
TRABAJO FIN DE MÁSTER

Optimización de funciones DC.
El algoritmo DCA

Presentado por:
Carlos Valverde Martín

Supervisado por:
DR. RAFAEL BLANQUERO BRAVO

DR. EMILIO CARRIZOSA PRIEGO

FACULTAD DE MATEMÁTICAS
Departamento de Estadística e Investigación Operativa

Sevilla, 21 de junio de 2017

Contents

1 Introduction 5

2 Preliminaries of Convex Analysis 7

3 DC Functions and DC Sets. Properties 11
3.1 DC Functions and DC Sets . 11
3.2 Properties of DC Functions . 15
3.3 Norm of a DC Function . 24
3.4 Non-uniqueness of DC Decomposition 27

4 DC Programming. The DCA Algorithm 29
4.1 Conjugate Functions and Properties 29
4.2 Duality in DC Programming . 36
4.3 Optimality Conditions for DC Programming 37

4.3.1 Global Optimality for DC Programming 37
4.3.2 Local Optimality for DC Programming 41

4.4 The DCA Algorithm . 43
4.4.1 Description of DCA for general DC programs 44
4.4.2 Convergence of DCA for general DC programs 46

4.5 Polyhedral DC optimization problems 55

5 Applications of DCA 61
5.1 The trust-region subproblem (TSRP) 61
5.2 Least-squares fitting by circles . 63

3

Chapter 1

Introduction

In recent years there has been a very active research in nonconvex programming, be-
cause most real life optimization problems are nonconvex. DC programming consti-
tutes the backbone of smooth/nonsmooth nonconvex programming and global opti-
mization.

The focus of this work is on DC Algorithm, which was first introduced by Pham
Dinh Tao in 1985 as an extension of his subgradients algorithms to DC programming.

This work is structured in four chapters apart from this introduction. In Chapter 2,
we provide the necessary theory about convex analysis. In Chapter 3, properties of DC
sets and DC functions are introduced. Then, in Chapter 4, DC Programming and DCA
are explained in detail. Finally, in Chapter 5, some applications of DCA are shown,
using Python to compare results with other algorithms.

5

Chapter 2

Preliminaries of Convex Analysis

In this chapter we state some properties of convex functions which will be needed
along this work. We can find all these properties in [7].

Definition 2.0.1. A set C ⊂ Rn is convex if ∀x1, x2 ∈ C and λ ∈ [0, 1] we have

(1− λ)x1 + λx2 ∈ C.

Definition 2.0.2. A polyhedral convex set C ⊂ Rn is a set which can be expressed as
the intersection of some finite collection of closed half-spaces, i.e., if C is of the form:

C = {x ∈ Rn : 〈bi, x〉 ≤ βi, i = 1, . . . ,m}.

Definition 2.0.3. Let M = {a1, . . . , am} ⊂ Rn be a finite point set. We define the
convex hull of M , denoted by co(M), as the smallest convex set that contains M .
Expressing as a single formula, the convex hull is the set:

co(M) =

{
m∑
i=1

λiai : λi ≥ 0, i = 1, . . . ,m,
m∑
i=1

λi = 1

}
.

Definition 2.0.4. Let f : C ⊂ Rn → R and C be a convex set. The function f is
convex if ∀x1, x2 ∈ C and λ ∈ [0, 1]:

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2).

Definition 2.0.5. A function f : C ⊂ Rn → R, where C is a convex set, is said to be
strictly convex if

f((1− λ)x1 + λx2) < (1− λ)f(x1) + λf(x2), ∀x1, x2 ∈ C, 0 < λ < 1. (2.1)

Definition 2.0.6. Let ρ ≥ 0 and C ⊂ Rn be a convex set. A function f : C ⊂ Rn → R
is ρρρ-convex if

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2)−
λ(1− λ)

2
ρ‖x1 − x2‖2,

7

8

for every x1, x2 ∈ C, 0 < λ < 1. We also define the modulus of strong convexity of
f on C, denoted by ρ(f, C) or ρ(f) if C = X as

ρ(f, C) = sup
ρ≥0

{
f − ρ

2
‖ · ‖2 is convex on C

}
.

Proposition 2.0.1. Let C ⊂ Rn be an open convex set. A twice differentiable function
f : C → R is convex if and only if for every x ∈ C, its Hessian matrix, ∇2f(x), is
positive semi-definite, i.e. u′∇2f(x)u ≥ 0,∀u ∈ Rn.

Definition 2.0.7. A convex function f : Rn → R ∪ {±∞} is proper if f(x0) < +∞
for at least one x0 ∈ Rn and f(x) > −∞ for every x ∈ Rn.

Definition 2.0.8. A norm ‖ · ‖ in Rn is said to be monotonic in Rn
+ if

‖x‖ ≤ ‖y‖ ∀x = (x1, . . . , xn), ∀y = (y1, . . . , yn), 0 ≤ xi ≤ yi, i = 1, . . . , n.

Definition 2.0.9. Given a norm ‖ · ‖, its dual norm, ‖ · ‖∗, is defined as:

‖x∗‖∗ = max
x∈B
{〈x∗, x〉}

where B denotes the unit ball of the norm ‖ · ‖.

Definition 2.0.10. A function γ : Rn → R is a gauge if there exists a closed convex
set B, called the unit ball of γ, with the origin in its interior such that

γ(x) = inf{t > 0 : x ∈ tB}, x ∈ Rn.

Remark 2.0.1. In particular, norms are those gauges with compact unit ball symmetric
with respect to the origin.

Definition 2.0.11. Given a non-empty convex set C, we define its polar set, C◦ as:

C◦ = {x ∈ Rn : 〈u, x〉 ≤ 1,∀u ∈ C}

Definition 2.0.12. Given a non-empty convex set C, we define its normal cone at
x ∈ C, NC(x) as:

NC(x) = {x∗ ∈ Rn : 〈x∗, x〉 ≥ 〈x∗, u〉 , ∀u ∈ C}

Definition 2.0.13. Let g : Rn → R and x ∈ Rn:

1. For given g ≥ 0, we define the set

∂εg(x) = {x∗ ∈ Rn : g(y) ≥ g(x) + 〈x∗, y − x〉 − ε, ∀y ∈ Rn}

to be the ε-subdifferential of g at x.
The elements of the ε-subdifferential are called ε-subgradients.

Chapter 2. Preliminaries of Convex Analysis 9

2. For ε = 0, ∂0g(x) is called subdifferential of g at x , and denoted ∂g(x). If
∂g(x) is not empty, g is said to be subdifferentiable at x. Besides, we will define

dom ∂g = {x ∈ Rn : ∂g(x) 6= ∅}

and
range ∂g =

⋃
x∈dom ∂g

∂g(x).

3. Let C0 denote the space of continuous real-valued functions on Rn. We call

∂γg(x) = {ψ ∈ C0 : g(y) ≥ g(x) + ψ(y)− ψ(x), ∀y ∈ Rn}

the γ-subdifferential of g at x.

Definition 2.0.14. Let f : Rn → R be an arbitrary function. The set

epi f = {(x, t) ∈ Rn × R : f(x)− t ≤ 0} (2.2)

is called the epigraph of f .

Definition 2.0.15. Let f : Rn → R a convex function. The effective domain of f ,
which we denote by dom f , is the set

dom f = {x ∈ Rn : f(x) < +∞}. (2.3)

Definition 2.0.16. A function ϕ : Rn → R is closed if for any closed set F ⊂ Rn the
image ϕ(F) is closed in R.

Definition 2.0.17. A function f : Rn → R is said to be lower semi-continuous if

f(x) ≤ lim
n→+∞

f(xn), (2.4)

for any sequence {xn}n≥1 ⊆ Rn that converges to x.

Chapter 3

DC Functions and DC Sets. Properties

3.1 DC Functions and DC Sets
Definition 3.1.1. Let C ⊂ Rn be a convex set. A function f : C → R is called DC in
C if there exist two convex functions g, h : C → R such that f can be expressed in the
form

f(x) = g(x)− h(x) (3.1)

If C = Rn, then f is called a DC function. Each representation of the form (3.1) is

said to be a DC decomposition of f .

We call a function f : Rn → R locally DC if ∀x0 ∈ Rn,∃ ε > 0 such that f is DC
in the ball B(x0, ε) = {x ∈ Rn : ‖x− x0‖ < ε}.

The class of DC functions is very broad, since it includes, in particular:

• Convex and concave functions.

• Quadratic functions of the form f(x) = x′Qx, where Q is a square matrix n×n.
For these functions there exist two square, positive semidefinite n × n matrices
A, B such that x′Qx = x′Ax− x′Bx, where g(x) = x′Ax and h(x) = x′Bx are
the convex functions that appear in the DC decomposition.

• Inner product: 〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2)

Definition 3.1.2. A set N ⊂ Rn is said to be a DC set if there exist convex functions
g, h : Rn → R such that N = {x ∈ Rn : g(x) ≤ 0, h(x) ≥ 0}.

11

12 3.1. DC Functions and DC Sets

Remark 3.1.1.

• Using the previous definition we can write N as follows N = A\B, where
A = {x ∈ Rn : g(x) ≤ 0} and B = {x ∈ Rn : h(x) < 0}.

• Since N = {x ∈ Rn : g(x) ≤ 0, h(x) ≥ 0} can be written as the set N = {x ∈
Rn : max [g(x),−h(x)] ≤ 0} one has that a DC set can also be defined by the
following DC inequality N = {x ∈ Rn : g(x)− h(x) ≤ 0}.

Surprisingly, DC sets are not so different from arbitrary closed sets ([1]), as shown
in Theorem 3.1.1 below. First, some definitions and results are needed.

Definition 3.1.3. Let h : Rn → R be a strictly convex function and F ⊂ Rn a
nonempty closed set. We define

d2(x) = inf
y∈F,x∗∈∂h(x)

[h(y)− h(x)− 〈x∗, y − x〉]

Lemma 3.1.1. Given a nonempty closed set F ⊂ Rn. We have:

1. d(x) = 0,∀x ∈ F .

2. d(x) > 0,∀x /∈ F.

3. If xk → x and d(xk)
k→∞−→ 0, then x ∈ F .

Definition 3.1.4. Let F be as in Lemma 3.1.1, let θ > 0 and r : Rn → R+ be any
function such that:

• r(x) = 0,∀x ∈ F

• 0 < r(x) ≤ min{θ, d(x)},∀x /∈ F

We define:
gF (x) = sup

y/∈F,x∗∈∂h(y)
{h(y) + 〈x∗, x− y〉+ r2(y)}

Proposition 3.1.1. Let h : Rn → R be any given strictly convex function. Then for
every closed set F ⊂ Rn the function gF (x) is closed, convex, finite everywhere and
satisfies

F = {x ∈ Rn : gF (x)− h(x) ≤ 0} (3.2)

Chapter 3. DC Functions and DC Sets. Properties 13

Proof:

For the proof, see [6].
�

Theorem 3.1.1. Any closed set in Rn is the projection on Rn of a DC set in Rn+1.

Proof:

From (3.2) it follows

F = {x ∈ Rn : gF (x)− h(x) ≤ 0} = {x : ∃ (x, t) ∈ Rn+1, gF (x) ≤ t, h(x) ≥ t}.

Therefore, we conclude that F is the projection of A\B ⊂ Rn+1, where A =
{(x, t) ∈ Rn+1 : gF (x) ≤ t} and B = {(x, t) ∈ Rn+1 : h(x) < t}.

�

As a consequence, we will now show that every optimization problem dealing with
DC functions, i.e. every DC optimization problem can be written as an optimization
problem which has a linear objective function and only two constraints, one of them
being a convex inequality, the other being reverse convex, that is to say, it is expressed
in the form h(x) ≥ 0, h being convex. This type of problem is called canonical DC
program. Obviously, both constraints can also be written as a DC set.

Let us study these results in more detail.

Definition 3.1.5. A canonical DC program is an optimization problem of the form
min c′x
s.t. g(x) ≤ 0

h(x) ≥ 0

where c ∈ Rn; g, h : Rn → R are convex.

Theorem 3.1.2. Every DC programming problem of the form
min f0(x)
s.t. x ∈ R

fi(x) ≤ 0 i = 1, . . . ,m
(3.3)

where R is defined by a finite system of convex inequalities ϕj(x) ≤ 0, for j ∈ J ⊂ N
and fi, i = 0, . . . ,m are DC functions with DC decompositions fi = gi − hi, i =
0, . . . ,m, can be converted into an equivalent canonical DC program.

14 3.1. DC Functions and DC Sets

Proof:

By introducing an additional variable t, we see that the previous problem is equiv-
alent to the following one:

min t
s.t. ϕj(x) ≤ 0, j ∈ J

fi(x) ≤ 0, i = 1, . . . ,m
f0(x)− t ≤ 0

Therefore, we have obtained a linear objective function. Furthermore the DC in-
equalities f0(x) − t ≤ 0 and fi(x) ≤ 0, i = 1, . . . ,m can be replaced by a single
one:

r(x, t) = max
i=1,...,m

(f0(x)− t, fi(x)) ≤ 0

We note that r(x, t) is a DC function, since we can write r(x, t) as

r(x, t) = max
{
g0(x) +

m∑
i=1

hi(x)− t, gi(x) +
∑
j 6=i

hj(x), i = 1, . . . ,m
}
−

m∑
i=0

hi(x)

and thus,
r(x, t) = p(x, t)− q(x, t) ≤ 0 (3.4)

where p(x, t) = max
{
g0(x) +

m∑
i=1

hi(x) − t, gi(x) +
∑
j 6=i

hj(x), i = 1, . . . ,m
}

and

q(x, t) =
m∑
i=0

hi(x) are convex.

If we now introduce a new additional real variable z, we see that (3.4) is equivalent
to the system:

p(x, t)− z ≤ 0

q(x, t)− z ≥ 0

The first inequality is convex and the second reverse convex.

Finally, setting the functions

g(x, t, z) := max
j∈J

(p(x, t)− z, ϕj(x)) and h(x, t, z) := q(x, t)− z,

we see that Problem (3.3) is transformed into an equivalent canonical DC program.

�

Chapter 3. DC Functions and DC Sets. Properties 15

Furthermore, as we have said before, a canonical problem can be written as an
optimization problem of the form {

min c′x
s.t. x ∈ N

where N = {x : g(x) ≤ 0, h(x) ≥ 0} is a DC set.

3.2 Properties of DC Functions

Let us now deal with some basic properties of DC functions:

Proposition 3.2.1. Let f and fi, i = 1, . . . ,m be DC functions. Then, the following
functions are also DC:

1.
m∑
i=1

λifi(x), λi ∈ R, i = 1, ...,m

2. max
i=1,...,m

fi(x)

3. min
i=1,...,m

fi(x)

4. |f(x)|

5. f+(x) := max{0, f(x)}

6. f−(x) := min{0, f(x)}

Proof:

Note that the results above will be proved constructively. Let us assume that
fi = gi − hi is a DC descomposition of fi, ∀i.

1.

∑
i

λifi =

(∑
i:λi≥0

λigi +
∑
i:λi<0

(−λi)hi

)
−

(∑
i:λi≥0

λihi +
∑
i:λi<0

(−λi)gi

)
= g̃(x)− h̃(x)

16 3.2. Properties of DC Functions

with

g̃(x) =
∑
i:λi≥0

λigi +
∑
i:λi<0

(−λi)hi and h̃(x) =
∑
i:λi≥0

(−λi)hi +
∑
i:λi<0

λigi

convex functions, because they are a linear combination of convex functions.

2. We know that fi(x) = gi(x)− hi(x) = gi(x) +
m∑
j=1
j 6=i

hj(x)−
m∑
j=1

hj(x).

Since the last sum does not depend on i, one has the following expression:

max
i=1,...,m

fi(x) = max
i=1,...,m

(gi(x)− hi(x)) =

= max
i=1,...,m

[
gi(x) +

m∑
j=1
j 6=i

hj(x)
]
−

m∑
j=1

hj(x) =

= g̃(x)− h̃(x),

where g̃(x) = max
i=1,...,m

[
gi(x) +

m∑
j=1
j 6=i

hj(x)
]

and h̃(x) =
m∑
j=1

hj(x). This is a DC

decomposition because the finite sum and the maximum of convex functions are
convex functions.

3. Analogously,

min
i=1,...,m

fi(x) = − max
i=1,...,m

−fi(x) = − max
i=1,...,m

(hi(x) − gi(x)), where gi and hi
are convex functions.

Hence, −fi is a DC function. Using item 2 we have max
i=1...m

−fi(x) is DC and

finally we obtain − max
i=1,...,m

−fi(x) = min
i=1,...,m

fi(x) is DC by item 1.

4. We study separately the cases f(x) ≥ 0 and f(x) < 0:

• Assume that g(x) ≥ h(x). Then

|f(x)| = |g(x)− h(x)| = g(x)− h(x) = 2g(x)− (g(x) + h(x)) =

= 2 max{g(x), h(x)} − (g(x) + h(x)).

Chapter 3. DC Functions and DC Sets. Properties 17

• In this case we have g(x) < h(x) so,

|f(x)| = |g(x)− h(x)| = h(x)− g(x) = 2h(x)− (g(x) + h(x)) =

= 2 max{g(x), h(x)} − (g(x) + h(x)).

Thus the DC decomposition of |f | is given by the following expression |f(x)| =
2 max{g(x), h(x)} − (g(x) + h(x)).

5. Applying item 2 to the functions f1(x) = 0 and f2(x) = f(x), we obtain

f+(x) = max{0, f(x)} = max{0, g(x)− h(x)} = max{g, h} − h.

Hence the DC decomposition for f+ is

max{0, g − h} = max{g, h} − h (3.5)

6. To prove that, we just use the same previous functions and item 3 to obtain

min{0, g − h} = g −max{g, h}

�

The next result states that any locally DC function is DC. To show this, a technical
result is needed, Proposition 3.2.2.

Proposition 3.2.2. Let g : C → R be any function defined on a convex set C. If
∀ x ∈ C, ∃U , neighbourhood of x such that g is convex on U ∩C, then g is convex on
C.

Proof:

For the proof, the reader is referred to [6].
�

Proposition 3.2.3. Every locally DC function is DC.

Proof:

In the general case, see [4].
�

Now, we give the proof for the particular case in whichD is assumed to be compact.

18 3.2. Properties of DC Functions

Proposition 3.2.4. A locally DC function on a compact convex set D is DC on D.

Proof:

D is a compact set, so there exist {x1, . . . , xk} ⊂ D such that the neighbour-
hoods of xi, Ui, cover D, ∀i. Thus, f is DC on each Ui and f = (f + hi) − hi, with
hi : R→ Rn convex on Ui, hence f + hi|Ui

is convex for each i.

Let h =
k∑
i=1

hi be a convex function and consider the function g = f + h.

Then g|Ui
= f + h|Ui

= f +
k∑
i=1

hi

∣∣∣∣
Ui

= f + hi|Ui
+
∑
j 6=i

hj

∣∣∣∣∣
Ui

is convex.

Therefore, by Proposition 3.2.2 one obtains that g is convex on D and implies that
f = g − h is DC.

�

Proposition 3.2.5. Every function f ∈ C2 is DC on any compact convex set D.

Proof:

It suffices to show that for sufficiently large ρ the function

g(x) = f(x) +
1

2
ρ‖x‖2

is convex on D.

Let ρ be so large that −min{u′∇2f(x)u : x ∈ D, ‖u‖ = 1} ≤ ρ.

Then:

u′∇2g(x)u = u′∇2(f(x) +
1

2
ρ‖x‖2)u = u′∇2f(x)u+ ρ‖u‖2 =

= u′∇2f(x)u+ ρ ≥ min{u′∇2f(x)u}+ ρ ≥ −ρ+ ρ = 0

Thus, u′∇2g(x)u ≥ 0,∀u. Hence, by Proposition 2.0.1, g is convex.

Therefore, f(x) = g(x)− 1
2
ρ‖x‖2 is a DC function.

�

Chapter 3. DC Functions and DC Sets. Properties 19

Proposition 3.2.6. Every function f ∈ C2 is DC.

Proof:

This proposition is merely a consequence of Proposition 3.2.3.

Let us fix x0 ∈ Rn and let consider the compact set

B(x0, ε) = {x ∈ Rn : ‖x− x0‖ ≤ ε}.

Since the lowest eigenvalue is continuous,∇2f(x) has the eigenvalues bounded in
the compact B(x0, ε).

Let be µ = −min{λ : λ is an eigenvalue of∇2f(x) for some x ∈ B(x0, ε)}.

As in the proof of Proposition 3.2.5 it then follows that f(x) + 1
2
µ‖x‖2 is convex

on B(x0, ε).

Hence, f(x) = (f(x) + 1
2
µ‖x‖2) − 1

2
µ‖x‖2, ∀x ∈ B(x0, ε), so f is DC on

B(x0, ε), ∀x0 ∈ Rn which implies that f is DC on Rn.

�

Proposition 3.2.7. LetD ⊂ Rn be a compact convex set. Then any continuous function
f on D is the limit of a sequence of DC functions on D which converges uniformly in
D, in other words, for any continuous function f : D ⊂ Rn → R and for any ε > 0
there exists a DC function f̃ : D ⊂ Rn → R such that |f(x)− f̃(x)| ≤ ε,∀x ∈ D.

Proof:

This proposition is a consequence of the Stone-Weierstrass Theorem and the Weier-
strass Approximation Theorem. Furthermore, polynomials in various variables in Rn

are dense on continuous functions space. Therefore, we can approximate any contin-
uous function f : D ⊂ Rn → Rn by a polynomial function which is obviously a C2

function and hence DC.

�

20 3.2. Properties of DC Functions

Proposition 3.2.8. Let D1 ⊂ Rn and D2 ⊂ Rm be convex sets such that D1 is open or
closed and D2 is open. If F1 : D1 → D2 and F2 : D2 → Rk are DC functions, then
F2 ◦ F1 : D1 → Rk is also a DC function.

Proof:

It suffices to show that if F = (f1, . . . , fm) : D1 → D2 is DC, where fi : D1 ⊂
Rn → R are DC ∀i = 1, . . . ,m and g : D2 → R is convex then g(f1, . . . , fm) is DC in
D1, because if we consider the DC function F2 = g+− g−, we have g+ ◦F and g− ◦F
are DC, so

F2 ◦ F = (g+ − g−) ◦ F = g+ ◦ F − g− ◦ F

is DC by Proposition 3.2.1.

Let x ∈ D1 and y = F (x) ∈ D2. It follows that g is a convex function, so g(y)
can be represented in a neighbourhood of y, U2, as pointwise supremum of a family of
affine functions:

g(y) = sup
t
`t,

where `t = a0t + a1ty1 + . . .+ amtym, y = (y1, . . . , ym) and M = sup
i,t
|ait| < +∞.

Let fi(x) = f+
i (x)− f−i (x) in a neighbourhood of x, U1, satisfying that F (U1) ⊂

U2.

Then,

`t(f1, . . . , fm) = a0t + a1tf1 + . . .+ amtfm =

= a0t +
m∑
i=1

aitfi =

= a0t +
m∑
i=1

ait(f
+
i − f−i) =

= a0t +
m∑
i=1

aitf
+
i −

m∑
i=1

aitf
−
i =

=
[
a0t +

m∑
i=1

(M + ait)f
+
i +

m∑
i=1

(M − ait)f−i
]
−M

m∑
i=1

(f+
i + f−i) =

= pt − q.

Chapter 3. DC Functions and DC Sets. Properties 21

with pt and q convex.

Therefore, g(f1, . . . , fm) = sup
t
`t(f1, . . . , fm) = sup

t
(pt − q) = p − q, i.e.

g(f1, . . . , fm) is locally DC on D1 and by Proposition 3.2.4, g ◦ F is DC on D1.

�

Proposition 3.2.9. Let fi, i = 1, ...,m be DC functions. Then
m∏
i=1

fi(x) is a DC function

too.

Proof:

It suffices to prove the result for two DC functions f1 and f2.

We consider the function

P : R2 → R
(s, t) 7→ P (s, t) = st

One has that P is a DC function with the following DC decomposition P (s, t) =
st = 1

4
(s + t)2 − 1

4
(s − t)2. Then using Proposition 3.2.8 we have that P (f1, f2) is a

DC function.

�

We build now a DC decomposition for a polynomial function.

Proposition 3.2.10. Let f(x) =
m∏
i=1

(x− yi) be, with y1 < . . . < ym. Then f is DC on

[y1, ym] with DC decomposition

f(x) =
(
f(x) +

1

2
µx2
)
− 1

2
µx2, (3.6)

where µ = m(m− 1)|ym − y1|m−2.

Proof:

For each i we have that x− yi is a affine function, so it is DC.

Furthermore using Proposition 3.2.9 we can affirm that f(x) =
m∏
i=1

(x − yi) is DC

and Proposition 3.2.6 gives us the expression in (3.6) since f is a polynomial and hence

22 3.2. Properties of DC Functions

a C2 function.

It just remains to calculate the value of µ that satisfies f ′′(x) + µ ≥ 0 (see proof of
Proposition 3.2.6):

We consider f(x) =
m∏
i=1

(x− yi). Then,

f ′(x) =
m∑
i=1

∏
j 6=i

(x− yj) =
m∑
i=1

f(x)

x− yi
= f(x)

(m∑
i=1

1

x− yi

)
and

f ′′(x) = f(x)
(m∑

i=1

(−1

(x− yi)2
))

+ f ′(x)
(m∑
i=1

1

x− yi

)
= f(x)

(m∑
i=1

(−1

(x− yi)2
))

+ f(x)
(m∑
i=1

1

x− yi

)2
= f(x)

(
−

m∑
i=1

(1

(x− yi)2
)

+
m∑
i=1

(1

(x− yi)2
)

+ 2
m∑

i,j=1
j 6=i

1

(x− yi)(x− yj)

)

= 2
m∑

i,j=1
j 6=i

f(x)

(x− yi)(x− yj)

= 2
m∑

i,j=1
j 6=i

∏
k 6=i,j

(x− yk)

Hence,

f ′′(x) = 2
m∑

i,j=1
j 6=i

∏
k 6=i,j

(x− yk) ≥ −2
m∑

i,j=1
j 6=i

∏
k 6=i,j

|x− yk| ≥ −2
m∑

i,j=1
j 6=i

∏
k 6=i,j

|ym − y1| =

−2
m∑

i,j=1
j 6=i

|ym − y1|m−2 = −2

(
m

2

)
|ym − y1|m−2 = −m(m− 1)|ym − y1|m−2

Thus, µ = m(m− 1)|ym − y1|m−2.

�

Chapter 3. DC Functions and DC Sets. Properties 23

Corollary 3.2.1. Let f(x) = −
m∏
i=1

(x− yi) be, with y1 < . . . < ym. Then f is DC with

DC decomposition

f(x) =
1

2
µx2 −

(
f(x) +

1

2
µx2
)
,

where µ = m(m− 1)|ym − y1|m−2.
As application, we will show that the following statements can be rewritten as a

DC set:

• xj ∈ Z

• Lj ≤ xj ≤ Uj

∀j ∈ J , where J is a set of subscripts.

These two statements are equivalents to:

(xj − Lj)(xj − (Lj + 1)) . . . (xj − (Uj − 1))(xj − Uj) = 0⇔

⇔
{

(xj − Lj)(xj − (Lj + 1)) . . . (xj − (Uj − 1))(xj − Uj) ≤ 0
(xj − Lj)(xj − (Lj + 1)) . . . (xj − (Uj − 1))(xj − Uj) ≥ 0

⇔

⇔
{
F1(xj) := (xj − Lj)(xj − (Lj + 1)) . . . (xj − (Uj − 1))(xj − Uj) ≤ 0
F2(xj) := −(xj − Lj)(xj − (Lj + 1)) . . . (xj − (Uj − 1))(xj − Uj) ≤ 0

F1(xj) and F2(xj) are the type of functions that appear in Proposition 3.2.10 and
Corollary 3.2.1.

So, the DC set will be expressed as:{
xj ∈ Z, ∀j ∈ J, where J is a set of subscripts.
Lj ≤ xj ≤ Uj.

}
⇔

⇔
{
xj :

(
F1(xj) +

1

2
µx2j

)
− 1

2
µx2j ≤ 0

}⋂{
xj :

1

2
µx2j −

(
F2(xj) +

1

2
µx2j

)
≤ 0
}
,

where µ has the following expression as we have stated in Proposition 3.2.10 and
Corollary 3.2.1:

µ = (Uj − Lj + 1)(Uj − Lj)|Uj − Lj|Uj−Lj−1.

24 3.3. Norm of a DC Function

3.3 Norm of a DC Function
Below, we will see some results that allow us to give a DC decomposition of the norm
of f , ‖f‖, where f is a DC function. These results are based on the Definitions 2.0.8,
2.0.9, 2.0.10 and 2.0.11 that appear in Chapter 2.

Lemma 3.3.1. Let the norm ‖ · ‖ be monotonic in Rn
+. Then

‖z‖ = max
u∈Rn

+

{〈u, z〉 : ‖u‖∗ ≤ 1} ∀z ∈ Rn
+ (3.7)

Proof:

First at all, observe that (‖ · ‖∗)∗ = ‖ · ‖, and hence, by definition we have

(‖z‖∗)∗ = ‖z‖ = max
u∈Rn
{〈u, z〉 : ‖u‖∗ ≤ 1} ∀z ∈ Rn,

the optimal value for the optimization problem being attained at any u, subgradient
of ‖ · ‖ at z.

Thus, it suffices to prove that for any z ∈ Rn
+, there exists some non-negative

subgradient, i.e.

∂‖z‖ ∩ Rn
+ 6= ∅ ∀z ∈ Rn

+ (3.8)

Let z ∈ Rn
+,

• Assume that z has all its components strictly positive. Let u ∈ ∂‖z‖. For
any i = 1, . . . , n, let ei the unit vector with 1 in its i-th coordinate and zeroes
everywhere else. For τ > 0 sufficiently small, by the monotonicity of ‖ · ‖ and
the definition of subgradient, one has

0 ≥ ‖z − τei‖ − ‖z‖ ≥ −τu′ei

Thus, u ≥ 0 and (3.8) holds.

• Now, for an arbitrary z ∈ Rn
+, take a sequence {zk} of componentwise strictly

positive vectors converging to z, and, for each k, an arbitrary uk ∈ ∂‖zk‖.

Reasoning analogously as before, uk ≥ 0, ∀ k. Moreover, the sequence {uk}
is contained in a compact set, the dual unit ball, so it contains a subsequence
converging to some u, which, by construction, is a non-negative subgradient of
‖ · ‖ at z.

Hence, (3.8) holds.

Chapter 3. DC Functions and DC Sets. Properties 25

�

Lemma 3.3.2. Let C ⊂ Rn be a convex set. Let γ : Rm → R be a gauge in Rm with
unit ball B, such that B◦ ⊂ Rm

+ . Let f = (f1, . . . , fm) : C → Rm be a DC function
with DC decomposition known fi = gi − hi, with gi, hi convex. For any i = 1, . . . ,m,
let Mi ≥ γ(ei), where ei is the i-th unit vector of Rm. Then, γ ◦ f : C → R is a DC
function and a DC decomposition for it is given by:

γ ◦ f =
(
γ ◦ f +

m∑
i=1

Mihi

)
−
(m∑
i=1

Mihi

)
Proof:

First, observe that a finite Mi ≥ γ(ei) can be chosen, since the origin is an interior
point of B and, hence, the polar set B◦ ⊂ Rm

+ is bounded.

By Theorem 14.5 of [7], every gauge γ in Rm can be written as a pointwise maxi-
mum of the affine functions ϕu,

γ(y) = max
u∈B◦

ϕu(y), ∀ y ∈ Rm
+

where ϕu(y) = 〈u, y〉.

Then,

ϕu(f) = 〈u, f〉 =
m∑
i=1

uifi =
m∑
i=1

ui(gi − hi) =
m∑
i=1

uigi −
m∑
i=1

uihi =

=
(m∑
i=1

uigi +
m∑
i=1

(Mi − ui)hi
)
−
(m∑
i=1

Mihi

)
Since Mi ≥ γ(ei) = max

u∈B◦
ui it follows that ϕu ◦ f can be written as the difference

of two convex functions, namely ϕu ◦ f = pu − q where

pu =
m∑
i=1

uigi +
m∑
i=1

(Mi − ui)hi and

q =
m∑
i=1

Mihi

Therefore,

26 3.3. Norm of a DC Function

γ ◦ f = max
u∈B◦

ϕ(f1, . . . , fm) = max
u∈B◦

(pu − q) =
(

max
u∈B◦

pu

)
− q =

=
(

max
u∈B◦

(ϕu ◦ f + q)
)
− q =

(
max
u∈B◦

(ϕu ◦ f) + q
)
− q =

= (γ ◦ f + q)− q

and the result holds.

For more details of this proof, see [2].

�

Theorem 3.3.1. Let the norm ‖ · ‖ be monotonic in Rm
+ , and let define f : Rn → Rm

+

as a non-negative DC function on the convex set C ⊂ Rn, with DC decomposition
f = g − h. Then a DC decomposition on C for ‖f‖ is given by

‖f‖ = ‖g − h‖ =
(
‖g − h‖+

m∑
i=1

‖ei‖hi
)
−
(m∑
i=1

‖ei‖hi
)
,

where, for each i = 1, . . . ,m, ei is the unit vector with 1 in its i−th coordinate and
zeroes everywhere else.

Proof:

Let γ be the gauge in Rm defined as

γ(z) = max
u∈Rm

+

{〈u, z〉 : ‖u‖∗ ≤ 1}, ∀z ∈ Rm

Let B‖·‖ denote the unit ball of ‖ · ‖. Observe that

(B◦‖·‖ ∩ Rm
+)◦ = {x ∈ Rm : 〈u, x〉 ≤ 1,∀u ∈ Rm

+ ∩B◦‖·‖} =

= {x ∈ Rm : 1 ≥ max
u∈Rm

+

{〈u, x〉 : ‖u‖∗ ≤ 1}} =

= {x ∈ Rm : 1 ≥ γ(x)} =

= Bγ

Hence B◦γ = (B◦‖·‖ ∩ Rm
+)◦◦ = B◦‖·‖ ∩ Rm

+ ⊂ Rm
+ , so Lemma 3.3.2 can be applied,

taking Mi = γ(ei), i = 1, . . . ,m. We conclude that γ ◦ f is a DC function with the
following DC decomposition:

γ ◦ f =
(
γ ◦ (g − h) +

m∑
i=1

γ(ei)hi

)
−
(m∑
i=1

γ(ei)hi

)

Chapter 3. DC Functions and DC Sets. Properties 27

By Lemma 3.3.1 ‖z‖ = γ(z), ∀z ≥ 0 and therefore, since f is non-negative on C,
‖f‖ = γ(f) = γ ◦ f on C.

Thus, ‖f‖ is DC with this DC decomposition on C:

‖f‖ = ‖g − h‖ =
(
‖g − h‖+

m∑
i=1

‖ei‖hi
)
−
(m∑
i=1

‖ei‖hi
)
.

�

Theorem 3.3.1 is valid for non-negative functions f . In arbitrary functions we have
the following result of the norm of f :

Proposition 3.3.1. Let ‖ · ‖ be any norm in Rm, let be C a convex set and let define
f : C ⊂ Rn → Rm as a DC function with DC decomposition f = g − h. Then a DC
decomposition on C for ‖f‖ is given by:

‖f‖ = ‖g − h‖ =
(
‖g − h‖+

m∑
i=1

Mi(gi + hi)
)
−
(m∑
i=1

Mi(gi + hi)
)
, (3.9)

where, for each i = 1, . . . ,m, ei is the unit vector with 1 in its i−th coordinate and
zeroes everywhere else, and Mi is an arbitrary constant satisfying that Mi ≥ ‖ei‖.
Proof:

For the proof of this result the reader is referred to [2].

�

3.4 Non-uniqueness of DC Decomposition
Proposition 3.4.1. If f is a DC function, then there are infinitely many DC decompo-
sitions.

Proof:

If we have a DC decomposition of f , f = g − h, with g and h convex, another
DC decomposition is obtained just adding a convex term, φ, since the sum of convex
functions is also convex. This way, f = (g + φ)− (h+ φ).

�

Chapter 4

DC Programming. The DCA
Algorithm

In this chapter, we are going to study both unconstrained and constrained DC optimiza-
tion problems. We are giving an algorithm called DCA to solve this problem. Before
this, we need to introduce some concepts and prove some results to understand this
algorithm. We consider the Hilbert space X = Rn with the inner product 〈·, ·〉 and the
corresponding Euclidan norm ‖ · ‖. Since X is a finite-dimensional vector space, its
dual X∗ can be identified with X itself.

4.1 Conjugate Functions and Properties
In this section, we are studying conjugate functions, which play an important role in
duality.

Notation 4.1.1. We denote Γ0(X) the set of all lower semicontinuous proper convex
functions on X .

Definition 4.1.1. Let g ∈ Γ0(X), the conjugate function g∗ is a function defined by

g∗(x∗) = sup
x∈X
{〈x∗, x〉 − g(x)}.

Examples 4.1.1. Now, we show some examples of conjugate functions of familiar func-
tions:

1. Let g(x) = mx+ n, x ∈ R. Its conjugate function is

g∗(x∗) = sup
x∈R
{〈x∗, x〉 − (mx+ n)}.

Let denote h(x) = 〈x∗, x〉 − (mx + n). Then, we have that h is differentiable.
Computing the derivative, we obtain h′(x) = x∗−m. Therefore, we have that the

29

30 4.1. Conjugate Functions and Properties

supremum is attained when x∗ = m, i.e, g∗(m) = −n. If x∗ > m, h(x)→ +∞
when x→ +∞. If x∗ < m, h(x)→ +∞ when x→ −∞.

In summary, we have:

g∗(x∗) =
{ −n, if x∗ = m,

+∞, otherwise.

2. Let g(x) = 1
2
x′x, x ∈ X . Its conjugate function is

g∗(x∗) = sup
x∈X
{〈x∗, x〉 − 1

2
x′x}.

If we denote h(x) = 〈x∗, x〉 − 1
2
x′x, we have a differentiable function. Then, we

have∇h(x) = 1
2
(x∗ − x) = 0 that implies x̂ = x∗ is a maximum.

It follows that

g∗(x∗) = sup
x∈X

h(x) = h(x̂) = 〈x∗, x̂〉 − 1

2
x̂′x̂ = 〈x∗, x∗〉 − x∗

′
x∗

2
=
x∗
′
x∗

2
.

Then, we have g∗ ≡ g in X .

3. Let g(x) = ‖x‖, x ∈ X . We recall that

g∗(y) = sup
x∈X
{〈x∗, x〉 − g(x)} = sup

x∈X
{〈x∗, x〉 − ‖x‖}.

We have two cases:

• If ‖x∗‖∗ ≤ 1, then

〈x∗, x〉 ≤ ‖x∗‖∗‖x‖ ≤ ‖x‖, ∀x ∈ X.

Therefore, g∗(x∗) ≤ 0, ∀x ∈ X , in particular, for x = 0, we have the
equality. Hence, g∗(x∗) = 0, ∀x∗ with ‖x∗‖∗ ≤ 1.

• If ‖x∗‖∗ > 1, there exists an x0 with ‖x0‖ ≤ 1 and 〈x∗, x〉 > 1. Then,

g∗(x∗) = sup
x∈X
{〈x∗, x〉 − ‖x‖}

≥ sup
λ>0
{〈x∗, λx0〉 − ‖λx0‖}

= sup
λ>0

λ(〈x∗, x0〉 − ‖x0‖) = +∞.

In summary, we have:

‖x∗‖∗ =
{ 0, if ‖x∗‖∗ ≤ 1,

+∞, otherwise.

Chapter 4. DC Programming. The DCA Algorithm 31

Proposition 4.1.1. The conjugate function g∗ has the following properties:

1. (Young’s inequality) g(x) + g∗(x∗) ≥ 〈x∗, x〉, ∀x, x∗ ∈ X .

2. g∗(0) = − infx∈X g(x).

3. If f ≤ g then g∗ ≤ f ∗.

4. (supi∈I gi)
∗ ≤ infi∈I g

∗
i and (infi∈I gi)

∗ ≥ infi∈I g
∗
i .

5. (λg)∗(x∗) = λg∗
(

1

λ
x∗
)
, ∀λ > 0.

6. If we consider the translation function gα(x) = g(x − α), α, x ∈ X . We have
g∗α(x∗) = g∗(x∗) + 〈x∗, α〉.

Proof:

1. g∗(x∗) = supx∈X{〈x∗, x〉 − g(x)} ≥ 〈x∗, x〉 − g(x), ∀x, x∗ ∈ X. Hence, we
have the Young’s inequality.

2. g∗(0) = supx∈X{〈0, x〉 − g(x)} = supx∈X{−g(x)} = − infx∈X{g(x)}.

3. g∗(x∗) = supx∈X{〈x∗, x〉 − g(x)} ≥ supx∈X{〈x∗, x〉 − f(x)} = f ∗(x∗).

4. We have

(sup
i∈I

gi)
∗(x∗) = sup

x∈X
{〈x∗, x〉 − sup

i∈I
gi(x)}

≤ sup
x∈X
{〈x∗, x〉 − gi(x)} = g∗i (x

∗), ∀i ∈ I, ∀x∗ ∈ X.

Therefore, (supi∈I gi)
∗ ≤ infi∈I g

∗
i . We can obtain analogously the other in-

equality.

5. If λ > 0, we have

(λg)∗(x∗) = sup
x∈X
{〈x∗, x〉−λg(x)} = λ sup

x∈X

{〈
x∗

λ
, x

〉
− g(x)

}
= λg∗

(
x∗

λ

)
.

6. Let α ∈ X . Then, we obtain

g∗α(x∗) = sup
x∈X
{〈x∗, x〉 − gα(x)}

= sup
x∈X
{〈x∗, x− α〉 − g(x− α)}+ 〈x∗, x〉 = g∗(x∗) + 〈x∗, α〉.

32 4.1. Conjugate Functions and Properties

�

Theorem 4.1.1 (Hahn-Banach separation theorem in Rn). If C ⊂ Rn closed and con-
vex and x0 /∈ C, then there exists x∗ ∈ X, x∗ 6= 0 that strictly separates C and x0, i.e.
there is a c ∈ R such that 〈x∗, x〉 < c, ∀x ∈ W and 〈x∗, x0〉 > c.

Now, we are going to use this main theorem to prove next result.

Theorem 4.1.2. The conjugate function g∗ of g ∈ Γ0(X) is in Γ0(X).

Proof:

• g∗ is convex Let x∗1, x
∗
2 ∈ X and λ ∈ [0, 1]. We have

g∗(λx∗1 + (1− λx∗2)) = sup
x∈X
{〈λx∗1 + (1− λ)x∗2, x〉 − g(x)}

≤λ sup
x∈X
{〈x∗1, x〉 − g(x)}+ (1− λ) sup

x∈X
{〈x∗2, x〉 − g(x)}

≤λg∗(x∗1) + (1− λ)g∗(x∗2).

• g∗ is lower semicontinuous Let be x∗n → x∗. From the Young’s inequality, we
have:

g∗(x∗) + g(x) ≥ 〈x∗, x〉, ∀x, x∗ ∈ X.

In particular,
g∗(x∗n) ≥ 〈x∗n, x〉 − g(x), ∀x ∈ X.

Then follows

lim inf
n→+∞

g∗(x∗n) ≥ lim inf
n→+∞

〈x∗n, x〉 − g(x) = 〈x∗, x〉 − g(x), ∀x ∈ X.

Hence
lim inf
n→+∞

g∗(x∗n) ≥ sup
x∈X
{〈x∗, x〉 − g(x)} = g∗(x∗),

so we have that g∗ is lower semicontinuous.

• g∗ is proper We have g ∈ Γ0(X), in particular, g is a convex proper function.

1. g∗(x∗) > −∞, ∀x∗ ∈ X. Because of g is proper, there exists x ∈ X such
that g(x) <∞. Therefore

g∗(x∗) = sup
x∈X
{〈x∗, x〉 − g(x)} ≥ 〈x∗, y〉 − g(y) > −∞, ∀x∗ ∈ X.

Chapter 4. DC Programming. The DCA Algorithm 33

2. g∗ 6≡ +∞. Let C = epi g which is a closed convex set. For any c > 0 and
y ∈ X such that f(y) <∞ holds (y, g(y)− c) /∈ C because

g(y)− (g(y)− c) = c > 0.

Then, applying Separation Theorem 4.1.1 to C and x0 = (y, g(y)− c). We
obtain some (x∗, α) ∈ X × R such that

〈x∗, x〉+ αt = 〈(x∗, α), (x, t)〉
< 〈(x∗, α), x0〉 = 〈x∗, y〉+ α(g(y)− c), ∀(x, t) ∈ C.

Let see that α < 0.

– If α > 0, the left-hand side tends to +∞ when t → +∞ that contra-
dicts the relation.

– If α = 0, we would have 〈x∗, y〉 < 〈x∗, x〉 , ∀x ∈ dom g. But it is also
a contradiction because y ∈ dom g.

Dividing by −α and setting x∗1 := x∗

−α and t := g(x), we obtain

〈x∗1, x〉 − g(x) < 〈x∗1, y〉 − g(y) + c, ∀x∗ ∈ dom g.

Taking supremum in this expression, we obtain that

g∗(x∗1) = sup
x∈X
{〈x∗1, x〉 − g(x)} ≤ 〈x∗1, y〉 − g(y) + c < +∞.

Therefore, g∗ ∈ Γ0(X) as we wanted to prove. �

Remark 4.1.1. It is not necessary that g ∈ Γ0(X) to prove that g∗ is convex and lower
semicontinuous. However, g must be in Γ0(X) to see that it is proper.

Now, we introduce the concept of biconjugate of a function which is the following

Definition 4.1.2. Let g∗ ∈ Γ0(X), the biconjugate function g∗∗ is a function defined
by

g∗∗(x) = sup
x∗∈X
{〈x∗, x〉 − g∗(x∗)}.

Examples 4.1.2. Now, we are going to compute the biconjugate of the functions from
examples 4.1.1:

1. Let g∗(x∗) defined by

g∗(x∗) =
{ −n, if x∗ = m,

+∞, otherwise.

It follows g∗∗(x) = supx∗∈X{〈x∗, x〉 − g∗(x∗)} = mx + n, ∀x ∈ R. Therefore
g∗∗ ≡ g.

34 4.1. Conjugate Functions and Properties

2. From the second example, we obtained that g∗ ≡ g. Then, it is obvious that
g∗∗ ≡ g∗ ≡ g.

3. Let g∗(x∗) from the third example, which is defined by

‖x∗‖∗ =
{ 0, if ‖x∗‖∗ ≤ 1,

+∞, otherwise.

Then, we have g∗∗(x) = supx∗∈X{〈x∗, x〉−g∗(x∗)} = maxx∗∈X{〈x∗, x〉 , ‖x∗‖∗ ≤
1}. Consequently, we conclude that g∗∗ ≡ g, namely, ‖ · ‖∗∗ ≡ ‖ · ‖.

All of the examples above are functions in Γ0(X). All these functions have the
property that their biconjugates are themselves. This result will be proved in the next
theorem.

Theorem 4.1.3. If g ∈ Γ0(X), then g∗∗ ≡ g.

Proof:

We must prove that g∗∗(x) ≤ g(x) and g∗∗(x) ≥ g(x), for every x ∈ X .

• g∗∗ 5 g Using the Young’s inequality it follows

g∗∗(x) = sup
x∗∈X
{〈x∗, x〉 − g∗(x∗)} ≤ sup

x∗∈X
{〈x∗, x〉 − 〈x∗, x〉+ g(x)} = g(x).

• g∗∗ = g We have 2 cases:

– Suppose that y /∈ dom g∗∗, i.e. g∗∗(y) = ∞. Since g ∈ Γ0(X), because
of Theorem 4.1.2 g∗ ∈ Γ0(X) and g∗∗ too. In particular, g∗∗ is a proper
function. Therefore, we have∞ = g∗∗(y) ≥ g(y).

– Now, let be y ∈ dom g∗∗ and suppose that g(y) > g∗∗(y). We define
c := 1

2
(g(y)− g∗∗(y)) > 0 and C = epi g. Then (y, g(y)− c) /∈ C because

g(y)− (g(y)− c) = c > 0.

Therefore, arguing as we did in Theorem 4.1.2, we can say that there exists
x∗1 ∈ X such that

g∗(x∗1) ≤ 〈x∗1, y〉 − g(y) +
1

2
(g(y)− g∗∗(y)).

Using Young’s inequality with g∗∗, we obtain

〈x∗1, y〉 − g∗∗(y) ≤ g∗(x∗1) ≤ 〈x∗1, y〉 −
1

2
g(y)− 1

2
g∗∗(y).

Therefore, g(y) ≤ g∗∗(y), which is a contradiction.

Chapter 4. DC Programming. The DCA Algorithm 35

Therefore, g∗∗ ≡ g.
�

Now, we are going to get assertions which relates subdifferentials with conjugate
functionals.

Theorem 4.1.4. Let be a function g and its conjugate g∗ in X . Then for every x ∈ X ,
x∗ ∈ ∂g(x) if and only if g(x) + g∗(x∗) = 〈x∗, x〉 .

Proof:

=⇒ Let x∗ ∈ ∂g(x). Then we have that

g(y)− g(x) ≥ 〈x∗, y − x〉 , ∀y ∈ X.

This expression is equivalent to

〈x∗, x〉 − g(x) ≥ 〈x∗, y〉 − g(y), ∀y ∈ X.

Taking supreme in the equation above, we obtain

〈x∗, x〉 − g(x) ≥ sup
x∈X
{〈x∗, x〉 − g(x)} = g∗(x∗).

On the other hand, because of Young’s we have 〈x∗, x〉 − g(x) ≤ g∗(x∗). In summary,

g(x) + g∗(x∗) = 〈x∗, x〉 .

⇐= Suppose that g(x) + g∗(x∗) = 〈x∗, x〉 for some x, x∗ ∈ X . Then

〈x∗, x〉 − g(x) = g∗(x∗) = sup
x∈X
{〈x∗, x〉 − g(x)} ≥ 〈x∗, y〉 − g(y), ∀y ∈ X.

Hence
g(y)− g(x) ≥ 〈x∗, y − x〉 , ∀y ∈ X

which is equivalent to say that x∗ ∈ ∂g(x).
�

Theorem 4.1.5. Let be g ∈ Γ0(X). Then x∗ ∈ ∂g(x) if and only if x ∈ ∂g∗(x∗).

We recall that

∂g∗ε (x
∗) = {x ∈ Rn : g∗(y∗) ≥ g∗(x∗) + 〈y∗ − x∗, x〉 − ε, ∀y∗ ∈ Rn}.

Proof:

36 4.2. Duality in DC Programming

=⇒ Let be x∗ ∈ ∂g(x). Using Young’s inequality we obtain that

g∗(y∗) ≥ 〈y∗, x〉 − g(x).

Besides, Theorem 4.1.4 yields that g(x) = 〈x∗, x〉−g∗(x∗). Combining both equations,
we have

g∗(y∗) ≥ 〈y∗, x〉 − g(x) = g∗(x∗) + 〈y∗ − x∗, x〉 ,

i.e x ∈ ∂g∗(x∗).
⇐= Let be x ∈ ∂g∗(x∗). Arguing as we did above, we obtain that x∗ ∈ ∂g∗∗(x).

Since g ∈ Γ0(X), Theorem 4.1.3 yields g∗∗ ≡ g. Therefore, we have x∗ ∈ ∂g(x).

�

4.2 Duality in DC Programming

Let be (P) the following primal problem:

(P) inf
x∈X
{g(x)− h(x)}.

Remark 4.2.1. If the optimal solution of (P) is finite, then dom g ⊂ dom h.

In this section, we will give the dual problem (D) of the primal problem (P) using
conjugate functions which we have seen before.

Remark 4.2.2. If h ∈ Γ0(X) in (P) then the dual problem (D) is well defined and its
formulation is

(D) inf
x∗∈X
{h∗(x∗)− g∗(x∗)}.

Since h ∈ Γ0(X), we have that h∗∗ ≡ h, i.e

h(x) = sup
x∗∈X
{〈x∗, x〉 − h∗(x∗)}, ∀x ∈ X.

Chapter 4. DC Programming. The DCA Algorithm 37

Replacing this equality in (P)

inf
x∈X
{g(x)− h(x)} = inf

x∈X

{
g(x)− sup

x∗∈X
{〈x∗, x〉 − h∗(x∗)}

}
= inf

x∈X

{
g(x) + inf

x∗∈X
{h∗(x∗)− 〈x∗, x〉}

}
= inf

x∈X
inf
x∗∈X

{g(x) + h∗(x∗)− 〈x∗, x〉}

= inf
x∗∈X

inf
x∈X
{g(x) + h∗(x∗)− 〈x∗, x〉}

= inf
x∗∈X

{
h∗(x∗) + inf

x∈X
{g(x)− 〈x∗, x〉}

}
= inf

x∗∈X

{
h∗(x∗)− sup

x∈X
{〈x∗, x〉 − g(x)}

}
= inf

x∗∈X
{h∗(x∗)− g∗(x∗)}

Then, it makes sense the dual problem (D) of (P)

(D) inf
x∗∈X
{h∗(x∗)− g∗(x∗)},

as we wanted to see.

Remark 4.2.3. Arguing as we did above, we can say that the dual problem of (D) is
exactly (P). Besides, if we have a solution x of (P), then both problems have the same
solution x.

4.3 Optimality Conditions for DC Programming
In this section we are studying optimality conditions which will give us a way to know
when a point is an optimal solution. We are considerating both global and local opti-
mality conditions.

4.3.1 Global Optimality for DC Programming

Theorem 4.3.1 gives a characterization of optimal solutions in term of ε−subdifferentials
and γ−subdifferentials (See [3]). To prove it we refer to the Definitions 2.0.13 and
2.0.14 in Chapter 2.

Notation 4.3.1. We will denote P and D the solution sets of problems (P) and (D),
respectively.

38 4.3. Optimality Conditions for DC Programming

Lemma 4.3.1. A point x ∈ P if and only if

epi g ⊂ epi h (4.1)

where g(y) = g(y)− (g(x)− h(x)).

Proof:

For the details of the proof, we refer to [5].

�

Theorem 4.3.1. Let g, h : X → R be convex functions and let be x ∈ X . Then the
following statements are equivalent:

1) x ∈ P .

2) ∂γh(x) ⊆ ∂γg(x).

3) ∂εh(x) ⊆ ∂εg(x),∀ε > 0.

Proof:

1)⇒ 2)

By assumption we have that g(x)− h(x) ≤ g(y)− h(y),∀y ∈ X . Thus,

g(y)− g(x) ≥ h(y)− h(x), ∀x ∈ X.

Let consider ψ ∈ ∂γh(x). Then

h(y) ≥ h(x) + ψ(y)− ψ(x), ∀y ∈ X

and so
h(y)− h(x) ≥ ψ(y)− ψ(x), ∀y ∈ X.

Therefore, g(y)− g(x) ≥ h(y)− h(x) ≥ ψ(y)−ψ(x),∀y ∈ X . Then ψ ∈ ∂γg(x)
and 2) holds.

2)⇒ 3)

Let ε ≥ 0 and x∗ ∈ ∂εh(x) be given. We have to show that x∗ ∈ ∂εg(x).

As x∗ ∈ ∂εh(x) we have h(y) ≥ h(x) + 〈x∗, y − x〉 − ε, ∀y ∈ X.

Chapter 4. DC Programming. The DCA Algorithm 39

We now choose an arbitrary x∗ ∈ ∂h(x) and let define the function

ψ(y) = sup{〈x∗, y − x〉 − ε, 〈x∗, y − x〉}, ∀y ∈ X.

Clearly, ψ(x) = 0 and h(y) ≥ h(x) + 〈x∗, y − x〉 , ∀y ∈ X.

Therefore, h(y) − h(x) ≥ ψ(y) so h(y) − h(x) ≥ ψ(y) − ψ(x) and ψ ∈ ∂γh(x).
Then, by assumption ψ ∈ ∂γg(x) and hence satisfies that

g(y) ≥ g(x) + ψ(y)− ψ(x) = g(x) + ψ(y) ≥ g(x) + 〈x∗, y − x〉 − ε.

Hence, x∗ ∈ ∂εg(x).

3)⇒ 1)

We prove this implication by contradiction.

Suppose that x 6∈ P . By Lemma 4.3.1 this is equivalent to say that ∃x0 ∈ X such
that (x0, g(x0)) /∈ epi h.

Since epi h is a closed convex set, by Theorem 4.1.1 there exists a nonvertical
hyperplane separating the point (x0, g(x0)) from epi h, that is to say, ∃x∗ ∈ X , c ∈ R
such that:

h(y) ≥ 〈x∗, y − x〉 − c, ∀y ∈ X
Hence,

(x0, g(x0)) /∈ epi h⇒
{

x0 /∈ Rn ⇒ h(x0) < 〈x∗, x0 − x〉 − c
h(x0) > g(x0)

}
⇒

⇒ g(x0) = g(x0)− (g(x)− h(x)) < h(x0) < 〈x∗, x0 − x〉 − c.

Let ε = c + h(x). One has ε ≥ 0 because x ∈ X by assumption and h(x) ≥
〈x∗, x− x〉 − c = −c⇒ h(x) + c ≥ 0.

Then, we have:

h(y) ≥ 〈x∗, y − x〉 − c⇒ h(y) ≥ h(x) + 〈x∗, y − x〉 − ε, ∀x ∈ X

and

g(x0)− g(x) + h(x) < 〈x∗, x0 − x〉 − c, in other words that means,

g(x0) < g(x)− h(x) + 〈x∗, x0 − x〉 − c.

40 4.3. Optimality Conditions for DC Programming

Hence, g(x0) < g(x)+ 〈x∗, x0 − x〉−ε which implies that 3) does not hold, which
is a contradiction.

�

Remark 4.3.1. By the symmetry of the DC duality, Theorem 4.3.1 has its dual coun-
terpart, i.e., the following statements are equivalent:

1) x∗ ∈ D.

2) ∂γg∗(x∗) ⊆ ∂γh∗(x∗).

3) ∂εg
∗(x∗) ⊆ ∂εh

∗(x∗),∀ε > 0.

Corollary 4.3.1. Let g, h : X → R be convex functions. Then

x ∈ P iff ∂h(x) ⊆ ∂g(x),

x∗ ∈ D iff ∂g∗(x∗) ⊆ ∂h∗(x∗).

Proof:

Trivially, taking limits in the ε−subdiferential as ε→ 0.
�

Finally, we will see that solving the primal problem (P) implies solving the dual
problem (D) and vice versa. It may be useful if one of them is easier to solve than the
other.

Proposition 4.3.1. Let g, h : X → R be convex functions. Then

•
⋃
x∈P

∂h(x) ⊂ D.

•
⋃

x∗∈D
∂g∗(x∗) ⊂ P .

Proof:

Let x ∈ P , and let x∗ ∈ ∂h(x). Then, by Theorem 4.3.1, x∗ ∈ ∂g(x). From
Theorem 4.1.4, we have

h∗(x∗) = 〈x∗, x〉 − h(x), g∗(x∗) = 〈x∗, x〉 − g(x).

Therefore,
h∗(x∗)− g∗(x∗) = h(x)− g(x),

by Remark 4.2.3, we conclude that x∗ ∈ D.

Chapter 4. DC Programming. The DCA Algorithm 41

Analogously, let x∗ ∈ D, and let x ∈ ∂g∗(x∗). By Remark 4.3.1, x ∈ ∂h∗(x∗).
From Theorem 4.1.4, we have

h∗(x∗) = 〈x∗, x〉 − h(x), g∗(x∗) = 〈x∗, x〉 − g(x).

Hence,
h∗(x∗)− g∗(x∗) = h(x)− g(x),

by Remark 4.2.3, we conclude that x ∈ P .

The global optimality condition is dificult to use for deriving solution methods to
problem (P). However, we have local optimality conditions which algorithm DCA is
based on.

4.3.2 Local Optimality for DC Programming

In this subsection, we are studying conditions that allow us to ensure when we have ob-
tained a local solution of our problems (P) and (D). These results on DC programming
on which DCA relies the reader is referred to ...

Notation 4.3.2. We will denote Pl and Dl the following sets:

Pl = {x ∈ X : ∂h(x) ⊂ ∂g(x)} Dl = {x∗ ∈ X : ∂g∗(x∗) ⊂ ∂h∗(x∗)}.

Definition 4.3.1. Let be g, h ∈ Γ0(X). A point x is said to be a local minimizer of
g − h if g(x)− h(x) is finite and there exists a neighbourhood U of x such that

g(x)− h(x) ≤ g(y)− h(y), ∀y ∈ U.

Definition 4.3.2. Let be g, h ∈ Γ0(X). A point x is said to be a critical point of g − h
if ∂g(x) ∩ ∂h(x) 6= ∅.

Theorem 4.3.2. Let be g, h ∈ Γ0(X). Then,

1) If x is a local minimizer of g − h, then x ∈ Pl.

2) Let x be a critical point of g − h and x∗ ∈ ∂g(x) ∩ ∂h(x). Let U be a neigh-
bourhood of x such that U ∩ dom g ⊂ dom ∂h. If for any y ∈ U ∩ dom g there
exists y∗ ∈ ∂h(y) such that h∗(y∗)− g∗(y∗) ≥ h∗(x∗)− g∗(x∗), then x is a local
minimizer of g − h.

Proof:

42 4.3. Optimality Conditions for DC Programming

1) If x is a local minimizer of g− h, then there exists a neighbourhood U of x such
that

g(y)− g(x) ≥ h(y)− h(x), ∀x ∈ U ∩ dom g.

Besides, for x∗ ∈ ∂h(x) we have

h(y) ≥ h(x) + 〈x∗, y − x〉 .

Hence, we obtain

g(y)− g(x) ≥ 〈x∗, y − x〉 , ∀x ∈ U ∩ dom g.

Then, x∗ ∈ ∂g(x) and we conclude that x ∈ Pl.

2) Since x∗ ∈ ∂g(x) ∩ ∂h(x), then g(x) + g∗(x∗) = 〈x∗, x〉 = h(x) + h∗(x∗).
Hence,

g(x)− h(x) = h∗(x∗)− g∗(x∗).
By assumption, for each y ∈ U ∩ dom g there is y∗ ∈ ∂h(y) such that

h∗(y∗)− g∗(y∗) ≥ h∗(x∗)− g∗(x∗).

On the other hand, since y∗ ∈ ∂h(y) we have h(y) + h∗(y∗) = 〈y∗, y〉 ≤ g(y) +
g∗(y∗). Then, we have

g(y)− h(y) ≥ h∗(y∗)− g∗(y∗).

In summary, we obtain

g(y)− h(y) ≥ h∗(y∗)− g∗(y∗) ≥ h∗(x∗)− g∗(x∗) = g(x)− h(x),

for every y ∈ U ∩ dom g, namely x is a local minimizer.

Corollary 4.3.2. Let x be a point that admits a neighbourhood U such that ∂g(x) ∩
∂h(y) 6= ∅ for every y ∈ U ∩ dom g. Then x is a local minimizer of g − h. More
precisely, g(y)− h(y) ≥ g(x)− h(x), for every y ∈ U ∩ dom g.

Proof:

Let y ∈ U ∩ dom g and let y∗ ∈ ∂g(x) ∩ ∂h(y). Since y∗ ∈ ∂g(x) we have
g(x) + g∗(y∗) = 〈y∗, x〉 ≤ h(x) + h∗(y∗), then h∗(y∗) − g∗(y∗) ≥ g(x) − h(x).
Moreover, if x∗ ∈ ∂g(x) ∩ ∂h(x), then g(x) + g∗(x∗) = 〈x∗, x〉 = h(x) + h∗(x∗).
Hence, g(x)− h(x) = h∗(x∗)− g∗(x∗). Therefore,

h∗(y∗)− g∗(y∗) ≥ g(x)− h(x) = h∗(x∗)− g∗(x∗).

By Theorem 4.3.2, we conclude that x∗ is a local minimizer.
�

Chapter 4. DC Programming. The DCA Algorithm 43

Remark 4.3.2. Again, Theorem 4.3.2 has its dual counterpart. Thus,

1) If x∗ is a local minimizer of h∗ − g∗, then x∗ ∈ Dl.

2) Let x∗ be a critical point of h∗ − g∗ and x ∈ ∂g∗(x∗) ∩ ∂h∗(x∗). Let V be a
neighbourhood of x∗ such that V ∩ dom ∂g∗ ⊂ dom h. If for any y∗ ∈ V ∩
dom ∂g∗ there is y ∈ ∂g∗(y∗) such that g(y)− h(y) ≥ g(x)− h(x), then x∗ is a
local minimizer of h∗ − g∗.

It might happen that (D) is easier to locally solve than (P). So it is useful to state
results relative to the d.c. duality transportation of local minimizers.

Corollary 4.3.3. Let x ∈ dom ∂h be a local minimizer of g−h and let x∗ ∈ ∂h(x) (i.e.
x admits a neighbourhood U such that g(y)− h(y) ≥ g(x)− h(x), ∀y ∈ U ∩ dom g).
If

x∗ ∈ int(dom g∗) and ∂g∗(x∗) ⊂ U,

then x∗ is a local minimizer of h∗ − g∗.

Proof:

According to 1) of Theorem 4.3.2, x ∈ Pl. Thus, since x∗ ∈ ∂h(x) we have that
x∗ ∈ ∂g(x). Hence, x∗ ∈ ∂g(x) ∩ ∂h(x). By Theorem 4.1.5, x ∈ ∂g∗(x∗) ∩ ∂h∗(x∗).
Under the assumption that x∗ ∈ dom g∗ and ∂g∗(x∗) ⊂ U, and upper semicontinuity
of ∂g∗, x∗ admits a neighbourhood V ⊂ int(dom g∗) such that ∂g∗(V) ⊂ U ∩ dom g,
since we have range ∂g∗ = dom ∂g ⊂ dom g. Thus, we have

• x∗ is a critical point of h∗ − g∗.

• x ∈ ∂g∗(x∗) ∩ ∂h∗(x∗).

• V is a neighbourhood of x∗ such that V ∩ dom ∂g∗ ⊂ U ∩ dom g ⊂ dom h.

• For each y∗ ∈ V ∩ dom ∂g∗ there is y ∈ ∂g∗(y∗) ⊂ U ∩ dom g such that
g(y)− h(y) ≥ g(x)− h(x).

By Remark 4.3.2, we conclude that x∗ is a local minimizer of h∗ − g∗.

4.4 The DCA Algorithm
In this section we will expose an algorithm that solves (P) or (D) using the framework
studied. This algorithm is called DCA Algorithm and we will study its convergence
and applications in different problems. Finally, we will use Python to program it.

44 4.4. The DCA Algorithm

4.4.1 Description of DCA for general DC programs
For each fixed x ∈ X , we consider the problem

(S(x)) inf
x∗∂h(x)

{h∗(x∗)− g∗(x∗)},

which is equivalent to
inf

x∗∂h(x)
{〈x∗, x〉 − g∗(x∗)}.

Analogously, for each fixed x∗ ∈ X∗, for duality, we define the problem

(T (x∗)) inf
x∈∂g∗(x∗)

{g(x)− h(x)}.

This problem is equivalent to

inf
x∈∂g∗(x∗)

{〈x∗, x〉 − h(x)}.

Let S(x), T (x∗) the solution sets of Problems (S(x)) and (T (x∗)), respectively.
The complete form of DCA is based upon duality of DC optimization defined by (P)
and (D). It allows approximating a point (x, x∗) ∈ Pl × Dl. From a point of x0 ∈
dom ∂g, the algorithm consists on constructing two sequences {xk} and {x∗k} defined
by

x∗k ∈ S(xk); xk+1 ∈ T (x∗k).

From a practical point of view, although (S(xk)) and (T (x∗k)) are easier to solve
than (P) and (D), it is often used the simplified form of DCA.

Simplified form of DCA

The idea of the simplified DCA is to construct two sequences {xk} and {x∗k} easy to
compute and satisfying the following statements:

• The sequences (g − h)(xk) and (h∗ − g∗)(x∗k) are decreasing.

• If
x = lim

k→+∞
xk and x∗ = lim

k→+∞
x∗k,

then x and x∗ either are critical points of g − h and h∗ − g∗, respectively, or
(x, x∗) ∈ Pl ×Dl.

Then, starting from a point x0 ∈ dom g, we shall construct the sequences by setting

x∗k ∈ ∂h(xk), xk+1 ∈ ∂g∗(x∗k).

Thus, we can give the following interpretation to the DCA. At each iteration k we
have:

Chapter 4. DC Programming. The DCA Algorithm 45

(Pk) x∗k ∈ ∂h(xk)→ xk+1 ∈ ∂g∗(x∗k)
= argmin

x∈X
{g(x)− [h(xk) + 〈x∗k, x− xk〉]}.

(Dk) xk ∈ ∂g∗(x∗k−1)→ x∗k ∈ ∂h(xk)

= argmin
x∗∈Y

{h∗(x∗)−
[
g∗(x∗k−1) +

〈
x∗ − x∗k−1, xk

〉]
}.

Using the Theorem 4.1.4, we can obtain the previous results:
For every x ∈ X , we have

x∗k ∈ ∂h(x)⇐⇒ h(x) + h∗(x∗k) = 〈x∗k, x〉 ,

in particular, for x = xk:

x∗k ∈ ∂h(xk)⇐⇒ h(xk) + h∗(x∗k) = 〈x∗k, xk〉 .

Subtracting both equations:

h(x) = h(xk) + 〈x∗k, x− xk〉 .

Hence

argmin
x∈X

{g(x)− h(x)} = argmin
x∈X

{g(x)− [h(xk) + 〈x∗k, x− xk〉]}.

We can argue in an equivalent way to see that

argmin
x∗∈Y

{h∗(x∗)− g∗(x∗)} = argmin
x∗∈Y

{h∗(x∗)−
[
g∗(x∗k−1) +

〈
x∗ − x∗k−1, xk

〉]
}.

Now, we are proving that this algorithm is well-defined from the construction of
the sequences.

Theorem 4.4.1. Let be x0 ∈ dom ∂g. If

dom ∂g ⊂ dom ∂h and dom ∂h∗ ⊂ dom ∂g∗

then the sequences {xk}, {yk} are well defined.

Proof:

We have xk+1 ∈ ∂g∗(x∗k) and x∗k ∈ ∂h(xk), for every k ≥ 0. With these assump-
tions, we get that {xk} ⊂ range ∂g∗ = dom ∂g ⊂ dom ∂h. Then, we can obtain x∗k
from ∂h(xk). Analogously, {x∗k} ⊂ range ∂h = dom ∂h∗ ⊂ dom ∂g∗, therefore, it
makes sense to have xk+1 ∈ ∂g∗(x∗k).

�

46 4.4. The DCA Algorithm

4.4.2 Convergence of DCA for general DC programs
Now, we are going to see that this algorithm is convergent. We are also going to study
interesting properties that makes this algorithm good. Firstly, we need to introduce
some notation to simplify the following statements.

Let 0 ≤ ρg < ρ(g) and 0 ≤ ρh < ρ(h) be real nonnegative numbers (resp. ρ∗g, ρ
∗
h).

Also let ∆xk = xk+1 − xk and ∆x∗k = x∗k+1 − x∗k.

Proposition 4.4.1. Let be {xk} and {x∗k} the sequences generated by the simplified
DCA. Then we have

1. (g− h)(xk+1) ≤ (h∗− g∗)(x∗k)−
ρh
2
‖∆xk‖2 ≤ (g− h)(xk)−

ρg + ρh
2
‖∆xk‖2.

The equality (g − h)(xk+1) = (g − h)(xk) holds if and only if

xk ∈ ∂g∗(x∗k), x∗k ∈ ∂h(xk+1) and (ρg + ρh)‖∆xk‖ = 0.

2. By duality, we have

(h∗−g∗)(x∗k+1) ≤ (g−h)(xk+1)−
ρ∗g
2
‖∆x∗k‖2 ≤ (h∗−g∗)(x∗k)−

ρ∗g + ρ∗h
2
‖∆x∗k‖2.

The equality (h∗ − g∗)(x∗k+1) = (h∗ − g∗)(x∗k) holds if and only if

xk+1 ∈ ∂g∗(x∗k+1), x∗k ∈ ∂h(xk+1) and (ρ∗g + ρ∗h)‖∆x∗k‖ = 0.

Proof:

We are going to prove Property 1. The dual case is analogously proved.
Since x∗k ∈ ∂h(xk) we have that

h(xk+1) ≥ h(xk) + 〈x∗k, xk+1 − xk〉+
ρh
2
‖∆xk‖2.

Hence,

(g − h)(xk+1) ≤ g(xk+1)− 〈x∗k, xk+1 − xk〉 − h(xk)−
ρh
2
‖∆xk‖2. (4.2)

In the same way, xk+1 ∈ ∂g∗(x∗k)⇐⇒ x∗k ∈ ∂g(xk+1) follows that

g(xk) ≥ g(xk+1) + 〈x∗k, xk − xk+1〉+
ρg
2
‖∆xk‖2.

Thus,

g(xk+1)− 〈x∗k, xk+1 − xk〉 − h(xk) ≤ (g − h)(xk)−
ρg
2
‖∆xk‖2. (4.3)

Chapter 4. DC Programming. The DCA Algorithm 47

On the other hand, by the Theorem 4.1.4 we have:

xk+1 ∈ ∂g∗(x∗k)⇐⇒ g(xk+1) + g∗(x∗k) = 〈x∗k, xk+1〉 ,
x∗k ∈ ∂h(xk)⇐⇒ h(xk) + h∗(x∗k) = 〈x∗k, xk〉 .

Substracting both expression, we obtain:

g(xk+1)− 〈x∗k, xk+1 − xk〉 − h(xk) = h∗(x∗k)− g∗(x∗k). (4.4)

Finally, combining (4.2), (4.3) and (4.4) we have that

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρh
2
‖∆xk‖2 ≤ (g − h)(xk)−

ρg + ρh
2
‖∆xk‖2.

Now, we are going to prove when the equality holds:

• =⇒ If (g − h)(xk+1) = (g − h)(xk), the last equation yields that

ρg + ρh
2
‖∆xk‖2 ≤ 0⇐⇒ (ρg + ρh)‖∆xk‖ = 0,

since ρg and ρh are non-negative. We have two choices:

– ρg + ρh > 0 This implies that ‖∆xk‖ = 0 if and only if xk+1 = xk. Thus

xk+1 ∈ ∂g∗(x∗k) =⇒ xk ∈ ∂g∗(x∗k),
x∗k ∈ ∂h(xk) =⇒ x∗k ∈ ∂h(xk+1).

– ρg = ρh = 0 This yields

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k) ≤ (g − h)(xk),

which, from assumption, gives that

(h∗ − g∗)(x∗k) = (g − h)(xk)

(g − h)(xk+1) = (h∗ − g∗)(x∗k)

Then {
x∗k ∈ ∂h(xk)⇔ 〈x∗k, xk〉 = h(xk) + h∗(x∗k),

h(xk) = g(xk) + g∗(x∗k)− h∗(x∗k),

and{
xk+1 ∈ ∂g∗(x∗k)⇔ 〈x∗k, xk+1〉 = g(xk+1) + g∗(x∗k),

g(xk+1) = h(xk+1) + h∗(x∗k)− g∗(x∗k),

produces that

〈x∗k, xk〉 = g(xk) + g∗(x∗k)⇐⇒ xk ∈ ∂g∗(x∗k),
〈x∗k, xk+1〉 = h(xk+1) + h∗(x∗k)⇐⇒ x∗k ∈ ∂h(xk+1).

48 4.4. The DCA Algorithm

• ⇐= Actually, we have just prove the reciprocal, because{
xk+1 ∈ ∂g∗(x∗k) ⇔ 〈x∗k, xk+1〉 = g(xk+1) + g∗(x∗k),
x∗k ∈ ∂h(xk+1) ⇔ 〈x∗k, xk+1〉 = h(xk+1) + h∗(x∗k),

and {
x∗k ∈ ∂h(xk) ⇔ 〈x∗k, xk〉 = h(xk) + h∗(x∗k),
xk ∈ ∂g∗(x∗k) ⇔ 〈x∗k, xk〉 = g(xk) + g∗(x∗k),

yields, respectively

(g − h)(xk+1) = (h∗ − g∗)(x∗k),
(h∗ − g∗)(x∗k) = (g − h)(xk).

which says that the equality holds.

�

Corollary 4.4.1. Let be {xk} and {x∗k} the sequences generated by DCA. Then we
have

1. (a) (g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρh
2
‖∆xk‖2

≤ (g − h)(xk)−
[
ρ∗g
2
‖∆x∗k−1‖2 +

ρh
2
‖∆xk‖2

]
.

(b) (g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρ∗h
2
‖∆x∗k‖2

≤ (g − h)(xk)−
[
ρ∗g
2
‖∆x∗k−1‖2 +

ρ∗h
2
‖∆x∗k‖2

]
.

The equality (g − h)(xk+1) = (g − h)(xk) holds if and only if

xk ∈ ∂g∗(x∗k), x∗k ∈ ∂h(xk+1) and (ρg + ρh)∆xk = ρ∗g∆x
∗
k−1 = ρ∗h∆x

∗
k = 0.

2. By duality, we have

(c) (h∗ − g∗)(x∗k+1) ≤ (g − h)(xk+1)−
ρ∗g
2
‖∆x∗k‖2

≤ (h∗ − g∗)(x∗k)−
[
ρ∗g
2
‖∆x∗k‖2 +

ρh
2
‖∆xk‖2

]
(d) (h∗ − g∗)(x∗k+1) ≤ (g − h)(xk+1)−

ρ∗g
2
‖∆xk+1‖2

≤ (h∗ − g∗)(x∗k)−
[ρg

2
‖∆xk+1‖2 +

ρh
2
‖∆xk‖2

]

Chapter 4. DC Programming. The DCA Algorithm 49

The equality (h∗ − g∗)(x∗k+1) = (h∗ − g∗)(x∗k) holds if and only if

xk+1 ∈ ∂g∗(x∗k+1), x
∗
k ∈ ∂h(xk+1) and (ρ∗g+ρ

∗
h)∆x

∗
k = ρh∆xk = ρg∆xk+1 = 0.

Proof:

It is an immediate consequence of the Proposition 4.4.1. We only prove (a) and (b)
combining previous expressions. From

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρh
2
‖∆xk‖2

and

(h∗ − g∗)(x∗k) ≤ (g − h)(xk)−
ρ∗g
2
‖∆x∗k−1‖2

we obtain that

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρh
2
‖∆xk‖2

≤ (g − h)(xk)−
[
ρ∗g
2
‖∆x∗k−1‖2 +

ρh
2
‖∆xk‖2

]
.

Similarly, equations

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρ∗h
2
‖∆x∗k‖2

and

(h∗ − g∗)(x∗k) ≤ (g − h)(xk)−
ρ∗g
2
‖∆x∗k−1‖2

yields

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρ∗h
2
‖∆x∗k‖2

≤ (g − h)(xk)−
[
ρ∗g
2
‖∆x∗k−1‖2 +

ρ∗h
2
‖∆x∗k‖2

]
.

We can argue in the same way as we did in the Proposition 4.4.1 to see when
equality holds.

�

The basic convergence theorem of DCA for general d.c. programming will be
stated below.

Theorem 4.4.2. Suppose that the sequences {xk} and {x∗k} are defined by DCA. Then
we have

50 4.4. The DCA Algorithm

1. (g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−max

{
ρh
2
‖∆xk‖2,

ρ∗h
2
‖∆x∗k‖2

}
≤ (g − h)(xk)−max

{
ρg + ρh

2
‖∆xk‖2,

ρ∗g
2
‖∆xk−1‖2

+
ρh
2
‖∆xk‖2,

ρ∗g
2
‖∆x∗k−1‖2 +

ρ∗h
2
‖∆x∗k‖2

}
.

The equality (g − h)(xk+1) = (g − h)(xk) holds if and only if xk ∈ ∂g∗(x∗k),
x∗k ∈ ∂h(xk+1) and (ρg + ρh)∆xk = ρ∗g∆x

∗
k−1 = ρ∗h∆x

∗
k = 0. In this case

• (g−h)(xk+1) = (h∗− g∗)(x∗k) and xk, xk+1 are the critical points of g−h
satisfying x∗k ∈ ∂g(xk) ∩ ∂h(xk) and x∗k ∈ ∂g(xk+1) ∩ ∂h(xk+1).

• x∗k is a critical point of h∗−g∗ satisfying [xk, xk+1] ⊂ (∂g∗(x∗k)∩∂h∗(x∗k)).
• xk+1 = xk if ρg + ρh > 0, x∗k = x∗k−1 if ρ∗g > 0 and x∗k = x∗k+1 if ρ∗h > 0.

2. Similarly, for the dual problem we have

(h∗ − g∗)(x∗k+1) ≤ (g − h)(xk+1)−max

{
ρg
2
‖∆xk+1‖2,

ρ∗g
2
‖∆x∗k‖2

}
≤ (h∗ − g∗)(x∗k)−max

{
ρ∗g + ρ∗h

2
‖∆x∗k‖2,

ρg
2
‖∆xk+1‖2

+
ρh
2
‖∆xk‖2,

ρ∗g
2
‖∆x∗k‖2 +

ρh
2
‖∆xk‖2

}
.

The equality (h∗ − g∗)(x∗k+1) = (h∗ − g∗)(x∗k) holds if and only if xk+1 ∈
∂g∗(x∗k+1), x∗k ∈ ∂h(xk+1) and (ρ∗g + ρ∗h)∆x

∗
k = ρh∆xk = ρg∆xk+1 = 0. In this

case

• (h∗ − g∗)(x∗k+1) = (g − h)(xk+1) and x∗k, x
∗
k+1 are the critical points of

h∗ − g∗ satisfying xk+1 ∈ ∂g∗(x∗k) ∩ ∂h∗(x∗k) and xk+1 ∈ ∂g∗(x∗k+1) ∩
∂h∗(x∗k+1).

• xk+1 is a critical point of g−h satisfying [x∗k, x
∗
k+1] ⊂ (∂g(xk+1)∩∂h(xk+1)).

• x∗k+1 = x∗k if ρ∗g + ρ∗h > 0, xk+1 = xk+2 if ρg > 0 and xk = xk+1 if ρh > 0.

3. If α is finite then the decreasing sequences {(g − h)(xk)} and {(h∗ − g∗)(x∗k)}
converge to the same limit β ≥ α. If ρg + ρh > 0 (resp. ρ∗g + ρ∗h > 0), then

lim
k→+∞

(xk+1 − xk) = 0 (resp. lim
k→+∞

(x∗k+1 − x∗k) = 0).

Moreover,

lim
k→+∞

{g(xk)+g∗(x∗k)−〈x∗k, xk〉} = 0 = lim
k→+∞

{h(xk+1)+h∗(x∗k)−〈x∗k, xk+1〉}.

Chapter 4. DC Programming. The DCA Algorithm 51

4. If α is finite and the sequences {xk} and {x∗k} are bounded, then for every limit
x of {xk} (resp. x∗ of {x∗k}) there exists a cluster point x of {xk} (resp. x∗ of
{x∗k}) such that

• (x, x∗) ∈ (∂g∗(x∗) ∩ ∂h∗(x∗))× (∂g(x) ∩ ∂h(x)).

• (g − h)(x) = β = (h∗ − g∗)(x∗).

• lim
k→+∞

{g(xk) + g∗(x∗k)} = lim
k→+∞

〈x∗k, xk〉 .

Proof:

Properties 1 and 2 are proved analogously, therefore we give the proof for 1 only.

1. From 1 of Corollary 4.4.1 we have that: (g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρh
2
‖∆xk‖2,

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρ∗h
2
‖∆x∗k‖2.

Hence,

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k) + min

{
−ρh

2
‖∆xk‖2,−

ρ∗h
2
‖∆x∗k‖2

}
=

= (h∗ − g∗)(x∗k)−max

{
ρh
2
‖∆xk‖2,

ρ∗h
2
‖∆x∗k‖2

}
.

We have two choices:

• If ρh‖∆xk‖2 ≤ ρ∗h‖∆x∗k‖2, from paragraph 1 of the Proposition 4.4.1:

(h∗ − g∗)(x∗k)−
ρ∗h
2
≤ (h∗ − g∗)(x∗k)−

ρh
2
‖∆xk‖2

≤ (g − h)(xk)−
ρg + ρh

2
‖∆xk‖2

Similarly, from 1 of Corollary 4.4.1 we obtain that

(h∗ − g∗)(x∗k)−
ρ∗h
2
‖∆x∗k‖2 ≤ (h∗ − g∗)(x∗k)−

ρh
2
‖∆xk‖2

≤ (g − h)(xk)−
[
ρ∗g
2
‖∆x∗k−1‖2 +

ρh
2
‖∆xk‖2

]
.

Moreover, paragraph 2 of the same corollary yields that

(h∗−g∗)(x∗k)−
ρh
2
‖∆x∗k‖2 ≤ (g−h)(xk)−

[
ρ∗g
2
‖∆x∗k−1‖2 +

ρ∗h
2
‖∆x∗k‖2

]
.

52 4.4. The DCA Algorithm

Combining these inequalities, we get

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρ∗h
2
‖∆x∗k‖2

≤ (g − h)(xk)−max

{
ρg + ρh

2
‖∆xk‖2,

ρ∗g
2
‖∆x∗k−1‖2

+
ρh
2
‖∆xk‖2,

ρ∗g
2
‖∆x∗k−1‖2 +

ρ∗h
2
‖∆x∗k‖2

}
.

• If ρ∗h‖∆x∗k‖2 ≤ ρh‖∆xk‖2, from paragraph 1 of the Corollary 4.4.1:

(h∗ − g∗)(x∗k)−
ρh
2
‖∆xk‖2 ≤ (g − h)(xk)−

ρg + ρh
2
‖∆xk‖2.

Similarly, using again this corollary, we obtain that

(h∗−g∗)(x∗k)−
ρh
2
‖∆xk‖2 ≤ (g−h)(xk)−

[
ρ∗g
2
‖∆x∗k−1‖2 +

ρh
2
‖∆xk‖2

]
.

Finally,

(h∗ − g∗)(x∗k)−
ρh
2
‖∆xk‖2 ≤ (h∗ − g∗)(x∗k)−

ρ∗h
2
‖∆x∗k‖2

≤ (g − h)(xk)−
[
ρ∗g
2
‖∆x∗k−1‖2 +

ρ∗h
2
‖∆x∗k‖2

]
.

Again, combining these equations yields that

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k)−
ρh
2
‖∆xk‖2

≤ (g − h)(xk)−max

{
ρg + ρh

2
‖∆xk‖2,

ρ∗g
2
‖∆x∗k−1‖2

+
ρh
2
‖∆xk‖2,

ρ∗g
2
‖∆x∗k−1‖2 +

ρ∗h
2
‖∆x∗k‖2

}
.

Therefore, we have just obtained the inequality 1. We don’t prove when equality
holds because it is done in the Proposition 4.4.1. However, we are going to see
the consequences:

• We have already proved that (g − h)(xk+1) = (h∗ − g∗)(x∗k) in the Propo-
sition 4.4.1. On the other hand, we have that x∗k ∈ ∂h(xk) by construction
and x∗k ∈ ∂g(xk) because xk ∈ ∂g∗(x∗k). Besides, x∗k ∈ ∂g(xk+1) because
xk+1 ∈ ∂g∗(x∗k) by construction and x∗k ∈ ∂h(xk+1). Therefore,{

x∗k ∈ ∂g(xk) ∩ ∂h(xk),
x∗k ∈ ∂g(xk+1) ∩ ∂h(xk+1),

i.e., xk and xk+1 are critical points of g − h.

Chapter 4. DC Programming. The DCA Algorithm 53

• From the previous paragraph, we have that x∗k ∈ ∂g(xk)∩∂h(xk), which is
equivalent to xk ∈ ∂g∗(x∗k)∩ ∂h∗(x∗k), i.e., x∗k is a critical point of h∗− g∗.
Similarly, xk+1 ∈ ∂g∗(x∗k)∩∂h∗(x∗k) since x∗k ∈ ∂g(xk+1)∩∂h(xk+1). But
∂g∗(x∗k) ∩ ∂h∗(x∗k) is convex so that [xk, xk+1] ⊂ (∂g∗(x∗k) ∩ ∂h∗(x∗k)).

• This part is straightforward, and thus its proof is omitted.

3. From paragraph 1, we have that

(g − h)(xk+1) ≤ (h∗ − g∗)(x∗k) ≤ (g − h)(xk). (4.5)

Therefore, if limk→+∞(g − h)(xk) = β, by the sandwich theorem, we conclude
that limk→+∞(h∗ − g∗)(x∗k) = β. Moreover, from paragraph 1:

(g − h)(xk+1) ≤ (g − h)(xk)−
ρg + ρh

2
‖∆xk‖2.

If we take limit, we obtain that

β ≤ β − lim
k→+∞

ρg + ρh
2
‖∆xk‖2,

which is similar to
lim

k→+∞
(ρg + ρh)‖∆xk‖2 ≤ 0.

Since ρg + ρh > 0, we conclude that

lim
k→+∞

‖∆xk‖2 = 0 = lim
k→+∞

∆xk.

Moreover, using (4.4) and (4.5) yields

(g − h)(xk+1) ≤ g(xk+1)− 〈x∗k, xk+1 − xk〉 − h(xk) ≤ (g − h)(xk).

Taking limits again, by the sandwich theorem:

lim
k→+∞

(g − h)(xk+1) = lim
k→+∞

{g(xk+1)− 〈x∗k, xk+1 − xk〉 − h(xk)}

= lim
k→+∞

(g − h)(xk).

The second equality implies that

lim
k→+∞

{g(xk+1)− 〈x∗k, xk+1 − xk〉 − g(xk)} = 0.

Since xk+1 ∈ ∂g∗(x∗k), this implies that 〈x∗k, xk+1〉 = g(xk+1) + g∗(x∗k). There-
fore,

lim
k→+∞

{g(xk) + g∗(x∗k)− 〈x∗k, xk〉}.

54 4.4. The DCA Algorithm

Likewise, the first equality implies that

lim
k→+∞

{h(xk+1)− 〈x∗k, xk+1 − xk〉 − h(xk)} = 0.

Since x∗k ∈ ∂h(xk), this implies that 〈x∗k, xk+1〉 = h(xk) + h∗(x∗k), then

lim
k→+∞

{h(xk+1) + h∗(x∗k)− 〈x∗k, xk+1〉}.

4. Suppose that α is finite and {xk}, {x∗k} bounded. Let be x a limit point of {xk},
i.e., x = limk→+∞ xk. By being bounded in a finite-dimensional space, we
can suppose (substracting a subsequence) that there exists a sequence {x∗k} that
converges to x∗ ∈ ∂h(x). By property 3:

lim
k→+∞

{g(xk) + g∗(x∗k)} = lim
k→+∞

{〈x∗k, xk〉} = 〈x∗, x〉 .

Let be θ(x∗, x) = g(x) + g∗(x∗) for (x∗, x) ∈ X∗ × X . It is clear that θ ∈
Γ0(X

∗ ×X). Then the lower semicontinuity of θ implies

θ(x∗, x) ≤ lim inf
k→+∞

θ(x∗k, xk) = lim
k→+∞

θ(x∗k, xk) = lim
k→+∞

{〈x∗k, xk〉} = 〈x∗, x〉 .

By Young’s inequality, θ(x∗, x) = g(x) + g∗(x∗) ≥ 〈x∗, x〉. Therefore,

θ(x∗, x) = g(x) + g∗(x∗) = 〈x∗, x〉 ⇐⇒ x∗ ∈ ∂g(x).

So that x∗ ∈ ∂g(x) ∩ ∂h(x)⇐⇒ x ∈ ∂g∗(x∗) ∩ ∂h∗(x∗).
On the other hand,

x∗ ∈ ∂h(x) =⇒ h(xk) ≥ h(x) + 〈x∗, xk − x〉 , ∀k.
xk ∈ ∂h(xk) =⇒ h(x) ≥ h(xk) + 〈x∗k, x− xk〉 , ∀k.

so that
h(x) + 〈x∗, xk − x〉 ≤ h(xk) ≤ h(x)− 〈x∗k, x− xk〉 .

Letting k → +∞, by the sandwich theorem, we obtain that limk→+∞ h(xk) =
h(x). Analogously, we can see that limk→+∞ h

∗(x∗k) = h∗(x∗). Therefore, by
Paragraph 3

lim
k→+∞

(g − h)(xk) = lim
k→+∞

g(xk)− lim
k→+∞

h(xk) = lim
k→+∞

g(xk)− h(x) = β,

lim
k→+∞

(h∗ − g∗)(x∗k) = lim
k→+∞

h∗(x∗k)− lim
k→+∞

g∗(x∗k) = h∗(x∗)− lim
k→+∞

g∗(x∗k) = β.

Then, it is sufficient to prove that

lim
k→+∞

g(xk) = g(x),

lim
k→+∞

g∗(x∗k) = g∗(x∗).

Chapter 4. DC Programming. The DCA Algorithm 55

Since both limits exist, by Paragraph 3

g(x) + g∗(x∗) = lim
k→+∞

{g(xk) + g∗(x∗k)} = lim
k→+∞

g(xk) + lim
k→+∞

g∗(x∗k).

By the semicontinuity of g and g∗:

lim
k→+∞

g(xk) = lim inf
k→+∞

g(xk) ≥ g(x)

lim
k→+∞

g∗(x∗k) = lim inf
k→+∞

g∗(x∗k) ≥ g∗(x∗).

Hence, g(x) + g∗(x∗) ≥ . . . ≥ g(x) + g∗(x∗). Then, inequalities are equalities
and

lim
k→+∞

g(xk) = g(x),

lim
k→+∞

g∗(x∗k) = g∗(x∗),

which concludes the proof.

�

We finish this section with interesting remarks about this theorem.

Remark 4.4.1.

Properties 1 and 2 prove that DCA is a descent method for both primal and dual
problems. DCA provides critical points for (P) and (D) after finitely many operations
if there is no strict decrease of the primal (or dual) objective function.

If C and D are convex sets such that {xk} ⊂ C and {x∗k} ⊂ D, then Theorem
4.4.2 remains valid if we replace ρ(g), ρ(h) by ρ(g, C), ρ(h,C) and ρ(g∗), ρ(h∗) by
ρ(g∗, D), ρ(h∗, D).

In general, the qualities of DCA (robustness, stability or rate of convergence) depende
upon the DC decomposition of the function f . Theorem 4.4.2 shows that strong con-
vexity of DC components influence on DCA.

The DCA provides a x such that ∂h(x) ⊂ ∂g(x)

4.5 Polyhedral DC optimization problems
Polyhedral DC optimization occurs when either g or h is polyhedral convex [7]. This
class of DC optimization problems, which is frequently encountered in practice, enjoys
interesting properties (from both theoretical and practical viewpoints) concerning local
optimality and the convergence of DCA.

56 4.5. Polyhedral DC optimization problems

Definition 4.5.1. Let be C ⊂ X . We define the indicator function, denoted by χC , as:

χC(x) =

{
0 if x ∈ C,
+∞ otherwise.

Remark 4.5.1. The indicator function χC is convex if and only if C is convex.

Definition 4.5.2. A function θ ∈ Γ0(X) is said to be polyhedral convex if

θ(x) = max
i=1,...,m

{〈ai, x〉 − αi}+ χC(x) ∀x ∈ X,

where C is a nonempty polyhedral convex set in X .

In what follows we suppose that in Problem (P) either g or h is polyhedral convex.
We may assume that h is a polyhedral convex function. If in (P) g is polyhedral and h
is not so, then we consider the dual problem (D), since g∗ is polyhedral (see [7]).

Throughout this section we assume that the optimal value α of problem (P) is finite
which, by Remark 4.2.1, implies that dom g ⊂ dom h = C. Thus, (P) is equivalent to
the problem

(P̃) α = inf
x∈X

{
g(x)− h̃(x)

}
,

where h̃(x) = maxi∈I{〈ai, x〉 − αi}, with I = {1, . . . ,m}. Clearly

α = inf
i∈I

inf
x∈X
{g(x)− (〈ai, x〉 − αi)}. (4.6)

For each i ∈ I , let

(Pi) βi = inf
x∈X
{g(x)− (〈ai, x〉 − αi)}.

Notation 4.5.1. We denote by P̃ the solution set of (P̃).

Remark 4.5.2. If we denote by Pi the solution set of the problem (Pi) we have that
Pi = ∂g∗(ai).

Proof:

The proof is very trivial as

x ∈ Pi ⇐⇒ g(x)− 〈ai, x〉+ αi ≤ g(y)− 〈ai, y〉+ αi, ∀y ∈ X
⇐⇒ g(y) ≥ g(x) + 〈ai, y − x〉 , ∀y ∈ X
⇐⇒ ai ∈ ∂g(x)

⇐⇒ x ∈ ∂g∗(ai).

Therefore, the equality holds. �

Chapter 4. DC Programming. The DCA Algorithm 57

Notation 4.5.2. We are going to denote

J(α) = {i ∈ I : βi = α} and I(x) = {i ∈ I : 〈ai, x〉 − αi = h̃(x)}.

Theorem 4.5.1. It is verified that

1. x ∈ P̃ if and only if I(x) ⊂ J(α) and x ∈
⋂
i∈I(x)

∂g∗(ai).

2. P̃ =
⋃

i∈J(α)

∂g∗(ai). If {ai : i ∈ I} ⊂ dom ∂g∗ then P̃ 6= ∅.

Proof:

1. Let x ∈ P̃ and i ∈ I(x). Then

α = g(x)− h̃(x) = g(x)− (〈ai, x〉 − αi) = βi,

which means that i ∈ J(α) and x ∈ Pi = ∂g∗(ai) for every i ∈ I(x). Therefore,

I(x) ⊂ J(α) and x ∈
⋂
i∈I(x)

∂g∗(ai).

Conversely, if i ∈ J(α) and x ∈ ∂g∗(ai) = Pi then

α = βi = g(x)− (〈ai, x〉−αi) ≥ g(x)−max
i∈I
{〈ai, x〉−αi} = g(x)− h̃(x) ≥ α

which implies that α = g(x) − h̃(x) and g(x) − (〈ai, x〉 − αi) = g(x) − h̃(x),
i.e., 〈ai, x〉 − α = h̃(x) namely i ∈ I(x) and x ∈ P̃ .

2. It is obvious from 1.

�

Lemma 4.5.1. It is verified that

1. h̃∗(ai) ≤ αi, ∀i ∈ I . Equality holds if and only if there exists x ∈ X such that
i ∈ I(x).

2. h̃(x) = max
x∗∈ co{ai:i∈I}

{〈x∗, x〉 − h̃∗(x∗)} = max
i∈I
{〈ai, x〉 − h̃∗(ai)}.

Proof:

58 4.5. Polyhedral DC optimization problems

1. From the definition of h̃ we have

〈ai, x〉 − h̃(x) ≤ αi, ∀x ∈ X, ∀i ∈ I,

in particular,

h̃∗(ai) = sup
x∈X
{〈ai, x〉 − h̃(x)} ≤ αi, ∀i ∈ I.

If there exists x ∈ X such that i ∈ I(x), then

h̃(x) + h̃∗(ai) ≥ 〈ai, x〉 = h̃(x) + αi ⇐⇒ h̃∗(ai) ≥ αi,

which implies that h̃∗(ai) = αi.

Conversely, suppose that h̃∗(ai) = αi for some i ∈ I . Then

h̃∗(ai) = sup
x∈X
{〈ai, x〉 − h̃(x)} = αi

Let x ∈ X such that αi = 〈ai, x〉 − h̃(x). Therefore, h̃(x) = 〈ai, x〉 − αi, i.e.,
i ∈ I(x).

2. By the fact that dom h̃∗ = co{ai : i ∈ I} (see [7]) and h̃ ∈ Γ0(X) we have

h̃(x) = h̃∗∗(x) = max
x∗∈ co{ai:i∈I}

{〈x∗, x〉 − h̃∗(x)}.

On the other hand, there exists x ∈ X such that i ∈ I(x). Hence, from 1

h̃(x) = max
i∈I
{〈ai, x〉 − αi} = max

i∈I
{〈ai, x〉 − h̃∗(ai)},

which ends the proof of this lemma.

�

By Lemma 4.5.1, we can write (P̃) as

α = inf
x∗∈ co{ai:i∈I}

inf
x∈X

{
g(x)− 〈x∗, x〉+ h̃∗(x∗)

}
(4.7)

α = inf
x∗∈{ai:i∈I}

inf
x∈X

{
g(x)− 〈x∗, x〉+ h̃∗(x∗)

}
. (4.8)

Remark 4.5.3. Problem (4.7) is the dual problem (D̃) of (P̃)

(D̃) α = inf
x∗∈ co{ai:i∈I}

{h̃∗(x∗)− g∗(x∗)}.

Chapter 4. DC Programming. The DCA Algorithm 59

However, Problem (4.8) becomes

α = inf
x∗∈{ai:i∈I}

{h̃∗(x∗)− g∗(y)}.

The following result concerning the solution set D̃ of the dual problem (D̃) can be
proven without using the results in the subsection 4.3.1.

Lemma 4.5.2. It is verified that

1. J(α) = {i ∈ I : ai ∈ D̃ and h̃∗(ai) = αi}.

2. {ai : i ∈ J(α)} ⊂ D̃.

Proof:

If we prove 1, the second result is trivial. So, let i ∈ J(α) then

α = βi = inf
x∈X
{g(x)− (〈ai, x〉 − αi)}

= αi − inf
x∈X
{g(x)− 〈ai, x〉}

= αi − sup
x∈X
{〈ai, x〉 − g(x)}

= αi − g∗(ai) ≥ h̃∗(ai)− g∗(ai).
But,

α = inf
x∗∈ co{ai:i∈I}

{h̃∗(x∗)− g∗(x∗)} ≤ h̃∗(ai)− g∗(ai).

Hence, the inequality becomes equality, i.e., ai ∈ D̃ and h̃∗(ai) = αi.
Conversely, let i ∈ I such that ai ∈ D̃ and h̃∗(ai) = αi. Then

α = h̃∗(ai)− g∗(ai) = αi − g∗(ai).
Thus

βi = inf
x∈X
{g(x)− (〈ai, x〉 − αi)} = αi − g∗(ai) = α.

Hence, i ∈ J(α) as we wanted to see. �

We can summarize the results of this section in the following theorem:

Theorem 4.5.2.
1. x ∈ P̃ if and only if I(x) ⊂ J(α) and x ∈

⋂
i∈I(x)

∂g∗(ai).

2. P̃ =
⋃

i∈J(α)

∂g∗(ai). If {ai : i ∈ I} ⊂ dom ∂g∗ then P̃ 6= ∅.

3. h̃(x) = max
x∗∈ co{ai:i∈I}

{〈x∗, x〉 − h̃∗(x∗)} = max
i∈I
{〈ai, x〉 − h̃∗(ai)}.

4. J(α) = {i ∈ I : ai ∈ D̃ and h̃∗(ai) = αi} and {ai : i ∈ J(α)} ⊂ D̃.

Chapter 5

Applications of DCA

In this chapter we present some non-convex problems that DCA have been applied to.
The structure of each section will be the same. First, we will introduce the problem.
Afterwards, we will obtain a DC decomposition of the objective function and finally
we will apply DCA to this decomposition.

We remember that the simplified DCA is given by

Algorithm 1: DCA scheme
input : x0 ∈ X , tol

1 k ← 0
2 repeat
3 Compute some x∗k ∈ ∂h(xk).
4 Compute xk+1 = argmin

x∈C
{g(x)− 〈x∗k, x〉}.

5 k ← k + 1

6 until |f(xk+1)− f(xk)| < tol;

output: xk

5.1 The trust-region subproblem (TSRP)

Let there be given a symmetric matrix A ∈ Rn×n, a vector b ∈ Rn and a real number
R > 0. The optimization problem

min
x∈C

{
f(x) :=

1

2
〈Ax, x〉+ 〈b, x〉

}
,

61

62 5.1. The trust-region subproblem (TSRP)

where C = {x ∈ Rn : ‖x‖ ≤ R}, is the trust-region subproblem. Since we are
minimizing, this problem is equivalent to

min
x∈X

{
f(x) :=

1

2
〈Ax, x〉+ 〈b, x〉+ χC(x)

}
,

where χC denotes the indicator function.
Clearly, this problem is a DC program with different DC decompositions. Let us

see some examples.

1. f(x) = g(x)− h(x) with

g(x) =
1

2
〈A1x, x〉+ 〈b, x〉+ χC(x),

h(x) =
1

2
〈A2x, x〉 .

The matrices A1 and A2 are symmetric positive semidefinite related to the spec-
tral decomposition of A.

A1 =
∑
i∈I+

λi 〈ui, ui〉 , A2 = −
∑
i∈I−

λi 〈ui, ui〉 .

Here λ1 ≤ . . . ≤ λn are the eigenvalues ofA and {u1, . . . , un} is an orthonormal
basis of Rn of eigenvectors of A, I+ = {i : λi ≥ 0} and I− = {i : λi < 0}.
Obviously, since 〈Aix, x〉 , i = 1, 2 is twice differentiable and its Hessian is
Ai, i = 1, 2 which is positive semidefinite, we conclude that 〈Aix, x〉 , i = 1, 2
is convex. In addition, 〈b, x〉 is affine and C, convex. Therefore, g(x) and h(x)
are convex and this is a DC decomposition of f(x).

2. f(x) = g(x)− h(x) with

g(x) =
1

2
〈(A+ ρI)x, x〉+ 〈b, x〉+ χC(x),

h(x) =
1

2
ρ‖x‖2.

The positive number ρ is chosen such that A + ρI is positive semidefinite, i.e.,
ρ ≥ −λ1. This is another DC decomposition of f(x) for the same reason as
before. The problem is that, at each iteration, the algorithm requires solving a
convex quadratic program and so is expensive.

3. f(x) = g(x)− h(x) with

g(x) =
ρ

2
‖x‖2 + 〈b, x〉+ χC(x),

h(x) =
1

2
〈(ρI − A)x, x〉 .

Chapter 5. Applications of DCA 63

The positive number ρ, in this case, should render the matrix ρI − A positive
semidefinite, i.e., ρ ≥ λn. From the computational viewpoint, this decomposi-
tion is the most efficient. See [8].

The simplified DCA scheme which is described in the Algorithm 1 can be formu-
lated explicity with the DC decomposition 3.

Since h(x) = 1
2
〈(ρI − A)x, x〉 is differentiable, ∂h(xk) = (ρI − A)xk. Besides,

we need to compute
xk+1 = argmin

x∈C
{g(x)− 〈x∗k, x〉} ,

where x∗k = (ρI − A)xk.
Then,

xk+1 = argmin
x∈C

{ρ
2
‖x‖2 + 〈b, x〉 − 〈x∗k, x〉

}
.

Since multiplying by a constant and adding a constant do not affect the argument func-
tion:

xk+1 = argmin
x∈C

{
‖x‖2 − 2

〈
x∗k − b
ρ

, x

〉
+

∥∥∥∥x∗k − bρ

∥∥∥∥2
}

= argmin
x∈C

∥∥∥∥x− x∗k − b
ρ

∥∥∥∥2 .
Thus, xk+1 is, in fact, the projection of (x∗k − b)/ρ onto C, i.e.,

xk+1 = PC
(
x∗k − b
ρ

)
=


R

x∗k − b
‖x∗k − b‖

, if ‖x∗k − b‖ ≥ ρR,

x∗k − b
ρ

, otherwise.

Consequently, the explicit DCA is given by Algorithm 2.

5.2 Least-squares fitting by circles

In this section we are going to consider the following problem: given a set of distinct
points {ai}pi=1 ⊆ Rn, find the spherical surface S that minimizes the sum of the squared
distances from the points to S, i.e.,

(P) min
C,R

f(C,R) :=
1

2p

p∑
i=1

(‖C − ai‖ −R)2 ,

where C and R are the center and the radius of the spherical surface.

64 5.2. Least-squares fitting by circles

Algorithm 2: DCA scheme for (TSRP)
input : x0 ∈ X , tol

1 k ← 0
2 repeat
3 Compute x∗k = (ρI − A)xk.

4 Compute xk+1 =


R

x∗k − b
‖x∗k − b‖

, if ‖x∗k − b‖ ≥ ρR,

x∗k − b
ρ

, otherwise.

5 k ← k + 1

6 until |f(xk+1)− f(xk)| < tol;

output: xk

Firstly, we need to get a DC decomposition of f(C,R). Since the linear combina-
tion of DC functions are DC, we have to obtain a decomposition of one of the sums:

fi(C,R) = (‖C − ai‖ −R)2 = ‖C − ai‖2 +R2 − 2‖C − ai‖R =

= ‖C − ai‖2 +R2 −
[
(‖C − ai‖+R)2 −

(
‖C − ai‖2 +R2

)]
=

= 2
(
‖C − ai‖2 +R2

)
− (‖C − ai‖+R)2 = gi(C,R)− hi(C,R).

Since gi and hi are convex, we have just found a DC decomposition of f(C,R):

f(C,R) =
1

2p

p∑
i=1

(
‖C − ai‖2 +R2

)
− 1

2p

p∑
i=1

(‖C − ai‖+R)2 =

= g(C,R)− h(C,R).

This DC decomposition also provides an explicit DCA that we are going to com-
pute. First of all, we are going to compute a subgradient of h at (Ck, Rk):

∂h(C,Rk) = ∂

(
1

p

p∑
i=1

hi(C,Rk)

)
=

1

2p

p∑
i=1

∂(‖C − ai‖+Rk)
2 =

=
1

2p

p∑
i=1

∂(‖C − ai‖2 +R2
k + 2‖C − ai‖Rk) =

1

p

p∑
i=1

((C − ai) + ∂‖C − ai‖Rk) .

Besides, the subgradient of the Euclidean norm is given by:

∂(‖C − ai‖) =


C − ai
‖C − ai‖

, if C − ai 6= 0,

{x∗ : ‖x∗‖ ≤ 1}, otherwise.

Chapter 5. Applications of DCA 65

Thus, we have:

∂h(C,Rk) =



1

p

∑
i 6=j

(
1 +

Rk

‖C − ai‖

)
(C − ai), if C = aj,

1

p

p∑
i=1

(
1 +

Rk

‖C − ai‖

)
(C − ai), otherwise.

On the other hand,

∂h(Ck, R) = ∂

(
1

2p

p∑
i=1

hi(Ck, R)

)
=

1

2p

p∑
i=1

∂(‖Ck − ai‖+R)2 =

=
1

2p

p∑
i=1

∂(‖Ck − ai‖2 +R2 + 2‖Ck − ai‖R) =
1

p

p∑
i=1

(R + ‖Ck − ai‖) .

Hence,

∂h(Ck, R) = R +
1

p

p∑
i=1

‖Ck − ai‖.

Therefore, we obtain:

(C∗k , R
∗
k) ∈

(
∂h(C,Rk)

∣∣∣
Ck

× ∂h(Ck, R)
∣∣∣
Rk

)
.

We also have to compute(
Ck+1

Rk+1

)
= argmin

C,R
{g(C,R)− 〈(C∗k , R∗k), (C,R)〉} ,

where (C∗k , R
∗
k) ∈

(
∂h(C,Rk)

∣∣∣
Ck

× ∂h(Ck, R)
∣∣∣
Rk

)
. Then,

(
Ck+1

Rk+1

)
= argmin

C,R

{
g̃(C,R) :=

1

p

p∑
i=1

(
‖C − ai‖2 +R2

)
− 〈(C∗k , R∗k), (C,R)〉

}
,

but this is a convex quadratic function whose minimum is attained at the point (Ĉ, R̂)
such that∇g(Ĉ, R̂) = 0. Hence, we need to figure out the gradient:

∇Cg(C,R) =
1

p

p∑
i=1

(2(C − ai)− C∗k),

∂g(C,R)

∂R
=

1

p

p∑
i=1

(2R−R∗k).

66 5.2. Least-squares fitting by circles

Thus, we are going to find (Ĉ, R̂) such that

1

p

p∑
i=1

(2(Ĉ − ai)− C∗k) = 0,

1

p

p∑
i=1

(2R̂−R∗k) = 0.

This gives the following solution:
Ĉ =

C∗k
2

+
1

p

p∑
i=1

ai.

R̂ =
R∗k
2
.

Hence, we set (
Ck+1

Rk+1

)
=

1

2

(
C∗k
R∗k

)
+

1

p

(∑p
i=1 ai
0

)
.

So, Algorithm 3 shows the explicit DCA in this case.
Now, we are going to implement this algorithm in Python and solve an example

with this algorithm.

Example 5.2.1. Given the point cloud of the Picture 5.1, we seek the circumference
that fits these points.

Chapter 5. Applications of DCA 67

Algorithm 3: DCA scheme for (P)
input : x0 ∈ X , tol

1 k ← 0
2 repeat

3 Compute C∗k =



1

p

∑
i 6=j

(
1 +

Rk

‖Ck − ai‖

)
(Ck − ai), if Ck = aj,

1

p

p∑
i=1

(
1 +

Rk

‖Ck − ai‖

)
(Ck − ai), otherwise.

4 Compute R∗k = Rk +
1

p

p∑
i=1

‖Ck − ai‖.

5 Compute
(
Ck+1

Rk+1

)
=

1

2

(
C∗k
R∗k

)
+

1

p

(∑p
i=1 ai
0

)
.

6 k ← k + 1

7 until |f(xk+1)− f(xk)| < tol;

output: xk

The implementation in Python is given by

1 import math
2 from numpy import *
3 from numpy.random import *
4 import random
5 import matplotlib.pyplot as plt
6 from numpy import linalg as LA
7 from scipy.optimize import minimize
8 import time
9 from scipy import stats

10

11

12 def dcafit(x0,nube,timelimit,tol):
13

14 n = len(nube[0])
15 n1 = n+1
16 p = len(nube)
17 cte = 1/p
18

19 def f(x):
20 C = x[0:n]
21 R = x[-1]
22 return sum((LA.norm(C-nube[i])-R)**2 for i in range(p))/(2*p)
23

24

25 start_time = time.clock()
26

27 def subgrad(x):

68 5.2. Least-squares fitting by circles

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
Point cloud

Figure 5.1: Point cloud made of two concentric circles.

28 C = x[:n]
29 R = x[-1]
30 vector = zeros(n1)
31 vector[0:n] = list(cte*sum((1+R/LA.norm(C-nube[i]))*(C-nube[i]) for i in range(p)))
32 vector[-1] = R+cte*(sum(LA.norm(C-nube[i]) for i in range(p)))
33 return vector
34

35 def argming(xstar):
36 vector = zeros(n1)
37 for i in range(n):
38 vector[i] = cte*sum(nube[:,i])
39 return (1/2)*xstar+vector
40

41 xold = x0
42 xstar = subgrad(xold)
43 xnew = argming(xstar)
44

45 tiempos = [0]
46

47 tiempo = time.clock()-start_time
48 tiempos += [tiempo]
49

50 niter = 1
51 while tiempo<=timelimit and abs(f(xnew)-f(xold))>tol:
52 xold = xnew
53 xstar = subgrad(xold)
54 xnew = argming(xstar)
55 tiempo = time.clock()-start_time
56 tiempos += [tiempo]
57 niter += 1
58

59 return [f(xold),xold,tiempos[-2],niter]
60

61

62 def dcamin(x0,nube,timelimit,tol,method):
63

64 n = len(nube[0])
65 p = len(nube)
66

Chapter 5. Applications of DCA 69

67 def f(x):
68 C = x[0:n]
69 R = x[-1]
70 return (1/(2*p))*sum((LA.norm(C-nube[i])-R)**2 for i in range(p))
71

72 start_time = time.clock()
73

74 xold = x0
75 res = minimize(f,xold,method=method,options={'maxiter': 1})
76 xnew = res.x
77

78 tiempos = [0]
79

80 tiempo = time.clock()-start_time
81 tiempos += [tiempo]
82

83 niter = 1
84 while tiempo <= timelimit and abs(f(xnew)-f(xold))>tol:
85 xold = xnew
86 res = minimize(f,xold,method=method,options={'maxiter': 1})
87 xnew = res.x
88 tiempo = time.clock()-start_time
89 tiempos += [tiempo]
90 niter += 1
91

92 return [f(xold),xold,tiempos[-2],niter]

The function dcafit is the code of the Algorithm 3, whereas that dcamin pro-
vides the solution of the problem using methods of SciPy. Then, we are going to utilize
that to compare results.

Applying this code to this example produces the following code:

1 import math
2 from numpy import *
3 from numpy.random import *
4 import random
5 import matplotlib.pyplot as plt
6 from numpy import linalg as LA
7 from scipy.optimize import minimize
8 import time
9 from scipy import stats

10 from dcafit import *
11

12 # Computing the circumference that best adjusts to two concentric circles.
13

14 #==
15 # Visualization
16 #==
17

18 t = linspace(0,2*pi,50)
19

20 circle1 = [2*cos(t),2*sin(t)]
21 circle2 = [4*cos(t),4*sin(t)]
22

23 fig, ax = plt.subplots()
24 ax.plot(circle1[0],circle1[1],'ko')
25 ax.plot(circle2[0],circle2[1],'ko')
26 plt.title('Point cloud')
27 fig.savefig('nubepuntos.pdf', dpi=fig.dpi)
28 plt.show()
29

70 5.2. Least-squares fitting by circles

30 #==
31 # Data
32 #==
33

34 x0 = zeros(3)
35

36 data = array([[2*cos(s),2*sin(s)] for s in t] + [[4*cos(s),4*sin(s)] for s in t])
37

38 timelimit = 5
39

40 tol = 1e-5
41

42 #==
43 # Resolution and visualization
44 #==
45

46 res = dcafit(x0,data,timelimit,tol)
47

48 obj = res[0]
49 C = res[1][:-1]
50 R = res[1][-1]
51 tiempo = res[2]
52

53 print('Objective value: ',obj)
54 print('Center of the circumference: ',C)
55 print('Radius of the circumference: ',R)
56 print('Execution time: ',tiempo)
57

58 circlesol = C+array([[R*cos(s),R*sin(s)] for s in t])
59

60 fig, ax = plt.subplots()
61 ax.plot(circle1[0],circle1[1],'ko')
62 ax.plot(circle2[0],circle2[1],'ko')
63 ax.plot(circlesol[:,0],circlesol[:,1],'r',label='Circumference solution')
64

65 plt.title('Point cloud with circumference solution')
66 #handles, labels = ax.get_legend_handles_labels()
67 #ax.legend(handles, labels)
68 fig.savefig('nubepuntoscirc.pdf', dpi=fig.dpi)
69 plt.show()

DCA algorithm provides the solution 5.2.

Numerical results
In this subsection we will study two experiments to compare our algorithm with others
that are implemented in the funcion optimize of the package SciPy. First experi-
ment consists in using Multistart Algorithm with 100 uniform samples in the interval
(−2000, 2000) to do a boxplot to see the results of the objective values and execution
times. In the second experiment, we will present a table to see how the results change
in terms of the size p and dimension n in the different algorithms.

First experiment

Given 50 points distributed by an uniform sample in the interval (0, 100) in the Eu-
clidean space, we will compute the objective values and times provided by the different

Chapter 5. Applications of DCA 71

4 3 2 1 0 1 2 3 4
4

3

2

1

0

1

2

3

4
Point cloud with circumference solution

Figure 5.2: The red circumference is the solution of the example

algorithms.

0 20 40 60 80 100
0

20

40

60

80

100
Point cloud

Figure 5.3: Point cloud of the first experiment

The Python’s code is the following:

1 import math
2 from numpy import *
3 import matplotlib.pyplot as plt
4 from numpy import linalg as LA
5 from scipy.optimize import minimize
6 import time
7 from scipy import stats
8 from dcafit import *
9

10

72 5.2. Least-squares fitting by circles

11 seed(1)
12

13 # Multistart and comparation with other algorithms.
14

15 #==
16 # Visualization
17 #==
18 n = 2
19 n1 = n + 1
20 p = 50
21

22 pointcloud = uniform(0,100,size=(n,p))
23

24 fig, ax = plt.subplots()
25 ax.plot(pointcloud[0],pointcloud[1],'ko')
26 plt.title('Point cloud')
27 fig.savefig('nubepuntos2.pdf', dpi=fig.dpi)
28 plt.show()
29

30 #==
31 # Data
32 #==
33

34

35 M = 2000
36 numsamples = 100
37

38

39 initialpoints = uniform(-M,M,size=(n1,numsamples))
40

41 data = uniform(0,100,size=(p,n))
42

43 timelimit = 0.03
44

45 tol = 1e-3
46

47 #==
48 # Multistart DCA
49 #==
50 print('Multistart DCA')
51

52 DCAobj = []
53

54 DCAtimes = []
55

56 niter = 0
57

58 for i in range(numsamples):
59 if niter%10==0:
60 print('Iteration ',niter)
61 res = dcafit(initialpoints[:,i],data,timelimit,tol)
62 DCAobj += [res[0]]
63 if res[2]!=0:
64 DCAtimes += [res[2]]
65 niter += 1
66

67 asarray(DCAobj)
68

69 asarray(DCAtimes)
70 #==
71 # Multistart Nelder-Mead
72 #==
73 print('\nMultistart Nelder-Mead')
74

Chapter 5. Applications of DCA 73

75 NMobj = []
76

77 NMtimes = []
78

79 niter = 0
80

81 for i in range(numsamples):
82 if niter%10==0:
83 print('Iteration ',niter)
84 res = dcamin(initialpoints[:,i],data,timelimit,tol,method='Nelder-Mead')
85 NMobj += [res[0]]
86 if res[2]!=0:
87 NMtimes += [res[2]]
88 niter += 1
89

90 asarray(NMobj)
91

92 asarray(NMtimes)
93

94 #==
95 # Multistart Powell
96 #==
97 #print('\nMultistart Powell')
98 #
99 #Powellobj = []

100 #
101 #Powelltimes = []
102 #
103 #niter = 0
104 #
105 #for i in range(numsamples):
106 # if niter%10==0:
107 # print('Iteration ',niter)
108 # res = dcamin(initialpoints[:,i],data,timelimit,tol,method='Powell')
109 # Powellobj += [res[0]]
110 # if res[2]!=0:
111 # Powelltimes += [res[2]]
112 # niter += 1
113 #
114 #asarray(Powellobj)
115 #
116 #asarray(Powelltimes)
117

118 #==
119 # Multistart CG
120 #==
121 print('\nMultistart CG')
122

123 CGobj = []
124

125 CGtimes = []
126

127 niter = 0
128

129 for i in range(numsamples):
130 if niter%10==0:
131 print('Iteration ',niter)
132 res = dcamin(initialpoints[:,i],data,timelimit,tol,method='CG')
133 CGobj += [res[0]]
134 if res[2]!=0:
135 CGtimes += [res[2]]
136 niter += 1
137

138 asarray(CGobj)

74 5.2. Least-squares fitting by circles

139

140 asarray(CGtimes)
141 stats.describe(CGobj)
142 #==
143 # Multistart BFGS
144 #==
145 print('\nMultistart BFGS')
146

147 BFGSobj = []
148

149 BFGStimes = []
150

151 niter = 0
152

153 for i in range(numsamples):
154 if niter%10==0:
155 print('Iteration ',niter)
156 res = dcamin(initialpoints[:,i],data,timelimit,tol,method = 'BFGS')
157 BFGSobj += [res[0]]
158 if res[2]!=0:
159 BFGStimes += [res[2]]
160 niter += 1
161

162 asarray(BFGSobj)
163

164 asarray(BFGStimes)
165

166 #==
167 # Boxplot
168 #==
169

170 # Objective values
171

172 fig, ax = plt.subplots()
173

174 ax.boxplot([DCAobj,NMobj,CGobj,BFGSobj])
175

176 algorithms = ['DCA', 'Nelder-Mead','CGobj','BFGS']
177 labels = algorithms
178

179 ax.set_xticklabels(labels)
180 plt.title('Objective values of the algorithms')
181 fig.savefig('objval.pdf', dpi=fig.dpi)
182 plt.show()
183

184 # Objective value DCA
185

186 fig, ax = plt.subplots()
187

188 ax.boxplot(DCAobj)
189

190 algorithms = ['DCA']
191 labels = algorithms
192

193 ax.set_xticklabels(labels)
194 plt.title('Objective values of the DCA')
195 fig.savefig('objvaldca.pdf', dpi=fig.dpi)
196 plt.show()
197

198 # Execution times
199

200 fig, ax = plt.subplots()
201

202 ax.boxplot([DCAtimes,NMtimes,CGtimes,BFGStimes])

Chapter 5. Applications of DCA 75

203

204 algorithms = ['DCA', 'Nelder-Mead','CG', 'BFGS']
205 labels = algorithms
206

207 ax.set_xticklabels(labels)
208 plt.title('Execution times of the algorithms')
209 fig.savefig('extimes.pdf', dpi=fig.dpi)
210 plt.show()

The boxplot 5.4 gives the comparation of the objective values.

DCA Nelder-Mead CGobj BFGS
0.0

0.2

0.4

0.6

0.8

1.0 1e7 Objective values of the algorithms

Figure 5.4: Boxplot of objective values

Clearly, the objective values provided by DCA are much better than the other algo-
rithms. If we focus on the DCA values, we have this boxplot

DCA
100

150

200

250

300

350

400

450

500
Objective values of the DCA

Figure 5.5: Boxplot of DCA objective values

Lastly, if we see the execution times, we obtain the boxplot 5.6. In this case, the
execution times are more similar, but the DCA times seem to be better than the others.

76 5.2. Least-squares fitting by circles

DCA Nelder-Mead CG BFGS
0.000

0.005

0.010

0.015

0.020

0.025

0.030
Execution times of the algorithms

Figure 5.6: Boxplot of execution times

Second experiment

In this experiment, using the same Multistart Algorithm, we are varying the parameters
p and n and we will expose the main features of the distinct algorithms for each pair
of parameters in a table. The code to implement this experiment is the following:

1 import math
2 from numpy import *
3 import matplotlib.pyplot as plt
4 from numpy import linalg as LA
5 from scipy.optimize import minimize
6 import time
7 from scipy import stats
8 from dcafit import *
9

10

11

12 seed(1)
13

14

15 # Mean and Multistart and comparation with other algorithms.
16 #==
17 # Data
18 #==
19

20 pointcloud = [10,50,100,200]
21

22 dimension = [1,2,5,10]
23

24 M = 2000
25 numsamples = 100
26

27 #==
28 # Initialization
29 #==
30 DCAmean = []
31 NMmean = []
32 CGmean = []
33 BFGSmean = []
34

Chapter 5. Applications of DCA 77

35 DCAmin = []
36 NMmin = []
37 CGmin = []
38 BFGSmin = []
39

40 DCAmax = []
41 NMmax = []
42 CGmax = []
43 BFGSmax = []
44

45

46 #==
47 # Loops
48 #==
49 for p in pointcloud:
50 for n in dimension:
51 n1 = n + 1
52

53 initialpoints = uniform(-M,M,size=(n1,numsamples))
54

55 data = uniform(0,100,size=(p,n))
56

57 timelimit = 0.0003*n*p
58

59 tol = 1e-3
60

61 #==
62 # Multistart DCA
63 #==
64 print('\nMultistart DCA: p = '+str(p)+', n = '+str(n))
65

66 DCAobj = []
67

68 DCAtimes = []
69

70 DCAniter = []
71

72 for i in range(numsamples):
73 res = dcafit(initialpoints[:,i],data,timelimit,tol)
74 DCAobj += [res[0]]
75 if res[2]!=0:
76 DCAtimes += [res[2]]
77 DCAniter += [res[3]]
78

79 asarray(DCAobj)
80

81 asarray(DCAtimes)
82

83 asarray(DCAniter)
84

85

86

87 #==
88 # Multistart Nelder-Mead
89 #==
90 print('\nMultistart Nelder-Mead: p = '+str(p)+', n = '+str(n))
91

92 NMobj = []
93 NMtimes = []
94 NMniter = []
95

96 for i in range(numsamples):
97 res = dcamin(initialpoints[:,i],data,timelimit,tol,method='Nelder-Mead')
98 NMobj += [res[0]]

78 5.2. Least-squares fitting by circles

99 if res[2]!=0:
100 NMtimes += [res[2]]
101 NMniter += [res[3]]
102

103 asarray(NMobj)
104 asarray(NMtimes)
105 asarray(NMniter)
106

107 #==
108 # Multistart Powell
109 #==
110 #print('\nMultistart Powell')
111 #
112 #Powellobj = []
113 #
114 #Powelltimes = []
115 #
116 #niter = 0
117 #
118 #for i in range(numsamples):
119 # if niter%10==0:
120 # print('Iteration ',niter)
121 # res = dcamin(initialpoints[:,i],data,timelimit,tol,method='Powell')
122 # Powellobj += [res[0]]
123 # if res[2]!=0:
124 # Powelltimes += [res[2]]
125 # niter += 1
126 #
127 #asarray(Powellobj)
128 #
129 #asarray(Powelltimes)
130

131 #==
132 # Multistart CG
133 #==
134 print('\nMultistart CG: p = '+str(p)+', n = '+str(n))
135

136 CGobj = []
137 CGtimes = []
138 CGniter = []
139

140 for i in range(numsamples):
141 res = dcamin(initialpoints[:,i],data,timelimit,tol,method='CG')
142 CGobj += [res[0]]
143 if res[2]!=0:
144 CGtimes += [res[2]]
145 CGniter += [res[3]]
146

147 asarray(CGobj)
148 asarray(CGtimes)
149 asarray(CGniter)
150

151 #==
152 # Multistart BFGS
153 #==
154 print('\nMultistart BFGS: p = '+str(p)+', n = '+str(n))
155

156 BFGSobj = []
157 BFGStimes = []
158 BFGSniter = []
159

160 for i in range(numsamples):
161 res = dcamin(initialpoints[:,i],data,timelimit,tol,method = 'BFGS')
162 BFGSobj += [res[0]]

Chapter 5. Applications of DCA 79

163 if res[2]!=0:
164 BFGStimes += [res[2]]
165 BFGSniter += [res[3]]
166

167 asarray(BFGSobj)
168 asarray(BFGStimes)
169 asarray(BFGSniter)
170

171 #==
172 # Means, minimum and maximum of objective values, iterations and times
173 #==
174

175 DCAmean += [(mean(DCAobj),mean(DCAtimes),floor(mean(DCAniter)))]
176 NMmean += [(mean(NMobj),mean(NMtimes),floor(mean(NMniter)))]
177 CGmean += [(mean(CGobj),mean(CGtimes),floor(mean(CGniter)))]
178 BFGSmean += [(mean(BFGSobj),mean(BFGStimes),floor(mean(BFGSniter)))]
179

180 DCAmin += [(min(DCAobj),min(DCAtimes),floor(min(DCAniter)))]
181 NMmin += [(min(NMobj),min(NMtimes),floor(min(NMniter)))]
182 CGmin += [(min(CGobj),min(CGtimes),floor(min(CGniter)))]
183 BFGSmin += [(min(BFGSobj),min(BFGStimes),floor(min(BFGSniter)))]
184

185 DCAmax += [(max(DCAobj),max(DCAtimes),floor(max(DCAniter)))]
186 NMmax += [(max(NMobj),max(NMtimes),floor(max(NMniter)))]
187 CGmax += [(max(CGobj),max(CGtimes),floor(max(CGniter)))]
188 BFGSmax += [(max(BFGSobj),max(BFGStimes),floor(max(BFGSniter)))]

This code provides the following tables:

Objective values

DCA NM CG BFGS

p n Min Ave Max Min Ave Max Min Ave Max Min Ave Max

10 1 20.47 142.6 202.7 202.7 1.36e+6 6.86e+6 20.47 7919 5.99e+5 22.93 4.16e+4 4.02e+5
10 2 74.85 327.6 695.4 170.6 1.76e+6 9.16e+6 74.84 294.6 695.347 156.6 4265 1.67e+5
10 5 30.04 293.5 645.1 63.05 3.05e+6 1.45e+7 30.05 276.3 642.30 44.44 671.2 2.86e+4
10 10 66.78 325.9 870 186.6 5.29e+6 1.87e+7 65.09 318.2 941.432 78.09 363.66 968.9
50 1 98.82 255.1 350.6 350.7 1.51e+6 7.22e+6 98.82 272.9 623.823 350.6 5.01e+4 9.3e+5
50 2 93.50 370.3 459.2 399.8 1.78e+6 8.76e+6 93.5 374.7 454.274 265.6 2095 5.87e+4
50 5 65.52 375.7 554.4 256.3 3.68e+6 1.25e+7 65.51 367.2 554.793 65.77 389.4 555
50 10 49.05 380.9 533.5 248.1 5.01e+6 1.76e+7 49.02 383.8 547.507 239.8 3561 2.54e+5

100 1 95.24 331.2 405.8 406.3 1.02e+6 7.23e+6 95.24 4980 4.63e+5 95.6 3.22e+4 5.27e+5
100 2 94.80 394.7 486.7 411.3 1.67e+6 8.96e+6 94.79 396.5 485.520 122.1 7.42e+4 1.84e+6
100 5 84.08 385.7 509.6 309.2 3.44e+6 1.25e+7 84.07 384.5 509.606 84.1 448.6 5895
100 10 296.6 418.3 510 295.6 5.60e+6 2.04e+7 291.5 412.5 504.670 296.5 428.1 844.6
200 1 102.7 329.9 409.7 409.7 1.02e+6 5.79e+6 102.7 372 1857.803 409.7 1.66e+4 3.87e+5
200 2 109.1 362.5 422.1 408.1 1.53e+6 9.39e+6 109.1 369.6 422.140 109.2 6351 3.91e+5
200 5 87.28 417.7 474.9 400.6 3.68e+6 1.20e+7 87.27 414.3 473.241 87.37 441.8 2024
200 10 294.7 403.8 528.4 344.9 5.92e+6 2.03e+7 328.8 401.1 531.285 331.1 407.6 531.7

80 5.2. Least-squares fitting by circles

Execution times

DCA NM CG BFGS

p n Min Ave Max Min Ave Max Min Ave Max Min Ave Max

10 1 3e-4 0.003 0.03 4e-4 0.014 0.03 0.001 0.01 0.03 0.001 0.028 0.03
10 2 4e-4 0.055 0.06 0.001 0.015 0.054 0.004 0.056 0.06 0.055 0.059 0.06
10 5 0.06 0.148 0.15 0.001 0.044 0.15 0.107 0.147 0.15 0.14 0.148 0.15
10 10 0.3 0.3 0.3 0.005 0.078 0.237 0.288 0.297 0.3 0.292 0.298 0.3
50 1 0.002 0.019 0.124 0.002 0.532 0.148 0.011 0.049 0.149 0.109 0.143 0.15
50 2 0.002 0.117 0.3 0.002 0.079 0.298 0.017 0.254 0.3 0.139 0.291 0.3
50 5 0.165 0.732 0.75 0.004 0.145 0.745 0.177 0.729 0.75 0.733 0.745 0.75
50 10 0.655 1.49 1.5 0.025 0.29 0.983 1.382 1.483 1.5 1.407 1.488 1.5

100 1 0.004 0.026 0.154 0.004 0.16 0.3 0.021 0.087 0.297 0.112 0.283 0.3
100 2 0.003 0.285 0.6 0.012 0.166 0.526 0.033 0.498 0.6 0.435 0.572 0.6
100 5 0.008 1.402 1.5 0.04 0.289 1.344 0.06 1.435 1.5 1.271 1.486 1.5
100 10 0.009 2.966 3.000 0.152 0.667 2.239 2.857 2.969 2.999 2.906 2.981 3
200 1 0.006 0.06 0.338 0.023 0.254 0.597 0.05 0.185 0.595 0.225 0.567 0.6
200 2 0.006 0.226 1.2 0.009 0.259 1.195 0.055 0.856 1.199 0.622 1.124 1.199
200 5 0.007 1.773 2.999 0.059 0.551 1.97 0.118 2.768 3 1.252 2.829 2.999
200 10 0.016 5.52 6.000 0.293 1.196 3.85 5.737 5.944 6 3.934 5.946 6

Iterations

DCA NM CG BFGS

p n Min Ave Max Min Ave Max Min Ave Max Min Ave Max

10 1 2 5 15 2 21 45 2 4 11 2 11 18
10 2 2 99 112 2 19 66 2 23 37 8 21 33
10 5 105 252 265 2 30 124 16 39 63 14 34 57
10 10 297 455 483 4 40 114 35 56 80 25 47 70
50 1 2 9 55 2 20 55 2 5 14 6 12 20
50 2 2 42 121 2 21 84 2 20 41 12 22 38
50 5 65 277 292 2 28 139 10 48 69 30 46 63
50 10 250 552 574 4 33 109 37 54 88 8 47 69

100 1 2 5 26 2 23 46 2 4 11 8 12 19
100 2 2 50 125 3 23 79 2 21 42 4 22 42
100 5 3 255 308 5 27 130 2 46 74 13 47 73
100 10 3 539 618 11 40 134 57 57 95 22 59 81
200 1 2 7 36 3 21 55 2 4 12 7 13 21
200 2 2 22 123 2 19 89 2 16 37 8 22 30
200 5 2 148 301 4 24 88 2 39 73 22 39 70
200 10 3 479 626 7 33 80 30 52 90 32 63 79

These results show that, indeed, the DCA is a promising strategy against bench-
mark competitors.

Bibliography

[1] E. Asplund. Differentiability of the metric projection in finite dimensional eu-
clidean space. Proceedings of the American Mathematical Society, 38(1):218–219,
1973.

[2] Rafael Blanquero and Emilio Carrizosa. Optimization of the norm of a vector-
valued dc function and applications. Journal of Optimization Theory and Applica-
tions, 107(2):245–260, 2000.

[3] Mirjam Dür. Conditions characterizing minima of the difference of functions.
Monatshefte für Mathematik, 134:295–303, 2002.

[4] Philip Hartman. On functions representable as a difference of convex functions.
Pacific Journal of Mathematics, 9(3):707–713, 1959.

[5] R. Horst and N.V. Thoai. Dc programming: Overview. Journal of Optimization
Theory and Applications, 103(1):1–43, 1999.

[6] Panos M. Pardalos and Reiner Horst. Handbook of Global Optimization. Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1st edition, 1995.

[7] Rockafellar R.T. Convex Analysis. Princeton University Press, New Jersey, 1970.

[8] Pham Dinh Tao and Le Thi Hoai An. Convex analysis approach to dc pro-
gramming: Theory, algorithms and applications. Acta Mathematica Vietnamica,
22(1):289–355, 1997.

81

	Introduction
	Preliminaries of Convex Analysis
	DC Functions and DC Sets. Properties
	DC Functions and DC Sets
	Properties of DC Functions
	Norm of a DC Function
	Non-uniqueness of DC Decomposition

	DC Programming. The DCA Algorithm
	Conjugate Functions and Properties
	Duality in DC Programming
	Optimality Conditions for DC Programming
	Global Optimality for DC Programming
	Local Optimality for DC Programming

	The DCA Algorithm
	Description of DCA for general DC programs
	Convergence of DCA for general DC programs

	Polyhedral DC optimization problems

	Applications of DCA
	The trust-region subproblem (TSRP)
	Least-squares fitting by circles

