τω)

τ
+α

τ

∫
0
−τ

z∗(θrω)dr

]

dτ. (36)

The first term tends to zero since D̄+m+ν > 0. The second one tends toDS0ρ∗l (ω),
where

ρ∗l (ω) :=

∫ ∞

0

e
−τ

[
(D̄+m+ν)−

αz∗(θ
−τω)

τ
+α

τ

∫ 0
−τ

z∗(θrω)dr

]

dτ.

Note that the integrands defining ρ∗u(ω) and ρ∗l (ω) converge to zero when τ goes
to infinity, but not the integrals. Moreover, ρ∗u(ω) and ρ∗l (ω) have sub-exponential
growth.

Therefore, for any given ε > 0, there exists TE(ω, ε) > 0 such that

DS0ρ∗l (ω)− ε ≤ ‖u(t; θ−tω, u0(θ−tω))‖ ≤ DS0ρ∗u(ω) + ε

for all u0 ∈ E(θ−tω), when t ≥ TE(ω, ε).
We define

B̂ε(ω) :=
{
(σ, κ) ∈ X : DS0ρ∗l (ω)− ε ≤ σ + κ ≤ DS0ρ∗u(ω) + ε

}
,

thus B̂ε(ω) ∈ E(ω) is absorbing in X .
Hence, it follows directly from Proposition 2.1 that the RDS generated by the

system (30)-(31) possesses a unique random attractor given by Â = {Â(ω)}ω∈Ω ⊂
B̂ε(ω), for all ε > 0. Thus, Â = {Â(ω)}ω∈Ω ⊂ B̂0(ω).

Now we would like to go deeper into the equations of our model with wall growth
in order to know the internal structure of the random attractor in more detail.

On the one hand, thanks to (34), after replacing ω by θ−tω we know that

limt→∞ κ(t) ≤ ε, for any ε > 0, provided ν + α2

2 > c. However, when ν + α2

2 < c,
(34) does not give any extra information about the long-time behaviour of κ.

On the other hand, from (27) we obtain the following inequalities

−
(
ν +

α2

2
+D + αz∗

)
κ ≤ dκ

dt
≤ −

(
ν +

α2

2
− c+ αz∗

)
κ. (37)

Moreover, we can easily obtain the next lower bound from (26)

dσ

dt
≥ −(D̄ + αz∗)σ + (bνcξ −m)κ+DS0eαz

∗

, (38)

where cξ is defined as

cξ =





ξ̂, if ξ∗(0) ≥ ξ̂,

ξ∗(0), if ξ∗(0) < ξ̂,

where ξ∗ is given by (29). By using (37) we are able to solve (38) whichever the
sign of bνcξ −m, so that we split our analysis into two different cases.

• Case A: If bνcξ −m ≥ 0 holds, we have

lim
t→∞

σ(t) ≥ S0Dρ∗σ(ω)− ε for any ε > 0,

where

ρ∗σ(ω) :=

∫ ∞

0

e
−τ

[
D̄−

αz∗(θ
−τω)

τ
+α

τ

∫
0
−τ

z∗(θrω)dr

]

dτ.

We note that ρ∗σ(ω) is well-defined and has sub-exponential growth. Hence,
we analyze the following cases
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– (A-1) If ν + α2

2 > c, we obtain

lim
t→∞

σ(t) ≥ S0Dρ∗σ(ω)− ε and lim
t→∞

κ(t) ≤ ε

for any ε > 0. In this case the random attractor satisfies

Â ⊂ {(σ, 0) ∈ X : S0Dρ∗σ(ω) ≤ σ ≤ S0Dρ∗u(ω)},

which means that there is not persistence of the microorganisms (see
Figures 5-6 in Section 5).

– (A-2) If ν + α2

2 < c, we obtain

lim
t→∞

σ(t) ≥ S0Dρ∗σ(ω)− ε and lim
t→∞

κ(t) ≤ ε

for any ε > 0. In this case the random attractor satisfies

Â ⊂ {(σ, κ) ∈ X : σ + κ ≤ S0Dρ∗u(ω), σ ≥ S0Dρ∗σ(ω)}.

In that case we are not able to establish conditions to ensure the persis-
tence of both microorganisms. However, the numerical simulations show
that we can obtain persistence in the current case (see Figures 3-4 in
Section 5).

• Case B: If bνcξ −m < 0 holds, we distinguish two cases again:

– (B-1) If ν + α∗

2 > c, we have

lim
t→∞

σ(t) ≥ S0Dρ∗σ(ω)− ε and lim
t→∞

κ(t) ≤ ε

for any ε > 0. In this case the random attractor satisfies

Â ⊂ {(σ, 0) ∈ X : S0Dρ∗σ(ω) ≤ σ ≤ S0Dρ∗u(ω)},

which means that there is not persistence of the microorganisms (see
Figures 5-6 in Section 5).

– (B-2) If ν + α2

2 < c, we have

lim
t→∞

σ(t) ≥ −∞ and lim
t→∞

κ(t) ≤ ∞.

In this case the global attractor satisfies Â ⊂ B̂0(ω). We are not able to
guarantee the persistence of the microorganisms even though the numer-
ical simulations show that we can obtain it (see Figures 3-4 in Section
5).

Finally, we state Table 1 to summarize the results of the previous study.
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ASYMPTOTIC BOUNDS ATTRACTOR INTERNAL STRUCTURE

C
a
se

A
:

bν
c ξ

−
m

≥
0

(A
-1
)

ν
+

α
2 2
>

c

lim
t→∞

σ(t) ≥ S0Dρ∗σ(ω)− ε
S0Dρ∗σ(ω)

S0Dρ∗
l
(ω) S0Dρ∗u(ω)

σ

κ

lim
t→∞

κ(t) ≤ ε

(A
-2
)

ν
+

α
2 2
<

c

lim
t→∞

σ(t) ≥ S0Dρ∗σ(ω)− ε
S0Dρ∗σ(ω)

S0Dρ∗
l
(ω) S0Dρ∗u(ω)

σ

κ

κ(t) does not provide

any extra information

C
a
se

B
:

bν
c ξ

−
m

<
0

(B
-1
)

ν
+

α
2 2
>

c

lim
t→∞

σ(t) ≥ S0Dρ∗σ(ω)− ε
S0Dρ∗σ(ω)

S0Dρ∗
l
(ω) S0Dρ∗u(ω)

σ

κ

lim
t→∞

κ(t) ≤ ε

(B
-2
)

ν
+

α
2 2
<

c

S0Dρ∗σ(ω)

S0Dρ∗
l
(ω) S0Dρ∗u(ω)

σ

κ

σ(t) does not provide

any extra information

κ(t) does not provide

any extra information

Table 1. Internal structure of the random attractor - Random
chemostat model with wall growth

4. Existence of the random attractor for the stochastic system.

4.1. Stochastic model without wall growth. We have proved that the system
(14)-(15) has a unique global solution u(t;ω, u0) which remains in X for all u0 ∈ X
and generates the RDS ϕu.

Now, we define a mapping T : Ω × X −→ X as T (ω, ζ) =
(
ζ1e

αz∗(ω), ζ2e
αz∗(ω)

)

whose inverse is given by T −1(ω, ζ) =
(
ζ1e

−αz∗(ω), ζ2e
−αz∗(ω)

)
.

We know that v(t) = (S(t), x(t)) and u(t) = (σ(t), κ(t)) are related by (13).
Since T is a homeomorphism, thanks to Lemma 2.6 we obtain a conjugated RDS
given by

ϕv(t, ω)v0 := T −1(θtω, ϕu(t, ω)T (ω, v0))
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= T −1(θtω, ϕu(t, ω)u0)

= T −1(θtω, u(t;ω, u0))

= v(t;ω, v0)

which means that ϕv is an RDS for our original stochastic system (3)-(4).
Moreover, the global random attractor of the random system without wall growth

(14)-(15), A = {A(ω)}ω∈Ω ⊂ B0(ω), becomes into AT = {AT (ω)}ω∈Ω ⊂ BT
0 (ω),

the global random attractor of the system (3)-(4), where

BT
0 (ω) :=

{
(S, x) ∈ X : S + x = DS0ρ∗(ω)e−αz∗(ω)

}
.

In other words, each component AT (ω), ω ∈ Ω, of our attractor can be written
as

AT (ω) :=
(
S0Dρ∗(ω)− Se−αz∗(ω), Se−αz∗(ω)

)
.

Moreover, we know that the internal structure of the attractor consists of sin-
gleton subsets AT (ω) =

(
S0Dρ∗(ω)e−αz∗(ω), 0

)
as long as D̄ > m and we cannot

ensure the persistence of the microorganism otherwise. However, our simulations
show that we can get the persistence for several values of the parameters (see Figures
1-2 in Section 5).

4.2. Stochastic model with wall growth. We have also proved that the system
(30)-(31) has a unique global solution u(t;ω, u0) which remains in X for all u0 ∈ X
and generates the RDS ϕu.

Now, we define a mapping T : Ω × X −→ X as in Section 4.1. Since v(t) =
(S(t), x(t)) and u(t) = (σ(t), κ(t)), where x(t) := x1(t) + x2(t) and κ(t) := κ1(t) +
κ2(t), are related by (21) and T is a homeomorphism, thanks to Lemma 2.6 we
obtain again a conjugated RDS given by

ϕv(t, ω)v0 = v(t;ω, v0)

which means that ϕv is an RDS for our original stochastic system (9)-(11).
Moreover, the global random attractor of the random system with wall growth

(30)-(31), Â = {Â(ω)}ω∈Ω ⊂ B̂0(ω), becomes into ÂT = {ÂT (ω)}ω∈Ω ⊂ B̂T
0 (ω),

the global random attractor of the system (9)-(11), where

B̂T
0 (ω) =

{
(S, x1, x2) ∈ R

+
3 : DS0ρ∗l (ω)e

−αz∗(ω) ≤ S + x1 + x2 ≤ DS0ρ∗u(ω)e
−αz∗(ω)

}
.

Table 2 in the next page shows information on the random attractor ÂT =

{ÂT (ω)}ω∈Ω, taking into account the analysis carried out at the end of Section 3.2.



18 T. CARABALLO, M. J. GARRIDO-ATIENZA AND J. LÓPEZ-DE-LA-CRUZ

ASYMPTOTIC BOUNDS ATTRACTOR INTERNAL STRUCTURE

C
a
se

A
:

bν
c ξ

−
m

≥
0

(A
-1
)

ν
+

α
2 2
>

c

lim
t→∞

S(t) ≥ S0Dρ∗σ(ω)e
−αz∗(ω) − ε

S0Dρ∗σ(ω)e
−αz∗(ω)

S

x1

x2

S0Dρ∗
l
(ω)e−αz∗(ω) S0Dρ∗u(ω)e

−αz∗(ω)

lim
t→∞

[x1(t) + x2(t)] ≤ ε

(A
-2
)

ν
+

α
2 2
<

c

lim
t→∞

S(t) ≥ S0Dρ∗σ(ω)e
−αz∗(ω) − ε

S0Dρ∗
l
(ω)e−αz

∗(ω) S0Dρ∗u(ω)e
−αz

∗(ω)

S

x1

x2

S0Dρ∗σ(ω)e
−αz

∗(ω)

x1 + x2 does not provide

any extra information

C
a
se

B
:

bν
c ξ

−
m

<
0

(B
-1
)

ν
+

α
2 2
>

c

lim
t→∞

S(t) ≥ S0Dρ∗σ(ω)e
−αz∗(ω) − ε

S0Dρ∗σ(ω)e
−αz∗(ω)

S

x1

x2

S0Dρ∗
l
(ω)e−αz∗(ω) S0Dρ∗u(ω)e

−αz∗(ω)

lim
t→∞

[x1(t) + x2(t)] ≤ ε

(B
-2
)

ν
+

α
2 2
<

c

S

x1

x2

S0Dρ∗
l
(ω)e−αz∗(ω) S0Dρ∗u(ω)e

−αz∗(ω)

S does not provide

any extra information

x1 + x2 does not provide

any extra information

Table 2. Internal structure of the random attractor - Stochastic
chemostat model with wall growth

5. Numerical simulations and final comments. In this section we will show
some numerical simulations which support clearly the results obtained throughout
this paper.

We firstly consider the following system of stochastic differential equations

dX(t) = f(X(t))dt+ g(X(t)) ◦ dW (t), X(0) = X0, (39)

where X ∈ R
d. Here d = 2 and d = 3 correspond to the stochastic chemostat

models without and with wall growth, respectively.
Now we define a partition ∆ := {0 = τ0 < τ1 < · · · < τN = T } by dividing a time

interval [0, T ] ⊂ R, T > 0, into N subintervals and setting δt = T/N and τj = j · δt,
j = 0, . . . , N . We want to approximate X(τj) ≈ Xj by using the Euler-Maruyama
method (see [20]).
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In this way we integrate the equation in (39) on τj−1 ≤ t ≤ τj for some arbitrary
j ∈ {0, . . . , N} and we use the following approximations of the integrals

∫ τj

τj−1

f(X(s))ds ≈ f(Xj−1)δt and

∫ τj

τj−1

g(X(s))dW (s) ≈ g(Xj−1)δWj ,

where δWj := W (τj) −W (τj−1) ∼ N (0, δt) are independent normally distributed
random variables.

Hence, we can already define the following numerical scheme given by

Xj = Xj−1 + f(Xj−1)δt+ g(Xj−1)δWj

for j = 1, . . . , N and we obtain the simulations below for different values in the
parameters of both models without and with wall growth, where the dashed line
corresponds to the deterministic solutions and the other lines to the stochastic ones.

Firstly, we will show some simulations of the stochastic chemostat model without
wall growth.
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Figure 1. Stochastic chemostat without wall growth. Values of
parameters: S0 = 5, x0 = 10, S0 = 1, D = 2, a = 0.6, m = 5,
α = 0.2 (left) and α = 0.5 (right)
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Figure 2. Stochastic chemostat without wall growth. Values of
parameters: S0 = 5, x0 = 10, S0 = 1, D = 2, a = 0.6, m = 1,
α = 0.2 (left) and α = 0.5 (right)
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Now, we will show some simulations for the stochastic chemostat model with
wall growth by displaying two different panels in each figure: on the left we will
show a general point of view of the dynamics; on the right, the viewer is supposed
to be looking at the dynamics from point (S0, x01, 0) in order to make the reader
easier check whether the populations involved in our model remain strictly positive
or not. Moreover, the thick black asterisk denotes the initial value (S0, x01, x02).
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Figure 3. Stochastic chemostat with wall growth. Values of pa-
rameters: S0 = 5, x01 = 10, x02 = 10, S0 = 1, D = 2, a = 0.6,
m = 5, b = 0.5, r1 = 0.2, r2 = 0.8, ν = 0.3, c = 3, α = 0.2
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Figure 4. Stochastic chemostat with wall growth. Values of pa-
rameters: S0 = 5, x01 = 10, x02 = 10, S0 = 1, D = 2, a = 0.6,
m = 5, b = 0.5, r1 = 0.2, r2 = 0.8, ν = 0.3, c = 3, α = 0.5
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Figure 5. Stochastic chemostat with wall growth. Values of pa-
rameters: S0 = 5, x01 = 10, x02 = 10, S0 = 1, D = 2, a = 0.6,
m = 5, b = 0.5, r1 = 0.2, r2 = 0.8, ν = 1.2, c = 1, α = 0.2
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Figure 6. Stochastic chemostat with wall growth. Values of pa-
rameters: S0 = 5, x01 = 10, x02 = 10, S0 = 1, D = 2, a = 0.6,
m = 5, b = 0.5, r1 = 0.2, r2 = 0.8, ν = 1.2, c = 1, α = 0.5
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dynamics of stochastic chemostats, Advances in Dynamical Systems and Control, II, Studies
in Systems, Decision and Control, vol. 69, Springer International Publishing, Cham, (2016)
227–246.

[5] T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuß and J. Valero, Asymptotic behaviour of a
stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete

and Continuous Dynamical Systems Series B, vol. 14, no. 2, (2010) 439–455.
[6] T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems, Applied

Dynamical Systems, Springer, 2016.

http://www.ams.org/mathscinet-getitem?mr=MR1723992&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2355217&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2660867&return=pdf


22 T. CARABALLO, M. J. GARRIDO-ATIENZA AND J. LÓPEZ-DE-LA-CRUZ
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