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Abstract
In agriculture (in the context of this paper, the terms “agriculture” and “farming” refer to only the farming of crops and exclude the 

farming of animals), smart farming and automated agricultural technology have emerged as promising methodologies for increasing 
the crop productivity without sacrificing produce quality. The emergence of various robotics technologies has facilitated the application 
of these techniques in agricultural processes. However, incorporating this technology in farms has proven to be challenging because 
of the large variations in shape, size, rate and type of growth, type of produce, and environmental requirements for different types of 
crops. Agricultural processes are chains of systematic, repetitive, and time-dependent tasks. However, some agricultural processes 
differ based on the type of farming, namely permanent crop farming and arable farming. Permanent crop farming includes permanent 
crops or woody plants such as orchards and vineyards whereas arable farming includes temporary crops such as wheat and rice. Major 
operations in open arable farming include tilling, soil analysis, seeding, transplanting, crop scouting, pest control, weed removal and 
harvesting where robots can assist in performing all of these tasks. Each specific operation requires axillary devices and sensors with 
specific functions. This article reviews the latest advances in the application of mobile robots in these agricultural operations for open 
arable farming and provide an overview of the systems and techniques that are used. This article also discusses various challenges for 
future improvements in using reliable mobile robots for arable farming.
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Introduction

Historically, agriculture has consumed a large 
amount of energy, and it continues to do so currently. 
In the past, energy has been extremely inexpensive, 
and agricultural products have consumed large amount 
of energy to develop rapidly. The world’s population 
has surpassed 7 billion and is expected to continue to 
grow in the coming decades, reaching 9 billion in 2050 
(Ocampo, 2014). Therefore, agricultural production 
must continue to increase while consuming the minimum 

possible amount of resources. Moreover, conventional, 
imprecise mechanized farming demands relatively more 
petrochemical energy, the majority of which is already 
consumed by automobiles and other applications. To 
address the increasing energy demand, part of the harvest 
from agricultural crops such as corn and soya beans has 
been used to produce biofuels; this portion has doubled 
since 2007 according to the survey “Biofuels Impact on 
Crop and Food Prices”, which was conducted in 2009 
(Baier et al., 2009). In light of these problems, precision 
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in the agricultural production processes, from soil tilling 
to harvesting, is required for the efficient and quality 
production of crops with the minimum use of resources.

Precision agriculture is a farm management practice 
that uses modern technologies to observe and respond 
to farm variability depending on computational analysis 
of observations (Mandal & Maity, 2013). Technology 
such as automation can be used in these applications; 
however, the agricultural operational environment is 
dynamic, and complex infrastructure and facilities with 
costly machines are required to completely automate 
an agricultural process. As an alternative to spending 
considerable money on infrastructure, a few intelligent 
mobile robots that each possess specific task capabilities 
and that are able to move and adapt in the current field 
can be developed to reduce production costs. A study 
by Pedersen et al. (2008) on the economic feasibility 
of using robot applications in agriculture indicated a 
significant reduction in production costs. Introducing 
robots into agriculture improves sustainability and 
consistency in agricultural tasks in addition to reducing 
costs. The precision of robots in tasks such as applying 
chemicals reduces environmental problems and their 
harmful effects on humans (Comba et al., 2010). 

Agricultural robots can include modified tractors, 
small ground robots (Blackmore et al., 2004a), 
and aerial robots. Several reviews have examined 
agricultural robots, which have been categorized based 
on several features. Table 1 lists articles in agricultural 
robots, mainly focusing on the latest trends in the 
development and use of robots with various features 
and their descriptions.

Commercially available tractors can be modified 
into autonomous vehicles by adding the electronics 
and communication devices necessary for autonomous 
operation in agricultural fields. Blackmore et al. (2004b) 
implemented an automatic steering system with an 
initially defined route plan to a modified tractor. Small 
robots include small modified tractors or completely 
new robots. Small ground-based robots can assist a 
human in, for example, harvesting strawberries. These 
robots can transport strawberries from a worker to an 
unloading station; workers can spend up to 20% of their 
time simply walking back and forth from the strawberry 
field to the unloading station, making automation of 
this task very useful (Arikapudi et al., 2014). A group 
of small robots can work together by communicating 
with each other and the main coordination stations that 

Table 1. List of articles on recent trends in agricultural robots

Reference Description

Research in autonomous agricultural vehicles in Japan (To-
rii, 2000)

Briefly explains the various applications of image sensors, soft 
computing, fuzzy control, and cooperative behavior in agricultural 
robots. Various researches by manufacturers such as Kubota and 
Mitsubishi are briefly explained.

Agricultural robots- system analysis and economic feasibil-
ity (Pedersen et al., 2006)

A brief review of various studies on crop scouting, weeding and 
grass cutting robots. Analyses the economic benefits of using robots 
over conventional grass cutting machines.

Robotics in crop production (Grift, 2007) Discusses robots in scouting operations, and other robotic operations 
and the advantages of using multi-robot systems.

Overview of research on agricultural robots in China (Libin 
et al., 2008)

Discusses various outdoor and indoor robots in various agricultural 
operations such as grafting, transplanting, spraying, mowing and 
harvesting in China.

Robotics and automation for crop management: trends and 
perspective (Comba et al., 2010)

A review on robots based on field type, navigation, agricultural 
operations, navigation and sensor systems along with their future 
possibilities.

Autonomous robots for agricultural tasks and farm assign-
ment and future trends in agro robots (Yaghoubi et al., 2013)

Reviews the use of agricultural robots in fungicide and herbicide 
applications. Discusses various robots such as Ecobot I (sugar eating 
robot), Ecobot II (fly eating robot), and Ag Ant (legged robot to 
attack weeds). 

Mobile sensor platforms: categorisation and research appli-
cation in precision farming (Zecha et al., 2013)

Categorizes agricultural robots based on several factors such as 
systematic concept, type and method of sensing, size, mobility, pro-
pulsion, degree of automation, architecture and information fusion; 
suggests future directions for such robots.

A brief overview and systematic approach for using agricul-
tural robot in developing countries (Tarannum et al., 2015)

Discusses various robot operations; land preparation, soil observa-
tion, seeding & planting, plant observation, harvesting and picking 
fruit.
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are monitored by humans (Blackmore et al., 2004a). 
Aerial robots and unmanned aerial vehicles (UAVs) 
have limited capacity to carry chemicals and batteries 
and cannot be used for certain ground-based tasks, 
such as soil preparation and plant-specific pesticide 
applications. However, aerial robots are excellent tools 
for data collection over large fields.

Farming can be categorized based on the crop type. 
i.e., arable or permanent crops. Farming based on arable 
crops (as shown in Table 2) is known as arable farming. 
Arable farming is an important farming type that 
provides staple foods, medicines, and aromatic plants 
for the world population. This article mainly addresses 
the categorization of robots based on the agricultural 
tasks in open arable farming.

This paper is organized as follows. Five major 
agricultural tasks in open arable farming are discussed in 
the “Task-based agricultural robots” section. Research 
regarding the use of mobile robots in each agricultural 
task is documented in the following sections: 
“Tilling robots”, “Soil analysis robots”, “Seeding and 
transplanting robots”, “Crop scouting and pest, weed, 
and disease control robots”, and “Harvesting robots”. 
Based on these studies, the scope for using agricultural 
robots and the challenges that need to be overcome to 
achieve reliable, autonomous agricultural mobile robots 
are discussed in the “Scope and challenges” section. 
The “Conclusion” section provides insights into future 
problems faced by agricultural robots.

Task-based agricultural robots

In this article, agricultural tasks are classified into 
five important operations for open arable farming 
based on the study by Blackmore et al. (2007). The five 
major operations are shown in Fig. 1; some of the sub-
operations shown as part of the major operations might 
be omitted depending on the crop and the farming type 
of the country. 

Tilling is the first step in the agricultural process; 
this step involves manipulating the soil by mixing the 
soil above and below the surface, loosening the soil 
particles, blending nutrients and making the bed suitable 
for crop growth. Tilling also benefits crop development 
by destroying weeds and insect pests (Kladivko, 2001). 
In some countries, irrigation is included as the step 
after tilling. Additional irrigation is required at specific 
intervals throughout the crop growth. Generally, farm 
irrigation is performed with widely used and efficient 
automation methods such as central pivot systems, 
automated sprinklers and drip irrigation. Otherwise, 
tilling is followed by soil analysis, which is the process 
of measuring various physical and chemical properties 
of the soil to evaluate its fertility and physical conditions. 
In some occasions, soil analysis is also performed 
during different stages of plant growth to determine the 
correct nutrients to apply.

After tilling and soil analysis, crops can be grown 
either by placing seeds in the soil or by transplanting 
seedlings that were grown in a nursery into the field. 
Planting requires precision as each plant has specific 
space requirements and should therefore be placed at 
specific coordinates relative to the field. This precise 
positioning helps to generate a map containing the 
location of each plant, which aids the robots in 
performing subsequent operations. 

Crop scouting is the process of continuously 
monitoring the field to acquire information on the 
plant status, disease incidence, and weed and pest 
infestations, which affect crop growth. Based on the 
acquired information, a precise control methodology 
such as herbicide or pesticide applications can be used 

Table 2. List of arable crops
Cereals Industrial crops Other crops

Maize Cotton Vegetables
Wheat Tobacco Sugarbeet
Oats Hops Melons
Sorghum Soya Pulses
Rice Rape and turnip Potatoes
Other cereals Sunflower Strawberries

  Other oil-seed or 
fiber crops

Flowers and orna-
mental plants

  Aromatic plants Fodder crops
  Medicinal plants  
  Culinary plants  

Figure 1. Task-based agricultural robots
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to improve the plant growth. Finally, the crops need to 
be harvested to obtain the produce; this process depends 
on the type of crop. 

Mobile robots that are categorized based on their 
ability to perform these five important agricultural 
processes are known as task-based agricultural robots, 
as shown in Fig. 1. Research on the individual categories 
of robots is presented in the following sections.

Tilling robots

Tilling operations consist of primary and secondary 
tilling. Primary tilling is deep agitation of the soil that 
produces a rough surface, while secondary tilling is the 
opposite of primary tilling. Plowing is an example of 
a primary tilling operation; harrowing, rototilling and 
cultivating are a few examples of secondary tilling. 
Primary tilling is followed by secondary tilling to 
produce a smooth surface. Tilling is a tedious and 
labor intensive process, making this task a clear target 
for automation (Sahay, 2006; Micheal & Ojha, 2008). 
Traditional tractors have sufficient power to pull up 
the soil because they are heavy and have high torque, 
but small robots cannot perform this task. Tractors also 
tend to damage soil through compaction. One of the 
earliest studies on automatic plowing was conducted 
by Harries & Ambler (1981) using a conventional 
tractor with a furrow following transducer and steering 
servo. This tractor used an opto-electronic sensing 
technique for turning around the corners; however, the 
system was not well suited for inclined slopes due to 
its large displacement errors. Trials conducted using the 
implemented guidance system and automatic turning 
control were monitored over 200 runs. The tractor 
returned to its target position within ± 30 cm over 50% 
of the time and within ± 60 cm over 75% of the time.

In related research, an existing commercial tractor 
was modified into an autonomous robot, and additional 
equipment was attached to it in order to perform 
agricultural operations. Nagasaka et al. (2011) modified 
a commercial tractor (Yanmar EG65) by fixing a 

global navigation satellite system (GNSS) antenna for 
navigation and a DC motor for steering control. The 
GNSS of the tractor obtains the real-time reference 
position data from the global positioning systems 
(GPS) earth observation network system (GEONET) 
through the mobile phone network; the data then must 
be corrected for the inclination of the vehicle. The 
inertial measurement unit (IMU) in the tractor provides 
information regarding roll, pitch and heading angle. 
The data from the azimuth sensor, GNSS and IMU 
are compared to estimate the control parameter that 
is converted into an actuator command. This control 
parameter corrects the error in following a particular 
trajectory. Path planning was performed manually by 
considering the coordinates of the four corners of a 
square field and was provided to the tractor as an input.

Matsuo et al. (2012) modified a commercially 
available tractor into a robotic vehicle known as 
Robotra, as shown in Fig. 2. Robotra was able to 
perform unmanned tilling operations using its path-
planning algorithm. This robot used the real-time 
kinematic-global navigation satellite system (RTK-
GNSS) to provide position information for navigation. 
RTK (Bakker et al., 2011) is a technique that is used 
to improve the accuracy of satellite-based positioning 
systems, such as GNSS, by approximately a few 
centimeters. Three methods of navigation operation 
were analyzed: basic, diagonal and round operation 
methods. Each operation method used a two-step 
process consisting of path planning and vehicle 
guidance to follow the path. The evaluation of these 
three operation methods concluded that the basic 
operation method can be conveniently performed by 
a human operator but that the other two methods can 
be efficiently and accurately performed only by robots 
since human visual judgment is limited for conducting 
precise operations in the field.

Soil analysis robots

Soil is the main source of nutrients for plants; 
therefore, various tests are manually performed in 
the field by taking samples across the field and then 
performing statistical analysis to estimate the soil 
properties. The results of laboratory tests depend on the 
number and density of the measurement locations. This 
process costs significant time and money to determine 
several soil properties. A study by Rossel & McBratney 
(1998) analyzed and compared the costs of estimating 
soil properties in the US and Australia. The average 
cost per sample for analyzing soil pH, carbon, nitrate-
nitrogen, phosphorus and potassium were A$18.4, 
A$22.2, A$29.9, A$22.5 and A$19.4, respectively, 
in Australia. The costs in Australia were significantly 

Figure 2. Robotra performing a tilling operation
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higher than in the US, and precision agriculture 
requires more soil samples, resulting in economically 
inefficient farming. Therefore, an automated real-time 
measurement system for measuring soil properties can 
greatly benefit farmers.

Scholz et al. (2014) developed an automatic soil 
penetrometer, which was integrated into an autonomous 
mobile robot named Bonirob, as shown in Fig. 3. The 
soil penetrometer has a probing rod with a force sensor 
that penetrates into the soil to a depth of 80 cm via a 
linear actuator. This robot is also equipped with surface 
moisture and temperature sensors and can measure 
the physical properties of the soil. Their study showed 
a strong correlation to the data in the commercial 
penetrologger with a root mean square error (RMSE) of 
0.185, 0.145 and 0.120 MPa for soil textures of loamy 
sand, sand and silt, respectively.

Pobkrut & Kercharoen (2014) developed a soil-
sensing survey robot based on an electronic nose to 
determine certain chemical properties of soil. The robot 
had six wheels and was equipped with six gas sensors: 
TGS 825 for hydrogen sulfide; MQ2 for combustible 
gas; MQ5 for LPG and natural gas; MQ135 for 
ammonia, benzene and carbon dioxide; TGS 2600 for 
air contaminants and TGS 2602 for volatile organic 
compound (VOCs) and odorous gases. The Arduino 
Mega 256 controller was used to obtain data from the 
sensors and to control the entire system.

The robot sent the data to the system by using a 
Zigbee-based wireless network. The robot was tested 
under real field conditions with different soils, such 
as sandy soil, sandy soil with fertilizers, loamy soil 
and loamy soil with fertilizers. The responses of these 
sensors to various soil conditions were recorded, 
although further detailed study is needed to correlate 
the responses with the soil.

A study by Baharom et al. (2015) on real-time 
soil sensing (RTSS) used a visible and near-infrared 
spectrophotometer to detect the various chemical 

properties of soil, such as the total carbon, organic 
matter, total nitrogen, available phosphorus, and 
moisture content in cultivated paddies. This RTSS 
process included a halogen lamp as a light source; these 
lights were guided by an optical fiber to illuminate a 50 
mm-diameter area at depths of 10, 15 and 20 cm below 
the soil surface. 

The reflected spectra were then guided to the 
spectrophotometer by the optical fiber and analyzed. A 
calibration models was built, and the soil was mapped at 
all three depths. The highest accuracy of the combined 
data for the three depths had correlation coefficient (R2) 
values of 0.88, 0.83, 0.88, 0.85 and RMSE values of 
1.38, 0.26, 0.15, 0.01% for moisture content, organic 
matter, total carbon and total nitrogen, respectively. 
The results from this study suggest that combining the 
data from all three depths provides better prediction 
accuracy. This RTSS configuration is connected to a 
commercial tractor and has not yet been tested while 
attached to an autonomous robot. 

A few notable studies on RTSS using commercial, 
non-autonomous tractors are listed in Table 3. Because 
these systems are automated, they can potentially 
interface with robots.

Seeding and transplanting robots

Seeding is the process of planting seeds in the 
soil so that they are successfully able to germinate. 
Transplanting involves placing a small plant seedling 
that has germinated in a particular position in the field 
based on the specific space requirements of each crop 
in the field.

Food grains, such as rice and wheat, represent a 
major types of food that is consumed by people around 
the world. Haibo et al. (2010) developed a precise 
wheat seeder robot that uses an air suction precision 
seeding mechanism to accurately drop seeds using 
an RTK -GNSS module. The precision of the seeding 
mechanism was ensured by considering the geometric 
characteristics of wheat seeds. The study analyzed the 
influence of design and suction speed for precise seeding 
and identified the process and structures necessary to 
optimize this precision. Based on the analysis results, 
the optimum diameter of the suction hole in the metering 
plate was in the range of approximately 2.0 to 2.8 mm, 
and the optimum vacuum in air chamber was between 
approximately 1.8 to 2.8 kPa to ensures the precise 
placement of the seeds in the soil.

Nagasaka et al. (2011) automated the rice 
transplanter Kubota SPU650 by fixing a GNSS antenna 
approximately 2 m from the ground surface and by 
controlling the steering using a servomotor that was 
connected to the steering axle. Path planning was 

Figure 3. Bonirob with a soil penetrometer 
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Table 3. Related works on automated real-time soil sensing studies 

Reference Sensing equipment Detection parameters[1] Results[2]

On-line real time soil sensor 
(Shibusawa, 2003)

Spectrophotometer Prediction model for MC, 
SOM, NO3-N, pH, EC and soil 
maps

Evaluated at 860 locations
MC (R2 = 0.95) 
SOM (R2 = 0.93
NO3-N (R2 = 0.94)
pH (R2 = 0.99)
EC (R2 = 0.93)

Direct measurement of soil 
chemical properties on the go 
using ion-selective electrodes 
(Adamchuk et al., 2005)

Ion-selective electrodes Soil pH, available potassium, 
NO3-N, and sodium

RMSE varied from 0.11 to 0.26 pX 
in the order pH< pK< pNO3 <pNa 
(precision) & 0.20 to 0.37 pX (ac-
curacy)

Development of soil pH and 
lime requirement maps using on 
the go soil sensors (Lund et al., 
2005)

Ion-selective pH elec-
trodes, electrical con-
ductivity sensor, near in-
fra-red spectrometer

pH, and lime requirements of 
the soil

Overall RMSE=0.38 pH. RMSE 
ranged from 0.28 to 0.55 pH for dif-
ferent fields in USA. The predicted 
R2 value was 0.52 kg/ha on the pH 
map, and R2 value was 0.83 kg/ha on 
the pH, EC & NIRS combined map

An automated system for rap-
id in-field soil nutrient testing 
(Lobsey et al., 2010)

Ion-selective electrodes Proximal sensing of soil ni-
trate, potassium and sodium

The predicted R2 values for nitrate, 
sodium and potassium were 0.92, 
0.99, and 0.99, respectively. 

Soil pH mapping with an on the 
go sensor (Schirrmann et al., 
2011)

Ion-selective antimony 
electrodes

Soil pH The soil pH values from the pH sen-
sor were well correlated with the lab 
pH (CaCl2) values. After calibration, 
the mean absolute error varied from 
0.28 to 0.48 pH units.

Integrated sensing of soil mois-
ture at the field scale: measur-
ing, modeling and sharing for 
improve agricultural decision 
support (Phillips et al., 2014)

Hydraprobe II – coaxial 
impedance dielectric re-
flectometry

Soil moisture Using the Penman-Monteith me
thod, the water stress conditions 
were estimated. Data of the poten-
tial evaporation, evapotranspiration 
& precipitation presented the inputs 
and outputs throughout the plant 
growth stages until harvest.

[1]MC, moisture content; SOM, soil organic matter; EC, electrical conductivity. [2]pX: negative base 10 logarithm of specific ion activity. 
NIRS: near infrared spectroscopy

Table 4. Various works on agricultural robots for seeding and transplanting operation

Reference Description

Development of a seed-planting robot for the creation of 
large scale growing flower images (Riesen & Rohrer, 2011)

67% of seed ejected was within a1-cm radius, and 85% fell within 
1.5 cm.

Automated three-wheel rice seeding robot operating in dry 
paddy fields (Ruangurai et al., 2015)

GNSS-based positioning was used along with extended Kalman fil-
ter-based localization; the average seeding accuracy was 91%.

Command-based self- guided digging and seed sowing rover 
(Priyadarshini & Sheela, 2015)

Commands were given manually by a mobile phone for navigation 
and sowing seeds.

Initial field-testing of Thorvald, a versatile robotic platform 
for agricultural application (Grimstad et al., 2015)

Used RTK-GNSS for navigation. Seeding experiments were con-
ducted using different seeding patterns and were analyzed for weed 
suppression.
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performed manually by considering the four corners of 
a square field, and the path was corrected by measuring 
the deviation from the desired path. The same authors 
used another rice transplanter (Iseki PZ60), as shown 
in Fig. 4, with similar automation and path planning 
procedures (Nagasaka et al., 2011). 

Oksanen (2013) modified a tractor named the 
APU–Module, as shown in Fig. 5, and successfully 
conducted trials for the autonomous sowing of spring 
wheat. This vehicle had the capacity to store seeds for 
sowing 0.85 ha without any refills. Navigation was 
performed by using a GNSS-based guidance system. 
This study indicated many practical problems, such 
as drops in the GNSS signal because of natural 
obstacles, errors in satellite communication, and 
frequent manual intervention. Manual intervention 
was required to check the seed and the drill settings 
as the tractor was not able to perform automatic 
detection and adjustments preventing the complete 
autonomy of the robot. Recovering the GNSS signal 
quality required a period of 1 h 27 min and 11-20 
interruptions occurred per hectare. The longest 
continuous operation without intervention was 
approximately 20 min and the shortest was 2.8 s. 
The spatial accuracy deviated by approximately 12.5 
mm from the mean with respect to the selected path. 
The mean lateral error was -0.15 cm, and the mean 
angular error was 0.06°.

Griepentrog et al. (2013) retrofitted a Hakotrac 3000 
with GNSS for navigation and an electro-hydraulic valve 
for steering to create an autonomous mechanization 
system (AMS). Crops were established by interfacing 
with the data logging system that stored maps for 
seeding with a grid seeder and punch plater. GNSS was 
used for the precise placement of seeds in the field. The 
experimental results showed a mean standard deviation 
of 2.53 mm; and based on a normal distribution 95% of 
the data were within 5.1 mm.

Table 4 provides insight regarding some of the other 
notable studies conducted in the area of seeding and 
transplanting using agricultural mobile robots.

Crop scouting and pest, weed and disease control 
robots

In general, crop scouting is the process of assessing 
an agricultural field through monitoring of factors such 
as pests, weed growth and diseases, which can restrict 
the crop growth.

Crop status monitoring robots

Crops exhibit various characteristic features because 
of genetic factors, aging, responses to environment, 
pests, and soil fertility. Each characteristic provides 
information regarding complex traits such as 
morphology, physiology, growth, ecology, and yield. 
These complex traits can be assessed by measuring basic 
quantitative parameters such as leaf length, the leaf area 
index (LAI), canopy volume, and shoot biomass; and 
this process is known as plant phenotyping (Li et al., 
2014). These parameters can be estimated by using 
various sensors, including light detection and ranging 
(LIDAR) or image-capturing devices such as near-
infrared (NIR), visible, hyperspectral and multispectral  
cameras (Fahlgren et al., 2015).

More detailed monitoring of the plant growth status 
and other characteristics can be achieved using multi-
sensor data fusion technology. This technology was 
tested by developing a non-autonomous phenotyping 
multi-sensor platform attached to a tractor as a trailer 
(Busemeyer et al., 2013). The platform was equipped 
with 3D time-of-flight (3D-TOF) cameras, a color 
camera, a laser distance sensor, a hyperspectral 
imaging system and a light curtain imaging system. 
The repeatability of these sensors for measuring 
height and coverage density were analyzed and were 
very high except for the 3D-TOF and laser distance 
sensor. The accuracy of the light curtain imaging 
system for determining the height was denoted by an 
R2 value of 0.97 and a mean relative error (MRE) of 

Figure 4. Rice transplanter lseki PZ60 

Figure 5. Wheat-sowing APU-Module
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0.024 with a repeatability that had an R2=0.99 and an 
MRE=0.11. This platform was also used in a plant 
breeding trial of 25 different genotypes of triticale. 
Several characteristics of these plants were deduced 
by processing the multi-sensor data. The author 
concluded that this device could be further integrated 
with an autonomous robot in future studies.

Bonirob, which was introduced in the “Soil analysis 
robot” section, was studied using this phenotyping 
system (Ruckelshausen et al., 2009). This robot used 
sophisticated sensors, such as a 3D-TOF camera, light 
curtains and hyper spectral imaging devices, to obtain 
information that can be extracted from the sensory 
data; and the generalized health status of the plants 
was then computed using an algorithm. To obtain 
repeated phenotypic information of each plant in the 
field, positional accuracy is an important parameter. 
Weiss & Biber (2011) used Bonirob with 3D LIDAR to 
detect the plants and to create a 3D point cloud map of 
an experimental field with model paper plants, plastic 
plants and maize plants. The detection rate of the plants 
was 60-70% in outdoor environments with an average 
positional accuracy of 0.03 m. 

Chapman et al. (2014) developed a pheno-copter, 
which is an autonomous robotic helicopter used for 
plant phenotyping. This device was equipped with two 
digital cameras and one far infrared camera to analyze 
images in multiple spectra. One of the experiments 
estimated the ground cover of hybrid sorghum using the 
pheno-copter at an elevation of 60 m to determine the 
correlation between the number of plants per plot and 
the green cover for 100 plots. The canopy temperature 
and relative transpiration index in sugarcane under 
different irrigation conditions were also estimated using 
the data obtained from visible and thermal cameras. The 
potential transpiration index for 40 sugarcane clones 
based on green cover and relative crop temperature 
were determined by approximation. To quantify the crop 
lodging of wheat, images from an NIR filtered camera 
with information on longitude, latitude, elevation and 
flight log were used to generate a point cloud elevation 
model, from which the canopy height was estimated.

Córcoles et al. (2013) used a quadrotor UAV to 
estimate LAI in onion crops using a digital photography 
camera. They also developed LAI calculation (LAIC) 
software using the artificial neural network. First, the 
software tool converts red, green, and blue (RGB) into 
L*a*b image format and use the K-means algorithm for 
cluster analysis. The selected clusters are provided as 
inputs to the artificial neural network, which calculates 
the area covered by leaves. Statistical analysis was 
conducted using the minimum value, maximum value, 
standard deviation, mean and coefficient of variation to 
establish a relationship between LAI and canopy cover. 

The maximum value of LAI was 56% in the onion crops. 
The study found that the polynomial model showed 
better results than the exponential model and that the 
coefficient of determination was approximately 84%.

Crop pest and disease monitoring and control robots

Incidences of disease from pests and microorganisms 
affect the output of agricultural products wordwide. The 
majority of these diseases induce visible symptoms in 
plants; however, farmers can identify a disease in a 
large field only when a significant number of plants are 
infected. 

Polder et al. (2014) developed a fully enclosed, 
manually propelled platform that is equipped with a 
diffused fluorescent lamp and a multi-spectral camera 
(RGB & NIR). The platform is manually moved over 
each tulip plant as an image of the plant is obtained. 
Images in the NIR spectrum help segment the image 
to differentiate the plant from the soil. Diseased plants 
among healthy plants are identified using Fisher’s linear 
discriminant classification algorithms. The result is 
then compared with the enzyme-linked immunosorbent 
assay (ELISA) score and expert survey results. The 
results of this study showed that crop experts identified 
80% of the diseased plant and misclassified healthy 
plants as diseased plants 10% of the time. However, the 
machine vision system correctly identified over 90% of 
the diseased plant and misclassified 10% of the healthy 
plants as diseased plants. The author also offered ideas 
for improving this platform for a robotic system. 

Other research has discussed using robots to monitor 
and identify diseases in the field at an early stage. Pilli 
et al. (2014) developed eAGROBOT to detect diseases 
in cotton and ground nut plants at an early stage using 
image processing techniques. A grid data acquisition 
was used, and sample images were provided as input to a 
K-means clustering algorithm with varying numbers of 
nodes for different disease types. A neural network using 
a single hidden layer with a back propagation technique 
was used to classify the diseases with highly variable 

Table 5. Percentage losses from weed competition in India

Crop Critical period of crop 
weed competition Loss (%)

Rice (transplanted) 4-6 weeks after planting 15-35

Wheat 30-45 days 6-35

Sorghum 40 days 6-40

Groundnut 30-45 days 30-50

Cotton 15-60 days 47.5

Sugarcane 90 days 15-72

Jute 35-42 days 56-87
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neurons quantity based on the disease type. The results 
showed that the Pearson’s r and p values had a poor 
correlation, while the “contrast of hue” and “correlation 
of saturation” features showed negative correlation 
with disease type. The above features along with other 
textural features (e.g., energy and homogeneity of hue) 
were used to classify the disease with an accuracy 
range of 83-96%. Rieder et al. (2014) described the 
preliminary stage of development of a virtual reality-
based system for identifying diseases in strawberry 
plants using a drone. This system includes a 3D user 
interface to control and monitor the drone, which will 
assist in studying the phenology of strawberry plants 
and disease incidence.

Pest infestation and other microbial-based diseases 
can be controlled by the appropriate application of 
pesticides. However, misuse of these chemicals can 
cause pesticide-resistant diseases, and excess application 
pollutes the environment. Furthermore, the long-term 
exposure of farmers to these chemicals has harmful 
effects on the health of farmers. These problems suggest 
a need for precise applications that are assessed by 
studying variable rate technology and the site-specific 
application of pesticides (Bongiovanni & Lowenberg-
Deboer, 2004); this precise application can only be 
achieved by automating the process. Further automation 
of pesticide application can be achieved by electronic 
monitors, which measure the application rate and 
provide a command signal, and rate controllers, which 
control the rate of application (Zhang & Pierce, 2013). 

A study on the precise application of pesticides using 
an UAV was performed by Faiçal et al. (2014). They 
mainly focused on developing a system architecture 
using an UAV through simulations. They adjusted the 
UAV route plan depending on the relative concentration 
of pesticides in a given area measured using wireless 
sensor networks for precise application of pesticides. 
Simulated wireless sensor nodes were positioned at 
various locations in an experimental field, and the 
concentration was measured with a color scale varying 
from green (most concentrated) to red (no pesticide) 
using the heat map of the field. The behavior of the 
system was best at a constant light wind of 10 km/h 
and random gusts of light wind at 10 km/h with no 
significant difference in measurement at heights of 5 
m, 10 m and 20 m. Furthermore, the results show that 
the chemical dispersion was approximately 14% better 
for messages sent (from the wireless sensor network to 
the UAV) every 10 s compared to every 30 s. Sheng 
(2014) developed a robotic system controlled via 
wireless network using a mobile phone. The robot was 
equipped with infrared sensors for obstacle avoidance, 
a video camera module to obtain visible information, 
and a sprayer module with a spray head that was 

adjusted according to the height. The robot was tested 
on different floors, such as concrete, mud, gravel and 
grass. The system was able to spray up to a maximum 
distance of 130 cm with a spray angle of 30–50° and a 
spray area of 0.88 m2.

Weed detection and control robots

A weed is an unwanted plant that affects the 
production and quality of produce on a farm. Weeds 
compete with crops for resources, which is known as 
weed competition. According to a survey by Parker & 
Fryer (1975), production loss from weed competition 
is estimated to be 11.5% globally, although the loss 
in individual countries varies because of differing 
environmental conditions. Table 5 shows the loss of 
produce due to weeds in India according to the Rice 
Knowledge Management Portal (http://14.139.94.101/
wisy/prsentation/yield_losses.aspx). 

Weeds can be classified according to their location in 
the field; inter-row or intra-row weeds. Inter-row weeds 
develop between rows of crops, while intra-row weeds 
develop among crops in the same row.

One of the important challenges of using robots for 
weed control is identifying weeds from crops. Bonirob 
was equipped with a multispectral monocular camera, 
known as JAI AD-130 GE, which captured images with 
1.3 million pixels and an image size of 1296 × 966 
pixels. This robot was tested on a commercially viable 
carrot field and had an accuracy of approximately 
93.8% when differentiating carrot plants from weeds 
(Haug et al., 2014). Jensen et al. (2012) developed a 
crop scouting robot known as Armadillo. The robot 
prototype was developed and tested in a maize field 
for weed detection, and the researchers. are currently 
developing a mechanical weeder for the weed removal. 

Physically removing weeds is a labor-intensive 
job that requires constant monitoring during the early 
stage of crop development. Weeds can also be removed 
by applying chemical herbicides or by using other 
techniques, such as mechanical force or heat.

Blasco et al. (2002) developed a mobile platform 
with a manipulator that was equipped with an electrode 
and a secondary vision system. The primary vision 
system, which is a color camera with a resolution of 
768 × 576 pixels, was attached to the front frame of 
the robot. The images from the secondary vision system 
were compared with those of the primary vision to locate 
weeds and to send spatial coordinates to the electrode 
for weed removal. The electrical discharge from the 
electrode destroyed the weed tissues, and the system 
was able to eliminate 100% of the detected weeds. The 
system was able to locate 84% of the weeds and 99% of 
the lettuce plants using its vision system.
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Chocron et al. (2007) developed a flatness-based 
control for a weed killer robot to remove weeds in a 
cornfield. This robot had two ultrasonic sensors along 
two sides at its front. These sensors measured the 
distance from the robot to the crop along the sides and 
helped the robot to navigate between rows of crops. 
The weeds between the crop rows were removed using 
a hoeing operation with a 40 cm wide hoe carefully 
driven by the robot. Mechanically removing weeds by 
hoeing reduces the need for chemical weed killers. The 
important limitation of this robot is that it cannot remove 
weeds close to corn crop.

Sogaard & Lund (2007) tested a mobile robot that uses 
vision sensors for micro-dosing of herbicides to avoid 
the excessive use of these chemicals. The micro-dosing 
system consists of 20 uniformly placed tubes that form 
a micro-boom; the flow of the chemicals is controlled 
by a solenoid valve. The robot was tested in laboratory 
conditions with circles of black polyvinyl chloride sheets 
with a radius of 5.9 mm and densities ranging from 50 
to100 circles/m2 to evaluate the spraying precision. 
The centroid of the spray on the sheets was 10 mm 
from the target, and the standard deviations along the 
longitudinal and transverse directions were 2.5 and 1.8 
mm, respectively. The study revealed that the savings of 
the herbicide glyphosate on Solanum nigrum were 536 
g/ha; only 4 g/ha were required when using the robot.

Pérez-Ruiz et al. (2015) modified a commercial 
tractor into an autonomous tractor, as shown in Fig. 6. 
This machine was equipped with several systems, such 
as an intelligent spraying system and a mechanical and 
thermal weed control system; the system was designed 
especially for rows with a width of 0.25 m. A high-
level decision-making system controlled a sprayer 
boom that interfaced with the modified autonomous 
tractor for variable application of herbicides based on a 
prescription map and the vehicle location. Experiment 
were conducted in a winter wheat crop a 0.25-ha field, 

Table 6. Other related works in weed detection and removal

Reference Description

Robotic weed control system for tomatoes 
(Lee et al., 1999)

Developed real-time robotic weed control using machine vision; the results showed 
that 24.2% of tomato plants were incorrectly identified and that 52.4% of weeds 
were not sprayed.

Machine vision for a micro weeding robot in a 
paddy field (Chen et al., 2003)

Developed an image processing-based algorithm to determine the travel direction by 
using a Hough transform for the weeding robot.

Autonomous robotic weed control systems: A 
review (Slaughter et al., 2008)

Described various methods for weed detection and mechanisms for weed removal.

The development and assessment of the ac-
curacy of an autonomous GPS-based system 
for intra-row mechanical weed control in row 
crops (Norremark et al., 2008)

Developed and improved the accuracy of autonomous hoeing systems for intra-row 
weed removal using RTK-GPS navigation

Direct application end effector for a precise 
weed control robot (Jeon & Tian, 2009)

 Developed a direct herbicide application end effector interfaced with a mobile robot 
and 90% of weeds showed symptoms of necrosis.

Design of paddy weeding robot (Yoon & Kim, 
2013)

Developed a rotating side sweeper made of an elastic body to remove weeds in 
paddy fields.

Automatic weed detection system and smart 
herbicide sprayer robot for corn fields (Kargar 
& Shirzadifar, 2013)

Developed an algorithm development for weed detection and classification; the al-
gorithm accuracy was 95.89% accurate.

Development of a mechatronic intra-row 
weeding system with rotational hoeing tools: 
theoretical approach and simulation (Gobor et 
al., 2013)

Design and analysis of a mobile platform with rotating varying arms that were 
equipped with blades as an end effector to remove intra-row weeds.

Weed removal in cultivated field by auton-
omous robot using LABVIEW (Patnaik & 
Narayanamoorthi, 2015)

Images captured using a static camera were processed for weed identification, and 
the coordinates of weed were given to a robot for removal.

Figure 6. Modified New Holland Boomer T3050
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as shown in Fig. 7. Application of this robotic system 
in the field with a weed infestation of 3.24% saved 
approximately 96.65% of the liquid applied per hectare. 
As the percentage of the weed infestation increased, the 
savings in the liquid applied decreased.

The same team used a thermal weed control system 
of a modified tractor and used an LPG flame as the heat 
source. The system reduced weeds by 95-99% in maize 
farming. The study also showed that the production 
output of a crop was not reduced by the thermal weed 
control system. Although using of flames to kill weeds 
is highly effective, it can potentially kill crops and also 
raises serious safety issues regarding the robot itself.

Nakai & Yamada (2014) developed a robot equipped 
with a laser range finder and a stereo camera; the robot 
suppresses weeds by applying mechanical force with a 
crawler and brush that are the end effector of a robotic 
arm attached to a tank-type mobile robot. Because the soil 
surface of a rice field is soft, wet and muddy, the robotic 
wheels had a continuous or caterpillar track that was 56 
mm wide to provide stability and traction for the robot. 
The robot also had automatic posture control using the 
laser range finder and a robotic arm using a tilt sensor. Only 
inter-row weeds can be suppressed by this robot. Table 6 
shows additional research on weed detection and removal.

Harvesting robots

Harvesting generally refers to the collection of 
matured crops from an agricultural field. However, 
this process varies for different crops. For example, 
harvesting horticultural crops, such as vegetable or 
fruit crops, refers to collecting of fruits or vegetables 
from plants, but this process is different for rice or 
wheat crops. Harvesting requires considerably greater 
labor hours; in horticulture, fruits and flowers must 
be plucked repeatedly from plants as they mature. 
A robotic harvester must detect the properties of the 
produce, such as its position, size, surface type, and 
shape. Additionally, the robot requires mobility to move 
to a reasonable position and a picking or harvesting 
mechanism for the harvesting process. 

Several semi-automated machines have been built for 
harvesting, such as harvesters and combine harvesters, 
to address these problems. Many commercially 
available harvesters have the ability to interface with 
tractors using a power take-off (PTO) shaft that uses 
the power output from the engine. Combine harvesters, 
which are vehicles that are dedicated to harvesting 
operation and are operated by humans, have been used 
to harvest various crops, such as wheat, oats, barley, 
corn, soya beans, and sunflowers.

An automated combined harvester (Iseki HFG443) 
was modified by Nagasaka et al. (2011) for crops such 

as rice. Its navigation methodology was similar to the 
working of an automated tractor and rice transplanter, 
as explained in the “Seeding and transplanting robot” 
section. Zhang et al. (2013) retrofitted an AG1100 
combine harvester with Topcon AGI3 GNSS and 
IMU receiver for autonomous navigation guided by 
World Geodetic Sysetm-84 (WGS-84) coordinates for 
harvesting rice and wheat. The harvester was tested in 
a 150-m-long experimental path with initial lateral and 
heading errors of 20 cm and 1.8°, respectively. When the 
harvester travelled in stable conditions, the lateral error 
varied within ± 8.3 cm, and the heading error varied 
within ± 2.5°. Detecting and picking fruits, vegetables 
or flowers from plants is necessary for other types of 
crops, such as horticultural crops. Robotic harvesters 
that pick fruits or vegetables mostly consist of contact-
type grippers that are actuated using pneumatic, 
hydraulic or electric means. Other methodologies, such 
as cutting the stem with a laser beam, were proposed by 
Liu et al. (2008) to minimize the size and complexity 
of the end effectors. A focusing lens can focus a high-
power, 30-W laser beam from a fiber-coupled laser 
diode to cut the stem of a single fruit or cluster.

Chatzimichali et al. (2009) designed a robotic harvesting 
machine for white asparagus. The system consisted of a 
mobile platform equipped with an asparagus identification 
system using image processing and a cutting mechanism 
for harvesting. Antonelli et al. (2011) added a developed 
harvesting module to the robot Zaffy. This harvesting 
module was equipped with a gripper, a vision system 
that assisted in positioning, and a pneumatic system for 
harvesting saffron flowers from plants. This harvesting 
system successfully made cuts 60% of the time.

Scope and challenges

Many studies in different categories of task-based 
agricultural robots were presented in the previous 
sections. By assessing the above research (the “Tilling 
robots” section through the “Harvesting robot” section), 
the overall research scope and various challenges that 
need to be addressed for efficient agricultural production 
are discussed in this section.

Figure 7. Herbicide application using intelligent boom 
spray in a wheat field
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A study by Chamen et al. (1994) showed that the 
soil compaction by tractor operations in a field uses 
80-90% of energy in conventional agriculture. This soil 
compaction requires tilling operations to loosen the soil. 
If small autonomous machines replace conventional 
tractors, damage to the soil can be minimized. In this 
case, the robot can directly drill and place the seeds 
or plant seedlings without needing to till the soil. A 
recent study conducted on no-till farming by the US 
Department of Agriculture (Horowitz et al., 2010) 
showed that soil that is not tilled retains organic matter 
and prevents soil erosion. A study by Blackmore (2009) 
suggests achieving zero draft force and zero compaction 
on soil minimizes the energy usage for soil operations. 
Kladivko (2001) also showed that the number of 
organisms living in the soil significantly increase, which 
naturally improves soil fertility and minimizes the use 
of fertilizers. These studies prove that if the entire 
agricultural process is performed by a small (smart) 
robot, the frequency of tilling operations decreases. 
Tilling operations can also be optimized by performing 
micro-tilling operations since the soil immediately 
surrounding the seeds influences the seed growth. 
These micro-tilling implements can be interfaced 
with a mobile robot. Considerable research has been 
conducted on RTSS technologies with commercially 
available non-autonomous tractors (Phillips et al., 2014; 
Baharom et al., 2015). The challenge is to interface this 
technology with an agricultural mobile robot to further 
improve the autonomy of the operations and remove 
the need for human intervention. Moreover, open 
farm agriculture is highly dynamic, and unstructured 
with wide uncertainty, which demands complex 
systems with complex techniques to perform specific 
farm operations. A study by Blackmore et al. (2007) 
defined many technical qualities that are required for 
an autonomous robot. Some of these key qualities 
include machine size, weight, computational and 
energetic autonomy, intelligence, external behavior, 
communication and vehicle system architecture, self-
awareness, management, cooperative behavior and 
mechanization tasks.

Seed placement and transplanting demands high 
accuracy since other agricultural operations performed 
by robots depend on this accuracy. Many real-time 
conditions affect the autonomy of these operations 
requiring human intervention. Haibo et al. (2010) 
demonstrated the need for frequent human intervention 
in autonomous tractor operations whenever GNSS 
fails and whenever coulters, which are required for 
drilling the soil surface to place seeds, become blocked 
in moist soil. These frequent interventions make these 
systems unreliable, and further improvement is needed 
to achieve complete autonomy. The navigation system 

should be capable of recognizing the failure of primary 
navigation sensors and should return to a safe resting 
position without causing damage to itself or to any other 
external entity.

In tasks such as crop scouting, the field is sometimes 
monitored for various purposes using aerial robots. 
Although aerial robots work for larger fields, they do 
not provide accurate information about each plant in the 
field (Chapman et al., 2014). Because farming practices 
are becoming more precise, information needs to be 
collected and tasks need to be performed for each plant 
in the field. The technology of caring for each plant is 
known as phytotechnology; this technology demands a 
large database for storing the information of each plant.

More research on real-time robotic disease 
identification systems is needed for the early treatment 
of disease and to avoid economic losses. Many image 
processing techniques have been developed to identify 
diseases using the visible symptoms exhibited by the 
plants (Sankaran et al., 2010). However, there is still 
lack of extensive research on real-time identification of 
diseases using a robotic platform (Zecha et al., 2013).

Data regarding current weather events such as wind 
speed can be measured before performing tasks such 
as harvesting or applying pesticides. If the weather 
conditions are not favorable, the task can be performed 
later when the weather improves. More weather- 
independent robots should be developed that can 
perform tasks in almost all weather conditions excluding 
severe weather such as a hailstorm or rain (Blackmore 
et al., 2007). A significant relationship exists between 
disease-causing pathogens and weather parameters 
such as rainfall, humidity, and cloudiness. An affordable 
disease forecasting model can be developed to predict 
disease occurrence, and these data can guide robots to 
prevent unwanted applications of pesticides in the field 
(Pavan et al., 2011; Kumar, 2014).

Harvesting is a difficult process that differs for 
each crop. A grain crops is harvested by stripping of 
the entire plant from the soil and extracting the grain. 
For horticultural crops, fruits or vegetables need to be 
harvested using a suitable manipulator and end effector. 
For example, in harvesting vegetables, the locations of 
the vegetables in three-dimensional space need to be 
determined by sensors, and a suitable path for both the 
mobile robot and the manipulator to reach the produce 
has to be selected without damaging the plant (Comba 
et al., 2010). Moreover, selective harvesting of the crops 
is required based on, for example, the ripening stage of 
the fruits or the size of the fruits, enabling the robot to 
pick only the quality fruits (Blackmore et al., 2007).

In the future, several small robots will be needed to 
perform various tasks in the fields. Each robot in a fleet 
must constantly communicate with the others to work 
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in harmony; the entire operation may be monitored 
by humans at a base station. Human interactions with 
robots should be minimized and should occur at a high 
level. A framework for integrating multiple robots for 
autonomous crop protection was proposed by Emmi 
et al. (2014). A master-slave configuration can be used 
to avoid obstacles and follow a path. A standardized 
architecture must be created for a fleet of agricultural 
robots capable of performing different operations.

Conclusions

An overview of recent contributions in the field of 
agricultural robots in open arable farming was provided 
in this review paper. Robots categorized based on their 
operation exhibit a common pattern of functions for 
executing a task, e.g., navigation, detection, action and 
occasionally mapping. The navigation function forms 
the primary requirement of a mobile robot to navigate 
through the field. Some of the robots described here 
need constant human intervention due to unreliable 
guidance systems and communication delays, and 
many lack-advanced intelligence, and adaptive systems 
for harsh environmental parameters. Detection requires 
the measurement of specific parameters using a suitable 
sensing methodology. Then, actions are taken using 
an automated farm implement attached to the mobile 
robot based on the parameter measurements. Uneven 
soil surfaces, unaffordable weather conditions, and the 
complex and delicate structure of the crops in arable 
farming contribute to erratic measurement errors 
and difficulty in developing a control mechanism to 
minimize the consequences of errors while performing 
a task. Improvements in the current technology with the 
fusion of multiple sensors and intelligent algorithms 
with an optimized control will yield better performance. 
New approaches in developing compact automated 
farm equipment using advanced scientific principles 
will reduce the size of the robots. Although mapping 
has been performed by few robots so far, it will become 
mandatory in the near future for the complete autonomy 
of agricultural robots. Complete autonomy in arable 
farming will change farming methods by eliminating a 
task or by adding a new task. Complete autonomy can 
be achieved by using multiple robot coordination among 
several ground-based mobile robots or a combination 
of ground and aerial mobile robots. The past several 
decades have proven to be a golden era in agricultural 
robotics research due to the continuously decreasing 
price of robotics components such as LIDAR sensors, 
and controllers, and ground-breaking technology in 
agricultural research, such as plant phenotyping and 
phytotechnology. Thanks to large capital investments 

from leading agricultural companies, universities and 
governments, rapid changes are expected to occur in 
the coming years, and successful, intelligent robotic 
technology is expected to be available in the commercial 
market.
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